KR102025091B1 - CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL - Google Patents

CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL Download PDF

Info

Publication number
KR102025091B1
KR102025091B1 KR1020180060601A KR20180060601A KR102025091B1 KR 102025091 B1 KR102025091 B1 KR 102025091B1 KR 1020180060601 A KR1020180060601 A KR 1020180060601A KR 20180060601 A KR20180060601 A KR 20180060601A KR 102025091 B1 KR102025091 B1 KR 102025091B1
Authority
KR
South Korea
Prior art keywords
czt
thin film
based thin
precursor layer
heat treatment
Prior art date
Application number
KR1020180060601A
Other languages
Korean (ko)
Inventor
조아라
조준식
윤재호
안세진
곽지혜
유진수
안승규
박주형
어영주
김기환
정인영
신동협
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020180060601A priority Critical patent/KR102025091B1/en
Application granted granted Critical
Publication of KR102025091B1 publication Critical patent/KR102025091B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a CZT(S,Se)-based thin film for a solar cell which comprises a step of preparing a substrate; a step of forming a precursor layer by depositing all four components of Cu, Zn, Sn, and Se or S on a surface of the substrate with a simultaneous vacuum evaporation process; and a step of forming a CZT(S,Se)-based thin film by thermally treating the precursor layer under a Se or S atmosphere. In the process of performing the simultaneous vacuum evaporation process, the substrate is maintained at a temperature range of 150 to 320°C. The present invention can improve the quality of the CZT(S,Se)-based thin film by forming the precursor layer with the simultaneous vacuum evaporation process at a temperature that can form seeds, and thus uniformly forming CZT(S,Se) in a selenization or sulfidation thermal treatment process. Also, the present invention can form a high quality CZT(S,Se)-based thin film by performing the selenization or sulfidation thermal treatment process with respect to the precursor layer formed with seeds, and thus performing the thermal treatment process at a relatively high temperature for a short time, thereby reducing manufacturing time and energy and lowering manufacturing costs.

Description

CZT(S,Se)계 박막, 시드가 형성된 전구체층을 이용하는 CZT(S,Se)계 박막 형성방법 및 CZT(S,Se)계 박막 태양전지와 그 제조방법{CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL}CZT (S, Se) based thin film solar cell using CZT (S, Se) based thin film, seed layer formed precursor layer, and CZT (S, Se) based thin film solar cell and manufacturing method thereof {CZT (S, Se) FILM, FORMING METHOD FOR CZT (S, Se) FILM, CZT (S, Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT (S, Se) SOLAR CELL}

본 발명은 태양전지용 CZT(S,Se)계 박막을 형성하는 방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막에 관한 것으로, 동시진공증발공정과 열처리를 적용하여 태양전지용 CZT(S,Se)계 박막을 형성하는 방법에 대한 것이다.The present invention relates to a method for forming a CZT (S, Se) based thin film for solar cells, and to a CZT (S, Se) based thin film manufactured by the method. The CZT (S for solar cells is applied by applying a simultaneous vacuum evaporation process and heat treatment. And Se) -based thin film.

최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환시키는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.Recently, the importance of developing the next generation of clean energy is increasing due to severe environmental pollution and depletion of fossil energy. Among them, the solar cell is a device that directly converts solar energy into electrical energy, and is expected to be an energy source capable of solving future energy problems due to its low pollution, infinite resources, and a semi-permanent lifetime.

태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 비정질 실리콘과 CdTe, CIS계(CuInSe2, CuIn1-xGaxSe2, CuIn1-xGaxS2 등)에 대한 연구가 활발하게 진행되고 있다.Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon. However, as prices have soared recently due to a shortage of silicon, interest in thin-film solar cells is increasing. Thin-film solar cells are manufactured with a thin thickness, so the materials are consumed less and the weight is lighter, so the application range is wide. As a material of the thin film solar cell, research on amorphous silicon, CdTe, and CIS (CuInSe 2 , CuIn 1-x Ga x Se 2 , CuIn 1-x Ga x S 2, etc.) has been actively conducted.

그러나 CIS계에 사용되는 In은 상대적 매장량이 적은 희소원소로 디스플레이 산업에 이용되는 ITO 소재의 수요에 의해 그 가격도 상승 추세에 있어 양산화에 하나의 걸림돌로 작용할 수 있다. 이를 극복하고 저가 태양전지 개발에 이용하기 위해 희소원소인 In과 Ga을 범용원소인 Zn 및 Sn으로 대체하는 Cu2ZnSnSe4 (CZTSe) 및 Cu2ZnSnS4 (CZTS)와 같은 화합물 반도체가 CIGS계 박막 재료의 대안으로써 활발히 연구되고 있는데, 이들은 0.8 eV (CZTSe)부터 1.5 eV (CZTS)까지의 에너지 밴드갭을 갖는 것으로 알려져 있다.However, In used in the CIS system is a rare element with a relatively small reserve, and its price is also on the rise due to the demand of ITO materials used in the display industry, which may act as an obstacle to mass production. To overcome this and develop low-cost solar cells, compound semiconductors such as Cu2ZnSnSe 4 (CZTSe) and Cu2ZnSnS 4 (CZTS), which replace the rare elements In and Ga with the general-purpose elements Zn and Sn, are an alternative to CIGS thin film materials. Actively studied, they are known to have energy bandgap from 0.8 eV (CZTSe) to 1.5 eV (CZTS).

CZT(S,Se)계 박막 태양전지를 제조하는 방법은 다양하게 연구되고 있는데, CIS계 태양전지에서 최고효율을 달성하고 있는 동시진공증발공정은, CZT(S,Se)계 박막 태양전지에 대해서는 스퍼터링 후 황화 또는 셀렌화 공정을 거치는 2단계 방법에 비해 상대적으로 연구의 결과가 적다. 이는 동시진공증발 공정 중 Sn이 Se와 만나 증발되고 증착되지 못하여 박막 내 Sn 손실을 발생시켜 에너지 변환효율을 떨어뜨릴 수 있기 때문이다.Various methods for manufacturing CZT (S, Se) based thin film solar cell have been studied. The simultaneous vacuum evaporation process that achieves the highest efficiency in CIS based solar cell is about CZT (S, Se) based thin film solar cell. Compared to the two-step method of sputtering and sulphide or selenization, the results are relatively small. This is because Sn can not be evaporated and deposited during the co-vacuum evaporation process, resulting in Sn loss in the thin film, thereby reducing the energy conversion efficiency.

대한민국 공개특허 10-2016-0021967Republic of Korea Patent Publication 10-2016-0021967 대한민국 등록특허 10-1358055Republic of Korea Patent Registration 10-1358055

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 동시진공증발공정을 적용하여 고품질의 태양전지용 CZT(S,Se)계 박막을 형성하는 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for forming a high quality CZT (S, Se) based thin film for solar cells by applying a simultaneous vacuum evaporation process to solve the problems of the prior art described above.

상기 목적을 달성하기 위한 본 발명에 의한 태양전지용 CZT(S,Se)계 박막을 형성하는 방법은, 기판을 준비하는 단계; 상기 기판의 표면에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성하는 단계; 상기 전구체층을 Se 분위기 또는 S 분위기에서 열처리하여 CZT(S,Se)계 박막을 형성하는 단계를 포함하며, 상기 동시진공증발 공정을 수행하는 과정에서 기판을 150~320℃의 온도 범위로 유지하는 것을 특징으로 한다.Method for forming a CZT (S, Se) -based thin film for solar cells according to the present invention for achieving the above object comprises the steps of preparing a substrate; Forming a precursor layer by depositing all four components of Cu, Zn, Sn, Se, or S in a co-vacuum evaporation process on the surface of the substrate; Heat-treating the precursor layer in an Se atmosphere or an S atmosphere to form a CZT (S, Se) -based thin film, and maintaining the substrate in a temperature range of 150 to 320 ° C. in the course of performing the co-vacuum evaporation process. It is characterized by.

대한민국 공개특허 10-2016-0021967은 동시진공증발 공정 이후에 열처리를 수행하고 있으나, 동시진공증발 공정과 열처리 과정에서 S나 Se를 사용하지 않고, 별도의 공정으로 S나 Se를 추가하는 기술인 점에서 본 발명과 차이가 있다.Korea Patent Publication No. 10-2016-0021967 performs heat treatment after the co-vacuum evaporation process, but it is a technology that adds S or Se in a separate process without using S or Se in the co-vacuum evaporation process and heat treatment process There is a difference from the present invention.

대한민국 등록특허 10-1358055는 Se를 함께 동시진공증발하지만, 연속공정으로 셀렌화까지 수행하며, 그 과정에서 Sn의 손실되는 것을 방지하기 위하여 Cu와 Se를 추가로 증착하는 점에서 본 발명과 차이가 있다.Republic of Korea Patent Registration 10-1358055 co-evaporates Se together, but performs selenization in a continuous process, and differs from the present invention in that Cu and Se are further deposited to prevent the loss of Sn in the process. have.

본 발명은 기판을 150~320℃의 온도 범위로 유지하면서 전구체층을 형성하여 전구체층에 시드가 형성되며, 150℃보다 낮은 범위에서는 시드가 형성되지 않고, 320℃보다 높은 범위에서는 CZT(S,Se)가 합성되는 문제가 있다. 이때, 충분한 시드의 형성을 위해서는 기판을 200~320℃의 온도 범위로 유지하면서 전구체층을 형성하는 더욱 바람직하다.The present invention forms a precursor layer while maintaining the substrate in the temperature range of 150 ~ 320 ℃ seed is formed in the precursor layer, the seed is not formed in the range lower than 150 ℃, CZT (S, Se) is synthesized. At this time, in order to form a sufficient seed, it is more preferable to form the precursor layer while maintaining the substrate in the temperature range of 200 ~ 320 ℃.

그리고 CZT(S,Se)계 박막을 형성하는 단계를 수행하기 전에, 전구체층의 온도를 100℃ 이하로 냉각하는 단계를 더 포함하는 것이 바람직하다. And before performing the step of forming the CZT (S, Se) -based thin film, it is preferable to further include the step of cooling the temperature of the precursor layer to 100 ℃ or less.

열처리는 350~650℃의 온도범위에서 수행될 수 있으며, 본 발명은 전구체층의 시드가 형성되어 있기 때문에 상대적으로 높은 온도범위에서 빠르게 열처리를 수행하여도 뛰어난 품질의 CZT(S,Se)계 박막을 형성할 수 있으므로, 550~650℃의 온도 범위에서 열처리를 수행하는 것이 더욱 바람직하다.The heat treatment may be carried out in a temperature range of 350 ~ 650 ℃, the present invention is because the seed of the precursor layer is formed, CZT (S, Se) -based thin film of excellent quality even if the heat treatment is performed quickly in a relatively high temperature range Since it can be formed, it is more preferable to perform the heat treatment in the temperature range of 550 ~ 650 ℃.

본 발명의 다른 형태에 의한, CZT(S,Se)계 박막은, 기판 상에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성한 뒤에, Se 분위기 또는 S 분위기에서 열처리하여 형성되며, 동시진공증발 공정에서 기판의 온도를 150~320℃ 범위로 유지하여 시드가 형성되도록 함으로써 박막의 품질이 향상된 것을 특징으로 한다.According to another aspect of the present invention, a CZT (S, Se) -based thin film is formed by depositing all four components of Cu, Zn, Sn, Se, or S in a co-evaporation process on a substrate to form a precursor layer. It is formed by heat treatment in the atmosphere or S atmosphere, by maintaining the temperature of the substrate in the range of 150 ~ 320 ℃ in the simultaneous vacuum evaporation process characterized in that the quality of the thin film is improved.

열처리를 수행하기 전에, 시드가 형성된 전구체층을 100℃ 이하로 냉각한 다음 열처리가 수행하면, 시드가 안정화된 상태에서 열처리를 수행하게 되어, CZT(S,Se)계 박막의 품질이 향상된다.Before the heat treatment is performed, if the precursor layer on which the seed is formed is cooled to 100 ° C. or lower and then heat treatment is performed, heat treatment is performed while the seed is stabilized, thereby improving the quality of the CZT (S, Se) -based thin film.

550~650℃의 온도범위에서 열처리한 경우에, 제조시간과 비용이 감소하면서도 CZT(S,Se)계 박막의 품질이 뛰어나다.In the case of heat treatment in the temperature range of 550 ~ 650 ℃, manufacturing time and cost is reduced while the quality of the CZT (S, Se) thin film is excellent.

본 발명의 또 다른 형태에 의한, CZT(S,Se)계 박막 태양전지의 제조방법은, CZT(S,Se)계 박막을 광흡수층으로 구비한 CZT(S,Se)계 박막 태양전지의 제조방법으로서, 상기 광흡수층을 형성하는 공정이, 하부전극층의 표면에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성하는 단계; 및 상기 전구체층을 Se 분위기 또는 S 분위기에서 열처리하여 CZT(S,Se)계 박막을 형성하는 단계를 포함하며, 상기 동시진공증발 공정을 수행하는 과정에서 기판을 150~320℃의 온도 범위로 유지하는 것을 특징으로 한다.According to still another aspect of the present invention, there is provided a method of manufacturing a CZT (S, Se) based thin film solar cell, wherein the CZT (S, Se) based thin film solar cell includes a CZT (S, Se) based thin film as a light absorption layer. The method of forming a light absorption layer may include forming a precursor layer by depositing all four components of Cu, Zn, Sn, Se, or S in a simultaneous vacuum evaporation process on a surface of a lower electrode layer; And forming a CZT (S, Se) -based thin film by heat-treating the precursor layer in an Se atmosphere or an S atmosphere, and maintaining the substrate in a temperature range of 150 to 320 ° C. during the co-vacuum evaporation process. Characterized in that.

본 발명은 기판을 150~320℃의 온도 범위로 유지하면서 전구체층을 형성하여 전구체층에 시드가 형성되며, 150℃보다 낮은 범위에서는 시드가 형성되지 않고, 320℃보다 높은 범위에서는 CZT(S,Se)가 합성되는 문제가 있다. 이때, 충분한 시드의 형성을 위해서는 기판을 200~320℃의 온도 범위로 유지하면서 전구체층을 형성하는 더욱 바람직하다.The present invention forms a precursor layer while maintaining the substrate in the temperature range of 150 ~ 320 ℃ seed is formed in the precursor layer, the seed is not formed in the range lower than 150 ℃, CZT (S, Se) is synthesized. At this time, in order to form a sufficient seed, it is more preferable to form the precursor layer while maintaining the substrate in the temperature range of 200 ~ 320 ℃.

그리고 CZT(S,Se)계 박막을 형성하는 단계를 수행하기 전에, 전구체층의 온도를 100℃ 이하로 냉각하는 단계를 더 포함하는 것이 바람직하다. And before performing the step of forming the CZT (S, Se) -based thin film, it is preferable to further include the step of cooling the temperature of the precursor layer to 100 ℃ or less.

열처리는 350~650℃의 온도범위에서 수행될 수 있으며, 본 발명은 전구체층의 시드가 형성되어 있기 때문에 상대적으로 높은 온도범위에서 빠르게 열처리를 수행하여도 뛰어난 품질의 CZT(S,Se)계 박막을 형성할 수 있으므로, 550~650℃의 온도 범위에서 열처리를 수행하는 것이 더욱 바람직하다.The heat treatment may be carried out in a temperature range of 350 ~ 650 ℃, the present invention is because the seed of the precursor layer is formed, CZT (S, Se) -based thin film of excellent quality even if the heat treatment is performed quickly in a relatively high temperature range Since it can be formed, it is more preferable to perform the heat treatment in the temperature range of 550 ~ 650 ℃.

본 발명의 마지막 형태에 의한, CZT(S,Se)계 박막 태양전지는, CZT(S,Se)계 박막을 광흡수층으로 구비한 CZT(S,Se)계 박막 태양전지로서, 상기 광흡수층이, 하부전극층 위에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성한 뒤에, Se 분위기 또는 S 분위기에서 열처리하여 형성되며, 동시진공증발 공정에서 기판의 온도를 150~320℃ 범위로 유지하여 시드가 형성되도록 함으로써 발전효율이 향상된 것을 특징으로 한다.A CZT (S, Se) based thin film solar cell according to the last aspect of the present invention is a CZT (S, Se) based thin film solar cell having a CZT (S, Se) based thin film as a light absorption layer. After depositing all four components of Cu, Zn, Sn and Se or S on the lower electrode layer to form a precursor layer, and then heat-treating in an Se atmosphere or an S atmosphere, the substrate is formed in a simultaneous vacuum evaporation process. By maintaining the temperature in the range of 150 ~ 320 ℃ to form a seed is characterized in that the power generation efficiency is improved.

열처리를 수행하기 전에, 시드가 형성된 전구체층을 100℃ 이하로 냉각한 다음 열처리가 수행하면, 시드가 안정화된 상태에서 열처리를 수행하게 되어, CZT(S,Se)계 박막의 품질이 향상됨으로써 태양전지의 효율도 향상된다.Before the heat treatment, if the precursor layer on which the seed is formed is cooled to 100 ° C. or lower and then heat treatment is performed, heat treatment is performed while the seed is stabilized, thereby improving the quality of the CZT (S, Se) based thin film. The efficiency of the battery is also improved.

550~650℃의 온도범위에서 열처리한 경우에, 제조시간과 비용이 감소하면서도 CZT(S,Se)계 박막 태양전지의 효율이 뛰어나다.In the case of heat treatment in the temperature range of 550 ~ 650 ℃, manufacturing time and cost is reduced while the CZT (S, Se) -based thin film solar cell is excellent in efficiency.

상술한 바와 같이 구성된 본 발명은, 시드가 형성될 수 있는 온도에서 동시진공증발공정으로 전구체층을 형성함으로써, 셀렌화 또는 황화 열처리 과정에서 균일하게 CZT(S,Se) 형성되어 CZT(S,Se) 박막의 품질이 향상되는 효과가 있다.The present invention configured as described above, by forming a precursor layer in a co-vacuum evaporation process at a temperature at which the seed can be formed, uniformly formed CZT (S, Se) in the process of selenization or sulfide heat treatment, CZT (S, Se) ) The quality of the thin film is improved.

또한, 시드가 형성된 전구체층에 대하여 셀렌화 또는 황화 열처리를 수행하기 때문에, 상대적으로 높은 온도에서 짧은 시간동안 열처리를 수행하여 고품질의 CZT(S,Se)계 박막을 형성할 수 있으며, 결국 제조 시간과 에너지가 감소하여 제조비용이 낮아지는 뛰어난 효과가 있다.In addition, since selenization or sulfide heat treatment is performed on the seed layer formed precursor layer, heat treatment may be performed at a relatively high temperature for a short time to form a high quality CZT (S, Se) based thin film. The reduction in energy and energy has an excellent effect of lowering the manufacturing cost.

나아가, 본 발명은, 품질이 뛰어난 CZT(S,Se)계 박막을 형성함으로써, CZT(S,Se)계 박막 태양전지의 효율이 향상되는 효과가 있다.Furthermore, the present invention has the effect of improving the efficiency of the CZT (S, Se) based thin film solar cell by forming a CZT (S, Se) based thin film having excellent quality.

도 1은 본 발명의 첫 번째 실시예에 따라 형성된 전구체층의 표면과 단면을 촬영한 전자현미경 사진이다.
도 2는 본 발명의 두 번째 실시예에 따라 형성된 전구체층의 표면과 단면을 촬영한 전자현미경 사진이다.
도 3 내지 도 8은 본 발명의 방법에 따라서 형성된 CZTSe 박막의 표면과 단면을 촬영한 전자현미경 사진이다.
도 9는 첫 번째 비교예에 따라 형성된 전구체층의 단면을 촬영한 전자현미경 사진이다.
도 10은 두 번째 비교예에 따라 형성된 전구체층의 단면을 촬영한 전자현미경 사진이다.
도 11 내지 도 14는 비교예의 방법에 따라서 형성된 CZTSe 박막의 표면과 단면을 촬영한 전자현미경 사진이다.
1 is an electron micrograph of the surface and the cross-section of the precursor layer formed according to the first embodiment of the present invention.
2 is an electron micrograph of the surface and the cross-section of the precursor layer formed according to the second embodiment of the present invention.
3 to 8 are electron micrographs photographing the surface and cross section of the CZTSe thin film formed according to the method of the present invention.
9 is an electron microscope photograph of a cross section of a precursor layer formed according to a first comparative example.
10 is an electron microscope photograph of a cross section of a precursor layer formed according to a second comparative example.
11 to 14 are electron micrographs photographing the surface and cross section of the CZTSe thin film formed according to the method of Comparative Example.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. With reference to the accompanying drawings will be described embodiments of the present invention;

<실시예><Example>

기판 준비Board Preparation

본 발명에 따라서 CZT(S,Se)계 박막을 형성하기 위한 기판을 준비한다.According to the present invention, a substrate for forming a CZT (S, Se) -based thin film is prepared.

본 실시예에서는 CZT(S,Se)계 박막 태양전지의 기판으로 많이 사용되는 소다라임 유리기판에 CZT(S,Se)계 박막 태양전지의 하부전극층으로 많이 사용되는 몰리브덴층을 형성하고, 몰리브덴층의 표면에 CZTSe계 박막을 형성하였다.In the present embodiment, a molybdenum layer, which is often used as a lower electrode layer of a CZT (S, Se) based thin film solar cell, is formed on a soda-lime glass substrate that is frequently used as a substrate of a CZT (S, Se) based thin film solar cell. On the surface of the CZTSe-based thin film was formed.

전구체층 형성Precursor layer formation

몰리브덴층의 표면에 CZTSe 박막을 형성하기 위한 전구체층을 형성한다.A precursor layer for forming a CZTSe thin film is formed on the surface of the molybdenum layer.

본 실시예에서는, 30분 동안 Cu와 Zn과 Sn 및 Se의 4성분 모두를 동시진공증발공정으로 증착하여 전구체층을 형성하였으며, 전구체층 형성을 위한 동시진공증발 공정 중에 기판의 온도를 300℃로 유지하였다.In this embodiment, all four components of Cu, Zn, Sn, and Se were deposited by a co-evaporation process for 30 minutes to form a precursor layer, and the substrate temperature was increased to 300 ° C. during the co-evaporation process for forming a precursor layer. Maintained.

도 1은 본 발명의 실시예에 따라 형성된 전구체층의 표면과 단면을 촬영한 전자현미경 사진이다.1 is an electron micrograph of the surface and the cross-section of the precursor layer formed according to an embodiment of the present invention.

이는 추후에 확인할 비교예의 경우와는 달리, 동시진공증발 공정 중에 기판의 온도를 300℃로 유지함으로써, 전구체층에 CZTSe 박막 형성을 위한 시드(seed)가 형성된 모습을 확인할 수 있다. Unlike the case of the comparative example to be confirmed later, by maintaining the temperature of the substrate at 300 ° C during the co-vacuum evaporation process, it can be seen that the seed (seed) for forming the CZTSe thin film formed on the precursor layer.

이러한 시드가 형성되기 위해서는 기판을 150℃ 이상의 온도로 가열하여야 하며, 이보다 낮은 온도에서는 시드가 형성되지 않고 미반응상태의 전구체층이 형성되거나 시드가 매우 적게 형성되는 단점이 있으며, 바람직하게는 200℃ 이상의 온도로 가열하는 것이 좋다.In order to form the seed, the substrate must be heated to a temperature of 150 ° C. or higher, and at a lower temperature, the seed is not formed and an unreacted precursor layer is formed or a very small amount of seed is formed. Preferably, 200 ° C. It is good to heat to the above temperature.

그리고 기판의 온도가 너무 높은 경우에는 시드가 아닌 CZTSe 가 곧바로 합성되는 문제가 생기므로, 전구체층을 형성하는 기판의 온도는 320℃ 이하인 것이 좋다.In addition, when the temperature of the substrate is too high, a problem arises in that the CZTSe rather than the seed is directly synthesized. Therefore, the temperature of the substrate forming the precursor layer is preferably 320 ° C. or less.

CZTSe 박막 형성CZTSe Thin Film Formation

본 실시예에 따라서 시드가 형성된 전구체층에 대하여, CZTSe 박막 형성을 위한 셀렌화 열처리를 수행하였다. 이때, 전구체층 형성 과정에서 가열되었던 기판의 온도가 실온으로 내려올 때까지 기다렸다가, 셀렌화 열처리를 수행하였다. 본 실시예에 따른 방법에서 전구체층에 형성된 시드는 완전한 반응에 의해서 CZTSe를 형성한 상태가 아니고, 중간형태 쯤에 해당하는 상태이며, 처음 생성된 300℃ 부근의 고온에서는 불안정 상태이거나 상대적으로 불안정한 준안정 상태이다. 이때, 시드가 불안정한 상태인 채로 곧바로 열처리를 수행하는 경우에, 시드가 없어지거나 다른 형태로 변형될 위험이 있으므로, 시드를 안정화하기 위하여 전구체층을 실온까지 냉각한 뒤에 열처리를 수행하였다. 본 실시예에는 시드를 안정화시키기 위하여 실온까지 냉각하였으나, 꼭 실온까지 냉각을 하여야 하는 것은 아니며 100℃이하로 냉각하면 시드가 상대적으로 안정화되는 효과를 얻을 수 있다.According to the present embodiment, selenization heat treatment for forming a CZTSe thin film was performed on the precursor layer on which the seed was formed. At this time, the substrate was heated in the process of forming the precursor layer and the temperature was lowered to room temperature, and then the selenization heat treatment was performed. In the method according to the present embodiment, the seed formed in the precursor layer is not in a state of forming CZTSe by a complete reaction, but corresponds to an intermediate form, and is metastable or relatively unstable at high temperature near the first 300 ° C. It is a state. In this case, when the heat treatment is immediately performed while the seed is in an unstable state, there is a risk that the seed may disappear or be deformed into another form. Thus, the heat treatment was performed after cooling the precursor layer to room temperature to stabilize the seed. In the present embodiment, but cooled to room temperature in order to stabilize the seed, it is not necessary to cool to room temperature, but cooling below 100 ℃ can obtain the effect that the seed is relatively stabilized.

셀렌화 열처리는, RTA 장비에 셀렌 가스를 채워서 다양한 온도로 수행하였으며, 열처리 시간은 5분 정도로 매우 짧게 진행하였다. The selenization heat treatment was performed at various temperatures by filling the selenium gas into the RTA equipment, and the heat treatment time was very short, about 5 minutes.

도 2 내지 도 5는 본 발명의 방법에 따라서 형성된 CZTSe 박막의 표면과 단면을 촬영한 전자현미경 사진이다.2 to 5 are electron micrographs photographing the surface and cross section of the CZTSe thin film formed according to the method of the present invention.

도 2 내지 도 5는 각각 580℃, 600℃, 620℃ 및 630℃에서 셀렌화 열처리하여 형성된 CZTSe 박막이다. 2 to 5 are CZTSe thin films formed by selenization heat treatment at 580 ° C, 600 ° C, 620 ° C and 630 ° C, respectively.

본 실시예의 방법으로 형성된 CZTSe 박막은 품질이 좋은 것을 확인할 수 있다. 특히 추후에 확인할 비교예에 의해서 형성된 CZTSe 박막에 비해서도 품질이 매우 뛰어난 것을 알 수 있다.It can be confirmed that the CZTSe thin film formed by the method of the present embodiment has good quality. In particular, it can be seen that the quality is very excellent compared to the CZTSe thin film formed by the comparative example to be confirmed later.

특히, 본 실시예의 방법은 빠르게 고온의 열처리를 수행할 수 있는 RTA 장비를 사용하여 5분여의 매우 짧은 시간동안 열처리를 수행하기 위하여, 일반적으로 셀렌화 열처리가 수행되는 온도인 350℃~550℃의 온도 범위보다도 더 높은 580℃ 이상의 온도범위에서 열처리를 수행하였음에도 불구하고 뛰어난 품질로 형성되었다.In particular, the method of the present embodiment in order to perform the heat treatment for a very short time of about 5 minutes using the RTA equipment that can perform a high temperature heat treatment quickly, generally 350 ℃ ~ 550 ℃ of the temperature at which the heat treatment is performed Although the heat treatment was performed at a temperature range of 580 ° C. or higher, which is higher than the temperature range, it was formed with excellent quality.

이로부터 본 실시예에 따라서 전구체층에 시드를 형성한 뒤에 셀렌화 열처리를 수행하는 경우에는, 종래보다 높은 온도에서 셀렌화 열처리를 수행하여 짧은 시간동안 셀렌화 열처리를 수행하여도 품질이 뛰어난 CZTSe 박막을 형성할 수 있음을 확인할 수 있다.From this, when the selenization heat treatment is performed after the seed is formed in the precursor layer according to the present embodiment, the CZTSe thin film having excellent quality even if the selenization heat treatment is performed at a higher temperature than the conventional one for a short time It can be seen that it can form.

<비교예>Comparative Example

기판 준비Board Preparation

상기한 실시예에서와 같이, 소다라임 유리기판에 몰리브덴층을 형성하고, 몰리브덴층의 표면에 CZTSe계 박막을 형성하였다.As in the above embodiment, a molybdenum layer was formed on the soda-lime glass substrate, and a CZTSe-based thin film was formed on the surface of the molybdenum layer.

전구체층 형성Precursor layer formation

30분 동안 Cu와 Zn과 Sn 및 Se의 4성분 모두를 동시진공증발공정으로 증착하여 전구체층을 형성하는 것은 동일하지만, 비교예에서는 기판에 열을 가하지 않은 상태에서 동시진공증발공정을 수행하였다.Cu, Zn, Sn and Se four components for 30 minutes to be deposited by a co-evaporation process to form a precursor layer, but in the comparative example was carried out co-evaporation process without heating the substrate.

도 6은 비교예에 따라 형성된 전구체층의 단면을 촬영한 전자현미경 사진이다.6 is an electron microscope photograph of a cross section of a precursor layer formed according to a comparative example.

도 1에서 확인되는 전구체층은, 본 발명의 실시예에 따라 형성된 전구체층과 달리, 매끈한 단면을 가지는 전구체층이 형성된 것을 확인할 수 있다. 이로부터 시드를 형성한 실시예의 경우와 달리, Cu와 Zn과 Sn 및 Se의 4성분이 반응 없이 단순 혼합 상태로 증착된 상태인 것을 알 수 있다.In the precursor layer identified in FIG. 1, unlike the precursor layer formed according to the embodiment of the present invention, it can be confirmed that a precursor layer having a smooth cross section is formed. Unlike the embodiment in which the seed is formed from this, it can be seen that the four components of Cu, Zn, Sn, and Se are deposited in a simple mixed state without reaction.

CZTSe 박막 형성CZTSe Thin Film Formation

시드가 형성되지 않은 전구체층에 대하여, CZTSe 박막 형성을 위한 셀렌화 열처리를 수행하였다.For the precursor layer on which no seed was formed, selenization heat treatment was performed to form a CZTSe thin film.

셀렌화 열처리는, 상기한 실시예의 경우와 동일한 RTA 장비에 셀렌 가스를 채워서, 다양한 온도로 약 5분동안 수행하였다.The selenization heat treatment was carried out for about 5 minutes at various temperatures by filling the selenium gas in the same RTA equipment as in the above embodiment.

도 7 내지 도 10은 비교예의 방법에 따라서 형성된 CZTSe 박막의 표면과 단면을 촬영한 전자현미경 사진이다.7 to 10 are electron micrographs photographing the surface and cross section of the CZTSe thin film formed according to the method of Comparative Example.

도 7 내지 도 10은 각각 580℃와 600℃와 620℃ 및 640℃에서 셀렌화 열처리하여 형성된 CZTSe 박막이다.7 to 10 are CZTSe thin films formed by selenization heat treatment at 580 ° C, 600 ° C, 620 ° C, and 640 ° C, respectively.

도 2 내지 도 5에 도시된, 본 발명의 실시예에 따라 제조된 CZTSe에 비하여 박막의 품질이 매우 나쁜 것을 확인할 수 있다.2 to 5, it can be seen that the quality of the thin film is very poor compared to the CZTSe manufactured according to the embodiment of the present invention.

이는 종래에 상대적으로 낮은 온도에서 오랜 시간에 걸쳐서 셀렌화 열처리를 수행하여 CZTSe박막을 형성한 경우와 달리, 580℃ 이상의 고온에서 셀렌화 열처리를 수행함으로써, 매우 짧은 5분 동안만 열처리를 수행하였음에도 전구체층 전체에서 과격한 반응이 발생하였기 때문인 것으로 생각된다.Unlike the case where the CZTSe thin film is formed by performing the selenization heat treatment for a long time at a relatively low temperature, the precursor is performed even after only a very short 5 minutes by performing the selenization heat treatment at a high temperature of 580 ° C. or higher. It is believed that this is because a radical reaction occurred in the whole layer.

결국, 전구체층에 시드가 형성되지 않은 비교예의 방법으로는 셀렌화 열처리를 수행할 수 있는 온도 범위가 매우 제한되고, 고온에서 빠른 속도로 CZTSe 박막을 형성하는 경우에 박막의 품질이 매우 저하되는 것을 알 수 있다.As a result, in the comparative example in which no seed is formed in the precursor layer, the temperature range in which the selenization heat treatment can be performed is very limited, and when the CZTSe thin film is rapidly formed at a high temperature, the quality of the thin film is very deteriorated. Able to know.

이상에서 살펴본 것과 같이, Cu와 Zn과 Sn 및 Se의 4성분 모두를 동시진공증발공정으로 증착하는 전구체층 형성 단계와 전구체층을 셀렌화 열처리하여 CZTSe 박막 형성 단계를 분리하여 수행하되, 전구체층 형성을 위한 동시진공증발공정에서 기판에 열을 가하는 경우, 전구체층에 CZTSe 박막 형성에 유리한 시드가 형성되어 일반적인 셀렌화 열처리 보다 높은 온도에서 짧게 열처리를 수행하여도 매우 뛰어난 품질의 CZTSe 박막의 형성할 수 있다.As described above, the precursor layer forming step of depositing all four components of Cu, Zn, Sn, and Se by the simultaneous vacuum evaporation process and the selenization heat treatment of the precursor layer are performed by separating the CZTSe thin film forming step, but forming the precursor layer. When heat is applied to the substrate in a co-vacuum evaporation process, a seed which is advantageous for forming a CZTSe thin film is formed in the precursor layer, and thus a CZTSe thin film having excellent quality can be formed even if the heat treatment is performed briefly at a higher temperature than the general selenization heat treatment. have.

이로부터, 본 발명에 따르면 셀렌화 열처리에 소요되는 시간과 에너지가 절약되어, 전체 CZT(S,Se)계 박막을 제조하는 시간과 에너지가 절약됨으로써, 공정비용이 낮아지느 효과가 있다.From this, according to the present invention, the time and energy required for selenization heat treatment are saved, and the time and energy for manufacturing the entire CZT (S, Se) -based thin film are saved, thereby reducing the process cost.

이와 같이, 품질이 뛰어난 CZT(S,Se)계 박막을 이용하여 제조된 CZT(S,Se)계 박막 태양전지는, 제조 비용을 줄일 수 있으면서 효율은 상대적으로 뛰어난 CZT(S,Se)계 박막 태양전지를 제공할 수 있는 효과가 있다.As described above, a CZT (S, Se) based thin film solar cell manufactured using a CZT (S, Se) based thin film having excellent quality is capable of reducing manufacturing costs and having relatively high efficiency. There is an effect that can provide a solar cell.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been described through the preferred embodiments, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes may be made without departing from the technical idea of the present invention. Those of ordinary skill will understand. Therefore, the protection scope of the present invention should be interpreted not by the specific embodiments, but by the matters described in the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (16)

기판을 준비하는 단계;
상기 기판의 표면에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성하는 단계;
상기 전구체층을 Se 분위기 또는 S 분위기에서 열처리하여 CZT(S,Se)계 박막을 형성하는 단계를 포함하며,
상기 동시진공증발 공정을 수행하는 과정에서 기판을 150~320℃의 온도 범위로 유지하여 상기 전구체층에 시드를 형성하는 것을 특징으로 하는 CZT(S,Se)계 박막 형성방법.
Preparing a substrate;
Forming a precursor layer by depositing all four components of Cu, Zn, Sn, Se, or S in a co-vacuum evaporation process on the surface of the substrate;
Heat-treating the precursor layer in an Se atmosphere or an S atmosphere to form a CZT (S, Se) based thin film,
CZT (S, Se) -based thin film formation method, characterized in that to form a seed in the precursor layer by maintaining the substrate in the temperature range of 150 ~ 320 ℃ during the process of performing the simultaneous vacuum evaporation process.
청구항 1에 있어서,
상기 동시진공증발 공정을 수행하는 과정에서 기판을 200~320℃의 온도 범위로 유지하는 것을 특징으로 하는 CZT(S,Se)계 박막 형성방법.
The method according to claim 1,
CZT (S, Se) -based thin film formation method, characterized in that for maintaining the substrate in the temperature range of 200 ~ 320 ℃ during the process of performing the simultaneous vacuum evaporation process.
청구항 1에 있어서,
상기 CZT(S,Se)계 박막을 형성하는 단계를 수행하기 전에,
상기 전구체층의 온도를 100℃ 이하로 냉각하는 단계를 더 포함하는 것을 특징으로 하는 CZT(S,Se)계 박막 형성방법.
The method according to claim 1,
Before performing the step of forming the CZT (S, Se) based thin film,
CZT (S, Se) -based thin film forming method further comprises the step of cooling the temperature of the precursor layer to 100 ℃ or less.
청구항 1에 있어서,
상기 열처리가 350~650℃의 온도범위에서 수행되는 것을 특징으로 하는 CZT(S,Se)계 박막 형성방법.
The method according to claim 1,
CZT (S, Se) -based thin film forming method characterized in that the heat treatment is carried out in a temperature range of 350 ~ 650 ℃.
청구항 4에 있어서,
상기 열처리가 550~650℃의 온도범위에서 수행되는 것을 특징으로 하는 CZT(S,Se)계 박막 형성방법.
The method according to claim 4,
CZT (S, Se) -based thin film forming method, characterized in that the heat treatment is performed at a temperature range of 550 ~ 650 ℃.
기판 상에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성한 뒤에, Se 분위기 또는 S 분위기에서 열처리하여 형성되며, 동시진공증발 공정에서 기판의 온도를 150~320℃ 범위로 유지하여 시드가 형성되도록 함으로써 박막의 품질이 향상된 것을 특징으로 하는 CZT(S,Se)계 박막.
Cu, Zn, Sn and Se or S are deposited on the substrate to form a precursor layer by depositing all four components, followed by heat treatment in an Se atmosphere or an S atmosphere, and the substrate temperature in the co-evaporation process. CZT (S, Se) -based thin film, characterized in that the quality of the thin film is improved by maintaining the seed in the range of 150 ~ 320 ℃.
◈청구항 7은(는) 설정등록료 납부시 포기되었습니다.◈Claim 7 was abandoned upon payment of a set-up fee. 청구항 6에 있어서,
상기 열처리를 수행하기 전에, 시드가 형성된 전구체층을 100℃ 이하로 냉각한 다음 열처리가 수행된 것을 특징으로 하는 CZT(S,Se)계 박막.
The method according to claim 6,
Before performing the heat treatment, the precursor layer formed CZT (S, Se) based thin film, characterized in that the heat treatment was performed after cooling the precursor layer to 100 ℃ or less.
◈청구항 8은(는) 설정등록료 납부시 포기되었습니다.◈Claim 8 has been abandoned upon payment of a set-up fee. 청구항 6에 있어서,
상기 열처리가 550~650℃의 온도범위에서 수행된 것을 특징으로 하는 CZT(S,Se)계 박막.
The method according to claim 6,
CZT (S, Se) -based thin film, characterized in that the heat treatment was performed at a temperature range of 550 ~ 650 ℃.
CZT(S,Se)계 박막을 광흡수층으로 구비한 CZT(S,Se)계 박막 태양전지의 제조방법으로서,
상기 광흡수층을 형성하는 공정이,
하부전극층의 표면에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성하는 단계; 및
상기 전구체층을 Se 분위기 또는 S 분위기에서 열처리하여 CZT(S,Se)계 박막을 형성하는 단계를 포함하며,
상기 동시진공증발 공정을 수행하는 과정에서 기판을 150~320℃의 온도 범위로 유지하여 상기 전구체층에 시드를 형성하는 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지의 제조방법.
A CZT (S, Se) based thin film solar cell comprising a CZT (S, Se) based thin film as a light absorption layer,
The step of forming the light absorption layer,
Forming a precursor layer by depositing all four components of Cu, Zn, Sn, Se, or S on the surface of the lower electrode layer by a simultaneous vacuum evaporation process; And
Heat-treating the precursor layer in an Se atmosphere or an S atmosphere to form a CZT (S, Se) based thin film,
The method of manufacturing a CZT (S, Se) -based thin film solar cell, characterized in that the seed is formed in the precursor layer by maintaining the substrate in the temperature range of 150 ~ 320 ℃ during the process of performing the simultaneous vacuum evaporation process.
◈청구항 10은(는) 설정등록료 납부시 포기되었습니다.◈Claim 10 has been abandoned upon payment of a setup registration fee. 청구항 9에 있어서,
상기 동시진공증발 공정을 수행하는 과정에서 기판을 200~320℃의 온도 범위로 유지하는 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지의 제조방법.
The method according to claim 9,
Method of manufacturing a CZT (S, Se) based thin film solar cell, characterized in that to maintain the substrate in the temperature range of 200 ~ 320 ℃ during the process of performing the simultaneous vacuum evaporation process.
◈청구항 11은(는) 설정등록료 납부시 포기되었습니다.◈Claim 11 was abandoned upon payment of a set-up fee. 청구항 9에 있어서,
상기 CZT(S,Se)계 박막을 형성하는 단계를 수행하기 전에,
상기 전구체층의 온도를 100℃ 이하로 냉각하는 단계를 더 포함하는 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지의 제조방법.
The method according to claim 9,
Before performing the step of forming the CZT (S, Se) based thin film,
The method of manufacturing a CZT (S, Se) -based thin film solar cell further comprising the step of cooling the temperature of the precursor layer to 100 ℃ or less.
◈청구항 12은(는) 설정등록료 납부시 포기되었습니다.◈Claim 12 was abandoned upon payment of a set-up fee. 청구항 9에 있어서,
상기 열처리가 350~650℃의 온도범위에서 수행되는 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지의 제조방법.
The method according to claim 9,
CZT (S, Se) -based thin film solar cell, characterized in that the heat treatment is carried out in a temperature range of 350 ~ 650 ℃.
◈청구항 13은(는) 설정등록료 납부시 포기되었습니다.◈Claim 13 was abandoned upon payment of a set-up fee. 청구항 12에 있어서,
상기 열처리가 550~650℃의 온도범위에서 수행되는 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지의 제조방법.
The method according to claim 12,
CZT (S, Se) -based thin film solar cell, characterized in that the heat treatment is performed at a temperature range of 550 ~ 650 ℃.
CZT(S,Se)계 박막을 광흡수층으로 구비한 CZT(S,Se)계 박막 태양전지로서,
상기 광흡수층이,
하부전극층 위에 동시진공증발 공정으로 Cu와 Zn과 Sn 및 Se 또는 S의 4성분 모두를 증착하여 전구체층을 형성한 뒤에, Se 분위기 또는 S 분위기에서 열처리하여 형성되며, 동시진공증발 공정에서 기판의 온도를 150~320℃ 범위로 유지하여 시드가 형성되도록 함으로써 발전효율이 향상된 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지.
A CZT (S, Se) based thin film solar cell having a CZT (S, Se) based thin film as a light absorption layer,
The light absorption layer,
Cu, Zn, Sn and Se or S are deposited on the lower electrode layer to form a precursor layer by depositing all four components, followed by heat treatment in an Se atmosphere or an S atmosphere, and the substrate temperature in the co-evaporation process. CZT (S, Se) -based thin film solar cell, characterized in that the power generation efficiency is improved by maintaining the seed in the range of 150 ~ 320 ℃.
◈청구항 15은(는) 설정등록료 납부시 포기되었습니다.◈Claim 15 was abandoned upon payment of a set-up fee. 청구항 14에 있어서,
상기 열처리를 수행하기 전에, 시드가 형성된 전구체층을 100℃ 이하로 냉각한 다음 열처리가 수행된 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지.
The method according to claim 14,
CZT (S, Se) -based thin film solar cell, characterized in that before the heat treatment, the precursor layer is formed to cool the seed layer formed below 100 ℃ and then heat treatment.
◈청구항 16은(는) 설정등록료 납부시 포기되었습니다.◈Claim 16 was abandoned upon payment of a set-up fee. 청구항 14에 있어서,
상기 열처리가 550~650℃의 온도범위에서 수행된 것을 특징으로 하는 CZT(S,Se)계 박막 태양전지.
The method according to claim 14,
CZT (S, Se) -based thin film solar cell, characterized in that the heat treatment was performed at a temperature range of 550 ~ 650 ℃.
KR1020180060601A 2018-05-28 2018-05-28 CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL KR102025091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180060601A KR102025091B1 (en) 2018-05-28 2018-05-28 CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180060601A KR102025091B1 (en) 2018-05-28 2018-05-28 CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL

Publications (1)

Publication Number Publication Date
KR102025091B1 true KR102025091B1 (en) 2019-09-25

Family

ID=68068193

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180060601A KR102025091B1 (en) 2018-05-28 2018-05-28 CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL

Country Status (1)

Country Link
KR (1) KR102025091B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016528A (en) * 2011-08-08 2013-02-18 한국에너지기술연구원 Preparation method for czt(s,se) thin film and czt(s,se) thin film prepared the same
KR101353618B1 (en) * 2010-02-26 2014-01-21 한국전자통신연구원 Manufacturing method for thin film of absorber layer, manufacturing method for thin film solar cell using thereof
KR101358055B1 (en) 2011-12-20 2014-02-06 한국에너지기술연구원 PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME
KR20160021967A (en) 2014-08-18 2016-02-29 재단법인대구경북과학기술원 PREPARATION METHOD OF CZTS/CZTSe-BASED THIN FILM AND CZTS/CZTse-BASED THIN FILM PREPARED BY THE SAME
KR20180005730A (en) * 2015-09-24 2018-01-16 재단법인대구경북과학기술원 A preparation method of solar cell using ZnS buffer layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353618B1 (en) * 2010-02-26 2014-01-21 한국전자통신연구원 Manufacturing method for thin film of absorber layer, manufacturing method for thin film solar cell using thereof
KR20130016528A (en) * 2011-08-08 2013-02-18 한국에너지기술연구원 Preparation method for czt(s,se) thin film and czt(s,se) thin film prepared the same
KR101358055B1 (en) 2011-12-20 2014-02-06 한국에너지기술연구원 PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME
KR20160021967A (en) 2014-08-18 2016-02-29 재단법인대구경북과학기술원 PREPARATION METHOD OF CZTS/CZTSe-BASED THIN FILM AND CZTS/CZTse-BASED THIN FILM PREPARED BY THE SAME
KR20180005730A (en) * 2015-09-24 2018-01-16 재단법인대구경북과학기술원 A preparation method of solar cell using ZnS buffer layer

Similar Documents

Publication Publication Date Title
Shafarman et al. Cu (InGa) Se2 Solar Cells
Niki et al. CIGS absorbers and processes
Naghavi et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu (In, Ga)(S, Se) 2 based thin film photovoltaics: present status and current developments
Feng et al. Fabrication and characterization of Cu2ZnSnS4 thin films for photovoltaic application by low-cost single target sputtering process
KR20180005730A (en) A preparation method of solar cell using ZnS buffer layer
US20130284270A1 (en) Compound semiconductor thin film solar cell and manufacturing method thereof
KR20130016528A (en) Preparation method for czt(s,se) thin film and czt(s,se) thin film prepared the same
Nicolás-Marín et al. The state of the art of Sb2 (S, Se) 3 thin film solar cells: current progress and future prospect
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
KR101542343B1 (en) Thin film solar cell and method of fabricating the same
KR101734362B1 (en) Forming method for acigs film at low temperature and manufacturing method for solar cell by using the forming method
Hayakawa et al. Control of donor concentration in n-type buffer layer for high-efficiency Cu (In, Ga) Se 2 solar cells
KR20140066964A (en) Solar cell and manufacturing method thereof
WO2012165860A2 (en) METHOD OF MANUFACTURING CIGS THIN FILM WITH UNIFORM Ga DISTRIBUTION
KR102025091B1 (en) CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL
CN103098233B (en) Solar cell and manufacture method thereof
US9601642B1 (en) CZTSe-based thin film and method for preparing the same, and solar cell using the same
KR102015985B1 (en) Method for manufacturing CIGS thin film for solar cell
KR101388458B1 (en) Preparation method for cigs thin film using rapid thermal processing
US20150249171A1 (en) Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution
CN112703610A (en) Method for post-treating an absorber layer
KR101358055B1 (en) PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME
KR102212042B1 (en) Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same
KR102596328B1 (en) Preparation method for CZTS thin film solar cell absorbing layer, CZTS thin film solar cell absorbing layer prepared therefrom
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant