KR101385674B1 - Fabricating method for absorber layer of solar cell and absorber layer fabricated by that - Google Patents

Fabricating method for absorber layer of solar cell and absorber layer fabricated by that Download PDF

Info

Publication number
KR101385674B1
KR101385674B1 KR1020130012025A KR20130012025A KR101385674B1 KR 101385674 B1 KR101385674 B1 KR 101385674B1 KR 1020130012025 A KR1020130012025 A KR 1020130012025A KR 20130012025 A KR20130012025 A KR 20130012025A KR 101385674 B1 KR101385674 B1 KR 101385674B1
Authority
KR
South Korea
Prior art keywords
selenide
solar cell
substrate
copper
gallium
Prior art date
Application number
KR1020130012025A
Other languages
Korean (ko)
Inventor
정채환
김재웅
박인선
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020130012025A priority Critical patent/KR101385674B1/en
Application granted granted Critical
Publication of KR101385674B1 publication Critical patent/KR101385674B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

The present invention discloses a fabricating method of a precursor of a solar cell and a light absorption layer manufactured thereby capable of reducing the stress of a thin film and the loss of indium and preventing gallium from being segregated to the molybdenum of a substrate after the separation. For example, the fabricating method of the light absorption layer of a CIS (CuInSe2) solar cell comprises; an indium selenide evaporation step of forming indium selenide (In2Se3) as a target and evaporating the indium selenide on the top of the substrate through a sputtering process; a copper gallium and copper selenide evaporation step of forming copper gallium (CuGa) and copper selenide (Cu2Se) as a target and evaporating the copper gallium (CuGa) and the copper selenide (Cu2Se) on the top of the substrate through the sputtering process. [Reference numerals]

Description

태양전지의 광흡수층 제조 방법 및 이에 의해 제조된 광흡수층{Fabricating Method For Absorber Layer Of Solar Cell And Absorber Layer Fabricated by that}Fabrication Method For Absorber Layer Of Solar Cell And Absorber Layer Fabricated by that}

본 발명은 박막 스트레스를 줄여주고, 인듐의 손실을 줄이며, 갈륨이 분리되어 기판의 몰리브덴으로 편석되는 것을 방지할 수 있는 태양전지의 전구체 제조 방법 및 이에 의해 제조된 전구체에 관한 것이다.
The present invention relates to a method for producing a precursor of a solar cell and a precursor prepared thereby, which can reduce thin film stress, reduce indium loss, and prevent gallium from separating and segregating into molybdenum of a substrate.

CIS(CuInSe2)계 박막은 최근들이 활발하게 연구되고 있는 화합물 반도체 중의 하나이다. CIS계 박막 태양 전지는 기존의 실리콘을 사용하는 태양 전지와 달리 10마이크론 이하의 두께로 제작 가능하고, 장시간 사용시 안정적인 특성을 갖는다. 또한, 실험적으로 최고 변환 효율이 20% 이상으로, 다른 태양 전지에 비해 월등히 뛰어나 실리콘을 대체할 수 있는 저가 고효율의 태양전지로 상업화 가능성이 높다.CIS (CuInSe 2 ) based thin film is one of compound semiconductors that are being actively studied in recent years. Unlike conventional solar cells using silicon, CIS-based thin film solar cells can be manufactured with a thickness of less than 10 microns, and have stable characteristics when used for a long time. In addition, the highest conversion efficiency is more than 20% experimentally, and is highly commercialized as a low-cost, high-efficiency solar cell that can replace silicon because it is superior to other solar cells.

이러한 CIS계 박막 태양 전지를 제조하기 위한 진공 공정 방법은 보통 동시 진공 증발 방법과 스퍼터링 방법, MOCVD를 이용한 방법으로 구분된다.Vacuum process methods for manufacturing such CIS-based thin film solar cells are generally classified into a simultaneous vacuum evaporation method, a sputtering method, and a method using MOCVD.

그런데, MOCVD를 이용한 CIS계 흡수층 제조의 경우, Cu, In, Se을 포함하는 유기 금속으로 저진공에서 공정이 이루어지므로 스퍼터링 방법에 비해 순도가 떨어지고, CIS 박막을 형성한 이후에도 유기물이 잔존해 있어 고효율의 태양전지를 제조하는데에 한계가 있다. 그리고 동시증발법은 고효율 태양전지를 제조하는데 적합하지만, 대면적화에 어려움이 있다.However, in the case of manufacturing a CIS absorption layer using MOCVD, since the process is performed at low vacuum with an organic metal containing Cu, In, and Se, the purity is lower than that of the sputtering method. There is a limit to manufacturing solar cells. And the co-evaporation method is suitable for manufacturing a high efficiency solar cell, but there is a difficulty in large area.

이에 반해, 스퍼터링을 이용한 제조 방법의 경우, 순도 99.99% 이상의 고순도 타겟을 이용하여 고진공에서 제조하므로 고순도의 흡수층을 제조할 수 있으며, 스퍼터링 방법의 특성상 대면적화가 용이하여 대량 생산에 유리하다.
On the other hand, in the case of the manufacturing method using sputtering, the high purity target using a high purity target of 99.99% or more can be manufactured in a high vacuum, it is possible to manufacture a high-purity absorbing layer, it is advantageous in mass production because it is easy to large area due to the nature of the sputtering method.

본 발명은 박막 스트레스를 줄여주고, 인듐의 손실을 줄이며, 갈륨이 분리되어 기판의 몰리브덴으로 편석되는 것을 방지할 수 있는 태양전지의 광흡수층 제조 방법 및 이에 의해 제조된 광흡수층을 제공한다.
The present invention provides a method for producing a light absorbing layer of a solar cell and a light absorbing layer prepared thereby, which can reduce thin film stress, reduce indium loss, and prevent gallium from being separated and segregated into molybdenum of a substrate.

본 발명에 따른 CIS(CuInSe2)계 태양 전지의 광흡수층의 제조 방법은 셀렌화 인듐(In2Se3)을 타겟으로 형성하여 스퍼터링 공정을 통해 기판의 상부에 증착하는 셀렌화 인듐 증착 단계; 및 갈륨화 구리(CuGa) 및 셀렌화 구리(Cu2Se)를 타겟으로 형성하고 스퍼터링 공정을 통해 상기 기판의 상부에 증착하는 갈륨화 구리 및 셀렌화 구리 증착 단계를 포함할 수 있다.Method for manufacturing a light absorption layer of the CIS (CuInSe 2 ) -based solar cell according to the present invention is indium selenide deposition step of depositing on the substrate through a sputtering process to form indium selenide (In 2 Se 3 ); And forming gallium gallium (CuGa) and copper selenide (Cu 2 Se) as targets and depositing gallium gallium and selenide copper on the substrate through a sputtering process.

여기서, 상기 기판은 몰리브덴(Mo) 소재로 이루어질 수 있다.Here, the substrate may be made of molybdenum (Mo) material.

그리고 상기 갈륨화 구리 및 셀렌화 구리 증착 단계의 이후에는 결정화 단계가 더 이루어질 수 있다.The crystallization step may be further performed after the gallium gallium and copper selenide deposition steps.

또한, 상기 결정화 단계는 상기 기판의 상면에 전자빔을 조사하여 결정화를 수행하는 것일 수 있다.In addition, the crystallization step may be to perform crystallization by irradiating an electron beam on the upper surface of the substrate.

또한, 상기 결정화 단계는 상기 기판의 상면에 셀레늄(Se) 또는 황(S)을 공급하면서 열처리를 하여 결정화를 수행하는 것일 수 있다.In addition, the crystallization step may be to perform the crystallization by heat treatment while supplying selenium (Se) or sulfur (S) to the upper surface of the substrate.

또한, 본 발명에 따른 CIS(CuInSe2)계 태양 전지의 광흡수층은 위의 제조 방법 중 어느 하나를 통해 제조될 수 있다.
In addition, the light absorption layer of the CIS (CuInSe 2 ) -based solar cell according to the present invention can be prepared through any one of the above manufacturing method.

본 발명에 의한 CIS계 태양 전지의 광흡수층 제조 방법은 스퍼터링 방법을 이용하여 기판에 셀렌화 인듐(In2Se3)을 1차적으로 형성하고, 그 상부에 갈륨화 구리(CuGa) 및 셀렌화 구리(Cu2Se)가 형성함으로써, 결정화 단계에서 인듐(In)이 손실되는 것을 방지할 수 있다.In the method of manufacturing a light absorbing layer of a CIS solar cell according to the present invention, indium selenide (In 2 Se 3 ) is primarily formed on a substrate using a sputtering method, and gallium gallium (CuGa) and copper selenide are formed thereon. By forming (Cu 2 Se), it is possible to prevent the loss of indium (In) in the crystallization step.

또한, 본 발명에 의한 CIS계 태양 전지의 광흡수층 제조 방법은 셀렌화 인듐(In2Se3)으로 인해, 그 상부의 갈륨(Ga)이 분리되어 기판의 몰리브덴(Mo) 방향으로 편석되는 것을 방지할 수 있다.In addition, the method of manufacturing a light absorbing layer of a CIS solar cell according to the present invention prevents gallium (Ga) on the upper side from being segregated in the molybdenum (Mo) direction of the substrate due to indium selenide (In 2 Se 3 ). can do.

또한, 본 발명에 의한 CIS계 태양 전지의 광흡수층 제조 방법은 전구체에 이미 셀레늄이 포함되어 있기 때문에, 결정화 단계 중 셀레늄(Se)의 추가 유입으로 인한 부피 팽창을 방지할 수 있고, 이에 따라 전자빔을 통한 결정화가 가능하며 박막에 스트레스가 가해지는 것을 줄일 수 있다.
In addition, the method of manufacturing a light absorption layer of the CIS solar cell according to the present invention, since the precursor already contains selenium, it is possible to prevent volume expansion due to the additional inflow of selenium (Se) during the crystallization step, thereby Crystallization is possible and the stress on the thin film can be reduced.

도 1은 본 발명의 실시예에 따른 태양 전지의 광흡수층 제조 방법을 설명하기 이한 플로우챠트이다.
도 2a는 태양 전지 박막의 셀렌화 인듐/셀렌화 구리(In2Se3/Cu2Se) 구조에서 구리 및 셀레늄의 증감을 도시한 그래프이다.
도 2b는 본 발명의 실시예에 따른 태양 전지 박막의 셀렌화 구리/셀렌화 인인듐(Cu2Se/In2Se3) 구조에서 구리 및 셀레늄의 증감을 도시한 그래프이다.
도 3a는 기존의 CIS계 박막 태양 전지의 제조 공정의 광흡수층을 도시한 SEM 사진이다.
도 3b는 본 발명의 실시예에 따른 태양 전지의 광흡수층을 도시한 SEM 사진이다.
1 is a flowchart illustrating a method of manufacturing a light absorption layer of a solar cell according to an embodiment of the present invention.
Figure 2a is a graph showing the increase and decrease of copper and selenium in the structure of indium selenide / copper selenide (In 2 Se 3 / Cu 2 Se) of the solar cell thin film.
Figure 2b is a graph showing the increase and decrease of copper and selenium in the copper selenide / indium selenide (Cu 2 Se / In 2 Se 3 ) structure of the solar cell thin film according to an embodiment of the present invention.
Figure 3a is a SEM photograph showing a light absorption layer of the manufacturing process of the conventional CIS-based thin film solar cell.
3B is a SEM photograph showing the light absorption layer of the solar cell according to the embodiment of the present invention.

본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 도면을 참조하여 상세하게 설명하면 다음과 같다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art can easily carry out the present invention.

도 1은 본 발명의 실시예에 따른 태양 전지의 광흡수층 제조 방법을 설명하기 위한 플로우챠트이다.1 is a flowchart illustrating a method of manufacturing a light absorption layer of a solar cell according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 따른 태양 전지의 광흡수층 제조 방법은 셀렌화 인듐 증착 단계(S1), 갈륨화 구리 및 셀렌화 구리 증착 단계(S2), 결정화 단계(S3)를 포함한다.Referring to FIG. 1, the method of manufacturing a light absorbing layer of a solar cell according to an exemplary embodiment of the present invention includes an indium selenide deposition step (S1), a gallium gallium and copper selenide deposition step (S2), and a crystallization step (S3). do.

먼저, 상기 셀렌화 인듐 증착 단계(S1)는 몰리브덴(Mo) 소재의 기판상에 인듐(In) 및 셀레늄(Se)을 포함하는 단일 전구체를 증착하는 단계이다. 여기서, 전구체는 셀렌화 인듐(In2Se3)를 타겟(target)으로 형성한 뒤, 스퍼터링 공정을 진행하여 기판상에 증착함으로써 이루어진다.
First, the indium selenide deposition step (S1) is a step of depositing a single precursor including indium (In) and selenium (Se) on a substrate made of molybdenum (Mo). Here, the precursor is formed by forming indium selenide (In 2 Se 3 ) as a target, followed by a sputtering process and depositing on a substrate.

상기 갈륨화 구리 및 셀렌화 구리 증착 단계(S2)는 상기 셀렌화 인듐(In2Se3)이 증착된 이후, 갈륨화 구리(CuGa) 및 셀렌화 구리(Cu2Se)로 형성된 타겟을 이용한 스퍼터링 공정으로 증착을 수행하는 단계이다. 따라서, 상기 기판의 상부에는 상기 셀렌화 인듐(In2Se3)가 1차적으로 형성되고, 갈륨화 구리(CuGa) 및 셀렌화 구리(Cu2Se)가 2차적으로 형성된 구조를 갖게 된다.
The deposition of copper gallium and copper selenide (S2) is sputtering using a target formed of copper gallium gallium (CuGa) and copper selenide (Cu 2 Se) after the deposition of indium selenide (In 2 Se 3 ) The deposition is performed in a process. Therefore, the indium selenide (In 2 Se 3 ) is formed primarily on the substrate, and the gallium gallium (CuGa) and copper selenide (Cu 2 Se) are formed secondary.

상기 결정화 단계(S3)는 전구체가 형성된 기판의 상면에 전자빔을 조사하여 결정화를 수행하는 단계이다. 그리고 상술한 바와 같이, 기판에 셀렌화 인듐(In2Se3)이 형성된 상부에 갈륨화 구리(CuGa) 및 셀렌화 구리(Cu2Se)가 형성되어 있기 때문에, 상기 결정화 단계에서 인듐(In)이 손실되는 것을 방지할 수 있다. 또한, 상기 셀렌화 인듐(In2Se3)으로 인해, 그 상부의 갈륨(Ga)이 분리되어 기판의 몰리브덴(Mo)으로 편석되는 것을 방지할 수 있다. 또한, 전구체에 이미 셀레늄(Se)이 이미 형성되어 있기 때문에 RTP(Rapid Thermal Processing)나 Se-evaportion과 같이 셀레늄(Se)을 공급하면서 열처리하는 다른 방법들과 달리, 상기 전자빔을 통한 결정화 단계(S3)가 가능하며, 셀레늄(Se)의 유입으로 인한 부피 팽창을 방지하고 이에 따라 박막에 스트레스가 가해지는 것을 줄일 수 있다.The crystallization step (S3) is a step of performing crystallization by irradiating an electron beam on the upper surface of the substrate on which the precursor is formed. As described above, since gallium gallium (CuGa) and copper selenide (Cu 2 Se) are formed on the substrate on which indium selenide (In 2 Se 3 ) is formed, the indium (In) in the crystallization step is performed. This can be prevented from being lost. In addition, due to the indium selenide (In 2 Se 3 ), it is possible to prevent the gallium (Ga) in the upper portion is separated and segregated into molybdenum (Mo) of the substrate. Also, since the selenium (Se) is already formed in the precursor, unlike the other methods of heat treatment while supplying selenium (Se) such as Rapid Thermal Processing (RTP) or Se-evaportion, crystallization step through the electron beam (S3) It is possible to prevent the volume expansion due to the inflow of selenium (Se), thereby reducing the stress applied to the thin film.

또한, 상기 결정화 단계(S3)는 전구체가 형성된 기판의 상면에 셀레늄(Se) 또는 황(S)을 공급하면서 열처리를 수행하는 단계로 구성되는 것도 가능하다. 이 경우에도 상기 셀렌화 인듐(In2Se3)으로 인해, 그 상부의 갈륨(Ga)이 분리되어 기판의 몰리브덴(Mo)으로 편석되는 것이 역시 방지될 수 있다.
In addition, the crystallization step (S3) may be configured to perform a heat treatment while supplying selenium (Se) or sulfur (S) to the upper surface of the substrate on which the precursor is formed. Even in this case, due to the indium selenide (In 2 Se 3 ), it is also possible to prevent the gallium (Ga) on the upper side to be segregated into molybdenum (Mo) of the substrate.

도 2a는 태양 전지 박막의 셀렌화 인듐/셀렌화 구리(In2Se3/Cu2Se) 구조에서 구리 및 셀레늄의 증감을 도시한 그래프이다.Figure 2a is a graph showing the increase and decrease of copper and selenium in the structure of indium selenide / copper selenide (In 2 Se 3 / Cu 2 Se) of the solar cell thin film.

도 2b는 본 발명의 실시예에 따른 태양 전지 박막의 셀렌화 구리/셀렌화 인인듐(Cu2Se/In2Se3) 구조에서 구리 및 셀레늄의 증감을 도시한 그래프이다.Figure 2b is a graph showing the increase and decrease of copper and selenium in the copper selenide / indium selenide (Cu 2 Se / In 2 Se 3 ) structure of the solar cell thin film according to an embodiment of the present invention.

도 2a는 셀렌화 인듐/셀렌화 구리(In2Se3/Cu2Se) 구조를 형성하고, 10[mTorr]의 압력하에서 비율을 측정한 것이다. 하얀색 그래프로 도시된 것은 전자빔 결정화 이전의 전구체에서의 비율이며, 체크무늬 그래프로 도시된 것은 전자빔 결정화 이후의 전구체에서의 비율을 의미한다. 또한, 좌측에 도시된 것은 구리/인듐(Cu/In)의 비로서, 전자빔을 통한 결정화 이전에 비해 이후의 인듐(In)이 감소해서, 구리/인듐(Cu/In)의 비가 증가하였음을 볼 수 있다. 또한, 인듐(In) 손실시 휘발성이 높은 셀레늄화 인듐(InSe)상으로 증발되어, 셀레늄/(구리+인듐)(Se/(Cu+In))의 비가 결정화 이후에 감소하였음을 알 수 있다.FIG. 2A shows the structure of indium selenide / copper selenide (In 2 Se 3 / Cu 2 Se) structure, and the ratio was measured under a pressure of 10 [mTorr]. Shown by the white graph is the ratio in the precursor before electron beam crystallization, and shown by the checkered graph means the ratio in the precursor after electron beam crystallization. Also shown on the left is the ratio of copper / indium (Cu / In), which shows that the subsequent indium (In) decreases as compared to before crystallization through the electron beam, increasing the ratio of copper / indium (Cu / In). Can be. In addition, it can be seen that the loss of indium (In) evaporated onto the highly volatile indium selenide (InSe), so that the ratio of selenium / (copper + indium) (Se / (Cu + In)) decreased after crystallization.

반면, 도 2b를 참조하면, 도 2a와 반대로 셀렌화 구리/셀렌화 인인듐(Cu2Se/In2Se3) 구조를 형성하고, 10[mTorr]의 압력하에서 비율을 측정한 것이다. 역시 하얀색 그래프로 도시된 것은 전자빔 결정화 이전의 전구체에서의 비율이며, 체크무늬 그래프로 도시된 것은 전자빔 결정화 이후의 전구체에서의 비율을 의미한다. 또한, 좌측에 도시된 것은 구리/인듐(Cu/In)의 비로서, 도 2a와 비교하면 전자빔을 통한 결정화 이전과 비교할 때 이후의 인듐(In)의 비율이 거의 동일하기 때문에, 구리/인듐(Cu/In)의 비가 결정화 전/후에 차이가 나지 않음을 알 수 있다. 또한, 이와 같은 이유로, 셀레늄/(구리+인듐)(Se/(Cu+In))의 비도 역시 결정화 전/후에 일정하게 유지되고 있을 알 수 있다.On the other hand, referring to Figure 2b, in contrast to Figure 2a to form a copper selenide / indium selenide (Cu 2 Se / In 2 Se 3 ) structure, the ratio was measured under a pressure of 10 [mTorr]. Also shown in the white graph is the ratio in the precursor before electron beam crystallization, and in the checkered graph is meant the ratio in the precursor after electron beam crystallization. Also shown on the left is the ratio of copper / indium (Cu / In), since the ratio of indium (In) thereafter is almost the same as compared to before crystallization through the electron beam, compared to FIG. 2A. It can be seen that the ratio of Cu / In) does not differ before or after crystallization. In addition, for this reason, it can be seen that the ratio of selenium / (copper + indium) (Se / (Cu + In)) is also kept constant before and after crystallization.

따라서, 본 발명의 실시예에 따른 태양 전지의 전구체 제조 방법은 결정화 공정 중 인듐(In)의 손실을 줄여주는 것을 그래프간 비교를 통해 확인할 수 있다.
Therefore, the precursor manufacturing method of the solar cell according to the embodiment of the present invention can be confirmed by comparing between graphs to reduce the loss of indium (In) during the crystallization process.

도 3a는 기존의 태양 전지의 광흡수층을 도시한 SEM 사진이다.3A is a SEM photograph showing a light absorption layer of a conventional solar cell.

도 3b는 본 발명의 실시예에 따른 태양 전지의 광흡수층을 도시한 SEM 사진이다.3B is a SEM photograph showing the light absorption layer of the solar cell according to the embodiment of the present invention.

먼저, 도 3a를 참조하면, 기존의 공정을 통한 태양 전지의 광흡수층은 기판의 상부에서 박막이 부피 팽창에 의해 불균일하게 형성되어 있음을 확인할 수 있다.First, referring to FIG. 3A, it can be seen that the light absorbing layer of the solar cell through the conventional process is non-uniformly formed by the expansion of the thin film on the top of the substrate.

반면, 도 3b를 참조하면, 본 발명의 실시예에 따른 태양 전지의 광흡수층 제조 방법을 통한 광흡수층은 기판상에서 상대적으로 균일하게 유지되어 있음을 확인할 수 있다. 이것은, 전구체에 이미 셀레늄(Se)이 포함되어 있기 때문에, 셀레늄(Se) 유입에 의한 부피 팽창이 발생하지 않기 때문이다. 또한, 셀레늄(Se)이 포함된 전구체를 사용함으로써 전자빔을 통한 결정화를 진행할 수 있기 때문이다.
On the other hand, referring to Figure 3b, it can be seen that the light absorbing layer through the method of manufacturing a light absorbing layer of the solar cell according to an embodiment of the present invention is maintained relatively uniform on the substrate. This is because volume expansion due to inflow of selenium (Se) does not occur because selenium (Se) is already included in the precursor. In addition, it is because crystallization through an electron beam can be performed by using a precursor containing selenium (Se).

이상에서 설명한 것은 본 발명에 의한 태양전지의 전구체 제조 방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is just one embodiment for carrying out the method of manufacturing a precursor of a solar cell according to the present invention, the present invention is not limited to the above embodiment, as claimed in the following claims of the present invention Without departing from the gist of the present invention, one of ordinary skill in the art will have the technical spirit of the present invention to the extent that various modifications can be made.

Claims (6)

CIS(CuInSe2)계 태양 전지의 광흡수층을 제조하는 방법에 있어서,
셀렌화 인듐(In2Se3)을 타겟으로 형성하여 스퍼터링 공정을 통해 기판의 상부에 증착하는 셀렌화 인듐 증착 단계; 및
갈륨화 구리(CuGa) 및 셀렌화 구리(Cu2Se)를 타겟으로 형성하고 스퍼터링 공정을 통해 상기 기판의 상부에 증착하는 갈륨화 구리 및 셀렌화 구리 증착 단계를 포함하는 광흡수층 제조 방법.
In the method for producing a light absorption layer of a CIS (CuInSe 2 ) solar cell,
An indium selenide deposition step of forming indium selenide (In 2 Se 3 ) as a target and depositing it on the substrate through a sputtering process; And
Forming a gallium gallium (CuGa) and copper selenide (Cu 2 Se) as a target and depositing on the substrate through a sputtering process.
제 1 항에 있어서,
상기 기판은 몰리브덴(Mo) 소재로 이루어진 광흡수층 제조 방법.
The method according to claim 1,
The substrate is a light absorption layer manufacturing method made of molybdenum (Mo) material.
제 1 항에 있어서,
상기 갈륨화 구리 및 셀렌화 구리 증착 단계의 이후에는 결정화 단계가 더 이루어지는 광흡수층 제조 방법.
The method according to claim 1,
And a crystallization step after the gallium gallium and copper selenide deposition step.
제 3 항에 있어서,
상기 결정화 단계는 상기 기판의 상면에 전자빔을 조사하여 결정화를 수행하는 광흡수층 제조 방법.
The method of claim 3, wherein
The crystallization step is a light absorption layer manufacturing method for performing a crystallization by irradiating an electron beam on the upper surface of the substrate.
제 3 항에 있어서,
상기 결정화 단계는 상기 기판의 상면에 셀레늄(Se) 또는 황(S)을 공급하면서 열처리를 하여 결정화를 수행하는 광흡수층 제조 방법.
The method of claim 3, wherein
The crystallization step is a light absorption layer manufacturing method for performing the crystallization by heat treatment while supplying selenium (Se) or sulfur (S) to the upper surface of the substrate.
제 1 항 내지 제 5 항 중 어느 한 항의 제조 방법을 통해 제조된 것을 특징으로 하는 CIS(CuInSe2)계 태양전지의 광흡수층.The light absorption layer of the CIS (CuInSe 2 ) -based solar cell, characterized in that produced by the method of any one of claims 1 to 5.
KR1020130012025A 2013-02-01 2013-02-01 Fabricating method for absorber layer of solar cell and absorber layer fabricated by that KR101385674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130012025A KR101385674B1 (en) 2013-02-01 2013-02-01 Fabricating method for absorber layer of solar cell and absorber layer fabricated by that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130012025A KR101385674B1 (en) 2013-02-01 2013-02-01 Fabricating method for absorber layer of solar cell and absorber layer fabricated by that

Publications (1)

Publication Number Publication Date
KR101385674B1 true KR101385674B1 (en) 2014-04-24

Family

ID=50657789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130012025A KR101385674B1 (en) 2013-02-01 2013-02-01 Fabricating method for absorber layer of solar cell and absorber layer fabricated by that

Country Status (1)

Country Link
KR (1) KR101385674B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303164A (en) 1999-04-16 2000-10-31 Honda Motor Co Ltd Method and device for forming compound film
JP2002217213A (en) 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Manufacturing method for compound-semiconductor thin- film
US6518086B2 (en) * 1999-11-16 2003-02-11 Midwest Research Institute Processing approach towards the formation of thin-film Cu(In,Ga)Se2
JP2003318424A (en) 2002-04-18 2003-11-07 Honda Motor Co Ltd Thin film solar battery and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303164A (en) 1999-04-16 2000-10-31 Honda Motor Co Ltd Method and device for forming compound film
US6518086B2 (en) * 1999-11-16 2003-02-11 Midwest Research Institute Processing approach towards the formation of thin-film Cu(In,Ga)Se2
JP2002217213A (en) 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Manufacturing method for compound-semiconductor thin- film
JP2003318424A (en) 2002-04-18 2003-11-07 Honda Motor Co Ltd Thin film solar battery and method of manufacturing same

Similar Documents

Publication Publication Date Title
KR101761098B1 (en) Chalcogenide-based materials and improved methods of making such materials
KR100922890B1 (en) CIGS absorber layer fabrication method and solar cell including CIGS absorber layer
KR101522128B1 (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell
JP2006186200A (en) Precursor film and film formation method therefor
US9105801B2 (en) Method for fabricating Cu—In—Ga—Se film solar cell
KR20100109457A (en) Method for producing chalcopyrite-type solar cell
JP6316877B2 (en) Method for forming ACIGS thin film at low temperature and method for manufacturing solar cell using the same
KR101385674B1 (en) Fabricating method for absorber layer of solar cell and absorber layer fabricated by that
WO2012165860A2 (en) METHOD OF MANUFACTURING CIGS THIN FILM WITH UNIFORM Ga DISTRIBUTION
KR101482786B1 (en) Fabrication method of cigs absorber layer using indium oxide
US9601642B1 (en) CZTSe-based thin film and method for preparing the same, and solar cell using the same
JP6029575B2 (en) Solar cell absorption layer manufacturing method and heat treatment device thereof
KR20100030003A (en) Method of fabricating solar cell
KR101410968B1 (en) A Thin Film CIGS solar-cell manufacturing Mehod
WO2013160356A1 (en) Method for manufacturing a semiconductor thin film
KR20150064930A (en) Fabrication Method of Flexible CZTS Films and its application to Thin Film Solar Cells and Thin Film Solar Cells
KR101083741B1 (en) Selenization method for fabricating light absorption layer of solar cell
KR101541776B1 (en) Method of fabricating the solar cell
KR101410673B1 (en) Fabrication method of CIGS thin films and its application to CIGS thin film solar cells
KR102025091B1 (en) CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL
TW201447003A (en) Method of fabricating absorption layer
KR101380766B1 (en) Method for fabricating the photovoltaic CIGS absorber using mutual-selenization
KR101768788B1 (en) Method for producing a compound semiconductor, and thin-film solar cell
KR101410672B1 (en) Fabrication method of CGS thin films and its application to CGS thin film solar cells
KR101552967B1 (en) Fabrication Method of CZTS Thin Films using one-step sputtering and its application to Thin Film Solar Cells and Thin Film Solar Cells

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 6