KR101324430B1 - 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법 - Google Patents

직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법 Download PDF

Info

Publication number
KR101324430B1
KR101324430B1 KR1020120016890A KR20120016890A KR101324430B1 KR 101324430 B1 KR101324430 B1 KR 101324430B1 KR 1020120016890 A KR1020120016890 A KR 1020120016890A KR 20120016890 A KR20120016890 A KR 20120016890A KR 101324430 B1 KR101324430 B1 KR 101324430B1
Authority
KR
South Korea
Prior art keywords
light source
linear light
contact resistance
measuring
linear
Prior art date
Application number
KR1020120016890A
Other languages
English (en)
Other versions
KR20130095453A (ko
Inventor
서보석
정호규
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020120016890A priority Critical patent/KR101324430B1/ko
Publication of KR20130095453A publication Critical patent/KR20130095453A/ko
Application granted granted Critical
Publication of KR101324430B1 publication Critical patent/KR101324430B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • G01R1/071Non contact-making probes containing electro-optic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명은 광자극을 주는 형태를 기존의 점 형태에서 직선 형태로 개선하여 면저항의 측정 정밀도를 향상시키는 비접촉식 저항 측정 장치 및 방법에 관한 것으로, 본 발명의 일 측면에 따른 직선형 광원을 이용한 비접촉식 저항 측정 장치는, 반도체 웨이퍼 또는 박막 재료와 같은 대상체 상에 직선 형태의 광자극을 형성하기 위한 직선형 광원; 및 상기 광자극에 따라 상기 대상체에 발생되는 와전류에 의한 유도 전압을 측정하기 위한 복수개의 전극을 포함할 수 있고, 이에 따라 와전류의 감소율을 기존보다 현저히 감소시켜 유도전압을 측정하는 전극의 절대 전압을 높임으로써 측정치의 정확도를 증가시킨다.

Description

직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법{Noncontact Resistance Measurement Apparatus and Method using Straight Light Source}
본 발명은 태양전지 제작 등에 사용되는 반도체 웨이퍼 또는 박막 재료에 광자극을 가하여 면저항을 구하는 기술에 관한 것으로, 특히 광자극을 주는 형태를 개선하여 면저항의 측정 정밀도를 향상시키는 비접촉식 저항 측정 장치 및 방법에 관한 것이다.
반도체 웨이퍼나 박막재료 등의 비저항(resistivity) 및 면저항(sheet resistance)을 측정하기 위해서는 주로 접촉식 측정방식인 4-탐침법(four-point probe) 방법이 사용되어 왔다. 그러나 4-탐침법은 탐침을 박막 표면에 직접 접촉함으로써 박막의 손상을 가져올 뿐만 아니라 불량률을 최소화시키기 위해 수행하는 전수검사를 방해하는 요인으로 작용해 왔다. 따라서 최근에는 직접적인 탐침의 접촉 없이 저항을 측정할 수 있는 비접촉식 저항측정기가 도입되고 있다.
비접촉식 저항측정기는 웨이퍼나 박막재료에 광자극을 가했을 때 발생하는 와전류(eddy current)를 기초로 비접촉 상태의 전극을 통해 유도전압을 측정함으로써 저항을 계산한다. 이때 발생하는 전류는 빛이 비치는 면적과 광량에 비례한다.
예를 들어, 태양전지 제작에 사용되는 웨이퍼는 광자극(light excitation) 또는 자기자극(magnetic excitation)에 의해 와전류가 유도되는데, 이 와전류에 의한 전압을 측정함으로써 면저항을 측정할 수 있다. 이 때 사용되는 광자극은 일반적으로 주파수 변조된 신호를 사용하며 주파수에 따라 유기되는 전압이 다르지만 그 정도는 크지 않다.
도 1은 기존의 일반적인 비접촉식 저항측정기를 설명하기 위한 도면이다.
기존의 일반적인 비접촉식 저항측정기는, 도 1에 도시된 바와 같이, 점 형태의 광자극을 주는 LED 광원(11), 및 광자극 주위의 전압차를 측정하는 두 개의 원판형 전극(12,13)을 포함한다.
LED 광원(11)으로 점 형태의 광자극을 인가한 후, 전극(12)에서 V1과 전극(13)에서 V2를 측정하고, 그 비율로부터 저항을 계산하고, 이로부터 면저항을 계산한다. 이때 보통 절대적인 저항값을 측정하는 것이 아니라, 이미 저항을 알고 있는 웨이퍼를 기준으로 눈금조정(scaling)을 함으로써 상대적인 값을 구하는 방법을 이용한다.
전술한 바와 같이, 기존의 일반적인 비접촉식 저항측정기의 광원(11)에 의한 점 형태의 광자극은 발생된 와전류가 방사형으로 퍼지게 된다. 이 때 광원(11)과 외부 전극(12)와의 거리를 r이라 하면, 와전류는 방사형으로 퍼지므로 r2에 반비례해서, 즉 1/r2의 비율로 감소하게 된다. 따라서 전극간의 거리가 멀어지면 와전류가 크게 감소되어 매우 작은 값을 측정해야 하므로 측정치의 신뢰성이 매우 떨어지게 된다.
결국, 기존의 점 형태 광자극을 사용하는 비접촉식 저항측정 기술에 따르면 와전류가 자극점을 중심으로 방사형으로 퍼지게 되고 또 퍼지는 중간에 전자 정공이 결합하여 자연적으로 전류가 감소하기도 하여, 와전류가 광자극 점으로부터 멀어질수록 거리의 제곱 이상으로 반비례한다. 따라서 매우 작은 전류에 의해 유도된 전압을 통해 측정해야하므로 측정치의 정밀도가 높지 않다는 문제점이 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 그 목적은 와전류의 감소율을 기존보다 현저히 감소시켜 유도전압을 측정하는 전극의 절대 전압을 높임으로써 측정치의 정확도를 증가시키기는, 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여 본 발명의 일 측면에 따른 직선형 광원을 이용한 비접촉식 저항 측정 방법은, (a) 반도체 웨이퍼 또는 박막 재료와 같은 대상체 상에 직선 형태의 광자극을 형성하는 단계; (b) 상기 광자극에 따라 상기 대상체에 발생되는 와전류에 의한 유도 전압을 측정하는 단계; 및 (c) 상기 측정된 유도 전압을 기초로 상기 대상체의 면저항을 산출하는 단계를 포함할 수 있다.
상기 단계 (a)는 직선형 광섬유를 광원으로 이용할 수 있고, 상기 단계 (b)는 상기 광자극 주위의 제1 위치 및 제2 위치에서의 유도 전압을 각각 측정할 수 있으며, 상기 광자극과 상기 제1 및 제2 위치는 서로 평행하고, 상기 제1 및 제2 위치는 상기 광자극으로부터 양측으로 일정 간격으로 이격된 위치를 나타낸다.
상기와 같은 목적을 달성하기 위하여 본 발명의 다른 측면에 따른 직선형 광원을 이용한 비접촉식 저항 측정 장치는, 반도체 웨이퍼 또는 박막 재료와 같은 대상체 상에 직선 형태의 광자극을 형성하기 위한 직선형 광원; 및 상기 광자극에 따라 상기 대상체에 발생되는 와전류에 의한 유도 전압을 측정하기 위한 복수개의 전극을 포함할 수 있고, 상기 직선형 광원은 광섬유로 구성될 수 있다.
상기 복수개의 전극은 상기 광자극 주위의 제1 위치 및 제2 위치에서의 전압을 각각 측정하기 위한 제1 전극 및 제2 전극을 포함할 수 있는데, 예를 들어, 상기 제1 및 제2 전극은 상기 직선형 광원의 양측에 일정 거리 이격되어 평행하게 형성될 수 있다.
이상 설명한 바와 같이 본 발명의 다양한 측면에 따르면, 직선 형태의 광원을 이용하여 직선형 광자극을 형성하므로 와전류가 거리에 따라 1/r의 비율로 감소하고, 따라서 와전류의 감소율이 기존보다 작아져 유도 전압을 측정하는 전극의 절대 전압이 높아지게 되고, 결과적으로 측정치의 정확도가 향상되는 효과가 있다.
도 1은 기존의 일반적인 비접촉식 저항측정기를 설명하기 위한 도면,
도 2는 본 발명의 실시예에 따른 직선형 광원을 이용한 비접촉식 저항 측정 장치를 설명하기 위한 도면,
도 3은 본 발명의 실시예에 따른 직선형 광원을 이용한 비접촉식 저항 측정 방법의 흐름도이다.
이하, 첨부도면을 참조하여 본 발명의 실시예에 대해 구체적으로 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하였다. 또한, 본 발명의 실시예에 대한 설명 시 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 2는 본 발명의 실시예에 따른 직선형 광원을 이용한 비접촉식 저항 측정 장치를 설명하기 위한 도면으로, 동 도면에 도시된 바와 같이, 직선형 광원(21), 제1 전극(22), 및 제2 전극(23)을 포함할 수 있다.
본 실시예에 따른 직선형 광원(21)은, 반도체 웨이퍼 또는 박막 재료와 같은 면저항 측정을 위한 대상체(미도시)의 표면상에 직선 형태의 광자극(light excitation)을 주기 위한 것으로, 일 예로 광섬유로 구성될 수 있다.
본 실시예에 따른 제1 전극(22) 및 제2 전극(23)은 광자극에 따라 대상체에 발생되는 와전류에 의한 유도 전압을 측정하기 위한 것으로, 예를 들어, 제1 전극(22) 및 제2 전극(23)은 광자극 주위의 제1 위치 및 제2 위치에서의 전압을 각각 측정하기 위한 것이다.
제1 전극(22)은 직선형 광원(21)으로부터 양측으로 일정 거리(예를 들어, 약 1mm) 떨어진 제1 위치에 그 직선형 광원(21)과 평행하게 형성된 두 개의 전극으로 구성될 수 있고, 이 두 개의 전극은 도면에는 도시되지 않았지만 서로 전기적으로 연결된다.
제2 전극(23) 또한 직선형 광원(21)으로부터 양측으로 일정 거리(예를 들어, 약 2mm) 떨어진 제2 위치에 그 직선형 광원(21)과 평행하게 형성되고 서로 전기적으로 연결된(미도시) 두 개의 전극으로 구성될 수 있다.
전술한 바와 같이 제1 전극(21)과 제2 전극(23)은 직선형 광원(21)의 양측에 일정 간격(예를 들어 1mm 간격)으로 이격되어 직선형 광원(21)과 평행하게 형성되어 있다.
도 3은 본 발명의 실시예에 따른 직선형 광원을 이용한 비접촉식 저항 측정 방법의 흐름도로, 도 1의 장치를 이용하므로, 그 장치의 동작과 병행하여 설명한다.
먼저, 직선형 광원(21)을 이용하여 반도체 웨이퍼 또는 박막 재료와 같은 대상체의 표면상에 직선 형태의 광자극을 형성하고(S301), 단계 S301에서 형성된 직선 형태의 광자극에 의해 해당 대상체에서 발생되는 와전류에 의한 유도 전압을 제1 전극(22) 및 제2 전극(23)을 이용하여 측정한다(S303).
단계 S303에서는, 예를 들어, 제1 전극(22) 및 제2 전극(23)을 이용하여 직선형 광자극 주위의 제1 위치 및 제2 위치에서의 유도 전압 V1, V2를 각각 측정하는데, 제1 및 제2 위치는 직선형 광자극과 평행하고 그 직선형 광자극으로부터 양측으로 일정 간격(약 1mm) 이격된 거리가 된다.
다음, 단계 S303에서 측정된 유도 전압 V1, V2를 기초로 대상체의 면저항을 산출한다(S305).
즉, 서로 연결된 제1 전극(22)을 통해 전압 V1을 측정하고, 마찬가지로 서로 연결된 제2 전극(23)을 통하여 전압 V2를 측정하며, 그 비율로부터 면저항을 계산한다. 보통 절대적인 저항값을 측정하는 것이 아니라, 이미 저항을 알고 있는 웨이퍼를 기준으로 눈금조정(scaling)을 함으로써 상대적인 값을 구하는 방법을 이용한다.
전술한 바와 같이 직선 형태의 광자극에 의하면 와전류가 거리에 따라 1/r의 비율로 감소한다. 따라서 와전류의 감소율이 점 형태의 광자극을 이용한 기존의 방법보다 작아 유도전압을 측정하는 제1 및 제2 전극(22,23)의 절대 전압이 높게 되고, 결과적으로 측정치의 정확도가 증가하게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
21: 직선형 광원
22: 제1 전극
23: 제2 전극

Claims (10)

  1. (a) 대상체 상에 직선 형태의 광자극을 형성하는 단계;
    (b) 상기 광자극에 의해 상기 대상체에 발생되는 와전류에 의한 유도 전압을 측정하는 단계; 및
    (c) 상기 측정된 유도 전압을 기초로 상기 대상체의 면저항을 산출하는 단계를 포함하고,
    상기 단계 (b)는 상기 광자극 주위의 제1 위치 및 제2 위치에서의 유도 전압을 각각 측정하되, 상기 광자극과 상기 제1 및 제2 위치는 서로 평행하고, 상기 제1 및 제2 위치는 상기 광자극으로부터 양측으로 일정 간격 이격된 거리인 것을 특징으로 하는 직선형 광원을 이용한 비접촉식 저항 측정 방법.
  2. 제1항에 있어서,
    상기 단계 (a)는 직선형 광섬유를 광원으로 이용하는 것을 특징으로 하는 직선형 광원을 이용한 비접촉식 저항 측정 방법.
  3. 삭제
  4. 삭제
  5. 제1항에 있어서,
    상기 대상체는 반도체 웨이퍼 또는 박막 재료를 포함하는 것을 특징으로 하는 직선형 광원을 이용한 비접촉식 저항 측정 방법.
  6. 대상체 상에 직선 형태의 광자극을 형성하기 위한 직선형 광원; 및
    상기 광자극에 따라 상기 대상체에 발생되는 와전류에 의한 유도 전압을 측정하기 위한 복수개의 전극을 포함하고,
    상기 복수개의 전극은 상기 광자극 주위의 제1 위치 및 제2 위치에서의 전압을 각각 측정하기 위한 제1 전극 및 제2 전극을 포함하고, 상기 제1 및 제2 전극은 상기 직선형 광원의 양측에 평행하게 형성된 것을 특징으로 하는 직선형 광원을 이용한 비접촉식 저항 측정 장치.
  7. 제6항에 있어서,
    상기 직선형 광원은 광섬유로 구성된 것을 특징으로 하는 직선형 광원을 이용한 비접촉식 저항 측정 장치.
  8. 삭제
  9. 삭제
  10. 제6항에 있어서,
    상기 대상체는 반도체 웨이퍼 또는 박막 재료를 포함하는 것을 특징으로 하는 직선형 광원을 이용한 비접촉식 저항 측정 장치.
KR1020120016890A 2012-02-20 2012-02-20 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법 KR101324430B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120016890A KR101324430B1 (ko) 2012-02-20 2012-02-20 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120016890A KR101324430B1 (ko) 2012-02-20 2012-02-20 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20130095453A KR20130095453A (ko) 2013-08-28
KR101324430B1 true KR101324430B1 (ko) 2013-10-31

Family

ID=49218787

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120016890A KR101324430B1 (ko) 2012-02-20 2012-02-20 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법

Country Status (1)

Country Link
KR (1) KR101324430B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029862A1 (ja) * 2020-08-04 2022-02-10 株式会社 東芝 電極評価方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0167468B1 (ko) * 1994-06-30 1999-03-30 윌리엄 티. 엘리스 비접촉 시트 저항 측정 방법 및 장치
JP2000111597A (ja) 1998-10-07 2000-04-21 Advanced Display Inc 液晶表示装置の検査方法および修復方法ならびに液晶表示装置の検査装置
JP2007212341A (ja) 2006-02-10 2007-08-23 Denso Corp 抵抗測定装置および抵抗測定方法
KR20070103849A (ko) * 2006-04-20 2007-10-25 세심광전자기술(주) 기판 전극의 단선 및 합선 검사방법 및 검사장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0167468B1 (ko) * 1994-06-30 1999-03-30 윌리엄 티. 엘리스 비접촉 시트 저항 측정 방법 및 장치
JP2000111597A (ja) 1998-10-07 2000-04-21 Advanced Display Inc 液晶表示装置の検査方法および修復方法ならびに液晶表示装置の検査装置
JP2007212341A (ja) 2006-02-10 2007-08-23 Denso Corp 抵抗測定装置および抵抗測定方法
KR20070103849A (ko) * 2006-04-20 2007-10-25 세심광전자기술(주) 기판 전극의 단선 및 합선 검사방법 및 검사장치

Also Published As

Publication number Publication date
KR20130095453A (ko) 2013-08-28

Similar Documents

Publication Publication Date Title
US9735345B2 (en) Vertical hall effect sensor
US10379176B2 (en) Single-chip high-magnetic-field X-axis linear magnetoresistive sensor with calibration and initialization coil
KR102545426B1 (ko) 병렬 측정 수행을 지원하는 다중 핀 프로브
CN109458922B (zh) 一种静电式自供能位移栅格传感器
CN103852702A (zh) 确定半导体鳍中的载流子浓度的方法
CN101989594B (zh) 半导体器件的测试结构和测试方法
KR101324430B1 (ko) 직선형 광원을 이용한 비접촉식 저항 측정 장치 및 방법
CN105182081A (zh) 一种薄层材料方块电阻测试方法
US20080100311A1 (en) Electrical Measurement Of The Thickness Of A Semiconductor Layer
KR101662713B1 (ko) 열전박막의 수직방향 열전특성 측정센서유닛
KR101662714B1 (ko) 열전박막의 수평 및 수직방향 제백계수 측정 센서 유닛
US9581620B2 (en) Integrated semiconductor device comprising a hall effect current sensor
KR102675691B1 (ko) 테스트 샘플의 전기적 특성을 테스트하기 위한 프로브 및 연관된 근접성 검출기
RU121940U1 (ru) Линейка датчиков холла для прецизионной магнитометрии
CN207689575U (zh) 一种gis盆式绝缘子的表面电阻率测量装置
CN114695317A (zh) 一种浮置源极接触刻蚀工艺的测试结构以及监控方法
JP2009069005A (ja) 磁界校正方法
Schwab et al. Investigation of electric field induced ion migration in semiconductor encapsulation materials without the interference of electron conductivity
CN106501571A (zh) 改善光学电压互感器内电场分布的介质分层法
JPS61147544A (ja) 電気特性測定用ステ−ジ
KR20140067709A (ko) 배터리 셀전압 센서
CN102928669A (zh) 半导体硅片的电阻率测试方法及测试结构
US20200313080A1 (en) Semiconductor device
KR101020534B1 (ko) 듀얼 형상 방법을 적용한 휴대용 4탐침 면저항 측정장치
RU2449243C2 (ru) Датчик перемещений

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee