KR101397079B1 - 동적 중간 주파수 스케일링을 갖는 라디오 디바이스 - Google Patents

동적 중간 주파수 스케일링을 갖는 라디오 디바이스 Download PDF

Info

Publication number
KR101397079B1
KR101397079B1 KR1020117028967A KR20117028967A KR101397079B1 KR 101397079 B1 KR101397079 B1 KR 101397079B1 KR 1020117028967 A KR1020117028967 A KR 1020117028967A KR 20117028967 A KR20117028967 A KR 20117028967A KR 101397079 B1 KR101397079 B1 KR 101397079B1
Authority
KR
South Korea
Prior art keywords
signal
frequency
center frequency
selectively
downconverting
Prior art date
Application number
KR1020117028967A
Other languages
English (en)
Other versions
KR20120006076A (ko
Inventor
코맥 에스. 콘로이
티모시 폴 팔스
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20120006076A publication Critical patent/KR20120006076A/ko
Application granted granted Critical
Publication of KR101397079B1 publication Critical patent/KR101397079B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Circuits Of Receivers In General (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

라디오 디바이스 내에서 중간 주파수(IF) 신호의 동적 주파수 스케일링을 위한 방법 및 장치가 제시된다.

Description

동적 중간 주파수 스케일링을 갖는 라디오 디바이스{RADIO DEVICE HAVING DYNAMIC INTERMEDIATE FREQUENCY SCALING}
본 명세서에 개시된 청구 대상은 전자 디바이스들에 관한 것이고, 더 상세하게는 라디오 디바이스에서 사용하기 위한 방법들 및 장치들에 관한 것이다.
무선 통신 시스템들은 급격하게 디지털 정보 분야에서 가장 지배적인 기술들 중 하나가 되고 있다. 위성 및 셀룰러 전화 서비스들 및 다른 유사한 무선 통신 네트워크들은 이미 전세계에 퍼져있다. 또한, 다양한 유형들 및 사이즈들의 새로운 무선 시스템들(예를 들어, 네트워크들)이 매일 추가되어, 고정식 및 이동식 디바이스들 모두를 포함하는 다수의 디바이스들 사이에 접속성을 제공한다. 이 무선 시스템들 중 대부분은, 정보의 공유 및 더 많은 통신을 증진시키기 위해 다른 통신 시스템들 및 자원들을 통해 서로 연결된다. 실제로, 몇몇 디바이스들이 2개 이상의 무선 통신 시스템과 통신할 수 있는 것은 특이한 것이 아니고, 이러한 경향은 증가할 것으로 보인다.
다른 대중적이고 매우 중요한 무선 기술은, 내비게이션 시스템들, 더 상세하게는, 예를 들어, 글로벌 측위 시스템(GPS) 및 다른 유사한 글로벌 내비게이션 위성 시스템(GNSS)과 같은 위성 측위 시스템들(SPS; Satellite Positioning System)을 포함한다. 예를 들어, SPS 라디오들은, GNSS의 복수의 궤도(orbiting) 위성들에 의해 송신되는 무선 SPS 신호들을 수신할 수 있다. SPS 신호들은, 예를 들어, 그 SPS 라디오를 갖는 디바이스와 연관된 글로벌 시간, 범위 또는 의사범위(pseudorange), 대략적이거나 정확한 지리적 위치, 고도, 및/또는 속력을 결정하기 위해 프로세싱될 수 있다.
라디오 디바이스 내에서 중간 주파수(IF) 신호의 동적 주파수 스케일링(scaling)을 위한 방법들 및 장치들이 제시된다.
하나의 예시적인 양상에 따르면, RF 신호를 수신하는 단계, 및 환경 파라미터(environmental parameter)에 적어도 부분적으로 기초하여, 수신된 RF 신호를, 제 1 중심 주파수를 갖는 대응하는 제 1 중간 주파수(IF) 신호 또는 제 2 중심 주파수를 갖는 대응하는 제 2 IF 신호로 선택적으로 주파수 하향변환하는 단계를 포함하고, 제 2 중심 주파수는 제 1 중심 주파수보다 큰 방법이 제시될 수 있다. 여기서, 환경 파라미터는 디바이스 내부 및/또는 외부의 환경에 관련될 수 있다.
예를 들어, 특정한 구현예들에서, 이 방법은, 환경 파라미터가 임계 파라미터 미만이면, 수신된 RF 신호를 대응하는 제 1 IF 신호로 주파수 하향변환하는 단계, 및/또는 환경 파라미터가 임계 파라미터 이상이면, 수신된 RF 신호를 대응하는 제 2 IF 신호로 주파수 하향변환하는 단계를 포함할 수 있다. 몇몇 예시적인 구현예들에서, 임계 파라미터는 프로그래밍가능하게 그리고/또는 동적으로 구축될 수 있고, 그리고/또는 제 1 중심 주파수 및/또는 제 2 중심 주파수 중 적어도 하나는 프로그래밍가능하게 그리고/또는 동적으로 구축될 수 있다. 특정한 예시적인 구현예들에서, 이 방법은, 수신된 RF 신호를, 대응하는 제 1 IF 신호로 주파수 하향변환하는데 이용하기 위해 동작가능하게 인에이블되는 제 1 로컬 오실레이터(LO) 신호에 액세스하는 단계, 및 수신된 RF 신호를 대응하는 제 2 IF 신호로 주파수 하향변환하는데 이용하기 위해 동작가능하게 인에이블되는 제 2 LO 신호에 액세스하는 단계를 포함할 수 있다.
다른 예시적인 양상에 따르면, RF 신호를 수신하도록 동작가능하게 인에이블되고, 환경 파라미터에 적어도 부분적으로 기초하여, 수신된 RF 신호를, 제 1 중심 주파수를 갖는 대응하는 제 1 중간 주파수(IF) 신호 또는 제 2 중심 주파수를 갖는 대응하는 제 2 IF 신호로 선택적으로 주파수 하향변환하도록 동작가능하게 인에이블되는 수신기 회로를 포함하고, 제 2 중심 주파수는 제 1 중심 주파수보다 큰 장치가 제시될 수 있다.
또 다른 예시적인 양상에 따르면, RF 신호를 수신하기 위한 수단, 및 환경 파라미터에 적어도 부분적으로 기초하여, 수신된 RF 신호를, 제 1 중심 주파수를 갖는 대응하는 제 1 중간 주파수(IF) 신호 또는 제 2 중심 주파수를 갖는 대응하는 제 2 IF 신호로 선택적으로 주파수 하향변환하기 위한 수단을 포함하고, 제 2 중심 주파수는 제 1 중심 주파수보다 큰 장치가 제시될 수 있다.
또 다른 예시적인 양상에 따르면, 컴퓨터 판독가능 매체가 저장되는 제조 물품이 제시될 수 있다. 컴퓨터 구현가능한 명령들은, 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우, 환경 파라미터에 액세스하도록 프로세싱 유닛(들)을 동작가능하게 인에이블시키고, 환경 파라미터에 적어도 부분적으로 기초하여, RF 신호를 수신하여, 수신된 RF 신호를, 제 1 중심 주파수를 갖는 대응하는 제 1 중간 주파수(IF) 신호 또는 제 2 중심 주파수를 갖는 대응하는 제 2 IF 신호로 선택적으로 주파수 하향변환하도록 동작가능하게 인에이블되는 수신기 회로를 선택적으로 인에이블시킬 수 있고, 제 2 중심 주파수는 제 1 중심 주파수보다 크다.
본 명세서의 일 양상에 따르면, IF 주파수는 무선 시그널링 환경 및/또는 디바이스 동작 모드들에 응답하여 선택적으로 변경될 수 있다(심지어 동적으로 변경될 수 있다). 잠재적인 재밍(jamming) 무선 신호의 존재 시에, IF 주파수는, 예를 들어, 재밍 신호 왜곡(예를 들어, IM2 왜곡)에 기인한 과도한 SPS 수신기 감도저하(desense)를 가능하게 회피하도록 증가될 수 있다. 이러한 재밍 무선 신호의 부재 시에, IF 주파수는, 예를 들어, 특정한 기저대역 회로에서의 전력 소모를 줄이기 위해 감소될 수 있다.
하기 도면들을 참조하여 비제한적이고 비포괄적인 양상들이 개시되며, 유사한 참조번호들은 달리 특정되지 않으면 다양한 도면들에 걸쳐 유사한 부분들을 지칭한다.
도 1은 일 구현예에 따른 동적 중간 주파수 스케일링을 제공하도록 동작가능하게 인에이블되는 적어도 하나의 라디오를 갖는 디바이스를 포함하는 예시적인 환경을 도시하는 블록도이다.
도 2는, 예를 들어, 도 1의 환경에서 구현될 수 있는 예시적인 디바이스의 특정 특징들을 도시하는 블록도이다.
도 3은, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있는 방법을 도시하는 흐름도이다.
도 4는, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있는 예시적인 수신기 회로의 특정 특징들을 도시하는 블록도이다.
도 5는, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있는 예시적인 수신기 회로의 특정 부분들을 도시하는 개략도이다.
도 6은, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있는 예시적인 수신기 회로의 특정 부분들을 도시하는 개략도이다.
도 7은, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있고, 일 구현예에 따른 동적 중간 주파수 스케일링을 도시하는 4개의 그래프들을 포함한다.
라디오 디바이스 내에서 중간 주파수(IF) 신호의 동적 주파수 스케일링을 위한 방법들 및 장치들이 제시된다. IF 신호의 주파수는, 예를 들어, 하나 이상의 "환경 파라미터들"에 응답하여 스케일링 업되거나 스케일링 다운될 수 있다. 예를 들어, 환경 파라미터들은 라디오 디바이스의 내부 및/또는 외부의 환경 내의 하나 이상의 무선 신호들과 연관될 수 있다. 이러한 무선 신호들은, 라디오 디바이스 자체 내로부터 및/또는 하나 이상의 다른 디바이스들로부터 발생될 수 있다. 이러한 무선 환경에서 개선된 성능을 제공하기 위해 IF 신호의 중심 주파수를 스케일링하는 것이 유용할 수 있다. 다른 예로, 환경 파라미터는 디바이스와 연관된 하나 이상의 동작 모드들과 연관될 수 있다. 하나 이상의 동작 모드들에 대한 더 양호한 지원을 제공하기 위해, IF 신호의 중심 주파수를 스케일링하는 것이 유용할 수 있다.
도 1은 본 명세서의 특정한 예시적인 구현예에 따라 동적 중간 주파수 스케일링을 제공하도록 동작가능하게 인에이블되는 적어도 하나의 라디오를 갖는 디바이스(102)를 포함하는 예시적인 환경(100)을 도시하는 블록도이다.
무선 환경(100)은, 적어도 하나의 무선 시스템(104)으로/으로부터 무선 신호들을 송신 및/또는 수신하도록 인에이블되는 적어도 하나의 디바이스(102)를 포함할 수 있는 임의의 시스템(들) 또는 시스템들의 일부를 나타낼 수 있다. 디바이스(102)는, 예를 들어, 모바일 디바이스, 또는 이동가능하지만 주로 고정식으로 유지되도록 의도되는 디바이스를 포함할 수 있다. 따라서, 본 명세서에서 사용되는 바와 같이, 용어 "디바이스" 및 "모바일 디바이스"는, 각각의 용어가, 무선 신호들을 송신 및/또는 수신할 수 있는 임의의 단일 디바이스 또는 디바이스들의 임의의 조합가능한 그룹을 지칭하도록 의도되기 때문에 상호 교환되어 사용될 수 있다.
이를 고려하고 한정이 아닌 예시의 방식으로 도 1의 아이콘들을 사용하여 도시된 바와 같이, 디바이스(102)는, 셀룰러폰, 스마트폰, 개인 휴대 정보 단말, 휴대용 컴퓨팅 디바이스, 내비게이션 디바이스 및/또는 이와 유사한 것 또는 이들의 임의의 조합과 같은 모바일 디바이스를 포함할 수 있다. 다른 예시적인 구현예들에서, 디바이스(102)는, 이동식이거나 고정식인 머신의 형태를 가질 수 있다. 또 다른 예시적인 구현예들에서, 디바이스(102)는 하나 이상의 집적 회로들의 형태, 회로 보드들의 형태, 및/또는 다른 디바이스에 사용되도록 동작가능하게 인에이블될 수 있는 유사한 형태를 가질 수 있다.
디바이스(102)의 형태와 무관하게, 디바이스(102)는 동적 중간 주파수 스케일링을 제공하도록 동작가능하게 인에이블되는 적어도 하나의 라디오를 포함할 수 있다. 본 명세서에서 사용되는 용어 "라디오"는, 무선 신호들을 수신하거나 그리고/또는 무선 신호들을 송신하도록 인에이블될 수 있는 임의의 회로 및/또는 이와 유사한 것을 지칭한다. 특정한 구현예들에서, 2개 이상의 라디오들은 회로의 일부 및/또는 이와 유사한 것(예를 들어, 프로세싱 유닛, 메모리, 안테나 등)을 공유하도록 인에이블될 수 있다.
한정이 아닌 예시로서, 본 명세서에서 제공되는 실시예들의 일부에서, 디바이스(102)는, 적어도 하나의 내비게이션 시스템(106)(예를 들어, 위성 측위 시스템 및/또는 이와 유사한 것)과 연관된 무선 신호들을 수신하도록 인에이블되는 제 1 라디오, 및 적어도 하나의 무선 시스템(104)과 연관된 무선 신호들을 수신 및/또는 송신하도록 인에이블되는 제 2 라디오를 포함할 수 있다. 예를 들어, 무선 시스템(104)은, 예를 들어, 무선 전화 시스템, 무선 로컬 영역 네트워크 및/또는 이와 유사한 것과 같은 무선 통신 시스템을 포함할 수 있다. 예를 들어, 무선 시스템(104)은, 예를 들어, 텔레비젼 브로드캐스트 시스템, 라디오 브로드캐스트 시스템 및/또는 이와 유사한 것과 같은 무선 브로드캐스트 시스템을 포함할 수 있다. 특정한 구현예들에서, 디바이스(102)는 무선 시스템(104)으로부터 무선 신호들을 오직 수신만 하도록 인에이블될 수 있는 한편, 다른 구현예들에서, 이동국(102)은 무선 신호들을 무선 시스템(104)에 오직 송신만 하도록 인에이블될 수 있다.
도 1에 도시된 바와 같이, 무선 시스템(104)은, 클라우드(110)로 간략히 표현되는 다른 디바이스들 및/또는 자원들과 통신하고 그리고/또는 그렇지 않으면 동작가능하게 이에 액세스하도록 인에이블될 수 있다. 예를 들어, 클라우드(110)는 하나 이상의 통신 디바이스들, 시스템들, 네트워크들 또는 서비스들, 및/또는 하나 이상의 컴퓨팅 디바이스들, 시스템들, 네트워크들, 또는 서비스들 및/또는 이와 유사한 것 또는 이들의 임의의 조합을 포함할 수 있다.
무선 시스템(104)은, 예를 들어, 무선 신호들을 수신 및/또는 송신하도록 인에이블될 수 있는 임의의 무선 통신 시스템 또는 네트워크를 나타낼 수 있다. 한정이 아닌 예시로서, 무선 시스템(104)은, 무선 광역 네트워크(WWAN), 무선 로컬 영역 네트워크(WLAN), 무선 개인 영역 네트워크(WPAN), 무선 도시권 네트워크(WMAN), 블루투스 통신 시스템, WiFi 통신 시스템, 이동 통신용 범용 시스템(GSM; Global System for Mobile communication), EVDO(Evolution Data Only/Evolution Data Optimized) 통신 시스템, 울트라 모바일 브로드밴드(UMB) 통신 시스템, 롱 텀 에볼루션(LTE) 통신 시스템, MSS-ATC(Mobile Satellite Service - Ancillary Terrestrial Component) 통신 시스템 및/또는 이와 유사한 것을 포함할 수 있다.
용어 "네트워크" 및 "시스템"은 본 명세서에서 상호교환되어 사용될 수 있다. WWAN은 코드 분할 다중 액세스(CDMA) 네트워크, 시분할 다중 액세스(TDMA) 네트워크, 주파수 분할 다중 액세스(FDMA) 네트워크, 직교 주파수 분할 다중 액세스(OFDMA) 네트워크, 싱글-캐리어 주파수 분할 다중 액세스(SC-FDMA) 네트워크 등일 수 있다. CDMA 네트워크는, 오직 몇몇 라디오 기술들을 명명하기 위한 cdma2000, 광대역-CDMA(W-CDMA)와 같은 하나 이상의 무선 액세스 기술들(RATs)을 구현할 수 있다. 여기서, cdma2000은 IS-95, IS-2000 및 IS-856 표준들에 따라 구현되는 기술들을 포함할 수 있다. TDMA 네트워크는, 이동 통신용 범용 시스템(GSM), 디지털 어드밴스드 모바일 폰 시스템(D-AMPS), 또는 몇몇 다른 RAT를 구현할 수 있다. GSM 및 W-CDMA는 "3세대 파트너쉽 프로젝트(3GPP)"로 명명된 기구로부터의 문서들에 제시된다. cdma2000은 "3세대 파트너쉽 프로젝트 2(3GPP2)"로 명명된 기구로부터의 문서들에 제시된다. 3GPP 및 3GPP2 문서들은 공개적으로 입수가능하다. 예를 들어, WLAN은 IEEE 802.11x 네트워크를 포함할 수 있고, WPAN은 블루투스 네트워크, IEEE 802.15x를 포함할 수 있다. 본 명세서에서 설명되는 이러한 위치 결정 기술들은 또한, WWAN, WLAN, WPAN, WMAN 및/또는 이와 유사한 것의 임의의 조합에 이용될 수 있다.
무선 시스템(104)은, 예를 들어, 무선 신호들을 적어도 송신하도록 인에이블될 수 있는 임의의 무선 브로드캐스트 시스템을 나타낼 수 있다. 한정이 아닌 예시로서, 무선 브로드캐스트 시스템은, MediaFLO 시스템, 디지털 TV 시스템, 디지털 라디오 시스템, 디지털 비디오 브로드캐스팅-핸드헬드(DVB-H) 시스템, 디지털 멀티미디어 브로드캐스팅(DMB) 시스템, 통합 서비스 디지털 브로드캐스팅-지상 (ISDB-T; Integrated Services Digital Broadcasting - Terrestrial) 시스템 및/또는 다른 유사한 시스템들 및/또는 관련 브로드캐스트 기술들을 포함할 수 있다.
디바이스(102)는, 복수의 SPS 신호 송신 위성들(106-1, 106-2, 106-3,..., 106-x)을 갖는 위성 측위 시스템(SPS)으로서 도 1에 도시된 적어도 하나의 내비게이션 시스템(106)으로부터 무선 신호들을 적어도 수신하도록 인에이블될 수 있다. 내비게이션 시스템(106)은 도시된 바와 같은 위성들에 추가하거나 이에 대신하여 추가적 송신 및/또는 다른 다른 지원 자원들을 포함할 수 있음을 당업자는 인식할 것이다.
특정한 구현예들에서, 내비게이션 시스템(106)은 다른 넌-내비게이션 관련 서비스들(예를 들어, 통신 서비스들 또는 이와 유사한 것)을 제공하도록 인에이블될 수 있다. 이와 같이, 특정한 구현예들에서, 디바이스(102)는 내비게이션 시스템(106)에 무선 신호들을 송신하도록 인에이블될 수 있다.
내비게이션 시스템(106)의 우주 비행체들(SVs ; Space Vehicles)은 각각 고유의 SPS 신호를 송신하도록 인에이블될 수 있고, 고유의 SPS 신호는, 적어도 일부가 디바이스(102)에 의해 수신되어, 몇몇 방식으로, 예를 들어, 시간, 범위, 위치, 포지션 등을 결정하기 위해 내비게이션에 이용될 수 있다. 특정한 내비게이션 시그널링 및 위치 결정 기술들은 이용되는 내비게이션 시스템(들)에 따라 변할 수 있다. 이러한 SV들은 하나 이상의 신호들을 동일한 및/또는 상이한 캐리어 주파수들에서 송신하도록 인에이블될 수 있다. 예를 들어, GPS 위성은 L1 C/A 및 L1C 신호들을 동일한 대역에서 송신할 뿐만 아니라 L2C 및 L5 신호들을 다른 캐리어 주파수들을 송신하는 식으로 인에이블될 수 있다. 또한, 이러한 SPS 신호들은 암호화된 신호들을 포함할 수 있다.
SPS는 통상적으로, 송신기들로부터 수신된 신호들에 적어도 부분적으로 기초하여 지표면 상에서 또는 지표면 위에서 자신의 위치를 결정할 수 있도록 엔티티들을 인에이블하기 위해 위치되는 송신기들의 시스템을 포함할 수 있다. 이러한 송신기는 통상적으로, 일 세트 수의 칩들의 반복하는 의사-랜덤(pseudo-random) 잡음(PN) 코드에 의해 마킹되는 신호를 송신하고, 지상 기반 제어국들, 사용자 장비 및/또는 우주 비행체들에 위치될 수 있다. 특정한 예에서, 이러한 송신기들은 지구 궤도 SV들에 위치될 수 있다. 예를 들어, 글로벌 측위 시스템(GPS), 갈릴레오(Galileo), 글로나스(Glonass) 또는 컴파스(Compass)와 같은 글로벌 내비게이션 위성 시스템(GNSS)의 성상도(constellation) 내의 SV는, 그 성상도의 다른 SV들에 의해 송신된 PN 코드들로부터 구별될 수 있는 PN 코드로 마킹된 신호를 송신할 수 있다. 특정한 양상들에 따르면, 본 명세서에 제시되는 기술들은 SPS를 위한 글로벌 시스템들(예를 들어, GNSS)로 제한되지 않는다. 예를 들어, 본 명세서에 제시되는 기술들은, 예를 들어, 일본의 QZSS(Quasi-Zenith Satellite System), 인도의 IRNSS(Indian Regional Navigational Satellite System), 중국의 Beidou 등과 같은 다양한 지역 시스템들, 및/또는 하나 이상의 글로벌 및/또는 지역 내비게이션 위상 시스템들과 연관되거나 그렇지 않으면 이를 이용하도록 인에이블될 수 있는 다양한 증강 시스템들(예를 들어, 위성 기반 증강 시스템(SBAS))에 적용될 수 있거나 그렇지 않으면 이를 이용하도록 인에이블될 수 있다. 한정이 아닌 예시로서, SBAS는, 예를 들어, WAAS(Wide Area Augmentation System), EGNOS(European Geostationary Navigation Overlay Service), MSAS(Multi-functional Satellite Augmentation System), GAGAN(GPS Aided Geo Augmented Navigation or GPS and Geo Augmented Navigation system) 및/또는 이와 유사한 것과 같은, 무결성 정보, 차동 정정들 등을 제공하는 증강 시스템(들)을 포함할 수 있다. 이러한 SBAS는, 예를 들어, 특정한 무선 통신 신호들 등에 의해 간섭될 수 있는 SPS 및/또는 SPS-유사 신호들을 송신할 수 있다. 따라서, 본 명세서에서 사용되는 바와 같이, SPS는 하나 이상의 글로벌 및/또는 지역 내비게이션 위성 시스템들 및/또는 증강 시스템들의 임의의 조합을 포함할 수 있고, SPS 신호들은 이러한 하나 이상의 SPS와 연관되는 SPS, SPS-유사 및/또는 다른 신호들을 포함할 수 있다.
자신의 위치를 추정하기 위해, 디바이스(102)는, SV들로부터 수신된 신호들의 PN 코드들의 검출들에 적어도 부분적으로 기초하는 주지의 기술들을 이용하여, 자신의 수신 라디오의 "시야(in view)"에 있는 SV들까지의 의사범위 측정치들을 결정할 수 있다. 이러한 SV까지의 의사범위는, 수신 라디오에서 수신된 신호를 획득하는 프로세스 동안 SV와 연관된 PN 코드에 의해 마킹된 수신 신호에서 검출되는 코드 위상에 적어도 부분적으로 기초하여 결정될 수 있다. 수신된 신호를 획득하기 위해, 디바이스(102)는, 예를 들어, 그 수신된 신호를 SV와 연관된 로컬 발생 PN 코드와 상관시키도록 인에이블될 수 있다. 예를 들어, 디바이스(102)는 이러한 수신된 신호를, 이러한 로컬 발생 PN 코드의 다중 코드 위상 및/또는 도플러 주파수 시프트 버전들과 상관시킬 수 있다. 가장 큰 신호 전력을 갖는 상관 결과를 도출하는 특정한 코드 위상 및/또는 도플러 주파수 시프트 버전의 검출은, 전술한 바와 같이 의사범위를 측정하는데 이용되는 획득된 신호와 연관되는 코드 위상을 나타낼 수 있다.
따라서, 특정한 구현예들에서, 디바이스(102)는 다른 디바이스들 또는 자원들의 추가적 지원없이 이러한 방식 또는 다른 유사한 방식으로 자신의 위치를 결정하도록 인에이블될 수 있다. 그러나, 다른 구현예들에서, 디바이스(102)는, 자신의 위치를 결정하고 그리고/또는 다른 내비게이션 관련 동작들을 지원하기 위해, 예를 들어, 무선 시스템(104)에 접속된 클라우드(110)에 의해 표현되는 하나 이상의 다른 디바이스들 또는 자원들과 몇몇 방식으로 동작하도록 인에이블될 수 있다. 이러한 내비게이션 기술들은 주지되어 있다.
특정한 구현예들에서, 디바이스(102)는, 예를 들어, GPS, 갈릴레오, 글로나스, 컴파스 또는 이 시스템들의 조합을 이용하는 다른 유사한 시스템, 또는 장래에 개발될 임의의 SPS와 같은 하나 이상의 GNSS들로부터 SPS 신호들을 수신하도록 인에이블될 수 있고, 이 시스템들 각각은 본 명세서에서 일반적으로 SPS로 지칭된다. 본 명세서에서 사용되는 바와 같이, SPS는 의사위성(pseudolite) 시스템들을 포함하는 것으로 이해될 것이다.
의사위성들은, GPS 시간과 동기화될 수 있는 L-대역(또는 다른 주파수) 캐리어 신호에서 변조된 다른 레인징(ranging) 코드(GPS 또는 CDMA 셀룰러 신호와 유사함) 또는 PN 코드를 브로드캐스트하는 지상-기반 송신기들이다. 이러한 각각의 송신기는 원격 수신기에 의한 식별을 허용하도록 고유한 PN 코드를 할당받을 수 있다. 의사위성들은, 터널들, 광산들, 건물들, 도심 협곡들 또는 기타 폐쇄된 영역들과 같이, 궤도 SV로부터의 신호들이 가용이 아닐 수 있는 상황들에서 유용할 수 있다. 의사위성들의 다른 구현예는 라디오-비컨들(beacons)로 공지되어 있다. 본 명세서에서 사용되는 용어들 "위성" 및 "SV"는 상호교환가능하고, 의사위성들, 의상위성들의 균등물들, 및 기타 가능한 것들을 포함하도록 의도된다. 본 명세서에서 사용되는 용어 "SPS 신호들"은 의사위성들 또는 의사위성들의 균등물들로부터의 SPS-유사 신호들을 포함하도록 의도된다.
디바이스(102) 내의 수신기 회로는 무선 신호를 획득하도록 인에이블될 수 있다. 예를 들어, 수신기 회로는 무선 신호(예를 들어, 라디오 주파수(RF) 신호)를 수신하고, 그 RF 신호를 대응하는 중간 주파수(IF) 신호로 하향변환하고, 그 후, 그 무선 신호에 포함될 수 있는 정보를 식별하기 위해 (필요하다면) 중간 신호를 추가적으로 프로세싱할 수 있다. 이러한 IF 신호는, 디바이스(102)의 동작 및/또는 특정한 환경 조건들을 고려하기 위해, 본 명세서의 일 양상에 따른 몇몇 방식으로 스케일링되는 중심 주파수를 가질 수 있다. 예를 들어, 환경(100)은, 디바이스(102)가 SPS 신호(107)를 획득하려 시도할 때처럼 몇몇 방식으로 디바이스(102)와 간섭할 수 있는 무선 신호들(121)을 (의도적으로 또는 비의도적으로) 송신할 수 있는 송신기(120)와 같은 다른 디바이스들을 포함할 수 있다. 이러한 잠재적인 재밍 신호(들)의 존재 및/또는 부재 시에 IF 신호의 중심 주파수를 선택적으로 스케일링(변경)함으로써, 디바이스(102)는 몇몇 방식으로 성능을 개선시킬 수 있다. 다른 예들에서, 디바이스(102)는, IF 신호의 선택적 주파수 스케일링(업 및/또는 다운)이 이점이 있는 것으로 간주될 수 있는 특정한 모드들에서 동작될 수 있다.
다음으로, 이러한 동적 중간 주파수 스케일링 능력을 고려하여, 예시적인 디바이스(102)의 특정 특징들을 도시하는 블록도인 도 2를 설명한다.
디바이스(102)는, 예를 들어, 적어도 하나의 RF 신호(222)를 수신하도록 인에이블될 수 있는 적어도 하나의 수신기 회로(202)를 포함할 수 있다. RF 신호(222)는, 예를 들어, SPS 신호 및/또는 이와 유사한 것을 포함할 수 있다.
수신기 회로(202)는, 예를 들어, 제어 회로(204)를 포함하고 그리고/또는 그렇지 않으면 이와 동작가능하게 연결될 수 있다. 도 2에서, 제어 회로는 수신기 회로 내에 있는 것으로 도시되어 있다. 다른 구현예들에서, 제어 회로의 전부 또는 일부는 수신기 회로의 외부에 존재할 수도 있다.
이 예에 도시된 바와 같이, 수신기 회로(202)는 또한, 주파수 하향변환 회로(220), 신호 생성 회로(228), 및 신호 프로세싱 회로(226)를 포함할 수 있다.
이 예에서, 수신기 회로(202)는, 환경 파라미터(212)에 적어도 부분적으로 기초하여, 수신된 RF 신호(222)를 대응하는 중간 주파수 신호(224)로 선택적으로 주파수 하향변환하도록 인에이블될 수 있다. 예를 들어, 환경 파라미터(212)에 적어도 부분적으로 기초하여, 수신기 회로(202)는 수신된 RF 신호(222)를, 제 1 중심 주파수를 갖는 대응하는 제 1 IF 신호, 또는 제 2 중심 주파수를 갖는 대응하는 제 2 IF 신호로 선택적으로 주파수 하향변환하도록 인에이블될 수 있다. 여기서, 예를 들어, 제 2 중심 주파수는 제 1 중심 주파수보다 클 수 있다. 그 후, 결과로 얻어진 IF 신호(224)는 신호 프로세싱 회로(226)에 의해 몇몇 방식으로 추가로 프로세싱될 수 있다. 본 명세서에서 사용되는 "제 1 IF 신호" 및 "제 2 IF 신호"의 사용은, 예를 들어, 통상적인 2-스테이지 수신기 설계에서 발생할 수 있는 것과 같은 초기 신호 및 후속 신호들을 설명하도록 의도되는 것이 아님을 명확히 유의해야 한다.
이 예시적인 구현예에서, 선택적 주파수 하향변환 프로세스는, 주파수 하향변환 회로(220) 및/또는 신호 생성 회로(228)에 그 선택된 IF 주파수를 개시, 표시 및/또는 그렇지 않으면 동작가능하게 구축시킬 수 있는 제어 회로(204)에 의해 조정(orchestrate)될 수 있다.
이 예에 도시된 바와 같이, 제어 회로(204)는 하나 이상의 프로세싱 유닛들(206) 및 메모리(208)를 포함할 수 있다. 특정한 구현예들에서, 제조 물품이 제어 회로(204)에 의해 액세스될 수 있고, 컴퓨터 구현가능 명령들(211)이 저장될 수 있는 컴퓨터 판독가능 매체(210)를 포함할 수 있다.
여기서, 예를 들어, 프로세싱 유닛(206)은 하나 이상의 주문형 집적회로(ASIC)들, 디지털 신호 프로세서(DSP)들, 디지털 신호 프로세싱 디바이스(DSPD)들, 프로그래머블 로직 디바이스(PLD)들, 필드 프로그래머블 게이트 어레이(FPGA)들, 프로세서들, 제어기들, 마이크로 제어기들, 마이크로프로세서들, 전자 디바이스들, 본 명세서에서 설명되는 기능들을 수행하도록 설계된 다른 디바이스 유닛들, 및/또는 이들의 조합들에서 구현될 수 있다.
메모리(208)는, 정보를 데이터의 형태로 저장하도록 인에이블될 수 있는 임의의 유형의 메모리를 포함할 수 있다. 몇몇 예들은, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 정적 메모리, 동작 메모리 등을 포함한다. 이러한 저장된 정보는, 예를 들어, 프로세싱 유닛(206)에 의해 구현될 수 있는 명령들(211), 및/또는 통신들, 위치 신호들, 측정치들, 파라미터들, 위치 데이터 및/또는 이와 유사한 것과 연관된 데이터를 포함할 수 있다. 이러한 정보는, 예를 들어, 프로세싱 유닛(206) 및/또는 메모리(208) 중 하나 이상에 동작가능하게 연결될 수 있는 컴퓨터 판독가능 매체(210)에 저장될 수 있다. 예를 들어, 도 2에 도시된 바와 같이, 메모리(208)는, 환경 파라미터(212), 임계 파라미터(214), 제 1 중심 주파수(216), 제 2 중심 주파수(218), 및/또는 다른 유사한 동작 정보와 연관된 데이터를 저장할 수 있다. 예를 들어, 메모리(208)는 또한, 하나 이상의 디바이스 동작 모드들(238)과 연관된 데이터를 포함할 수 있다.
한정이 아닌 예시로서, 컴퓨터 판독가능 매체(210)는 제조 물품에 포함될 수 있고, 몇몇 형태의 메모리, 하나 이상의 광학 데이터 저장 디스크들(discs), 하나 이상의 자기 저장 디스크들(disks) 또는 데이프들 등을 포함할 수 있다.
특정한 예시적인 구현예들에서, 수신 회로(202)는, 환경 파라미터(212)가 임계 파라미터(214) 미만이면 RF 신호(222)를 제 1 IF 신호로 주파수 하향변환하고, 환경 파라미터(212)가 임계 파라미터(214) 이상이면 제 2 IF 신호로 주파수 하향변환하도록 인에이블될 수 있다. 한정이 아닌 예시로서, 신호 생성 회로(228)는, RF 신호(222)를 주파수 하향변환하여 대응하는 IF 신호(224)를 발생시키기 위해, 주파수 하향변환 회로(220)에 의해 이용될 수 있는 로컬 오실레이터(LO; Local Oscillator) 신호(230)를 생성하도록 인에이블될 수 있다. 따라서, 특정한 예시적인 구현예들에서, 신호 생성 회로(228)는, 제 1 IF 신호를 발생시키는데 이용되는 제 1 LO 신호를 생성하는데 전용될 수 있는 회로, 및 제 2 IF 신호를 발생시키는데 이용되는 제 2 LO 신호를 생성하는데 전용될 수 있는 추가 회로를 포함할 수 있다. 다른 예시적인 구현예들에서, 신호 생성 회로(228)는, 예를 들어, 제 1 중심 주파수(216) 또는 제 2 중심 주파수(218) 각각에 기초하여, 그리고/또는 그렇지 않으면 이와 연관되어, 제 1 또는 제 2 LO 신호들을 선택적으로 생성하도록 프로그래밍될 수 있다.
제어 회로(204)는, 예를 들어, 송신기 회로(232), (예를 들어, 검출 회로(234)를 통해 식별되는) 수신된 무선 신호(236), 및/또는 디바이스 동작 모드(238) 중 적어도 하나와 연관되는 정보에 기초하여 환경 파라미터(212)를 수신하고 그리고/또는 그렇지 않으면 구축하도록 구성될 수 있다. 한정이 아닌 예시로서, 특정한 구현예들에서, 환경 파라미터들(212)은, 송신기 전력, 송신기 주파수(예를 들어, 가능하게는 대략적 주파수 정보, 동작 대역 등), (예를 들어, 1X 대 WCDMA와 같은 동작 모드에 의해 전달될 수 있는) 송신기 대역폭 및/또는 이와 유사한 것을 포함하거나 그렇지 않으면 이와 연관될 수 있다.
한정이 아닌 예시로서, 송신기 회로(232)는 디바이스(102)의 일부로서 수신기 회로(202)의 적어도 일부와 공동-위치(co-locate)될 수 있다. 실제로, 특정한 구현예에서, 송신기 회로(232) 및 수신기 회로(202)의 부분들은, 송수신기 회로(미도시)를 통해 구현될 수 있다. 송신기 회로(232)는, 예를 들어, 무선 신호(105)(도 1 참조)를 송신하도록 인에이블될 수 있다. 특정한 예시적인 구현예들에서, 환경 파라미터(212)는 송신기 회로(232)의 기존의 동작 및/또는 예상되는 동작을 식별하기 위해 몇몇 방식으로 구축될 수 있다. 예를 들어, 송신기 회로(232)가 무선 신호(105)를 송신하고 있거나 송신을 시작하려 하는 경우, 환경 파라미터(212)는 그에 따라 구축될 수 있다. 여기서, 송신기 회로(232)가 무선 신호(105)를 송신하고 있거나 송신을 시작하려 하는 경우, 예를 들어, 수신기 회로(202) 내에서 제 1 IF 신호로부터 제 2 IF 신호로 스케일링(예를 들어, 스위칭)하는 것이 이점이 있을 수 있다. 반대로, 송신기 회로(232)가 무선 신호(105)를 송신중이 아닌 경우, 수신기 회로(202) 내에서 제 2 IF 신호로부터 제 1 IF 신호로 스위칭하는 것이 이점이 있을 수 있다.
특정한 구현예들에서, 적어도 하나의 임계 파라미터(214)는 송신기 회로(232)와 몇몇 방식으로 연관될 수 있다. 예를 들어, 임계 파라미터(214)는 임계 신호 전력 레벨과 연관될 수 있고, 환경 파라미터(212)는, 송신기 회로(232)가 무선 신호(105)를 송신중일 수 있는(또는 곧 송신하려는) 신호 전력 레벨과 연관될 수 있다. 따라서, 수신기 회로(202)는, 환경 파라미터(212)가 임계 파라미터(214) 미만이면 RF 신호(222)를 제 1 IF 신호로 주파수 하향변환하거나, 환경 파라미터(212)가 임계 파라미터(214) 이상이면 제 2 IF 신호로 주파수 하향변환하도록 인에이블될 수 있다.
한정이 아닌 예시로서, 검출기 회로(234)는 디바이스(102)의 일부로서 수신기 회로(202)의 적어도 일부와 공동-위치될 수 있다. 실제로, 특정한 구현예들에서, 검출기 회로(234) 및 수신기 회로(202) 부분들은 함께 구현될 수 있고, 그리고/또는 유사한 설계일 수 있다(예를 들어, 검출기 회로(234)는 수신기, 송수신기 등(미도시)과 연관될 수 있다). 검출기 회로(234)는 무선 신호(236)를 수신하고 그리고/또는 그렇지 않으면 무선 신호(236)의 존재를 검출하도록 인에이블될 수 있다. 예를 들어, 무선 신호(236)는 무선 신호들(105 및/또는 121)(도 1 참조) 중 하나 이상을 포함할 수 있다. 특정한 예시적인 구현예들에서, 환경 파라미터(212)는 무선 신호(236)의 기존의 존재 및/또는 예상되는 존재를 식별하기 위해 몇몇 방식으로 구축될 수 있다. 예를 들어, 무선 신호들이 송신중이고 그리고/또는 송신될 수 있음을 검출기 회로(234)가 검출하면, 환경 파라미터(212)는 그에 따라 구축될 수 있다. 여기서, 예를 들어, 특정한 무선 시그널링이 발생할 수 있음을 검출기 회로(234)가 검출하면, 수신기 회로(202) 내에서 제 1 IF 신호로부터 제 2 IF 신호로 스위칭하는 것이 이점이 있을 수 있다. 반대로, 예를 들어, 검출기 회로(234)가 이러한 무선 시그널링을 더 이상 검출하지 않거나 가까운 장래에 이러한 무선 시그널링이 발생할 것으로 예상하지 않으면, 수신기 회로(202) 내에서 제 2 IF 신호로부터 제 1 IF 신호로 스위칭하는 것이 이점이 있을 수 있다. 특정한 구현예들에서, 임계 파라미터(214)는 검출기 회로(234)와 몇몇 방식으로 연관될 수 있다. 예를 들어, 임계 파라미터(214)는 임계 신호 전력 레벨과 연관될 수 있고, 환경 파라미터는, 수신기 회로(202)의 성능에 악영향을 줄 수 있는 환경 내의 무선 시그널링과 연관된 신호 전력 레벨과 연관될 수 있다. 여기서, 수신기 회로(202)는, 환경 파라미터(212)가 임계 파라미터(214) 미만이면 RF 신호(222)를 제 1 IF 신호로 주파수 하향변환하고, 환경 파라미터(212)가 임계 파라미터(214) 이상이면 제 2 IF 신호로 주파수 하향변환하도록 인에이블될 수 있다.
다른 예에서, 임계 파라미터(214)는 최대 무선 시그널링 시간 기간과 연관될 수 있고, 환경 파라미터는, 무선 시그널링이 마지막으로 검출된 시간 이후의 시간 측정치와 연관될 수 있다. 여기서, 수신기 회로(202)는, 환경 파라미터(212)가 임계 파라미터(214)보다 크면 RF 신호(222)를 제 1 IF 신호로 주파수 하향변환하고, 환경 파라미터(212)가 임계 파라미터(214) 이하이면 제 2 IF 신호로 주파수 하향변환하도록 인에이블될 수 있다.
다른 예시적인 구현예들에서, 임계 파라미터(214) 및/또는 환경 파라미터(212)는, IF 신호를 스케일링할지 여부를 결정할 때 관심사항이 될 수 있는 무선 시그널링과 연관된 특정한 주파수들, 대역들, 채널들 등과 연관될 수 있고, 그리고/또는 이를 식별할 수 있다.
특정한 예시적인 구현예들에서, 환경 파라미터(212)는 기존의 및/또는 예상되는 디바이스 동작 모드(238)를 식별하기 위해 몇몇 방식으로 구축될 수 있다. 한정이 아닌 예시로서, 디바이스 동작 모드(238)는 디바이스 전력 소모 모드, 디바이스 통신 모드 및/또는 디바이스 내비게이션 모드 중 적어도 하나와 연관될 수 있다. 예를 들어, 디바이스 동작 모드(238)에 따라 수신기 회로(202) 내에서 제 1 IF 신호로부터 제 2 IF 신호로 스위칭하는 것이 이점이 있을 수 있다. 따라서, 예를 들어, 디바이스 전력 소모 모드가 전력 소모를 감소시키도록 의도되면, 수신기 회로(202) 내에서 제 2 IF 신호로부터 제 1 IF 신호로 스위칭하는 것이 이점이 있을 수 있다. 반대로, 디바이스 전력 소모 모드가 더 이상 전력 소모를 감소시키지 않도록 의도되면(예를 들어, 디바이스가 충전 및/또는 다른 유사한 전력 소스에 접속될 수 있으면), 수신기 회로(202) 내에서 제 1 IF 신호로부터 제 2 IF 신호로 스위칭하는 것이 이점이 있을 수 있다.
다른 예로, 디바이스 통신 모드는 송신기 회로(232)를 통해 계속중인(pending) 송신을 식별할 수 있고, 그리고/또는 특정한 송신 및/또는 수신 모드에 따라 디바이스가 통신중일 수 있음을 식별할 수 있다. 예를 들어, 개시, 테스트, 긴급상황 및/또는 다른 유사한 통신 모드의 경우, 수신기 회로(202) 내에서 특정한 IF 신호를 이용하는 것이 이점이 있을 수 있다. 또 다른 예로, 디바이스 내비게이션 모드는, 디바이스가 특정한 내비게이션 모드에 따라 동작중일 수 있음을 식별할 수 있고, 이 경우, 수신기 회로(202) 내에서 특정한 IF 신호를 선택하는 것이 이점이 있을 수 있다.
특정한 구현예들에서, 제어 회로(204)는, 예를 들어, IF 신호(224)의 주파수를 스케일링할지 여부 및/또는 스케일링하는 방법을 결정하기 위해, 하나 이상의 알고리즘들 또는 공식들에 따라, 환경 파라미터들(212) 및/또는 임계 파라미터들(214)의 변경을 고려할 수 있다.
다음으로, 수신된 무선 신호의 IF 주파수를 스케일링하도록 구현될 수 있는 예시적인 방법(300)을 도시하는 도 3을 참조한다. 방법(300)은, 예를 들어, 초기에 적어도 하나의 RF 신호를 수신하는 블록(302)을 포함할 수 있다. 블록(304)에서, 방법(300)은, 수신된 RF 신호를, 주파수들의 일 범위 및/또는 복수의 주파수들 내에서 선택된 중심 주파수를 갖는 대응하는 IF 신호로 선택적으로 주파수 하향변환하는 단계를 포함할 수 있다. 예를 들어, 블록(304)에서, 방법(300)은 적어도 하나의 환경 파라미터에 적어도 부분적으로 기초하여, 수신된 RF 신호를, 제 1 중심 주파수를 갖는 대응하는 제 1 IF 신호, 또는 제 2 중심 주파수를 갖는 대응하는 제 2 IF 신호로 선택적으로 주파수 하향변환하는 단계를 포함할 수 있다. 여기서, 예를 들어, 제 2 중심 주파수는 제 1 중심 주파수보다 클 수 있다.
블록(306)에 도시된 바와 같이, 환경 파라미터가 구축될 수 있다. 환경 파라미터는, 예를 들어, 프로그래밍가능하게 그리고/또는 동적으로 구축될 수 있다. 환경 파라미터(212)(도 2 참조)는, 예를 들어, 블록(302)에 따라 RF 신호를 수신하도록 인에이블되는 수신기 회로(202)를 포함하는 디바이스(102)에 공동-위치될 수 있는 송신기 회로와 연관될 수 있다. 환경 파라미터(212)는, 예를 들어, 검출기 회로(234)에 의해 검출되고 그리고/또는 그렇지 않으면 수신될 수 있는 수신된 무선 신호(236)와 연관될 수 있다. 환경 파라미터(212)는, 예를 들어, 디바이스 전력 소모 모드, 디바이스 통신 모드, 디바이스 내비게이션 모드, 및/또는 다른 유사한 디바이스 동작 모드들과 같은 적어도 하나의 디바이스 동작 모드(238)와 연관될 수 있다.
특정한 예시적인 구현예들에서, 블록(304)은, 환경 파라미터가 임계 파라미터 미만이면, 수신된 RF 신호를 대응하는 제 1 IF 신호로 주파수 하향변환하거나, 환경 파라미터가 임계 파라미터 이상이면, 수신된 RF 신호를 대응하는 제 2 IF 신호로 주파수 하향변환하는 단계를 포함할 수 있다. 반대로, 다른 예시적인 구현예들에서, 블록(304)은, 환경 파라미터가 임계 파라미터 이상이면, 수신된 RF 신호를 대응하는 제 1 IF 신호로 주파수 하향변환하거나, 환경 파라미터가 임계 파라미터 미만이면, 수신된 RF 신호를 대응하는 제 2 IF 신호로 주파수 하향변환하는 단계를 포함할 수 있다.
블록(308)에 도시된 바와 같이, 임계 파라미터는, 예를 들어, 프로그래밍가능하게 그리고/또는 동적으로 구축될 수 있다. 블록(310)에 도시된 바와 같이, 제 1 중심 주파수 및/또는 제 2 중심 주파수 중 적어도 하나는, 예를 들어, 프로그래밍가능하게 그리고/또는 동적으로 구축될 수 있다. 특정한 예시적인 구현예들에서, 제 1 중심 주파수는 0 Hz와 100 KHz 사이일 수 있다. 특정한 예시적인 구현예들에서, 제 2 중심 주파수는 0 Hz보다 클 수 있다.
블록(304)은, 예를 들어, 수신된 RF 신호를 대응하는 제 1 IF 신호로 주파수 하향변환하는데 이용하도록 인에이블되는 제 1 LO 신호에 액세스하는 단계, 및/또는 수신된 RF 신호를 대응하는 제 2 IF 신호로 주파수 하향변환하는데 이용하도록 인에이블되는 제 2 LO 신호에 액세스하는 단계를 포함할 수 있다. 특정한 구현예들에서, 블록(304)은 제 1 LO 신호 및/또는 제 2 LO 신호를 구축하는 단계를 포함할 수 있다. 예를 들어, 제 1 LO 신호 및/또는 제 2 LO 신호는, 적어도 부분적으로, 전용 신호 생성 회로들 및/또는 이와 유사한 것을 이용하여 구축될 수 있다. 다른 예시적인 구현예들에서, 제 1 LO 신호 및/또는 제 2 LO 신호는, 적어도 부분적으로, 프로그래밍가능한 신호 생성 회로 및/또는 이와 유사한 것(예를 들어, 선택된 주파수들 등으로 프로그래밍될 수 있는 위상 고정 루프(PLL))을 이용하여 구축될 수 있다.
다음으로, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있는 예시적인 수신기 회로(202)의 특정한 특징들을 도시하는 블록도인 도 4를 참조한다.
도 4에 도시된 수신기 회로(202)는, I 및 Q 아날로그 신호들을 디지털화하기 위한 듀얼-채널 ADC 및 단일 I/Q 하향변환 스테이지를 갖는 디지털 로우 IF(LIF) 아키텍쳐를 갖는다. 아날로그 I/Q 신호들은, 예를 들어, 넌제로(nonzero) 중심 주파수를 갖는 대역통과 신호들을 포함할 수 있다. 예를 들어, 신호 프로세싱 회로(226)(도 2 참조)에서, (필요하다면) 0 Hz로의 최종적 하향변환이 구현될 수 있다.
이 예시적인 구현예에서, 이 아키텍쳐는, IF 주파수가 0 Hz와 동일한 경우에 제로 IF(ZIF) 수신기로 디제너레이트(degenerate)되도록 인에이블될 수 있다. RF/아날로그 아키텍쳐 관점에서, 특정한 예들에서, 매우 낮은 IF 주파수(예를 들어, 수십 kHz까지 또는 심지어 100 kHz 이상까지의 주파수)는 정확히 0 Hz의 IF 주파수와 실질적으로 상이하지 않을 수 있다. 따라서, 여기서의 ZIF 동작에 대한 참조들은 이러한 매우 낮은 IF 주파수들을 포함할 수 있다.
본 명세서의 일 양상에 따르면, IF 주파수는 무선 시그널링 환경 및/또는 디바이스 동작 모드에 응답하여 선택적으로 변경될 수 있다(심지어 동적으로 변경될 수 있다). 잠재적인 재밍 무선 신호의 존재 시에, IF 주파수는, 예를 들어, 재밍 신호 왜곡(예를 들어, IM2 왜곡)에 기인한 과도한 SPS 수신기 감도저하를 가능한 회피하기 위해 증가될 수 있다. 이러한 재밍 무선 신호의 부재 시에, IF 주파수는, 예를 들어, 특정한 기저대역 회로에서의 전력 소모를 감소시키기 위해 감소될 수 있다.
예를 들어, 수신기 입력에서 진폭(및 가능하게는 위상) 변조된 재밍 신호
Figure 112011096026469-pct00001
가 주어지면, IM2 왜곡은 하향변환 회로 출력에서
Figure 112011096026469-pct00002
에 비례할 수 있는 항으로 식별될 수 있다. IM2 왜곡은 다수의 회로 메커니즘들 중 하나 또는 이들의 조합에 의해 발생될 수 있다. 직접적인 메커니즘은, 믹서 코어에 포함되고 그리고/또는 가능하게는 트랜지스터 미스매치에 의해 악화될 수 있는 FET 스위치들의 고유한 2 차 비선형성일 수 있다. 다른 메커니즘은, 믹서의 입력 포트로부터 LO 포트로의 재밍 신호의 커플링일 수 있고, 이것은 가능하게는 재밍 신호 자체-믹싱(mixing)을 생성한다. 다른 예시적인 가능성은, 하향변환에서, 재밍 신호의 2차 고조파(harmonic)가 LNA 비선형성에 의해 생성될 수 있다는 것이고; 예를 들어, LO 듀티 사이클이 정확하게 50 퍼센트가 아니면, LNA 출력의 고주파수 항목을 (예를 들어, 기저대역으로) 하향변환하는 제 2 고조파 성분을 가질 수 있다.
특정한 예시적인 구현예들에서 주 관심사인 재밍 신호는, 디바이스 내에서 수신기 회로(예를 들어, SPS 수신기)와 공동-위치될 수 있는 송신기 회로(예를 들어, 셀룰러 등)를 포함할 수 있다. 예를 들어, 특정한 디바이스 동작 모드들에서, SPS 수신기를 셀룰러 송수신기와 동시에 동작시키는 것이 바람직할 수 있다. 그러나, 이러한 동작은, 송신기 회로가 접속 상태 동안 계속적으로 방사하고 있는 CDMA2000과 같은 주파수 분할 듀플렉스(FDD) 시스템에서 특히 곤란한 문제점을 부과할 수 있다. 불행하게도, 다수의 설계들에서, 출력 전력의 일부(fraction)는 SPS 수신기 회로에 커플링될 수 있어서, 성능을 열화시킬 수 있다.
도 2를 도 4와 비교하면, 수신기 회로(202)는, 제어 회로(204)(도 2)가 적어도 부분적으로 도 4의 IF 제어(400)에 의해 구현될 수 있는 예시적인 SPS 수신기로서 도시되어 있다. 또한, 신호 생성 회로(228)(도 2)는 적어도 부분적으로, TCXO(414), PLL(416), 루프 필터(418), VCO(420) 및/또는 LO 생성기(422)와 같은 배열 회로들에 의해 구현될 수 있다.
PLL(416)은 루프 필터(418)에 타이밍 신호를 제공하도록 인에이블될 수 있다. 결국(in turn) 루프 필터(418)는, PLL(416)에 피드백을 제공하고 LO 생성기(422)에 타이밍 신호를 제공하도록 인에이블될 수 있는 VCO(420)에 튜닝(tuning) 신호를 제공한다. LO 생성기(422)는 I 및 Q LO 신호들을 IQ 믹서(408)에 제공하도록 인에이블될 수 있다.
여기서, 예를 들어, TCXO(414)는 PLL(416)에 타이밍 신호를 제공하도록 인에이블될 수 있다. TCXO(414)는 다양한 레퍼런스 오실레이터 유형들을 포함하도록 의도된다. 예를 들어, 레퍼런스 오실레이터는 주파수 튜닝 제어(VCTCXO)를 가질 수 있고, 또는 주파수 제어 및 온도 보상 회로들을 갖지 않는 더 단순한 수정 오실레이터(XO)일 수 있다.
도 4에서, SPS 신호(107)는 안테나(402)를 통해 수신될 수 있다. 안테나(402)는, 수신된 SPS 신호의 외부에서 에너지를 감쇠시키도록 인에이블될 수 있는 RF 필터(404)로의 입력 신호로서, 수신된 SPS 신호를 제공하도록 커플링될 수 있다. RF 필터(404)는, 수신된 SPS 신호를 증폭시키도록 인에이블될 수 있는 저 잡음 증폭기(LNA; 406)에 커플링될 수 있다. LNA(406)는, 기저대역 필터(BBF; 410) 및 LO 생성기(422)에 커플링될 수 있는 IQ 믹서(408)에 커플링될 수 있다. IQ 믹서(408)는 LO 생성기(422)의 LO 신호(들)에 따라 LNA(406)로부터의 RF 신호를 대응하는 I 및 Q IF 신호들로 하향변환하도록 인에이블될 수 있다. 다음으로, BBF(410)는 I 및 Q IF 신호들로부터 대역외(out-of-band) 에너지를 추가로 제거할 수 있고, 이 신호들은 아날로그-디지털 변환기(ADC; 412)에 의해 디지털화될 수 있다. 다음으로, ADC(412)로부터의 대응하는 디지털 I 및 Q 데이터는 신호 프로세싱 회로(226)(도 2)에 의해 몇몇 방식으로 추가로 프로세싱될 수 있다. 예를 들어, 신호 프로세싱 회로(226)는 적어도 위치 및/또는 내비게이션 정보의 결정을 지원하기 위해 그에 따라 SPS 신호들을 프로세싱하도록 인에이블될 수 있다.
IF 제어(400)는, 예를 들어, 환경 파라미터(212)(도 2 참조)에 기초하여, BBF(410), ADC(412) 및/또는 PLL(416)을 선택적으로 제어하고 그리고/또는 그렇지 않으면 프로그래밍하도록 인에이블될 수 있다. 예를 들어, 환경 파라미터(212)는 송신기 회로(232)(도 2)와 연관된 일시적 송신기 출력 전력에 대한 정보에 기초할 수 있다. 한정이 아닌 예시로서, SPS 수신기를 셀룰러 송수신기와 조밀하게 집적한 특정한 칩셋들에서, 이러한 정보는 SPS 수신기를 제어하는 소프트웨어에 용이하게 이용될 수 있다.
IF 제어(400)는 하드웨어, 펌웨어, 소프트웨어 및/또는 이들의 조합을 통해 구현될 수 있다. BBF, ADC 및 PLL 블록들에서의 프로그래밍가능한 제어들은, 예를 들어, 집적 회로 내의 레지스터들 등을 통해 프로세싱 유닛에 노출될 수 있다.
또한, 도 4에 도시된 수신기 회로(202)는, 동적 바이어스 스케일링을 제공하도록 인에이블될 수 있는 (선택적인) 바이어스 제어(430)를 포함할 수 있다. 여기서, 예를 들어, 바이어스 제어(430)는, 강한 재밍 신호의 존재 시에 특정한 RF 회로 파라미터들(예를 들어, LNA IP3, LO 위상 잡음 플로어)을 견고하게(robust) 조정하도록 인에이블될 수 있고, 이러한 재밍 신호의 부재 시에, 전력 소모를 감소시키기 위해 이러한 파라미터들을 재조정할 수 있다.
바이어스 제어(430)는, 예를 들어, LNA(406), IQ 믹서(408) 및 LO 생성기(422)에 바이어스 전류/전압을 제공하는 중심 바이어스 생성을 표현할 수 있다. 여기서, 예를 들어, LNA(406), IQ 믹서(408) 및 LO 생성기(422)는 로컬 바이어스 생성 회로들을 가질 수 있다. 바이어스 제어(430)는, 예를 들어, 집적 회로 레지스터들 및/또는 이와 유사한 것의 소프트웨어(프로그래밍가능한) 제어를 표현할 수 있다. 바이어스 제어(430)의 전부 또는 일부는, 예를 들어, 제어 회로(204)(도 2) 내에 포함될 수 있다.
특정한 구현예들에서, 신호 생성 회로(228) 및 주파수 하향변환 회로(220)는, 예를 들어, RF 신호를 대응하는 IF 신호로 주파수 하향변환하는데 이용하기 위한 LO 신호를 선택적으로 결정할 수 있는 하나 이상의 스위치들(미도시)을 포함할 수 있다. 다른 구현예들에서는, 이러한 스위치들 또는 다른 유사한 스위칭 회로의 이용을 회피할 수 있는 구현을 갖는 것이 바람직할 수도 있다.
이제, 이를 고려하고 추가적 예시로서, 도 2의 수신기 회로(202)에서 구현될 수 있는 주파수 하향변환 회로(500)의 일부에 대한 예시적인 구현예를 도시하는 도 5를 참조한다.
도 5에 도시된 바와 같이, RF 신호(502)는 버퍼(526)를 통해 저 위상 잡음 하향변환기(504)에 제공되고, 버퍼(540)를 통해 저 전력 하향변환기(506)에 제공될 수 있다. 하향변환기들(504 및 506)은 버퍼들(516 및 530)을 통해 각각 VCO(512)에 커플링될 수 있다. VCO(512)는 또한 버퍼(514)를 통해 PLL(미도시)에 커플링될 수 있다. 하향변환기(504)는, 예를 들어, 각각 버퍼(526)에 커플링되는 믹서들(524 및 528)을 포함할 수 있다. 하향변환기(504)는, 버퍼(516)에 커플링되고 버퍼들(520 및 522)에 대응하는 신호들을 제공하는 위상 분배기(518)를 포함할 수 있고, 버퍼(520)는 믹서(524)에 커플링되고, 버퍼(522)는 믹서(528)에 커플링된다. 하향변환기(506)는, 예를 들어, 각각 버퍼(540)에 커플링되는 믹서들(538 및 542)을 포함할 수 있다. 하향변환기(506)는, 버퍼(530)에 커플링되고 버퍼들(534 및 536)에 대응하는 신호들을 제공하는 위상 분배기(532)를 포함할 수 있고, 버퍼(534)는 믹서(538)에 커플링되고, 버퍼(536)는 믹서(542)에 커플링된다. I 출력(508)은 믹서(528 또는 542)에 의해 제공될 수 있고, Q 출력(510)은 믹서(524 또는 538)에 의해 제공될 수 있다.
LNA(미도시)의 출력 RF 신호(502)는 개별적 버퍼들(526 및 540)을 통해 2개의 하향변환기들 모두에 제공될 수 있고, 임의의 시점에 오직 하나의 버퍼(526 또는 540)만이 활성화된다. 비활성 버퍼(526 또는 540)는 LNA에 높은 임피던스를 제공할 수 있다. 유사하게, VCO(512)의 출력은 개별적 버퍼들(516 및 530)을 통해 2개의 하향변환기들 모두에 제공될 수 있고, 임의의 시점에 오직 하나의 버퍼(516 또는 530)만이 활성화된다. 여기서, 예를 들어, 비활성 버퍼(516 또는 530)는 VCO(512)의 로딩을 최소화하도록 구성될 수 있다. 또한, VCO(512)의 출력은 버퍼(514)를 통해 PLL(미도시)에 제공될 수 있다.
믹서들의 출력들은 함께 부착(tie)될 수 있고, 그리고/또는, 예를 들어, 기저대역 필터 회로들(미도시)에 제공될 수 있다. 자신의 비활성 상태에서, RF 입력 버퍼(526 또는 540)의 출력은, 활성 하향변환기의 출력에 제공되는 추가적 로드를 최소화하기 위해 높은 임피던스 상태로 구성될 수 있다.
셀룰러 송신기(들)에 부가하여, 다른 송신기들이 SPS 수신기와 공동-위치될 수 있고, 동시 동작 동안 유사한 문제점들을 제공할 수 있다. 다른 송신기들 및 재밍 신호들에 대한 가능한 소스들의 예들은 블루투스 및 802.11 무선 LAN을 포함한다. 이러한 송수신기(들)을 SPS 수신기와 통합한 칩셋들에서, 송신기 출력 전력에 대한 정보는, SPS 수신기를 제어하는 소프트웨어에 이용될 수 있다.
전술한 바와 같이, 특정한 구현예에서, 선택된 IF 신호 주파수는 디바이스 내에서의 전력 소모에 영향을 줄 수 있다. 예를 들어, 하향변환 이후, 특정한 아날로그 회로들은 기저대역 신호를 ADC에 전달하기 전에 필터링 및 증폭하도록 인에이블될 수 있다. 고정된 기저대역 이득 요건을 가정하면, 이러한 회로들에 의해 요구되는 DC 전류는 대역폭에 따라 증가하는 경향이 있다. 따라서, 더 높은 대역폭들에서, 요구되는 신호 이득을 발생시키기 위해 더 높은 디바이스 wT가 필요할 수 있고, 바이어스 전류를 증가시킴으로써 더 높은 wT가 달성될 수 있다. 긴 채널(long channel) 근사치의 예시적인 CMOS FET 구현예의 경우, 디바이스 wT는 디바이스 트랜스컨덕턴스에 비례(∝)할 수 있고, 디바이스 트랜스컨덕턴스는 바이어스 전류의 제곱근에 비례할 수 있다. 대역폭 B를 갖는 SPS 신호의 경우, 하향변환 회로 출력에서의 신호의 최대 주파수 성분은 fm=fIF+B/2일 수 있다. 따라서, 예를 들어, wT∝fm이면, IDC∝fm 2=O(fIF 2)일 수 있다. IF 주파수에 의한 이러한 바이어스 전류의 2차 성장은 짧은 채널 디바이스들의 경우 선형 관계가 될 수 있음을 유의해야 한다. 바이어스 전류와 IF 주파수 사이의 정확한 수학적 관계는 특정한 구현예일 수 있는 한편, 바이어스 전류가 IF 주파수의 함수로서 증가할 수 있는 것은 대부분의 구현예들에 해당할 수 있다.
특정한 예시적인 구현예들에서, 충분히 높은 샘플링 주파수들에서 동작하는 ADC(412)와 연관된 DC 전류 드레인은 동적 스위칭 전류에 의해 지배(dominate)될 수 있다. 이러한 전류는, 예를 들어, 샘플링 주파수 fs에 따라 선형으로 증가할 수 있다. 주지의 Nyquist 기준에 따르면, 에일리어싱(aliasing) 왜곡을 회피하기 위해, 샘플링 주파수는, 여기서는 ADC(412)의 입력에서의 신호의 최대 주파수 성분 fm의 2배보다 커야한다 (서브샘플링 아키텍쳐들을 배제할 정도로 IF 주파수가 충분히 작다고 가정함). 따라서, IF 주파수의 선택은 요구되는 샘플링 주파수에 명확하게 영향을 줄 수 있다. 더 높은 IF 주파수는 더 높은 최대 주파수 성분을 갖는 기저대역 신호를 생성할 수 있다. 예를 들어, 더 높은 IF 주파수는 더 높은 기저대역 신호 주파수 성분들, 더 높은 샘플링 주파수, 및/또는 더 높은 DC 전류를 이용할 수 있다.
대역폭 B를 갖는 SPS 신호의 경우, ADC(412)의 입력에서의 최대 주파수 성분은 fm=fIF+B/2일 수 있다. 따라서, 샘플링 주파수는 fs>2fm=2fIF+B를 만족할 필요가 있다. 그 결과, DC 전류는 IDC=O(fs)=O(fIF)로 스케일링될 수 있다.
ADC(412)에 추가하여, (예를 들어, ADC(412)에 후속하는) 다른 디지털 회로들은 그 샘플링 레이트로 클로킹될(clocked) 필요가 있을 수 있고, 이와 같이 IF 주파수에 정비례하여 스케일링되는 DC 전류를 요구할 수 있다. 또한, 동적 전류가 ADC(412)의 총 전류 소모를 지배할 수 있는 교차점이 매우 높은 샘플링 주파수에서 발생할 수 있을지라도, 이 교차점은 CMOS 디지털 회로들에 대해서는 매우 낮을 것이다.
샘플링 주파수에서의 가능한 증가에 추가하여, IF 주파수가 증가되는 경우 다른 ADC 관련 변경들이 추천될 수 있다. 예를 들어, ZIF 모드에서, ADC(412)는 저역통과 시그마 델타 아키텍쳐를 가질 수 있고, 여기서, 양자화 잡음 전달 함수는 DC에서 제로를 갖는다. LIF 모드에서는, 대역통과 시그마 델타 아키텍쳐로 스위칭하여, 잡음 전달 함수에서의 제로를 신호 대역폭으로 시프트하는 것이 이점이 있을 수 있다.
다음으로, 예를 들어, 도 1의 환경 및/또는 도 2의 디바이스에서 구현될 수 있고, 일 구현예에 따른 동적 중간 주파수 스케일링을 도시하는 4개의 그래프들을 포함하는 도 7을 참조한다. 더 상세하게는, 도 7은 동적 IF 스케일링과 관련된 다양한 BBF 주파수 응답들을 도시한다.
도 7(a)의 라인(702)은, 예시적인 협대역 저역통과 필터와 연관될 수 있고, 이 대역폭은 SPS 신호 대역폭과 대략적으로 동일하다. 예를 들어, GPS C/A 코드 수신기는 ~2 MHz의 대역폭을 갖는 필터를 이용할 수 있다. 이 BBF는 ZIF 모드에서 적절한 선택을 제공할 수 있다. 이것은 재밍 신호의 IM2 생성물로부터 주파수 분리를 제공하지 않기 때문에, 이 구성은, 셀룰러 송신기 및/또는 이와 유사한 것이 비활성인 경우 및/또는 가능한 IM2 간섭 전력이 SPS 수신기의 열 잡음 플로어를 상승시키지 않을 정도로 방사 전력이 충분히 낮은 경우에 적합할 수 있다. 이 예시적인 구성의 특정한 이점들은 단순한 필터 설계 및/또는 비교적 낮은 DC 전력 소모를 포함할 수 있다.
도 7(b)의 라인(704)으로 도시된 바와 같이, 예를 들어, 여기서는 라인(706)으로 표현된 재밍 신호 IM2로부터 주파수 분리를 제공하기 위해, IF 주파수가 증가되었다. 이러한 IM2 생성물은 0 Hz의 중심 주파수를 가질 수 있고, 이 양측의 대역폭은 재밍 신호 대역폭의 2배일 수 있다. 이러한 IM2 생성물은 또한 도시된 바와 같이, 상당한 DC 성분을 가질 수 있다. SPS 신호가 대역폭 BSPS를 갖고 공동-위치된 송신기 대역폭이 BTX이면, IM2 간섭을 회피하기 위해, fIF>BTX+BSPS/2를 선택할 수 있다. 도 7(b)에 도시된 예에서, IF 주파수는 5*1.023=5.115 MHz로 선택되었고, 이것은, GPS C/A 코드 수신기(BSPS
Figure 112011096026469-pct00003
2.05 MHz)가 WCDMA 역방향 링크(BTX
Figure 112011096026469-pct00004
3.84 MHz)에 의해 생성된 IM2 생성물을 회피하기 충분할만큼 클 수 있다. 그러나, IF 주파수의 이러한 선택은, 예를 들어, WCDMA 송신기 출력과 연관되는 가능한 인접 채널 방출들에 의해 생성되는 IM2 간섭을 회피할 정도로 충분히 크지는 않을 수 있지만, 이 간섭은 훨씬 낮은 전력 레벨을 가질 수 있다.
특정한 예시적인 구현예들에서, IF 주파수의 선택은 적어도 부분적으로 송신기 대역폭의 베이시스(basis)에 기초하여 동적으로 선택될 수 있다. 예를 들어, IF 주파수는 CDMA 1X 음성 호출(BTX
Figure 112011096026469-pct00005
1.23 MHz) 동안에는, WCDMA 음성 호출 동안만큼 높을 필요가 없을 수 있다. 더 낮은 IF 주파수는 감소된 전력 소모를 가능하게 할 수 있다.
도 7(b)의 BBF는, SPS 신호가 필터 중심과 정렬되어 유지될 수 있게 하는 협대역 응답의 예시적인 변환을 도시한다. 이러한 결과적 필터 응답은, 복소 필터일 수 있기 때문에, 양의 주파수와 음의 주파수들에서 대칭이 아닐 수 있다.
도 6은, 적어도 부분적으로 이러한 필터(600)가 어떻게 구현될 수 있는지에 대한 일예를 도시한다. 여기서, 필터(600)는 입력(602) 및 출력(608)을 가질 수 있고, 컴포넌트들(604, 606 및 610)이 그 사이에 배열된다. 이 예에서, H(s)=(Ava)/(s+a)는, 전압 이득 Av 및 s=-a에서 실수 폴(pole)을 갖는 1차 능동 필터의 전달 함수일 수 있다. 예를 들어, 증폭기(610)를 통한 피드백 경로에서 복소 승수(multiplier) jβ에 의해, 전체 응답은, 실수 축으로부터 포인트 s=-a+jAvaβ로 시프트된 폴을 갖는 1차 필터(606) 중 하나일 수 있다. 필터 응답을 SPS 신호와 정렬시키기 위해, 이득 β는 Avaβ=2πfIF를 만족하도록 선택될 수 있다. 복수 승수는, 예를 들어, I 및 Q 성분들을 스와핑(swapping)함으로써 구현될 수 있어서: 증폭기(610)의 입력에 신호 쌍(I, Q)이 주어지면, 출력에서의 신호 쌍은 (-βQ, βI)일 수 있다.
도 7(b)의 필터의 하나의 결점은 복소 필터를 구현하는데 요구되는 추가적 회로 복잡도일 수 있다. 또한, 이 필터의 중심 주파수는 신호와의 정렬을 보장하기 위해 온-칩 튜닝을 요구할 수 있다. 이를 고려하여, 도 7(c)는 동일한 IF 주파수로 이용될 수 있는 대안적 필터 응답(라인 708)을 도시한다. 여기서, 복소 필터는 넓은 대역폭을 갖는 저역통과 필터로 대체될 수 있다. 이 필터는 IM2 왜곡 생성물을 완전히 차단하지는 않을 수 있어서, ADC(412)는 이러한 왜곡을 포화(saturation)없이 전달하기에 충분한 동적 범위를 제공하도록 인에이블될 수 있다. 다음으로, IM2 생성물은, 예를 들어, (예를 들어, 신호 프로세싱 회로(226)(도 2 참조) 내의) ADC 이후의 디지털 필터 및/또는 이와 유사한 것에 의해 후속적으로 제거될 수 있다.
도 7(d)는, 예를 들어, 하향변환 출력에 커플링된 AC에 의해 달성될 수 있는 DC에서 노치(notch)의 추가에 의한 변형된 필터(라인 710)를 도시한다. 이러한 노치는 IM2 생성물의 대부분을 차단할 수 있고, 이것은 특정한 구현예들에서 ADC(412) 동적 범위 요건들을 완화시킬 수 있다. 선택된 IF 주파수(704)가 충분히 높은 중심 주파수를 가지면, 노치는 충분히 넓을 수 있어서, 이 또한 ADC 동적 범위 요건들에 영향을 줄 수 있다.
다시 한번 도 4를 참조한다. IF 제어(400)는 적어도 부분적으로, 예를 들어, 소프트웨어 상태 머신 및/또는 이와 유사한 것을 이용하여 구현될 수 있다. 적어도 부분적으로 환경 파라미터(212)에 기초하여 인터럽트가 생성될 수 있다. 예를 들어, 인터럽트는, 송신기가 대응하는 임계 파라미터(214)를 초과하는 출력 전력을 생성하거나 생성하려는 경우, 송신기 회로(232)를 제어하는 DSP에 의해 생성될 수 있다. 이러한 인터럽트를 수신하면, 프로세서 유닛(206)은 IF 신호 주파수 및/또는 수신기 바이어스에서의 변경들을 개시할 수 있다(예를 들어, 수신기 회로를 고 선형성 모드로 스위칭할 수 있다). 특정한 구현예들에서, 이러한 동작 변경들은, 예를 들어, 송신기 회로(232) 및/또는 수신기 회로(202)의 다른 양상들과 관련될 수 있고, 이러한 동작 변경들은 송신 신호들의 대역 및/또는 채널에 기초하여 발생할 수 있다.
강한 재밍 신호의 부재 시에, 수신기 회로(202)는 ZIF 수신기로서 인에이블될 수 있어서, 전력 소모를 감소시킬 수 있다. 강한 재밍 신호의 존재 시에, 상태 머신은, 예를 들어, LIF 모드로의 전이를 개시하도록 인에이블될 수 있다. 여기서, 특정한 구현예들에서, LIF 모드의 IF 주파수는 송신기 대역 및/또는 채널 및/또는 송신기 대역폭의 함수일 수 있다. 예를 들어, IF 주파수는 AWS 대역의 5 MHz LTE 트래픽 동안보다 AWS 대역의 15 MHz LTE 트래픽 동안에 더 높을 수 있다.
특정한 구현예들에서, 예를 들어, 상태 머신이 출력 전력 변동들에 기인하여 상태들 사이에서 초과로 토글링하는 것을 방지하기 위해, 시간 및/또는 전력 히스테리시스가 고려될 수 있다. 이들은 큰 긴급성을 전달하지 않을 수 있기 때문에, 더 낮은 IF 주파수를 갖는 상태로의 전이는 인터럽트에 의해 개시되지 않을 수 있지만, 대신에, 출력 전력의 낮은 레이트 폴링(polling) 및/또는 다른 유사한 측정치들에 의해 개시될 수 있다.
다른 예시적인 인터럽트 생성 메커니즘은, 셀룰러 수신기(미도시)로부터 수신된 신호 강도(예를 들어, RSSI)를 몇몇 방식으로 고려하도록 인에이블될 수 있는 디지털 로직 및/또는 이와 유사한 것을 이용할 수 있다. 그러나, 특정한 다른 구현예들에서, 업링크 및 다운링크 채널들에서 잠재적으로 상이한 페이딩 특징들에 기인하여 송신기 출력 전력을 고려하는 것이 더욱 유익할 수 있다.
특정한 다른 구현예들에서, 예를 들어, 검출 회로(234)를 범용 재밍 신호 검출기의 형태로 제공하기 위해 아날로그 및/또는 디지털 하드웨어 및/또는 이와 유사한 것을 이용하는, 더 정교한 인터럽트 생성 메커니즘이 제공될 수 있다. 이러한 범용 재밍 신호 검출기는, 내부적으로 생성된 재밍 신호들에 기초해서 뿐만 아니라 외부의 재밍 신호들에 응답하여, SPS 수신기 상태가 조정되게 할 수 있기 때문에, 특정 구현예들에서 이점이 있을 수 있다. 또한, 이러한 재밍 신호 검출기는 셀룰러 송수신기 및/또는 다른 유사한 송신기 회로들에 커플링될 필요가 없을 수 있다.
특정한 구현예들에서, 수신기 회로(202)는, (예를 들어, 바이어스 제어(430)를 통한) 선형 상태의 변경들에 의해, 그리고/또는 (예를 들어, IF 제어(400)를 통해) IF 주파수가 조정되는 경우에 도입될 수 있는 가능한 불연속성들을 고려하도록 설계될 필요가 있을 수 있다. IF 주파수가 변하는 경우 PLL(416)은 재프로그래밍될 수 있고 그리고/또는 그렇지 않으면 영향받을 수 있기 때문에, PLL은 언락(unlock)될 수 있고, 이것은, PLL이 새로운 주파수에 안착하는 동안 SPS 신호 두절(outage)을 초래할 수 있다. 이러한 신호 인터럽션은, 일반적으로 SPS 수신기 성능에 악영향을 주지 않을 수백 마이크로초로 제한되어야 한다. 예를 들어, GPS C/A 코드 수신기는 20 ms 동안 신호를 코히어런트하게 통합할 수 있고; 모든 코히어런트 합산마다 0.2 ms의 신호 두절은 오직 ~0.04dB만큼 획득 감도를 악화시킬 것이다. 인터럽션들의 빈도를 감소시키고 그리고/또는 이러한 인터럽션들이 발생하는 것을 방지하기 위해, 상태 머신 내에서 히스테리시스가 구현될 수 있다. PLL(416)이 언락일 수 있는 동안, LO 주파수는 SPS 대역 외부로 멀리 스윙할(swing far) 수 있다. LO 주파수는 잠재적으로 강한 재밍 신호를 통해 스윙할 수 있고, 이 순간에 SPS 수신기 통과 대역에 속할 수 있다. 따라서, 강한 간섭이 SPS 신호 통합에 주입되어 신호 대 잡음비(예를 들어, C/No)를 악화시킬 가능성이 존재할 수 있다. 이 가능성은, 예를 들어, PLL이 언락인 동안 SPS 수신기를 블랭킹(blanking)함으로써 회피될 수 있다. 블랭킹되는 경우, 신호 프로세싱 회로(226)(예를 들어, 하나 이상의 상관기(들)을 포함할 수 있음)에 전달되는 I/Q 샘플들은 제로 또는 몇몇 다른 작은 값으로 강제될 수 있다. SPS 수신기의 상태는 블랭킹되는 동안 동작가능하게 동결될(frozen) 수 있다. 예를 들어, 외부 간섭이 디지털 자동 이득 제어(AGC)를 교환하는 것을 방지하기 위해, AGC를 유도하는 진폭 추정기 및/또는 이와 유사한 것(미도시)의 상태는 동작가능하게 동결될 수 있다.
당업자는 다른 블랭킹 방법들이 구현될 수 있음을 인식할 것이다. 예를 들어, PLL이 언락인 동안, SPS 수신기 LNA에는 전력이 공급되지 않아서(de-energized), 스윙 VCO에 의해 신호 대역에 믹싱될 수도 있는 임의의 재밍 신호들을 감쇠시킬 수 있다.
도 7의 예시적인 그래프들에 도시된 여러 필터 구성들 사이에서 스위칭하는 경우, 및 특히, 협대역과 광대역 필터들 사이에서 스위칭하는 경우, SPS 수신기를 통한 그룹 지연이 변경될 수 있다. 그룹 지연에서의 이러한 임의의 변경들은, 고정(fix) 정확도에서의 열화를 방지하기 위해 SPS 수신기에서 다소 보상되어야 한다. 예를 들어, 1 ns의 그룹 지연 점프는 의사범위 측정에서 ~30 cm의 점프에 대응한다. 그룹 지연에서의 점프들은, 예를 들어, 특정한 구현예들에서 소프트웨어에 의해 보상될 수 있다. 다른 구현예들에서, 전용 디지털 하드웨어가 대신 이용될 수 있다. 예를 들어, 대략적(coarse) 시간 단계들에서 0 내지 NT의 프로그래밍가능한 지연을 구현하기 위해, 레이트 1/T 및/또는 이와 유사한 것에서 업데이트되는 N개의 레지스터들을 구성하는 태핑된(tapped) 지연 라인(미도시)이 이용될 수 있다. 정교한(fine) 그룹 지연 보상은 선형 보간 필터(미도시)에 의해 구현될 수 있고, 보간 필터는 보간 노드들의 위치를 시프트시키기 위해 인에이블될 수 있다. 이러한 보간 포인트들의 시프트는 그룹 지연 시프트와 등가이다.
예시적인 LIF 아키텍쳐에서, 수신기 회로(202)의 이미지 거부 비율(IRR)은 적어도 대부분, LO 의 진폭 및 위상 불균형에 의해 결정될 수 있다. 통상적인 수퍼헤테로다인(superheterodyne) 아키텍쳐에서와는 달리, RF 필터는 이미지 대역에서 임의의 억제를 제공하도록 요구되지 않을 수 있다. 20 dB보다 양호한 IRR이 달성될 수 있고, 이러한 IRR은 이미지 대역에 강한 재밍 신호들이 존재하지 않으면 충분할 수 있다. 이러한 조건은, 이미지 대역이 원하는 신호와 동일한 위성 라디오 내비게이션 대역에 존재하도록 IF 주파수에 상한(upper bound)을 배치함으로써 개선될 수 있다.
예를 들어, 캐리어 주파수 1575.42 MHz를 갖는 GPS L1 신호는, 전세계적으로 위성 라디오 내비게이션에 할당되는 대역 1559-1610 MHz에 존재한다. C/A 코드 수신기는 1575.42 MHz로 중심설정된 폭 2MHz의 통과대역을 가질 수 있고, 이 경우, 이미지 대역 또한 2 MHz 폭일 수 있다. 이 C/A 코드 수신기가 로우 측 주입을 이용하는 로우 IF 수신기이면, 이미지 대역은, 예를 들어, 최대 허용가능 IF 주파수가 7.71 MHz인 경우 1559-1610 MHz 내에 존재하는 것이 가능해질 수 있다. 하이 측 주입을 이용하는 로우 IF 수신기의 경우, 대응하는 최대 허용가능 IF 주파수는 16.79 MHz일 수 있다. 여기서, 예를 들어, GPS 신호가 대역 중심의 좌측에 위치되기 때문에, 이미지 대역을 하이 측에 피트(fit)시킬 공간이 더 많이 존재할 수 있다.
특정한 예시적인 구현예들에 따르면, 수신기 전력 소모에서의 감소를 실현하거나 또는 그렇지 않으면 이를 가능하게 하기 위해, 수신된 RF 신호를 대응하는 제 1 IF 신호로 주파수 하향변환하고, 그리고/또는 재밍 RF 신호들의 존재 가능성 시에 개선된 수신기 성능을 실현하거나 또는 그렇지 않으면 이를 가능하게 하기 위해, 수신된 RF 신호를 대응하는 제 2 IF 신호로 주파수 하향변환하는 방법 및 장치들이 구현될 수 있다.
따라서, 한정이 아닌 예시로서, IF 주파수를 감소시키기 위한 트리거는, 저 전력 모드에서 동작하라는 지시를 포함할 수 있고, 여기서, 재머들의 존재 시에 성능 열화가 존재할 수 있다. 이러한 지시는, 예를 들어, (공동-위치된 송수신기를 디스에이블시키는) 항공기 모드를 인에이블하는 경우 또는 다른 시간에, 사용자에 의해 개시될 수 있다. 이러한 지시는, 배터리 레벨이 임계 레벨 미만으로 내려가는 경우 SPS 수신기가 전력을 보존하기 위한 모드로 진입할 수 있도록, 배터리 레벨 및/또는 이와 유사한 것을 모니터링하도록 인에이블될 수 있는 소프트웨어 명령들/모듈들에 의해 개시될 수 있다.
따라서, 특정한 구현에들에서, IF 스위칭은 적어도 부분적으로, 송신기 전력, 대역, 및/또는 대역폭에 기초하여 구현될 수 있다. 이러한 IF 스위칭은, 예를 들어, LIF 수신기의 견고성이 지나치거나 그렇지 않으면 과도할 수 있는 경우, 전력을 절약하도록 구현될 수 있다. 여기서, 이러한 전력 절약은, 환경이 지정하는 대로 전력을 절약할 수 있다는 관점에서 기회적(opportunistic)일 수 있다. 따라서, LIF와 ZIF 사이의 스위칭을 위한 트리거는 송신기에 고유하게 관련될 수 있다.
본 명세서에서 다양한 방법들 및 시스템들을 이용하여 특정한 예시적인 기술들이 설명되고 예시되었지만, 청구 대상을 벗어나지 않으면서 다양한 다른 변형예들이 행해질 수 있고, 균등물들이 대체될 수 있음을 당업자는 이해할 것이다. 또한, 본 명세서에서 설명된 중심 개념으로부터 벗어나지 않고, 청구 대상의 교시들에 대한 특정한 상황에 적응하도록 다수의 변형예들이 행해질 수 있다. 따라서, 청구 대상은 개시된 특정한 실시예들에 한정되지 않으며, 이러한 청구 대상은 또한, 첨부된 청구항들의 범주 및 그 균등물에 속하는 모든 구현예들을 포함할 수 있도록 의도된다.

Claims (74)

  1. 방법으로서,
    라디오 주파수(RF) 신호를 수신하는 단계; 및
    무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재(absence)하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하고, 그리고, 상기 간섭하는 RF 신호가 존재(presence)하는 경우, 상기 RF 신호를, 제 2 중심 주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하는 단계를 포함하고,
    상기 제 2 중심 주파수는 상기 제 1 중심 주파수보다 크며,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로 및 디바이스 동작 모드 중 적어도 하나이고,
    상기 RF 신호를 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하는 것은 상기 무선 환경 파라미터가 임계 파라미터 이상인 경우에 수행되는,
    방법.
  2. 제 1 항에 있어서,
    상기 RF 신호를 선택적으로 주파수 하향변환하는 단계는:
    상기 무선 환경 파라미터가 상기 임계 파라미터 미만이면, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하는 단계를 더 포함하는, 방법.
  3. 제 2 항에 있어서,
    상기 임계 파라미터는 프로그래밍가능하게 그리고/또는 동적으로 구축되는, 방법.
  4. 제 1 항에 있어서,
    상기 제 1 중심 주파수 및/또는 상기 제 2 중심 주파수 중 적어도 하나는 프로그래밍가능하게 그리고/또는 동적으로 구축되는, 방법.
  5. 제 1 항에 있어서,
    상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하는데 이용하도록 동작가능하게 인에이블되는 제 1 로컬 오실레이터(LO) 신호에 액세스하는 단계; 및
    상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는데 이용하도록 동작가능하게 인에이블되는 제 2 LO 신호에 액세스하는 단계를 더 포함하는, 방법.
  6. 제 5 항에 있어서,
    프로그래밍가능한 신호 생성 회로를 이용하여 상기 제 1 LO 신호 또는 상기 제 2 LO 신호를 선택적으로 구축하는 단계를 더 포함하는, 방법.
  7. 제 1 항에 있어서,
    상기 무선 환경 파라미터에 적어도 부분적으로 기초하여, 기저대역 필터 회로, 아날로그-디지털 변환 회로 및/또는 위상 고정 루프 회로 중 적어도 하나를 선택적으로 프로그래밍하는 단계를 더 포함하는, 방법.
  8. 제 1 항에 있어서,
    상기 RF 신호를, 저 위상 잡음 하향변환기 및/또는 저 전력 하향변환기 중 적어도 하나를 포함하는 주파수 하향변환 회로에 제공하는 단계를 더 포함하는, 방법.
  9. 제 1 항에 있어서,
    상기 제 1 중심 주파수에 의해, 수신기 회로는 제로 IF(ZIF) 아키텍쳐로서 동작하고, 상기 제 2 중심 주파수에 의해, 상기 수신기 회로는 로우 IF(LIF) 아키텍쳐로서 동작하는, 방법.
  10. 삭제
  11. 제 1 항에 있어서,
    상기 디바이스 동작 모드는, 디바이스 전력 소모 모드, 디바이스 통신 모드, 및/또는 디바이스 내비게이션 모드 중 적어도 하나와 연관되는, 방법.
  12. 삭제
  13. 제 1 항에 있어서,
    상기 RF 신호는 위성 측위 시스템(SPS; satellite positioning system) 신호를 포함하는, 방법.
  14. 제 1 항에 있어서,
    디바이스 전력 소모 모드에 적어도 부분적으로 기초하여, 상기 RF 신호를, 상기 제 1 IF 신호 또는 적어도 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하는 단계를 더 포함하는, 방법.
  15. 제 1 항에 있어서,
    상기 RF 신호를 선택적으로 주파수 하향변환하는 단계는:
    수신기 전력 소모에서의 감소를 실현(effect)하기 위해, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하는 단계; 및
    재밍(jamming) RF 신호들이 존재 가능할 때, 개선된 수신기 성능을 실현하기 위해, 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는 단계를 포함하는, 방법.
  16. 장치로서,
    라디오 주파수(RF) 신호를 수신하도록 동작가능하게 인에이블되는 수신기 회로; 및
    무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재(absence)하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하고, 그리고, 상기 간섭하는 RF 신호가 존재(presence)하는 경우, 상기 RF 신호를, 제 2 중심 주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하도록 구성되는 주파수 하향변환 회로를 포함하고,
    상기 제 2 중심 주파수는 상기 제 1 중심 주파수보다 크며,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로 및 디바이스 동작 모드 중 적어도 하나와 연관되고,
    상기 RF 신호를 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하는 것은 상기 무선 환경 파라미터가 임계 파라미터 이상인 경우에 수행되는,
    장치.
  17. 제 16 항에 있어서,
    상기 주파수 하향변환 회로는, 상기 무선 환경 파라미터가 상기 임계 파라미터 미만이면, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하도록 동작가능하게 인에이블되는, 장치.
  18. 제 17 항에 있어서,
    상기 임계 파라미터는 프로그래밍가능하게 그리고/또는 동적으로 구축되는, 장치.
  19. 제 16 항에 있어서,
    상기 제 1 중심 주파수 및/또는 상기 제 2 중심 주파수 중 적어도 하나는 프로그래밍가능하게 그리고/또는 동적으로 구축되는, 장치.
  20. 제 16 항에 있어서,
    상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하는데 이용하도록 동작가능하게 인에이블되는 제 1 로컬 오실레이터(LO) 신호, 및/또는 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는데 이용하도록 동작가능하게 인에이블되는 제 2 LO 신호 중 적어도 하나를 생성하도록 동작가능하게 인에이블되는 적어도 하나의 신호 생성 회로를 더 포함하는, 장치.
  21. 제 20 항에 있어서,
    상기 적어도 하나의 신호 생성 회로는, 상기 제 1 LO 신호 또는 상기 제 2 LO 신호를 선택적으로 생성하도록 동작가능하게 인에이블되는 프로그래밍가능한 신호 생성 회로를 포함하는, 장치.
  22. 제 16 항에 있어서,
    상기 수신기는, 상기 무선 환경 파라미터에 적어도 부분적으로 기초하여 선택적으로 프로그래밍될 수 있는, 기저대역 필터 회로, 아날로그-디지털 변환 회로 및/또는 위상 고정 루프 회로 중 적어도 하나를 포함하는, 장치.
  23. 제 16 항에 있어서,
    상기 주파수 하향변환 회로는, 상기 RF 신호를 수신하도록 동작가능하게 인에이블되고, 저 위상 잡음 하향변환기 및/또는 저 전력 하향변환기 중 적어도 하나를 포함하는, 장치.
  24. 제 16 항에 있어서,
    상기 제 1 중심 주파수에 의해, 상기 수신기 회로는 제로 IF(ZIF) 아키텍쳐로서 동작하고, 상기 제 2 중심 주파수에 의해, 상기 수신기 회로는 로우 IF(LIF) 아키텍쳐로서 동작하는, 장치.
  25. 삭제
  26. 제 16 항에 있어서,
    상기 디바이스 동작 모드는, 디바이스 전력 소모 모드, 디바이스 통신 모드, 및/또는 디바이스 내비게이션 모드 중 적어도 하나와 연관되는, 장치.
  27. 삭제
  28. 제 16 항에 있어서,
    상기 RF 신호는 위성 측위 시스템(SPS) 신호를 포함하는, 장치.
  29. 제 16 항에 있어서,
    상기 주파수 하향변환 회로는, 디바이스 전력 소모 모드에 적어도 부분적으로 기초하여, 상기 RF 신호를, 상기 제 1 IF 신호 또는 적어도 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하도록 동작가능하게 인에이블되는, 장치.
  30. 제 16 항에 있어서,
    상기 주파수 하향변환 회로는,
    수신기 전력 소모에서의 감소를 실현하기 위해, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하고; 그리고
    재밍 RF 신호들이 존재 가능할 때, 개선된 수신기 성능을 실현하기 위해, 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하도록 동작가능하게 인에이블되는, 장치.
  31. 장치로서,
    라디오 주파수(RF) 신호를 수신하기 위한 수단; 및
    무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재(absence)하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하고, 그리고, 상기 간섭하는 RF 신호가 존재(presence)하는 경우, 상기 RF 신호를, 제 2 중심주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하기 위한 수단을 포함하고,
    상기 제 2 중심 주파수는 상기 제 1 중심 주파수보다 크며,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로 및 디바이스 동작 모드 중 적어도 하나와 연관되고,
    상기 RF 신호를 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하는 것은 상기 무선 환경 파라미터가 임계 파라미터 이상인 경우에 수행되는,
    장치.
  32. 제 31 항에 있어서,
    상기 RF 신호를 선택적으로 주파수 하향변환하기 위한 수단은,
    상기 무선 환경 파라미터가 임계 파라미터 미만이면, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하도록 동작가능하게 인에이블되는, 장치.
  33. 제 32 항에 있어서,
    상기 임계 파라미터를 프로그래밍가능하게 그리고/또는 동적으로 구축하기 위한 수단을 더 포함하는, 장치.
  34. 제 31 항에 있어서,
    상기 제 1 중심 주파수 및/또는 상기 제 2 중심 주파수 중 적어도 하나를 프로그래밍가능하게 그리고/또는 동적으로 구축하기 위한 수단을 더 포함하는, 장치.
  35. 제 31 항에 있어서,
    상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하기 위해, 상기 RF 신호를 선택적으로 주파수 하향변환하기 위한 수단에 의해 이용될 제 1 로컬 오실레이터(LO) 신호를 구축하기 위한 수단; 및
    상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하기 위해, 상기 RF 신호를 선택적으로 주파수 하향변환하기 위한 수단에 의해 이용될 제 2 LO 신호를 구축하기 위한 수단을 더 포함하는, 장치.
  36. 제 35 항에 있어서,
    프로그래밍가능한 신호 생성 회로를 이용하여 상기 제 1 LO 신호 또는 상기 제 2 LO 신호를 선택적으로 구축하기 위한 수단을 더 포함하는, 장치.
  37. 제 31 항에 있어서,
    상기 무선 환경 파라미터에 적어도 부분적으로 기초하여, 기저대역 필터 회로, 아날로그-디지털 변환 회로 및/또는 위상 고정 루프 회로 중 적어도 하나를 선택적으로 프로그래밍하기 위한 수단을 더 포함하는, 장치.
  38. 제 31 항에 있어서,
    상기 RF 신호를, 저 위상 잡음 하향변환기 및/또는 저 전력 하향변환기 중 적어도 하나를 포함하는 주파수 하향변환 회로에 제공하기 위한 수단을 더 포함하는, 장치.
  39. 제 31 항에 있어서,
    상기 제 1 중심 주파수에 의해, 상기 RF 신호를 선택적으로 주파수 하향변환하기 위한 수단은 제로 IF(ZIF) 수신기 아키텍쳐로서 동작하고, 상기 제 2 중심 주파수에 의해, 상기 RF 신호를 선택적으로 주파수 하향변환하기 위한 수단은 로우 IF(LIF) 수신기 아키텍쳐로서 동작하는, 장치.
  40. 삭제
  41. 제 31 항에 있어서,
    상기 디바이스 동작 모드는, 디바이스 전력 소모 모드, 디바이스 통신 모드, 및/또는 디바이스 내비게이션 모드 중 적어도 하나와 연관되는, 장치.
  42. 제 31 항에 있어서,
    상기 RF 신호는 위성 측위 시스템(SPS) 신호를 포함하는, 장치.
  43. 삭제
  44. 제 31 항에 있어서,
    디바이스 전력 소모 모드에 적어도 부분적으로 기초하여, 상기 RF 신호를, 상기 제 1 IF 신호 또는 적어도 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하기 위한 수단을 더 포함하는, 장치.
  45. 제 31 항에 있어서,
    상기 RF 신호를 선택적으로 주파수 하향변환하기 위한 수단은:
    수신기 전력 소모에서의 감소를 실현하기 위해, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하고, 재밍 RF 신호들의 존재 가능성 시에 개선된 수신기 성능을 실현하기 위해, 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는, 장치.
  46. 컴퓨터 구현가능 명령들을 저장하는 컴퓨터 판독가능 매체로서,
    상기 컴퓨터 구현가능 명령들은, 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우:
    무선 환경 파라미터에 액세스하도록; 그리고,
    상기 무선 환경 파라미터에 적어도 부분적으로 기초하여, 라디오 주파수(RF) 신호를 수신하고, 간섭하는 RF 신호가 부재(absence)하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하도록, 그리고, 상기 간섭하는 RF 신호가 존재(presence)하는 경우, 상기 RF 신호를, 제 2 중심주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하도록 동작가능하게 인에이블되는 수신기 회로를 선택적으로 인에블시키도록,
    상기 하나 이상의 프로세싱 유닛을 동작가능하게 인에이블시키고,
    상기 제 2 중심 주파수는 상기 제 1 중심 주파수보다 크며,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로 및 디바이스 동작 모드 중 적어도 하나와 연관되고,
    상기 RF 신호를 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하는 것은 상기 무선 환경 파라미터가 임계 파라미터 이상인 경우에 수행되는,
    컴퓨터 판독가능 매체.
  47. 제 46 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    상기 임계 파라미터에 액세스하도록; 그리고,
    상기 무선 환경 파라미터가 상기 임계 파라미터 미만이면, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는, 컴퓨터 판독가능 매체.
  48. 제 47 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    상기 임계 파라미터를 프로그래밍가능하게 그리고/또는 동적으로 구축하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는, 컴퓨터 판독가능 매체.
  49. 제 46 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    상기 제 1 중심 주파수 및/또는 상기 제 2 중심 주파수 중 적어도 하나를 프로그래밍가능하게 그리고/또는 동적으로 구축하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는, 컴퓨터 판독가능 매체.
  50. 제 46 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하는데 이용하도록 동작가능하게 인에이블되는 제 1 로컬 오실레이터(LO) 신호에 액세스할 수 있도록, 그리고,
    상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는데 이용하도록 동작가능하게 인에이블되는 제 2 LO 신호에 액세스할 수 있도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는, 컴퓨터 판독가능 매체.
  51. 제 50 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    프로그래밍가능한 신호 생성 회로를 이용하여, 상기 제 1 LO 신호 또는 상기 제 2 LO 신호의 구축을 선택적으로 개시하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는, 컴퓨터 판독가능 매체.
  52. 제 46 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    상기 무선 환경 파라미터에 적어도 부분적으로 기초하여, 기저대역 필터 회로, 아날로그-디지털 변환 회로 및/또는 위상 고정 루프 회로 중 적어도 하나를 선택적으로 프로그래밍하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는, 컴퓨터 판독가능 매체.
  53. 제 46 항에 있어서,
    상기 제 1 중심 주파수에 의해, 수신기 회로는 제로 IF(ZIF) 아키텍쳐로서 동작하고, 상기 제 2 중심 주파수에 의해, 상기 수신기 회로는 로우 IF(LIF) 아키텍쳐로서 동작하는,
    컴퓨터 판독가능 매체.
  54. 삭제
  55. 제 46 항에 있어서,
    상기 디바이스 동작 모드는, 디바이스 전력 소모 모드, 디바이스 통신 모드, 및/또는 디바이스 내비게이션 모드 중 적어도 하나와 연관되는,
    컴퓨터 판독가능 매체.
  56. 삭제
  57. 제 46 항에 있어서,
    상기 RF 신호는 위성 측위 시스템(SPS) 신호를 포함하는,
    컴퓨터 판독가능 매체.
  58. 제 46 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    디바이스 전력 소모 모드에 적어도 부분적으로 기초하여, 상기 RF 신호의, 상기 제 1 IF 신호 또는 적어도 상기 제 2 IF 신호로의 주파수 하향변환을 선택적으로 개시하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는,
    컴퓨터 판독가능 매체.
  59. 제 46 항에 있어서,
    상기 컴퓨터 구현가능 명령들은, 상기 하나 이상의 프로세싱 유닛들에 의해 구현되는 경우,
    수신기 전력 소모에서의 감소를 실현하기 위해, 상기 RF 신호의 상기 제 1 IF 신호로의 주파수 하향변환을 개시하고, 그리고
    재밍 RF 신호들의 존재 가능성 시에 개선된 수신기 성능을 실현하기 위해, 상기 RF 신호의 상기 제 2 IF 신호로의 주파수 하향변환을 개시하도록,
    상기 하나 이상의 프로세싱 유닛들을 동작가능하게 인에이블시키는,
    컴퓨터 판독가능 매체.
  60. 방법으로서,
    라디오 주파수(RF) 신호를 수신하는 단계; 및
    무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하고, 그리고, 상기 간섭하는 RF 신호가 존재하는 경우, 상기 RF 신호를, 제 2 중심 주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하는 단계를 포함하고 - 상기 제 2 중심 주파수는 상기 제 1 중심 주파수 보다 큼 - ,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로 및 디바이스 동작 모드 중 적어도 하나와 연관되고,
    상기 RF 신호를 선택적으로 주파수 하향변환하는 단계는, 추가적으로:
    상기 무선 환경 파라미터가 임계 파라미터 미만이면, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하는 단계; 및
    상기 무선 환경 파라미터가 임계 파라미터 이상이면, 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는 단계를 포함하고, 그리고,
    상기 임계 파라미터는, 최대 무선 시그널링 시간 주기와 연관되는,
    방법.
  61. 방법으로서,
    라디오 주파수(RF) 신호를 수신하는 단계; 및
    무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하고, 그리고, 상기 간섭하는 RF 신호가 존재하는 경우, 상기 RF 신호를, 제 2 중심 주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하는 단계를 포함하고 - 상기 제 2 중심 주파수는 상기 제 1 중심 주파수 보다 큼 - ,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로, 디바이스 동작 모드 및 무선 시그널링이 마지막으로 검출된 이후로부터의 시간 측정 중 적어도 하나와 연관되고,
    상기 RF 신호를 선택적으로 주파수 하향변환하는 것은 상기 무선 환경 파라미터가 임계 파라미터 이상인 경우에 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하는것을 더 포함하는,
    방법.
  62. 장치로서,
    라디오 주파수(RF) 신호를 수신하도록, 그리고, 무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 하향변환하도록, 그리고, 상기 간섭하는 RF 신호가 존재하는 경우, 상기 RF 신호를, 제 2 중심 주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하도록 동작가능하게 인에이블되는 수신기 회로를 포함하고,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로 및 디바이스 동작 모드 중 적어도 하나와 연관되고,
    상기 수신기 회로는, 상기 무선 환경 파라미터가 임계 파라미터 미만이면, 상기 RF 신호를 상기 제 1 IF 신호로 주파수 하향변환하도록, 그리고, 상기 무선 환경 파라미터가 임계 파라미터 이상이면, 상기 RF 신호를 상기 제 2 IF 신호로 주파수 하향변환하도록 동작가능하게 인에이블되고, 그리고,
    상기 임계 파라미터는 최대 무선 시그널링 시간 주기와 연관되는,
    장치.
  63. 장치로서,
    라디오 주파수(RF) 신호를 수신하도록, 그리고, 무선 환경 파라미터에 적어도 부분적으로 기초하여, 간섭하는 RF 신호가 부재하는 경우, 상기 RF 신호를, 제 1 중심 주파수를 갖는 제 1 중간 주파수(IF) 신호로 선택적으로 하향변환하도록, 그리고, 상기 간섭하는 RF 신호가 존재하는 경우, 상기 RF 신호를, 제 2 중심 주파수를 갖는 제 2 중간 주파수(IF) 신호로 선택적으로 주파수 하향변환하도록 동작가능하게 인에이블되는 수신기 회로를 포함하고,
    상기 무선 환경 파라미터는 송신기 주파수, 송신기 대역폭, 송신기 회로, 디바이스 동작 모드 및 무선 시그널링이 마지막으로 검출된 이후로부터의 시간 측정 중 적어도 하나와 연관되고,
    상기 RF 신호를 상기 제 2 IF 신호로 선택적으로 주파수 하향변환하는 것은 상기 무선 환경 파라미터가 임계 파라미터 이상인 경우에 수행되는,
    장치.
  64. 제 32 항에 있어서, 상기 임계 파라미터는 최대 무선 시그널링 시간 주기와 연관되는,
    장치.
  65. 제 31 항에 있어서, 상기 무선 환경 파라미터는 무선 시그널링이 마지막으로 검출된 이후로부터 시간 측정과 연관되는,
    장치.
  66. 제 47 항에 있어서,
    상기 임계 파라미터는 최대 무선 시그널링 시간 주기와 연관되는,
    컴퓨터 판독가능 매체.
  67. 제 46 항에 있어서,
    상기 무선 환경 파라미터는 무선 시그널링이 마지막으로 검출된 이후로부터의 시간 측정과 연관되는,
    컴퓨터 판독가능 매체.
  68. 제 1 항에 있어서,
    상기 간섭하는 RF 신호는 위성 측위 시스템(SPS) 신호 내의 상기 RF 신호를 재밍(jam)하는 음성 통신 신호이고,
    상기 간섭하는 RF 신호 및 상기 RF 신호는 모두 단일 디바이스에 의해 프로세싱되고,
    추가적으로, 상기 간섭하는 RF 신호의 부재를 검출하고, 선택적으로 상기 제 1 IF 신호로 하향변환하는 것을 포함하는,
    방법.
  69. 제 1 항에 있어서,
    상기 간섭하는 RF 신호를 검출하는 단계; 및
    상기 간섭하는 RF 신호의 검출에 응답하여 선택적으로 상기 제 2 IF 신호로 하향변환하는 단계를 더 포함하는,
    방법.
  70. 제 69 항에 있어서,
    상기 간섭하는 RF 신호는 상기 제 1 중심 주파수에서 검출되는,
    방법.
  71. 제 1 항에 있어서,
    제 1 중심 주파수에서 간섭 신호의 존재를 검출하기 전에, 상기 RF 신호를 상기 제 1 중심 주파수를 가지는 상기 제 1 IF 신호로 하향변환하는 단계;
    상기 제 1 중심 주파수에서 상기 RF 신호를 수신한 이후에, 상기 제 1 중심 주파수에서 상기 간섭 신호의 존재를 검출하는 단계; 및
    상기 제 1 중심 주파수에서의 검출된 간섭 신호에 기초하여, 상기 RF 신호를 제 2 중심 주파수를 가지는 상기 제 2 IF 신호로 하향변환하는 단계를 더 포함하는,
    방법.
  72. 제 1 항에 있어서,
    로우패스 필터가 상기 제 1 중심 주파수에서 노치(notch)를 생성하고 상기 노치가 상기 제 1 중심 주파수에서 간섭 신호의 일부를 차단(reject)하도록, 광 대역폭을 가지는 상기 로우패스 필터를 사용하여 상기 하향변환된 RF 신호를 필터링하는 단계를 더 포함하는,
    방법.
  73. 제 72 항에 있어서,
    상기 노치는 AC 커플링 하향-변환기 출력에 의해 생성되고,
    상기 노치는 상기 간섭 신호의 광 대역(large portion)을 차단할 정도로 넓은(wide),
    방법.
  74. 제 73 항에 있어서,
    상기 노치의 중심 주파수는 상기 제 1 중심 주파수에 있는,
    방법.
KR1020117028967A 2009-05-05 2010-05-04 동적 중간 주파수 스케일링을 갖는 라디오 디바이스 KR101397079B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/435,980 2009-05-05
US12/435,980 US9231630B2 (en) 2009-05-05 2009-05-05 Radio device having dynamic intermediate frequency scaling
PCT/US2010/033592 WO2010129584A1 (en) 2009-05-05 2010-05-04 Radio device having dynamic intermediate frequency scaling

Publications (2)

Publication Number Publication Date
KR20120006076A KR20120006076A (ko) 2012-01-17
KR101397079B1 true KR101397079B1 (ko) 2014-05-19

Family

ID=42335228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117028967A KR101397079B1 (ko) 2009-05-05 2010-05-04 동적 중간 주파수 스케일링을 갖는 라디오 디바이스

Country Status (7)

Country Link
US (1) US9231630B2 (ko)
EP (1) EP2427968B1 (ko)
JP (1) JP5755638B2 (ko)
KR (1) KR101397079B1 (ko)
CN (1) CN102422544B (ko)
TW (1) TW201130235A (ko)
WO (1) WO2010129584A1 (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8812052B2 (en) 2007-02-27 2014-08-19 Qualcomm Incorporated SPS receiver with adjustable linearity
KR101439371B1 (ko) * 2007-12-03 2014-09-11 삼성전자주식회사 무선통신 시스템에서 송신신호 추적 및 제거 수신기 장치및 방법
US9634373B2 (en) 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US8671413B2 (en) * 2010-01-11 2014-03-11 Qualcomm Incorporated System and method of dynamic clock and voltage scaling for workload based power management of a wireless mobile device
EP2388921B1 (en) * 2010-05-21 2013-07-17 Nxp B.V. Integrated circuits with frequency generating circuits
US8817822B1 (en) * 2011-01-20 2014-08-26 Rockwell Collins, Inc. Minimizing interference between multiple signals over a wide bandwidth
US8787862B2 (en) 2011-10-17 2014-07-22 Broadcom Corporation Method of receiving and receivers
GB201119887D0 (en) 2011-10-17 2011-12-28 Renesas Mobile Corp Methods of receiving and receivers
US8749417B2 (en) * 2011-11-06 2014-06-10 Silicon Laboratories, Inc. Multi-mode analog-to-digital converter
GB201119888D0 (en) 2011-11-17 2011-12-28 Renesas Mobile Corp Methods of receiving and receivers
US9008249B2 (en) * 2012-02-10 2015-04-14 Qualcomm Incorporated Detection and filtering of an undesired narrowband signal contribution in a wireless signal receiver
GB2500231B (en) 2012-03-14 2014-04-30 Broadcom Corp Transmitter
US9246436B2 (en) 2012-07-16 2016-01-26 Linear Technology Corporation Low power radio receiver
US10404075B2 (en) * 2012-09-28 2019-09-03 Avago Technologies International Sales Pte. Limited Power receiving device having device discovery and power transfer capabilities
US9065686B2 (en) 2012-11-21 2015-06-23 Qualcomm Incorporated Spur detection, cancellation and tracking in a wireless signal receiver
US20160218406A1 (en) 2013-02-04 2016-07-28 John R. Sanford Coaxial rf dual-polarized waveguide filter and method
US9037104B2 (en) 2013-02-04 2015-05-19 Qualcomm, Incorporated Receiver that reconfigures between zero intermediate frequency and direct sampling based on channel conditions
US9065523B2 (en) * 2013-02-16 2015-06-23 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
US9923621B2 (en) 2013-02-16 2018-03-20 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
US9570222B2 (en) 2013-05-28 2017-02-14 Tdk Corporation Vector inductor having multiple mutually coupled metalization layers providing high quality factor
EP3648359A1 (en) * 2013-10-11 2020-05-06 Ubiquiti Inc. Wireless radio system optimization by persistent spectrum analysis
US10033343B2 (en) 2014-03-31 2018-07-24 Qualcomm Incorporated Spectrum sensing radio receiver
US9912034B2 (en) 2014-04-01 2018-03-06 Ubiquiti Networks, Inc. Antenna assembly
US9496840B2 (en) 2014-05-16 2016-11-15 Linear Technology Corporation Radio receiver
CN106233797B (zh) 2014-06-30 2019-12-13 优倍快网络公司 无线电设备对准工具及方法
US9735752B2 (en) 2014-12-03 2017-08-15 Tdk Corporation Apparatus and methods for tunable filters
WO2017044924A1 (en) 2015-09-11 2017-03-16 Ubiquiti Networks, Inc. Compact public address access point apparatuses
US9906275B2 (en) * 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
WO2018042252A2 (en) * 2016-08-31 2018-03-08 Horizon Technologies Consultants, Ltd. Satellite telephone monitoring
CN109660270A (zh) * 2018-11-21 2019-04-19 惠州Tcl移动通信有限公司 一种降低sglte耦合灵敏度劣化的方法及移动终端
US11237277B2 (en) 2019-02-15 2022-02-01 Horizon Technologies Consultants, Ltd. Techniques for determining geolocations
CN110113065A (zh) * 2019-05-05 2019-08-09 Oppo广东移动通信有限公司 电子设备的天线装置及电子设备
US20240088929A1 (en) * 2022-09-13 2024-03-14 Qualcomm Incorporated Mixer with bias sharing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031383A (ko) * 1998-08-25 2001-04-16 요트.게.아. 롤페즈 낮은 중간 주파수 수신기
JP2005192018A (ja) * 2003-12-26 2005-07-14 Seiko Epson Corp 受信機

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944025A (en) * 1988-08-09 1990-07-24 At&E Corporation Direct conversion FM receiver with offset
US5548533A (en) * 1994-10-07 1996-08-20 Northern Telecom Limited Overload control for a central processor in the switching network of a mobile communications system
JPH08321789A (ja) 1995-05-26 1996-12-03 Nec Eng Ltd 無線受信機
US5627857A (en) 1995-09-15 1997-05-06 Qualcomm Incorporated Linearized digital automatic gain control
US6072996A (en) 1997-03-28 2000-06-06 Intel Corporation Dual band radio receiver
US6498926B1 (en) * 1997-12-09 2002-12-24 Qualcomm Incorporated Programmable linear receiver having a variable IIP3 point
US6194967B1 (en) * 1998-06-17 2001-02-27 Intel Corporation Current mirror circuit
JP2000022559A (ja) 1998-07-03 2000-01-21 Nec Corp 送信出力制御回路
US6088348A (en) 1998-07-13 2000-07-11 Qualcom Incorporated Configurable single and dual VCOs for dual- and tri-band wireless communication systems
GB9818400D0 (en) 1998-08-25 1998-10-21 Philips Electronics Nv Low if reciever
US6442375B1 (en) * 1999-07-14 2002-08-27 Ericsson Inc. Systems and methods for maintaining operation of a receiver co-located with a transmitter and susceptible to interference therefrom by desensitization of the receiver
DE69922802D1 (de) * 1999-08-24 2005-01-27 Ericsson Telefon Ab L M Paralleloperation von geräten mit mehreren Kommunikationsstandarden
US7555263B1 (en) * 1999-10-21 2009-06-30 Broadcom Corporation Adaptive radio transceiver
US6442380B1 (en) * 1999-12-22 2002-08-27 U.S. Philips Corporation Automatic gain control in a zero intermediate frequency radio device
US6529164B1 (en) * 2000-03-31 2003-03-04 Ge Medical Systems Information Technologies, Inc. Object location monitoring within buildings
GB0028652D0 (en) 2000-11-24 2001-01-10 Koninkl Philips Electronics Nv Radio receiver
US6694131B1 (en) * 2001-02-21 2004-02-17 Mitsubishi Electric Corporation Method and apparatus for adaptive image rejection
JP4548562B2 (ja) 2001-03-26 2010-09-22 ルネサスエレクトロニクス株式会社 カレントミラー回路及びアナログデジタル変換回路
US6978125B2 (en) * 2001-07-05 2005-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for tuning pre-selection filters in radio receivers
US6392492B1 (en) * 2001-06-28 2002-05-21 International Business Machines Corporation High linearity cascode low noise amplifier
JP3700933B2 (ja) * 2001-07-27 2005-09-28 松下電器産業株式会社 受信機および通信端末
US6738604B2 (en) * 2001-07-31 2004-05-18 Qualcomm, Inc. Programmable IF bandwidth using fixed bandwidth filters
US7277682B2 (en) * 2002-05-16 2007-10-02 Silicon Storage Technology, Inc. RF passive mixer with DC offset tracking and local oscillator DC bias level-shifting network for reducing even-order distortion
US8364080B2 (en) * 2002-08-01 2013-01-29 Broadcom Corporation Method and system for achieving enhanced quality and higher throughput for collocated IEEE 802.11 B/G and bluetooth devices in coexistent operation
US7116958B1 (en) * 2002-08-02 2006-10-03 Nortel Networks Limited Interference rejection in a radio receiver
US6738605B1 (en) * 2002-09-26 2004-05-18 Thomson Licensing S.A. Method for optimizing an operating point of a power amplifier in a WCDMA mobile terminal
US7194050B2 (en) * 2002-09-30 2007-03-20 Nortel Networks Limited Reducing narrowband interference in a wideband signal
US6900762B2 (en) * 2002-09-30 2005-05-31 Lucent Technologies Inc. Methods and apparatus for location determination based on dispersed radio frequency tags
US6765448B2 (en) 2002-10-30 2004-07-20 Qualcomm Incorporated Self-biased VCO
US20050134336A1 (en) 2002-10-31 2005-06-23 Goldblatt Jeremy M. Adjustable-bias VCO
AU2003240168A1 (en) * 2003-06-10 2005-01-04 Nokia Corporation Reception of signals in a device comprising a transmitter
US7730415B2 (en) * 2003-09-05 2010-06-01 Fisher-Rosemount Systems, Inc. State machine function block with a user modifiable state transition configuration database
JP4400746B2 (ja) 2003-12-04 2010-01-20 日本電気株式会社 電圧・電流変換を行う能動素子に流れる直流電流の変化分を補償する電流補償回路を有する利得可変電圧・電流変換回路
US9026070B2 (en) * 2003-12-18 2015-05-05 Qualcomm Incorporated Low-power wireless diversity receiver with multiple receive paths
US7177617B2 (en) * 2003-12-30 2007-02-13 Silicon Laboratories Method and apparatus for enhancing signal quality within a wireless receiver
TWI373925B (en) * 2004-02-10 2012-10-01 Tridev Res L L C Tunable resonant circuit, tunable voltage controlled oscillator circuit, tunable low noise amplifier circuit and method of tuning a resonant circuit
US7110742B2 (en) * 2004-03-16 2006-09-19 Broadcom Corporation Low noise amplifier with constant input impedance
WO2005106523A1 (en) 2004-04-02 2005-11-10 Qualcomm Incorporated Methods and apparatuses for beacon assisted position determination systems
US7283851B2 (en) * 2004-04-05 2007-10-16 Qualcomm Incorporated Power saving mode for receiver circuit blocks based on transmitter activity
US7272374B2 (en) * 2004-06-30 2007-09-18 Silicon Laboratories Inc. Dynamic selection of local oscillator signal injection for image rejection in integrated receivers
JP2006020035A (ja) 2004-07-01 2006-01-19 Nec Corp 無線通信装置
US7113044B2 (en) 2004-08-18 2006-09-26 Texas Instruments Incorporated Precision current mirror and method for voltage to current conversion in low voltage applications
EP1638210B1 (en) * 2004-09-15 2009-05-06 STMicroelectronics Belgium N.V. VLIF transmitter for a "Bluetooth Wireless Technology" device
JP2006121160A (ja) 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd マルチモード受信機、および通信端末
JP2006157644A (ja) 2004-11-30 2006-06-15 Fujitsu Ltd カレントミラー回路
JP2006237711A (ja) * 2005-02-22 2006-09-07 Renesas Technology Corp マルチバンド低雑音増幅器、マルチバンド低雑音増幅器モジュール、無線用半導体集積回路およびマルチバンドrfモジュール
US7453396B2 (en) * 2005-04-04 2008-11-18 Atc Technologies, Llc Radioterminals and associated operating methods that alternate transmission of wireless communications and processing of global positioning system signals
JP2006311353A (ja) 2005-04-28 2006-11-09 Samsung Electronics Co Ltd ダウンコンバータおよびアップコンバータ
FI20055424A0 (fi) * 2005-08-04 2005-08-04 Nokia Corp Menetelmä lineaarisuuden ohjaamiseksi kommunikaatiojärjestelmässä, päätelaite ja vastaanotin
US7529322B2 (en) * 2005-08-26 2009-05-05 University Of Macau Two-step channel selection for wireless receiver front-ends
US7706766B2 (en) * 2005-09-16 2010-04-27 Broadcom Corporation Method and system for a programmable biasing mechanism for a mobile digital television environment
US8077795B2 (en) * 2005-10-03 2011-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for interference mitigation
US7890076B2 (en) 2005-12-15 2011-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Mixer circuit and method
US7580692B2 (en) * 2006-05-16 2009-08-25 Research In Motion Limited Mobile wireless communications device having low-IF receiver circuitry that adapts to radio environment
US7835718B2 (en) * 2006-12-06 2010-11-16 Panasonic Corporation Semiconductor circuit for wireless receiving provided with controller circuit for controlling bias current
US8812052B2 (en) * 2007-02-27 2014-08-19 Qualcomm Incorporated SPS receiver with adjustable linearity
US7949319B2 (en) * 2007-03-22 2011-05-24 Silicon Laboratories Inc. Receiver architectures for digital radio broadcasts and associated methods
US20080261548A1 (en) * 2007-04-19 2008-10-23 Krone Andrew W System and method for selecting an intermediate frequency
WO2009056150A1 (en) 2007-10-29 2009-05-07 Nokia Corporation Indoor positioning system and method
US8107908B2 (en) * 2008-02-08 2012-01-31 Broadcom Corporation Selective fast image rejection
US8515372B2 (en) * 2008-03-24 2013-08-20 Freescale Semiconductor, Inc. Receiver configurable in a plurality of modes
US8249538B2 (en) * 2008-11-24 2012-08-21 Cisco Technology, Inc. Offset direct conversion receiver
US8310312B2 (en) 2009-08-11 2012-11-13 Qualcomm, Incorporated Amplifiers with improved linearity and noise performance
US8774874B2 (en) 2010-06-04 2014-07-08 Qualcomm Incorporated Reducing power consumption by in-circuit measurement of receive band attenuation and/or noise

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031383A (ko) * 1998-08-25 2001-04-16 요트.게.아. 롤페즈 낮은 중간 주파수 수신기
JP2005192018A (ja) * 2003-12-26 2005-07-14 Seiko Epson Corp 受信機

Also Published As

Publication number Publication date
TW201130235A (en) 2011-09-01
JP2012526460A (ja) 2012-10-25
US20100285769A1 (en) 2010-11-11
KR20120006076A (ko) 2012-01-17
WO2010129584A1 (en) 2010-11-11
EP2427968B1 (en) 2018-04-18
US9231630B2 (en) 2016-01-05
CN102422544B (zh) 2015-07-22
CN102422544A (zh) 2012-04-18
JP5755638B2 (ja) 2015-07-29
EP2427968A1 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
KR101397079B1 (ko) 동적 중간 주파수 스케일링을 갖는 라디오 디바이스
KR101581084B1 (ko) 적응가능 모드 네비게이션 라디오를 갖는 다중 라디오 디바이스
US9176233B2 (en) Method and apparatus for receiving navigation satellite signals from two bands
KR102265654B1 (ko) 다중 gnss 위성 시스템으로부터 신호들을 동시에 수신하기 위한 수신기
RU2433529C2 (ru) Приемник sps с регулируемой линейностью
US8169366B2 (en) Reconfigurable satellite positioning system receivers
US10101461B2 (en) Radio frequency circuit structure for implementing function of converting GNSS satellite signal into baseband signal
US20100105340A1 (en) Interface for wireless communication devices
TW201043994A (en) Method and apparatus of signal processing for multiple satellite navigation system
CN102540219A (zh) 全球卫星导航系统信号的接收方法及接收机
TWI489796B (zh) 無線訊號接收裝置與方法
US10228469B2 (en) Reception device
CN113037307B (zh) 卫星接收机芯片和卫星接收机系统
Li et al. Low-power high-linearity area-efficient multi-mode GNSS RF receiver in 40nm CMOS
KR20070023209A (ko) 휴대용 단말기에서 라디오 방송 수신 장치
Qi et al. An asymmetric dual-channel reconfigurable receiver for GNSS in 180nm CMOS
Parkinson et al. Monolithic Integrated RF Front ends for Multi-GNSS receivers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee