KR101302817B1 - High-strength steel plate for a can and method for manufacturing said high-strength steel plate - Google Patents
High-strength steel plate for a can and method for manufacturing said high-strength steel plate Download PDFInfo
- Publication number
- KR101302817B1 KR101302817B1 KR1020107021741A KR20107021741A KR101302817B1 KR 101302817 B1 KR101302817 B1 KR 101302817B1 KR 1020107021741 A KR1020107021741 A KR 1020107021741A KR 20107021741 A KR20107021741 A KR 20107021741A KR 101302817 B1 KR101302817 B1 KR 101302817B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel plate
- rolling
- steel
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0442—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
도장·베이킹 처리 후의 항복 응력이 500 ㎫ 이상의 강도를 갖는 캔용 강판 및 그 제조 방법을 제공한다. 질량% 로, C : 0.02 % 초과 0.10 % 이하, Si : 0.10 % 이하, Mn : 1.5 % 이하, P : 0.20 % 이하, S : 0.20 % 이하, Al : 0.10 % 이하, N : 0.0120 ∼ 0.0250 % 를 함유하고, 또한 그 N 중 고용 N 으로서 0.0100 % 이상을 함유하고, 잔부가 Fe 및 불가피적 불순물로 이루어진다. 고용 N 량의 절대량을 일정 이상 확보하고, 캔 제조 가공 전에 실시되는 인쇄 공정 혹은 필름 라미네이트 공정, 건조·베이킹 공정 등에서 담금질 시효 및 변형 시효에 의해 경화시킴으로써 고강도의 재질을 확보할 수 있다. 또한, 제조에 있어서는 슬래브 추출 온도를 1200 ℃ 이상으로 하고, 마무리 압연 온도를 (Ar3 변태점 온도 - 30) ℃ 이상으로 하는 열간 압연을 실시하고, 650 ℃ 이하에서 권취한다.The yield steel plate after coating and baking process has the strength of 500 Mpa or more, and provides the can steel plate and its manufacturing method. In mass%, C: more than 0.02%, 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 to 0.0250% In addition, it contains 0.0100% or more as solid solution N in the N, and remainder consists of Fe and an unavoidable impurity. A high-strength material can be secured by securing an absolute amount of the solid-solution N amount by a certain amount or more and hardening by quenching aging and strain aging in a printing process, a film lamination process, a drying and a baking process performed before the can manufacturing process. Moreover, in manufacture, hot rolling which makes slab extraction temperature into 1200 degreeC or more and finish-rolling temperature into (Ar3 transformation point temperature -30) degreeC or more is performed, and it winds up at 650 degreeC or less.
Description
본 발명은, 용접 등의 3 피스 가공이나 DI 등의 2 피스 가공 후에 직경 형상의 축소나 확대 가공을 실시하는 캔용 소재로서 바람직한 고강도 캔용 강판 및 그 제조 방법에 관한 것이다. This invention relates to the steel plate for high strength cans suitable as a raw material for cans which reduces or enlarges a diameter shape after 3-piece processing, such as welding, and 2-piece processing, such as DI, and its manufacturing method.
최근, 비용의 저감을 목적으로 하여, 또한 이용 자재의 삭감이나 환경 부하의 경감을 목적으로 하여, 소재인 강재 (강판) 제품의 판 두께를 얇게 하기 위한 제품 개발이 진행되고 있다. In recent years, product development for reducing the thickness of the steel (steel plate) product which is a raw material for the purpose of reducing cost, and reducing the use material and environmental load is progressing.
또, 제품의 판 두께를 얇게 하면 강성이 저하되기 때문에, 이 강성의 저하를 보충하기 위해, 강재의 고강도화를 도모할 필요도 있다. 그러나, 강재의 고강도화를 도모한 경우, 경질화되기 때문에 플랜지 가공이나 넥킹 가공에 의해 크랙이 발생하는 문제가 있다. Moreover, since the rigidity falls when the plate | board thickness of a product is thinned, in order to compensate for this rigidity fall, it is also necessary to aim at high strength of steel materials. However, when the strength of steel materials is increased, there is a problem that cracks are generated by flange processing or necking processing because they are hardened.
상기에 대해, 현재 여러 가지 제조 방법이 제안되어 있다. With respect to the above, various manufacturing methods are currently proposed.
예를 들어 특허문헌 1 에는, 강 중 성분을 일정 범위로 관리하여, (Ar3 변태점 - 30 ℃) 이상에서 열간 압연을 실시하고, 냉간 압연 후 연속 소둔을 실시하는 방법이 제안되어 있다. For example, Patent Document 1 proposes a method of managing components in steel in a certain range, performing hot rolling at (Ar3 transformation point-30 ° C) or higher, and performing continuous annealing after cold rolling.
그러나, 특허문헌 1 의 방법에서는, 플랜지 가공성, 넥 가공성 및 내식성을 열화시키지 않도록 P 를 0.02 wt% 이하로 하고, 또한 2 차 냉간 압연의 압하율을 15 ∼ 30 % 로 하기 때문에, 얇은 제품을 효율적으로 처리하는 것이 곤란하여 생산하기 어렵고, 또 외관 불량이 발생하기 쉽다는 문제가 있다. 또, 안정적으로 제조하는 것이 어려워 개선이 필요하다. However, in the method of patent document 1, since P is made into 0.02 wt% or less, and the rolling reduction rate of secondary cold rolling is made into 15-30% so that flange workability, neck workability, and corrosion resistance may not deteriorate, a thin product is made efficient It is difficult to produce and difficult to produce, and there is a problem that appearance defects are likely to occur. Moreover, since it is difficult to manufacture stably, improvement is needed.
또, 특허문헌 2 에는, 강 중 성분 및 고용 N 을 일정 범위로 관리한 후, (Ar3 변태점 - 30 ℃) 이상에서 열간 압연을 실시하고, 소정의 냉각을 실시하여 권취하고, 수랭을 하여 냉간 압연을 실시한 후, 소정의 히트 패턴의 연속 소둔을 실시하여, 도장 베이킹 처리 후의 항복 응력 : 550 ㎫ 이상을 갖는 캔용 강판의 제조 방법이 제안되어 있다. In addition, Patent Literature 2 manages the steel component and the solid solution N in a certain range, and then hot-rolls at (Ar3 transformation point-30 deg. C) or more, performs predetermined cooling, winds up the water, and cold-rolls. After performing the following, continuous annealing of a predetermined heat pattern is performed, and a manufacturing method of the steel plate for cans which has a yield stress of 550 Mpa or more after coating baking process is proposed.
그러나, 특허문헌 2 의 방법에서는, 세미 (semi) 극저 탄재이며, 또한 소정의 고용 N 을 확보하기 위해 연속 소둔의 온도를 높게 하여, 더욱 히트 패턴을 엄격하게 관리하는 것이 어려워 생산하기 어렵다는 문제가 있다. 또, 단순히 강 중 N 의 80 % 이상인 고용 N 을 확보하는 것만으로는, 강 중 N 함유량의 편차 때문에 소정 강도의 강판을 안정적으로 제조하는 것이 어려워 개선이 필요하다. 또, 특허문헌 2 의 방법에서는 전체 연신율이 작아져 가공성이 열화된다. However, in the method of patent document 2, it is a semi ultra low carbon | charcoal material, and also has a problem that it is difficult to strictly control a heat pattern by making high temperature of continuous annealing in order to ensure predetermined | prescribed solid solution N, and to strictly manage a heat pattern. . Moreover, only by securing solid solution N which is 80% or more of N in steel, it is difficult to manufacture a steel plate of predetermined strength stably because of the variation of N content in steel, and improvement is needed. Moreover, in the method of patent document 2, total elongation becomes small and workability deteriorates.
또한 고강도의 캔용 강판의 대표적인 제조 방법으로서, 하기 방법이 제안되어 있어, 소둔 종류에 따라 적절히 선택하여 이용되고 있다 (예를 들어, 비특허 문헌 1). Moreover, the following method is proposed as a typical manufacturing method of a high strength can steel plate, and it selects suitably according to the kind of annealing, and is used (for example, nonpatent literature 1).
열간 압연 → 산세 → 냉간 압연 → 상자형 (箱型) 소둔 (BAF) → 2 회째의 냉간 압연 (압하율 : 20 ∼ 50 %) Hot rolling → pickling → cold rolling → box annealing (BAF) → second cold rolling (rolling ratio: 20-50%)
열간 압연 → 산세 → 냉간 압연 → 연속 소둔 (CAL) → 2 회째의 냉간 압연 (압하율 : 20 ∼ 50 %)Hot rolling → pickling → cold rolling → continuous annealing (CAL) → cold rolling of the second time (rolling down rate: 20-50%)
그러나 상기 방법에서는, 2 회째의 냉간 압연에서의 압하율이 20 ∼ 50 % 로 높고, 압연 하중이 높기 때문에 조업 능률은 낮아진다. 또, 압연시의 윤활성을 향상시킬 목적에서 점도가 높은 각종 압연유가 사용되기 때문에 압연유의 농도 불균일이나 부분적인 오일 부착에 의한 압연 후의 외관 불량의 문제가 있다. 또한 압연 압하율이 높은 경우, 전체 연신율이 작아져 가공성이 열화되고, 또 압연에 의해 강판이 신장되기 때문에, 소재의 제조 방향과 가공 방향에 따른 폭 방향과 길이 방향의 내력차가 커진다. However, in the said method, since the reduction ratio in 2nd cold rolling is high as 20 to 50%, and a rolling load is high, operation efficiency becomes low. Moreover, since various rolling oils with high viscosity are used for the purpose of improving the lubricity at the time of rolling, there exists a problem of the appearance defect after rolling by the density | concentration unevenness of a rolling oil, or partial oil adhesion. In addition, when the rolling reduction rate is high, the overall elongation decreases, the workability deteriorates, and the steel sheet is elongated by rolling, so that the difference in strength in the width direction and the longitudinal direction along the production direction and the processing direction of the raw material increases.
이에 대해, 2 회째의 냉간 압연에서의 압하율을 낮게 억제하는 방법을 생각할 수 있다. 그러나, 압하율을 낮게 한 경우에는, 필요로 하는 내력을 얻는 것이 곤란해진다. On the other hand, the method of restraining the reduction ratio in the cold rolling of a 2nd time can be considered. However, when the reduction ratio is made low, it is difficult to obtain the required strength.
이와 같이 제품의 판 두께가 얇은 캔용 강판을 얻고자 하는 경우, 강도와 생산성을 양립시킬 수 있는 제조 방법은 없어 요망되고 있는 것이 현상황이다. Thus, when it is desired to obtain a steel sheet for cans with a thin plate thickness of the product, there is no manufacturing method that can achieve both strength and productivity.
본 발명은 이러한 사정을 감안하여 이루어진 것으로서, 도장·베이킹 처리 후의 항복 응력 (YP) 이 500 ㎫ 이상인 강도를 갖는 캔용 강판 및 그 제조 방법을 제공하는 것을 목적으로 한다. This invention is made | formed in view of such a situation, and an object of this invention is to provide the steel plate for cans whose yield stress (YP) after a coating and baking process is 500 Mpa or more, and its manufacturing method.
본 발명은 이하와 같다. The present invention is as follows.
[1] 질량% 로, C : 0.02 % 초과 0.10 % 이하, Si : 0.10 % 이하, Mn : 1.5 % 이하, P : 0.20 % 이하, S : 0.20 % 이하, Al : 0.10 % 이하, N : 0.0120 ∼ 0.0250 % 를 함유하고, 또한 그 N 중 고용 N 으로서 0.0100 % 이상을 함유하고, 잔부가 Fe 및 불가피적 불순물로 이루어지는 것을 특징으로 하는 고강도 캔용 강판. [1] In mass%, C: more than 0.02% and 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 to A steel sheet for high strength cans containing 0.0250%, containing 0.0100% or more as solid solution N in the N, and the balance being made of Fe and unavoidable impurities.
[2] 표면에 도금층을 갖는 것을 특징으로 하는 [1] 에 기재된 고강도 캔용 강판. [2] The steel sheet for high strength can according to [1], which has a plating layer on its surface.
[3] 질량% 로, C : 0.02 % 초과 0.10 % 이하, Si : 0.10 % 이하, Mn : 1.5 % 이하, P : 0.20 % 이하, S : 0.20 % 이하, Al : 0.10 % 이하, N : 0.0120 ∼ 0.0250 % 를 함유하고, 잔부가 Fe 및 불가피적 불순물로 이루어지는 강 슬래브를, 슬래브 추출 온도를 1200 ℃ 이상으로 하고, 마무리 압연 온도를 (Ar3 변태점 온도 - 30) ℃ 이상으로 하는 열간 압연을 실시하고, 650 ℃ 이하에서 권취하여 산세를 실시한 후, 냉간 압연을 실시하고, 이어서 연속 소둔을 실시하는 것을 특징으로 하는 고강도 캔용 강판의 제조 방법. [3] In mass%, C: more than 0.02% and 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 to A steel slab containing 0.0250%, the remainder of which is composed of Fe and unavoidable impurities, is subjected to hot rolling with a slab extraction temperature of 1200 ° C or higher and a finish rolling temperature of (Ar3 transformation point temperature-30) ° C or higher, After winding and pickling at 650 degrees C or less, it cold-rolls and performs continuous annealing, The manufacturing method of the steel plate for high strength cans characterized by the above-mentioned.
[4] 상기 연속 소둔 후, 압하율을 10 % 이상 20 % 미만으로 하는 2 회째의 냉간 압연을 실시하는 것을 특징으로 하는 [3] 에 기재된 고강도 캔용 강판의 제조 방법. [4] A method for producing the steel sheet for high strength can according to [3], wherein the second cold rolling is performed with the reduction ratio of 10% or more and less than 20% after the continuous annealing.
[5] 상기 연속 소둔의 균열 (均熱) 온도를 Ar1 변태점 온도 이상으로 하는 것을 특징으로 하는 [3] 또는 [4] 에 기재된 고강도 캔용 강판의 제조 방법. [5] The method for producing a steel sheet for high strength can according to [3] or [4], wherein the crack temperature of the continuous annealing is equal to or higher than the Ar1 transformation point temperature.
[6] 상기 연속 소둔 또는 상기 2 회째의 냉간 압연 후, 도금 처리를 실시하는 것을 특징으로 하는 [3] ∼ [5] 중 어느 하나에 기재된 고강도 캔용 강판의 제조 방법. [6] The method for producing a high strength can steel sheet according to any one of [3] to [5], wherein the plating treatment is performed after the continuous annealing or the second cold rolling.
또한, 본 명세서에 있어서, 강의 성분을 나타내는 % 는 모두 질량% 이다. 또, 본 발명에 있어서 「고강도 캔용 강판」이란, 도장·베이킹 처리 후의 항복 응력 (YP) 이 500 ㎫ 이상인 강도를 갖는 캔용 강판이다. In the present specification, the percentages representing the steel components are all% by mass. In addition, in this invention, a "steel plate for high strength cans" is a steel sheet for cans which has the strength whose yield stress (YP) after coating and baking process is 500 Mpa or more.
또, 본 발명의 고강도 캔용 강판은, 캔용 소재를 대상으로 한다. 또한 표면 처리의 유무에 상관없이 주석 도금, 니켈 주석 도금, 크롬 도금 (이른바 틴 프리 도금) 혹은 추가로 유기 피복 등을 실시하여 매우 광범위한 용도에 적용할 수 있다. Moreover, the steel plate for high strength cans of this invention makes a raw material for cans an object. In addition, with or without surface treatment, tin plating, nickel tin plating, chromium plating (so-called tin-free plating) or additional organic coatings can be applied to a very wide range of applications.
또한 강판의 두께에 대해서는 특별히 한정되지 않지만, 본 발명을 최대한 발휘시켜 효과를 얻는 점에서는 판 두께 0.3 ㎜ 이하가 바람직하고, 0.2 ㎜ 이하가 더욱 바람직하다. 특히 바람직한 것은 0.170 ㎜ 이하이다. Moreover, although it does not specifically limit about the thickness of a steel plate, In the point which exhibits an effect by demonstrating this invention to the maximum, 0.3 mm or less of plate | board thickness is preferable, and 0.2 mm or less is more preferable. Especially preferred is 0.170 mm or less.
발명을 실시하기Carrying out the invention 위한 최선의 형태 Best form for
본 발명자들은 상기 과제를 해결하기 위해 예의 연구를 실시하였다. 그 결과, 이하의 지견을 얻었다. The present inventors earnestly researched in order to solve the said subject. As a result, the following findings were obtained.
성분 조성으로서, 저탄재로 하고, 고용 N 량의 절대량을 일정 이상 확보하고, 캔 제조 가공 전에 실시되는 인쇄 공정 혹은 필름 라미네이트 공정, 건조·베이킹 공정 등에서 담금질 시효 및 변형 시효에 의해 경화시킴으로써 고강도의 재질을 확보할 수 있다는 것을 알아내었다. As a component composition, it is made of a low carbon material, secures the absolute amount of solid solution N quantity more than a certain amount, and hardens by hardening aging and strain aging in the printing process, film lamination process, drying and baking process performed before can manufacturing process, etc. I found out that I can secure it.
이상과 같이, 본 발명에서는 상기 지견에 기초하여 성분을 관리함으로써 고강도 캔용 강판을 완성하는 데에 이르렀다. As mentioned above, in this invention, the high strength can steel plate was completed by managing a component based on the said knowledge.
이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.
본 발명의 고강도 캔용 강판은, 도장·베이킹 처리 후의 항복 응력 (YP) 이 500 ㎫ 이상인 강도를 갖는 캔용 강판이다. The steel plate for high strength cans of this invention is a steel plate for cans whose strength of yield stress (YP) after a coating and baking process is 500 Mpa or more.
그리고, 본 발명에서는 저탄재로 하고, 고용 N 량의 절대량을 일정 이상 확보하고, 또한 도장 베이킹 처리 후의 시효 경화에 의해, 2 차 냉간 압연을 하지 않거나, 혹은 저압하율의 2 차 냉간 압연을 실시함으로써 생산성을 높여 캔용 강판의 생산성을 높여 고강도화가 가능해진다. 또한 2 차 냉간 압연을 하지 않고, 즉 연속 소둔 후 1 % 정도의 조질 압연을 실시하여 얻어지는 캔용 강판에서는 도장·베이킹 처리 후의 전체 연신율 (E1) 이 20 % 이상이다. 또, 10 % 이상 15 % 미만의 압하율로 2 차 냉간 압연을 실시하는 캔용 강판에서는 도장·베이킹 처리 후의 전체 연신율 (E1) 이 10 % 를 초과한다. In the present invention, the low carbonaceous material is used, the absolute amount of the solid solution N content is secured by a fixed value or more, and the secondary cold rolling is not carried out by aging hardening after the coating baking process, or by performing the secondary cold rolling with a low reduction ratio. Higher productivity can be achieved by increasing the productivity of the steel sheet for cans. In addition, in the steel plate for cans obtained by not performing secondary cold rolling, ie, temper rolling about 1% after continuous annealing, the total elongation (E1) after coating and baking process is 20% or more. Moreover, in the steel plate for cans which secondary cold rolling is carried out by the reduction ratio of 10% or more and less than 15%, the total elongation (E1) after coating and baking process exceeds 10%.
본 발명의 용기용 강판의 성분 조성에 대해 설명한다. The component composition of the steel plate for containers of this invention is demonstrated.
C : 0.02 % 초과 0.10 % 이하C: 0.02% or more and 0.10% or less
C 는 고용 강화에 의해 강의 강도를 증가시키는 유효한 원소이지만, 한편으로 탄화물을 형성하여, 강판의 연성, 나아가서는 가공성을 저하시킨다. C 성분이 많으면 2 차 냉간 압연 후의 강판을 경질화시켜, 캔 제조성이나 넥 가공성을 열화시킨다. 또, 용접부의 현저한 경질화에 의해 플랜지 가공시에 HAZ 크랙을 발생시키는 원소가 된다. C 가 0.10 % 를 초과하면, 이들의 영향이 현저해지기 때문에, C 는 0.10 % 이하로 한다. 한편, C 성분이 극단적으로 낮아지면, 2 차 냉간 압연의 압하율을 20 % 이상의 강압 하로 하지 않으면 강도를 확보할 수 없다는 문제가 있기 때문에 C 는 0.02 % 초과로 한다. C 는 0.03 % 이상 0.05 % 이하로 하는 것이 바람직하다. C is an effective element that increases the strength of the steel by solid solution strengthening, but on the other hand, carbides are formed to reduce the ductility of the steel sheet and thus the workability. When there are many C components, the steel plate after secondary cold rolling will be hardened, and can manufacturability and neck workability will deteriorate. Moreover, it becomes an element which generate | occur | produces a HAZ crack at the time of flange processing by remarkable hardening of a weld part. When C exceeds 0.10%, since these effects become remarkable, C shall be 0.10% or less. On the other hand, when C component becomes extremely low, since there exists a problem that intensity | strength cannot be secured unless the rolling reduction rate of secondary cold rolling is made into 20% or more of down pressure, C shall be more than 0.02%. It is preferable to make C 0.03% or more and 0.05% or less.
Si : 0.10 % 이하Si: 0.10% or less
Si 는 고용 강화에 의해 강의 강도를 증가시키는 원소이지만, 다량 첨가하면 표면 처리성의 열화, 내식성의 열화 등의 문제를 일으키기 때문에, Si 는 0.10 % 이하로 한정한다. 또한, 특히 우수한 내식성이 요구되는 경우에는, Si 는 0.02 % 이하로 하는 것이 바람직하다.Although Si is an element which increases the strength of steel by solid solution strengthening, Si is limited to 0.10% or less because it causes problems such as deterioration of surface treatment properties and corrosion resistance. In addition, when especially excellent corrosion resistance is calculated | required, it is preferable to make Si into 0.02% or less.
Mn : 1.5 % 이하Mn: 1.5% or less
Mn 은 S 에 의한 열간 크랙을 방지하는 데에 유효한 원소이다. 그리고, S 량에 따라 적절히 첨가함으로써, 크랙을 방지하는 효과가 얻어진다. 이들 효과를 발휘하기 위해서는, Mn 은 0.20 % 이상 첨가하는 것이 바람직하다. 또, 결정 입자를 미세화시키는 작용도 갖고 있다. 한편, 다량으로 첨가하면, 내식성이 열화되는 경향을 나타냄과 함께, 강판을 필요 이상으로 경질화시켜 플랜지 가공성, 넥 가공성을 열화시키기 때문에, 상한은 1.5 % 로 한다. Mn 은 0.20 % 이상 0.30 % 이하로 하는 것이 바람직하다. Mn is an element effective for preventing the hot crack by S. And an effect which prevents a crack is acquired by adding according to S amount suitably. In order to exhibit these effects, it is preferable to add Mn 0.20% or more. Moreover, it has the effect | miniaturization of crystal grains. On the other hand, when a large amount is added, the corrosion resistance tends to deteriorate, and the steel sheet is hardened more than necessary to deteriorate flange workability and neck workability, so the upper limit is 1.5%. It is preferable to make Mn into 0.20% or more and 0.30% or less.
P : 0.20 % 이하P: not more than 0.20%
P 는 강을 현저히 경질화시키는데, 플랜지 가공성이나 넥 가공성을 열화 시킴과 함께 내식성을 현저히 열화시킨다. 이 때문에, 본 발명에서는, P 는 0.20 % 이하로 한정한다. P 는 0.001 % 이상 0.018 % 이하로 하는 것이 바람직하다. P significantly hardens the steel, which deteriorates the flange workability and the neck workability, and the corrosion resistance significantly. For this reason, in this invention, P is limited to 0.20% or less. It is preferable to set P to 0.001% or more and 0.018% or less.
S : 0.20 % 이하S: 0.20% or less
S 는 강 중에서 개재물로서 존재하여 강판의 연성을 감소시키고 또한 내식성을 열화시키는 원소이다. 그 때문에 0.20 % 이하로 한다. S 는 0.001 % 이상 0.018 % 이하로 하는 것이 바람직하다. S is an element present in the steel as inclusions to reduce the ductility of the steel sheet and deteriorate the corrosion resistance. Therefore, you may be 0.20% or less. It is preferable to make S into 0.001% or more and 0.018% or less.
Al : 0.10 % 이하Al: 0.10% or less
Al 은 고용 N 과 결합하여 AlN 을 형성하여, 고용 N 량을 저감시키는 효과를 갖는다. 또, Al 함유량의 증가는 재결정 온도의 상승을 초래하여, 소둔 온도를 고온으로 할 필요가 있다. 고온 소둔에서는 AlN 형성을 위해 고용 N 량이 저감되고, 시효 경화량이 저감되며, 따라서 강판 강도의 저하를 초래한다. 저탄재의 경우, 이러한 현상이 현저해지는 것은, Al 함유량이 0.10 % 를 초과하는 경우이다. 이러한 점에서, Al 은 0.10 % 이하로 한정하였다. 또한, 강의 용제 공정에 있어서의 안정 조업의 관점에서는, Al 은 0.020 % 이상으로 하는 것이 바람직하다. Al 은 0.020 % 이상 0.060 % 이하로 하는 것이 바람직하다. Al combines with solid solution N to form AlN, and has the effect of reducing the amount of solid solution N. In addition, an increase in Al content causes an increase in the recrystallization temperature, and it is necessary to make the annealing temperature high. At high temperature annealing, the amount of solid solution N is reduced for the formation of AlN, and the amount of aging hardening is reduced, thus causing a decrease in the strength of the steel sheet. In the case of a low carbon material, such a phenomenon becomes remarkable when Al content exceeds 0.10%. In this regard, Al was limited to 0.10% or less. Moreover, it is preferable to make Al into 0.020% or more from a viewpoint of the stable operation in the steel solvent process. It is preferable to make Al 0.020% or more and 0.060% or less.
N : 0.0120 ∼ 0.0250 % N: 0.0120% to 0.0250%
N 은 시효 경화성을 증가시키는 원소로서, 본 발명에서는 적극적으로 함유시킨다. 시효 경화성의 현저한 증가는, 저탄재의 경우 0.0120 % 이상을 함유한 경우에서 확인된다. 한편, 0.0250 % 를 초과하여 함유하면, 압연 소재 (슬래브) 에 크랙 결함을 일으킬 위험성이 현저히 증대된다. 따라서, N 은 0.0120 % 이상 0.0250 % 이하로 한정한다. N is an element which increases aging hardenability and is actively contained in the present invention. A significant increase in aging hardenability is found in the case of containing at least 0.0120% of low carbon materials. On the other hand, when it contains exceeding 0.0250%, the risk of causing a crack defect in a rolled material (slab) will remarkably increase. Therefore, N is limited to 0.0120% or more and 0.0250% or less.
캔용 강판 (냉연 강판) 의 고용 N : 0.0100 % 이상Solid solution N of can steel sheet (cold rolled steel sheet): 0.0100% or more
본 발명의 특징인 큰 시효 경화성을 확보하기 위해서는, 캔용 강판 (냉연 강판) 중의 고용 N 량을 0.0100 % 이상으로 할 필요가 있다. 이것은 본 발명에 있어서 가장 중요한 요건이다. In order to ensure the large age hardening property which is a characteristic of this invention, it is necessary to make the solid solution N amount in the steel plate for steels (cold rolled steel plate) into 0.0100% or more. This is the most important requirement in the present invention.
본 발명의 냉연 강판은, 바람직하게는 열연판을 산세한 후, 냉간 압연하고, 연속 소둔을 실시하고, 필요에 따라 2 회째의 냉간 압연을 실시하여 제조되는데, 이 연속 소둔 공정에서 AlN 은 석출되는 경향이 있기 때문에, 캔용 강판 (냉연 강판) 중의 고용 N 량이 0.0100 % 미만이 되지 않는 공정을 관리하는 것이 중요해진다. 또한, 본 발명에서는 통상적으로 실시되는 브롬에스테르에 의한 용해 처리 후의 추출 분석에 의해 AlN 으로 되어 있는 N 량을 구하고 (이하, N as AlN 이라고 함), 전체 N 량으로부터 N as AlN 을 뺀 값을 고용 N 량으로 한다. The cold rolled steel sheet of the present invention is preferably produced by pickling a hot rolled sheet, followed by cold rolling, continuous annealing and, if necessary, second cold rolling, wherein AlN is precipitated in this continuous annealing process. Since there exists a tendency, it becomes important to manage the process in which the solid-solution N amount in a steel plate for steels (cold rolled steel sheet) does not become less than 0.0100%. In addition, in this invention, the amount of N which becomes AlN is calculated | required by extraction analysis after the dissolution process by bromine ester normally performed (hereinafter called N as AlN), and the value obtained by subtracting N as AlN from the total amount of N is dissolved. N amount is used.
또, 상기한 고용 N 량과 고용 C 량을 합계로 0.0150 % 이상으로 하는 것이 바람직하다. 고용 C 량은 내부 마찰에 의한 측정에 의해, 또는 강판으로부터 추출된 석출물 중의 C 량을 전체 C 량으로부터 빼 구할 수도 있다. Moreover, it is preferable to make said solid solution N amount and solid solution C amount into 0.0150% or more in total. The solid solution C amount may be determined by measurement by internal friction or by subtracting the amount of C in the precipitate extracted from the steel sheet from the total amount of C.
잔부는 Fe 및 불가피작 불순물로 한다. Remainder shall be Fe and an unavoidable impurity.
상기한 성분 이외의 잔부는 Fe 및 불가피적 불순물이다. 또한, 불가피적 불순물로는, 예를 들어 Sn : 0.01 % 이하를 허용할 수 있다. Remainder other than the above-mentioned component is Fe and an unavoidable impurity. As unavoidable impurities, for example, Sn: 0.01% or less can be allowed.
다음으로 본 발명의 고강도 캔용 강판의 제조 방법에 대해 설명한다. Next, the manufacturing method of the steel plate for high strength cans of this invention is demonstrated.
본 발명의 고강도 캔용 강판은 이하의 방법에 의해 얻어진다. 먼저, 상기한 조성으로 이루어지는 용강을 전로 등을 사용한 통상적으로 공지된 용제 방법에 의해 용제하고, 연속 주조법 등의 통상적으로 공지된 주조 방법에 의해 압연 소재 (슬래브) 로 한다. 이어서 이들 압연 소재를 이용하여 열간 압연에 의해 열연판으로 한다. 이 때, 슬래브 추출 온도는 1200 ℃ 이상으로 하고, 마무리 압연 온도는 (Ar3 변태점 온도 - 30) ℃ 이상 (바람직하게는 Ar3 변태점 온도 이상) 으로 한다. 이어서 650 ℃ 이하에서 권취하여 산세를 실시한 후, 냉간 압연을 실시하고, 연속 소둔을 실시한다. 또한 필요에 따라 압하율을 10 % 이상 20 % 미만 (바람직하게는 10 % 이상 15 % 미만) 으로 하는 2 회째의 냉간 압연을 실시한다. 또, 도금 처리를 실시할 수도 있다. The steel plate for high strength cans of this invention is obtained by the following method. First, molten steel which consists of said composition is melted by the conventionally well-known solvent method using a converter, etc., and is made into a rolled material (slab) by the conventionally well-known casting method, such as a continuous casting method. Next, a hot rolled sheet is made by hot rolling using these rolled materials. At this time, slab extraction temperature shall be 1200 degreeC or more, and finish rolling temperature shall be (Ar3 transformation point temperature-30) or more (preferably Ar3 transformation point temperature or more). Next, after winding up and pickling at 650 degreeC or less, it cold-rolls and performs continuous annealing. Moreover, as needed, the 2nd cold rolling which makes a reduction ratio 10% or more and less than 20% (preferably 10% or more and less than 15%) is performed. Moreover, plating process can also be performed.
이하에, 상세하게 설명한다. This will be described in detail below.
슬래브 추출 온도 : 1200 ℃ 이상 Slab extraction temperature: above 1200 ℃
캔용 강판의 고용 N 량을 0.0100 % 이상으로 하기 위해서는, 슬래브를 가열로에 삽입하여 가열하고, 가열로로부터 추출하는 온도를 1200 ℃ 이상으로 한다. AlN 의 분해를 촉진시켜 소정량의 고용 N 량을 확보하기 위해서이다. 이 온도로 유지된 가열로에 삽입하여 가열하는 것이 바람직하다. In order to make solid solution N amount of the steel plate for cans into 0.0100% or more, the slab is inserted into a heating furnace and heated, and the temperature extracted from the heating furnace is made into 1200 degreeC or more. This is for accelerating decomposition of AlN to secure a predetermined amount of solid solution N. It is preferable to insert and heat in the heating furnace maintained at this temperature.
마무리 압연 온도 : (Ar3 변태점 - 30 ℃) 이상Finish rolling temperature: (Ar3 transformation point-30 ℃) or more
본 발명에서는 AlN 의 석출을 유효하게 억제하고, 또한 이방성과 가공성의 열화를 발생시키지 않도록 하기 위해, 열간 압연에 있어서의 마무리 압연 온도는 (Ar3 변태점 - 30 ℃) 이상으로 한다. 마무리 압연 온도가 (Ar3 변태점 - 30 ℃) 미만에서는, AlN 의 석출이 현저해지고, 고용 N 이 저감되어, 이방성과 가공성의 열화를 일으킨다. 또한, 바람직하게는 Ar3 변태점 이상이다. In the present invention, in order to effectively suppress the precipitation of AlN and not to deteriorate anisotropy and workability, the finish rolling temperature in hot rolling is set to (Ar3 transformation point-30 ° C) or more. When the finish rolling temperature is lower than (Ar3 transformation point-30 ° C), precipitation of AlN becomes remarkable, solute N is reduced, and anisotropy and workability deteriorate. Moreover, it is preferably more than Ar3 transformation point.
또한, 마무리 압연 후, 수랭에 의해 강제 냉각시키는 것이 바람직하다. 이로써 AlN 의 석출을 억제할 수 있다. Moreover, it is preferable to force-cool by water cooling after finish rolling. Thereby, precipitation of AlN can be suppressed.
권취 온도 : 650 ℃ 이하Winding temperature: below 650 ℃
권취 온도는 Al 에 의한 N 의 고정을 억제하기 위해, 650 ℃ 이하로 한다. 권취 온도가 650 ℃ 를 초과하면, AlN 석출량이 현저히 증가되어 고용 N 이 감소하는 결과, 목표로 하는 시효 경화성을 얻을 수 없다. 또한, 높은 시효 경화성을 안정적으로 얻기 위해서는, 권취 온도는 600 ℃ 이하로 하는 것이 더욱 바람직하다. The coiling temperature is set at 650 ° C or lower in order to suppress the fixation of N by Al. When the coiling temperature exceeds 650 ° C., the amount of AlN precipitates is significantly increased and the solid solution N decreases. As a result, the target age hardenability cannot be obtained. Moreover, in order to acquire high age hardenability stably, it is more preferable to make winding temperature into 600 degrees C or less.
또한, 본 발명에서는 귄취 후 코일 상태에서 공랭 또는 수랭시키는 것이 바람직하다. 수랭의 경우, 생산성을 높게 할 수 있게 되는데, 강판의 판폭 방향 및 길이 방향의 재질의 균일성을 위해서는 공랭시키는 것이 바람직하다. Moreover, in this invention, it is preferable to air-cool or water-cool in a coil state after a bristling. In the case of water cooling, productivity can be made high, but it is preferable to air-cool for uniformity of the material of the plate width direction and the longitudinal direction of a steel plate.
산세, 냉간 압연Pickling, cold rolling
이상과 같이 하여 제조된 열연판에 산세, 냉간 압연을 실시하여 냉연판으로 한다. 산세는 통상적인 방법에 따라, 염산, 황산 등의 산으로 표면 스케일을 제거하면 된다. 냉간 압하율도 통상적인 방법을 따르는데, 판 두께가 얇을수록 높아지게 된다. Pickling and cold rolling are performed to the hot rolled sheet manufactured as described above to obtain a cold rolled sheet. Pickling may be carried out by removing the surface scale with an acid such as hydrochloric acid or sulfuric acid according to a conventional method. Cold rolling reduction also follows a conventional method, the thinner the plate thickness, the higher.
연속 소둔의 균열 온도 : 600 ℃ 이상 (적합 조건)Crack temperature of continuous annealing: above 600 ℃ (suitable conditions)
연속 소둔 공정에서는 600 ℃ 이상의 온도 범위에서 균열시키는 것이 바람직하다. 균열 온도를 600 ℃ 이상으로 하면, 재결정의 진행이 빨라 냉간 압연에 의해 도입된 가공 변형이 잔류하지 않고, 연성이 높아, 프레스 가공에 적합하다. 또한 Ar1 변태점 이상에서 균열시키면, 더욱 강도를 향상시킬 수 있게 되기 때문에 바람직하다. Ar1 변태점 이상에서 균열시키면, 부분적으로 펄라이트 조직이 되는 것이 강도에 기여하는 것으로 추찰된다. In a continuous annealing process, it is preferable to crack in the temperature range 600 degreeC or more. When the cracking temperature is set to 600 ° C or higher, the progress of recrystallization is fast, and work deformation introduced by cold rolling does not remain, and ductility is high, which is suitable for press working. In addition, cracking at an Ar1 transformation point or more is preferable because the strength can be further improved. If the crack is above the Ar1 transformation point, it is inferred that the pearlite structure partially contributes to the strength.
또, 이 온도 범위 내이면, 특별히 일정한 온도로 유지할 필요는 없다. 조업의 안정성 때문에 10 s 이상의 균열에 상당하는 시간이 있으면 충분하다. Moreover, if it is in this temperature range, it does not need to maintain especially constant temperature. Due to the stability of the operation, it is sufficient to have a time equivalent to a crack of 10 s or more.
연속 소둔 후, 1 % 정도의 조질 압연을 실시하고, 표면 거칠기와 경도의 조정을 실시하는 것이 바람직하다. After continuous annealing, it is preferable to perform rough rolling about 1% and to adjust surface roughness and hardness.
이상의 공정을 거쳐 얻어진 냉연 강판은, 도장·베이킹 처리 후의 전체 연신율 (E1) 이 20 % 이상이 되어 가공성이 매우 우수한 캔용 강판이 된다. The cold rolled steel sheet obtained through the above process becomes 20% or more of the total elongation (E1) after coating and baking process, and becomes a steel plate for cans which is very excellent in workability.
연속 소둔 후, 추가로 압하율 : 10 % 이상 20 % 미만의 2 회째의 냉간 압연을 실시해도 된다. 이 2 회째의 냉간 압연은 추가적인 고강도화가 주목적이다. 10 % 이상으로 함으로써, 추가적인 고강도화를 달성할 수 있다. 20 % 미만으로 함으로써 신장을 확보 (도장·베이킹 처리 후의 전체 연신율 (E1) 이 8 % 이상 ∼ 15 % 이하) 하여 가공성을 열화시키지 않고 상기 고강도화의 효과가 얻어진다. 특히, 2 회째의 냉간 압연의 압하율을 10 % 이상 15 % 미만으로 함으로써, 도장·베이킹 처리 후의 전체 연신율 (El) : 10 % 초과를 확보할 수 있다. After continuous annealing, you may further perform the cold rolling of the 2nd time of a reduction ratio: 10% or more and less than 20%. In this second cold rolling, further high strength is mainly aimed at. By setting it as 10% or more, further high strength can be achieved. By setting it as less than 20%, elongation is ensured (total elongation (E1) after coating and baking process is 8% or more and 15% or less), and the effect of the said high strength is acquired, without degrading workability. In particular, by setting the reduction ratio of the second cold rolling to 10% or more and less than 15%, the total elongation (El) after coating and baking treatment: 10% or more can be ensured.
20 % 미만으로 함으로써 신장을 확보하여 가공성을 열화시키지 않고 상기 고강도화의 효과가 얻어진다. 압하율 : 10 % 이상 20 % 미만의 2 회째의 냉간 압연을 실시한 냉연 강판은, 도장·베이킹 처리 후의 전체 연신율 (E1) 이 8 % 이상 ∼ 15 % 이하가 되어 우수한 가공성을 가지면서 매우 고강도인 캔용 강판이 된다. 압하율은 10 % 이상 15 % 미만이 바람직하고, 도장·베이킹 처리 후의 전체 연신율 (El) 이 10 % 이상인 냉연 강판이 얻어진다. By setting it as less than 20%, the effect of the said high strength is acquired, without extending | stretching and degrading workability. Rolling ratio: The cold-rolled steel sheet subjected to the second cold rolling of 10% or more and less than 20% has a total elongation (E1) of 8% or more and 15% or less after coating and baking treatment, and has excellent workability while being very high strength for cans. It becomes steel plate. As for the reduction ratio, 10% or more and less than 15% are preferable, and the cold rolled steel plate whose total elongation (El) after coating and baking process is 10% or more is obtained.
이상의 공정을 거쳐 냉연 강판이 얻어진다. 그리고, 캔 제조 가공 전 (프레스 가공 전) 의 도장·베이킹 처리에 의해 경질재로 되어 있어, 판 두께가 0.3 ㎜ 이하인 극박 강판에 적용된 경우에 그 우위성이 더욱 유효하게 발휘된다. 또, 상기한 공정에 의해 제조되는 냉연 강판은, 고용 N 량이 0.0100 % 이상을 갖고, 도장·베이킹 처리 후의 항복 응력 (YP) : 500 ㎫ 이상을 갖는 고강도 캔용 강판이 된다. 또한 본 발명의 캔용 강판은 큰 신장을 얻을 수 있기 때문에 가공성이 우수하다. The cold rolled steel sheet is obtained through the above process. And when it is made into a hard material by the coating and baking process before can manufacturing process (before press process), and is applied to the ultra-thin steel plate whose plate | board thickness is 0.3 mm or less, the superiority is exhibited more effectively. Moreover, the cold rolled sheet steel manufactured by the above-mentioned process becomes a steel plate for high strength cans whose solid-solution N amount has 0.0100% or more, and has yield stress (YP): 500 Mpa or more after coating and baking process. Moreover, since the steel sheet for cans of this invention can obtain a big elongation, it is excellent in workability.
본 발명의 캔용 강판은, 고용 N 에 의해 큰 시효 경화성을 얻고 있다. 그 때문에, 도장·베이킹 처리 후의 항복 응력 (YP) : 500 ㎫ 이상을 가져 강판의 박육화를 우위로 진행할 수 있다. 또, 본 발명의 냉연 강판은, 고용 N 의 작용을 유효하게 이용함으로써, 도금 후의 리플로우 처리 후에도 강도가 증가하고, 또 프레스 성형 후의 도장 베이킹 공정시에도 현저한 시효 경화 현상이 일어나, 캔체 강도의 비약적인 증가를 초래할 수 있다. The steel plate for cans of this invention has obtained the big age hardenability by the solid solution N. Therefore, it has yield stress (YP): 500 Mpa or more after coating and baking process, and it can advance thinning of a steel plate predominantly. In addition, the cold rolled steel sheet of the present invention effectively increases the strength even after the reflow treatment after plating, and a significant age hardening phenomenon occurs during the coating and baking process after press molding, by effectively utilizing the action of solid solution N. May cause an increase.
본 발명에서는 상기에 의해 얻어진 냉연 강판의 표면에 (적어도 편면) 도금층을 형성하여 도금 강판으로 할 수 있다. 표면에 형성되는 도금층은 캔용 강판에 적용되는 어떤 것도 적용할 수 있다. 도금층으로는 주석 도금, 크롬 도금, 니켈 도금, 니켈·크롬 도금을 예시할 수 있다. 또, 이들 도금 처리 후에 도장, 유기 수지 필름 등을 점착시키는 것도 전혀 문제없다. In this invention, a plating layer (at least one side) can be formed in the surface of the cold rolled sheet steel obtained by the above, and it can be set as a plated steel sheet. The plated layer formed on the surface can be applied to anything applied to the steel sheet for cans. Examples of the plating layer include tin plating, chromium plating, nickel plating, and nickel chromium plating. Moreover, it is also no problem to stick a coating, an organic resin film, or the like after these plating treatments.
실시예 1Example 1
표 1 에 나타내는 성분으로 이루어지는 강을 전로에서 용제하고, 연속 주조법으로 슬래브로 하였다. 이어서 이들 슬래브를, 표 2 에 나타내는 조건에서 열간 압연하여, 판 두께 : 2.0 ㎜ 의 열연판으로 하였다. 이어서, 상기에 의해 얻어진 열연판에 대해 산세에 의한 탈스케일 처리를 실시하고, 추가로 냉간 압연을 실시하고, 표 2 에 나타내는 조건에서 연속 소둔 및 일부는 2 차 압연을 실시하여, 최종 마무리 판 두께 : 0.17 ㎜ 인 냉연 강판으로 하였다. The steel which consists of components shown in Table 1 was melted in the converter, and it was set as the slab by the continuous casting method. Subsequently, these slabs were hot-rolled on the conditions shown in Table 2, and it was set as the hot rolled sheet of plate | board thickness: 2.0 mm. Subsequently, the descaling process by pickling is given to the hot-rolled sheet obtained by the above, cold rolling is performed further, and continuous annealing and some secondary rolling are performed on the conditions shown in Table 2, and the final finishing plate thickness : It was set as the cold rolled sheet steel of 0.17 mm.
이와 같이 하여 얻어진 냉연 강판에 대해, 고용 N 량의 측정 그리고 베이킹 경화 시험 전후에 인장 시험을 실시하였다. The thus obtained cold rolled steel sheet was subjected to a tensile test before and after the measurement of the solid solution N content and the baking curing test.
(i) 고용 N 량의 분석(i) analysis of employment N quantities
화학 분석에 의해 냉연 강판 중의 N 량을 분석하고, 또 브롬에스테르에 의한 용해 처리 후의 추출 분석에 의해 AlN 으로서 존재하는 N 량을 구하였다. 냉연 강판 중의 고용 N 량은, {(냉연 강판 중의 N 량) - (AlN 으로서 존재하는 N 량)} 의 값을 사용하였다. The amount of N in the cold rolled steel sheet was analyzed by chemical analysis, and the amount of N present as AlN was determined by extraction analysis after the dissolution treatment with bromine ester. As the solid solution N content in the cold rolled steel sheet, a value of {(N amount in the cold rolled steel sheet)-(N amount present as AlN)} was used.
(ⅱ) 인장 시험(Ii) Tensile test
이들 냉연 강판의 폭 방향의 중앙부에서부터 압연 방향으로, JIS 13 호-B 인장 시험편을 채취하고, 변형 속도 크로스 헤드 속도 : 10 ㎜/s 로 인장 시험을 실시하여, 항복 응력 (YP) 과 전체 연신율 (E1) 을 측정하였다. 또한, 인장 시험은 제품화 후 1 일 이내에 실시하였다. 인장 시험편을 JIS 13 호-B 시험편으로 한 것은, 표점 (標点) 외에서 파단되는 현상을 최대한 저감시키기 위해서이다. A JIS 13-B tensile test piece was taken from the center part of the width direction of these cold-rolled steel sheets in the rolling direction, the tensile test was performed at a strain rate crosshead speed of 10 mm / s, and the yield stress (YP) and the total elongation ( E1) was measured. In addition, the tensile test was performed within 1 day after commercialization. The tensile test piece was used as a JIS 13-B test piece in order to reduce as much as possible the phenomenon of breaking outside the mark.
(ⅲ) 베이킹 경화성 시험(Iii) Baking Curability Test
이들 냉연 강판의 폭 방향 중앙부로부터 압연 방향으로, JIS 13호-B 인장 시험편을 채취하고, 2 % 의 인장 예비 변형을 부가한 후 일단 제하 (除荷) 하고, 210 ℃ × 20 min 의 도장 베이킹 처리에 상당하는 열처리를 실시하였다. 이 시험 전후에서 (ⅱ) 에 나타내는 인장 시험을 실시하였다. 이들 결과를 표 3 에 나타낸다. JIS 13 No.-B tensile test piece was taken from the width direction center part of these cold-rolled steel sheets in the rolling direction, and after adding 2% tensile predeformation, it was once unloaded and the coating baking process of 210 degreeC * 20min was carried out. The heat treatment corresponding to was performed. Before and after this test, the tensile test shown in (ii) was performed. These results are shown in Table 3.
표 3 으로부터, 본 발명예인 No.1, 4, 5 및 6 은 도장·베이킹 처리 후에 충분한 항복 응력 (YP) 및 전체 연신율 (E1) 을 갖고 있어, 예를 들어, 3 피스 가공에 필요한 강도와 가공성을 충분히 달성하고 있다. From Table 3, No. 1, 4, 5, and 6 which are examples of this invention have sufficient yield stress (YP) and total elongation (E1) after coating and baking process, For example, the strength and workability required for three-piece process Is achieving enough.
또한 압하율 : 10 % 에서 2 차 냉간 압연을 실시한 No.6 의 본 발명예에서는, 2 차 냉간 압연을 실시했음에도 불구하고, 도장·베이킹 처리 후의 전체 연신율 (E1) 이 12 % 로 10 % 초과를 확보하고 있는 것을 알 수 있다. Moreover, in the example of this invention of No. 6 which performed the secondary cold rolling at 10% of reduction ratio, although the secondary cold rolling was performed, the total elongation (E1) after coating and baking process is more than 10% by 12%. It can be seen that it is secured.
한편, 비교예의 No.2 및 3 은 각각 항복 응력 (YP) 이 부족하여 3 피스 가공에 필요한 강도와 가공성을 갖지 않기 때문에, 소정의 가공을 실시할 수 없다. On the other hand, No. 2 and 3 of the comparative example lack the yield stress (YP), respectively, and do not have the strength and workability required for three-piece processing, and therefore, the predetermined processing cannot be performed.
이상과 같이 본 발명에 의하면, 도장·베이킹 처리 후의 항복 응력 (YP) 이 500 ㎫ 이상의 강도를 갖는 고강도 캔용 강판이 얻어진다. As mentioned above, according to this invention, the steel plate for high strength cans whose yield stress (YP) after coating and baking process has the strength of 500 Mpa or more is obtained.
또한 본 발명에서는 저탄재로 하고, (1) 성분으로서 소정의 N 량을 함유시키고,Moreover, in this invention, it is set as low carbon material, and it contains predetermined N amount as (1) component,
(2) 슬래브 추출 온도를 1200 ℃ 이상으로 하여 슬래브 주조시에 발생한 AlN 을 분해시키고,(2) The slab extraction temperature is set to 1200 ° C or higher to decompose AlN generated during slab casting;
(3) 열연 코일을 650 ℃ 이하로 권취함으로써 AlN 의 석출을 억제시킴으로써, 냉연 강판의 고용 N 량의 절대량을 일정 이상 확보하고, 또한 도장 베이킹 처리 후의 시효 경화에 의해, 2 차 냉간 압연을 하지 않거나, 혹은 저압하율의 2 차 냉간 압연을 실시함으로써, 생산성을 높여 캔용 강판의 고강도화가 가능해진다. (3) By suppressing the precipitation of AlN by winding the hot rolled coil at 650 ° C. or lower, the absolute amount of the solid solution N content of the cold rolled steel sheet is secured to a certain level or more, and secondary cold rolling is not performed by aging hardening after the coating baking process. Alternatively, by performing secondary cold rolling at a low reduction ratio, the productivity can be increased to increase the strength of the steel sheet for cans.
그리고, 본 발명의 2 차 냉간 압연을 하지 않고, 즉 연속 소둔 후 1 % 정도의 조질 압연을 실시하여 얻어지는 고강도 캔용 강판은, 도장·베이킹 처리 후의 전체 연신율 (E1) 이 20 % 이상이다. 또, 2 차 냉간 압연을 실시하는 고강도 캔용 강판에서는, 2 차 냉간 압연 압하율을 바람직한 범위인 10 % 이상 15 % 미만으로 함으로써 도장·베이킹 처리 후의 전체 연신율 (E1) 을 10 % 초과로 할 수 있다. And in the steel plate for high strength cans obtained by carrying out the secondary cold rolling of this invention, ie, temper rolling about 1% after continuous annealing, the total elongation (E1) after coating and baking process is 20% or more. Moreover, in the steel plate for high strength cans which performs a secondary cold rolling, the total elongation (E1) after coating and baking process can be more than 10% by making secondary cold rolling reduction ratio into 10% or more and less than 15% which is a preferable range. .
산업상 이용가능성Industrial availability
본 발명의 캔용 강판은, 성형 후의 도장 베이킹 처리에 의해, 항복 응력이 크게 상승하고, 그에 따라 권체 강도가 크게 상승하기 때문에 강판의 박육화에 크게 기여할 수 있다. The steel sheet for cans of the present invention greatly contributes to the thinning of the steel sheet because the yield stress greatly increases due to the coating baking treatment after molding, and the winding strength greatly increases accordingly.
Claims (7)
상기 연속 소둔 후, 압하율을 10 % 이상 20 % 미만으로 하는 2 회째의 냉간 압연을 실시하는 것을 특징으로 하는 고강도 캔용 강판의 제조 방법.In mass%, C: more than 0.02% and 0.10% or less, Si: more than 0% and more than 0.10%, Mn: more than 0% and more than 1.5% or less, P: more than 0% and more than 0.20%, S: more than 0% and 0.20% or less, Al : Slab extraction temperature is set to 1200 degreeC or more for the steel slab which contains more than 0% and 0.10% or less and N: 0.020-200.0% and remainder consists of Fe and an unavoidable impurity, and finish-rolling temperature (Ar3 transformation point temperature- 30) hot rolling to above 0 ° C., winding up at 650 ° C. or below to pickling, followed by cold rolling, followed by continuous annealing,
After the said continuous annealing, the 2nd cold rolling which makes a reduction ratio 10% or more and less than 20% is performed, The manufacturing method of the steel plate for high strength cans characterized by the above-mentioned.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2008-097011 | 2008-04-03 | ||
JP2008097011 | 2008-04-03 | ||
PCT/JP2009/057153 WO2009123356A1 (en) | 2008-04-03 | 2009-04-01 | High-strength steel plate for a can and method for manufacturing said high-strength steel plate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137009033A Division KR20130045948A (en) | 2008-04-03 | 2009-04-01 | High-strength steel plate for a can and method for manufacturing said high-strength steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100119821A KR20100119821A (en) | 2010-11-10 |
KR101302817B1 true KR101302817B1 (en) | 2013-09-02 |
Family
ID=41135701
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137009033A KR20130045948A (en) | 2008-04-03 | 2009-04-01 | High-strength steel plate for a can and method for manufacturing said high-strength steel plate |
KR1020107021741A KR101302817B1 (en) | 2008-04-03 | 2009-04-01 | High-strength steel plate for a can and method for manufacturing said high-strength steel plate |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137009033A KR20130045948A (en) | 2008-04-03 | 2009-04-01 | High-strength steel plate for a can and method for manufacturing said high-strength steel plate |
Country Status (7)
Country | Link |
---|---|
US (2) | US20110076177A1 (en) |
JP (1) | JP5365312B2 (en) |
KR (2) | KR20130045948A (en) |
CN (2) | CN101983251A (en) |
BR (1) | BRPI0911139B1 (en) |
TW (1) | TWI390052B (en) |
WO (1) | WO2009123356A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5434212B2 (en) * | 2008-04-11 | 2014-03-05 | Jfeスチール株式会社 | Steel plate for high-strength container and manufacturing method thereof |
WO2011068231A1 (en) * | 2009-12-02 | 2011-06-09 | Jfeスチール株式会社 | Steel sheet for cans and method for producing same |
CA2818682C (en) * | 2010-12-01 | 2016-03-29 | Jfe Steel Corporation | Steel sheet for can having high strength and high formability, and method for manufacturing the same |
WO2012077628A1 (en) * | 2010-12-06 | 2012-06-14 | 新日本製鐵株式会社 | Steel sheet for bottom covers of aerosol cans and method for producing same |
JP5924044B2 (en) * | 2011-03-17 | 2016-05-25 | Jfeスチール株式会社 | Steel plate for aerosol can bottom having high pressure strength and excellent workability, and method for producing the same |
JP5794004B2 (en) * | 2011-07-12 | 2015-10-14 | Jfeスチール株式会社 | Steel sheet for high strength can excellent in flange workability and manufacturing method thereof |
JP5803510B2 (en) * | 2011-09-29 | 2015-11-04 | Jfeスチール株式会社 | High-strength, high-formability steel plate for cans and method for producing the same |
JP5803660B2 (en) * | 2011-12-26 | 2015-11-04 | Jfeスチール株式会社 | High-strength, high-formability steel plate for cans and method for producing the same |
CN104245985B (en) * | 2012-04-06 | 2017-08-11 | 杰富意钢铁株式会社 | High-strength high-processability steel plate and its manufacture method |
JP6019719B2 (en) * | 2012-05-02 | 2016-11-02 | Jfeスチール株式会社 | Manufacturing method of high strength and high ductility steel sheet |
CN104334460A (en) * | 2012-06-06 | 2015-02-04 | 杰富意钢铁株式会社 | Three-piece can and method for producing same |
WO2015166646A1 (en) * | 2014-04-30 | 2015-11-05 | Jfeスチール株式会社 | High-strength steel sheet and production method therefor |
BR112016025380B1 (en) * | 2014-04-30 | 2021-03-09 | Jfe Steel Corporation | high-strength steel sheet for containers and method for producing the same |
WO2016031234A1 (en) * | 2014-08-29 | 2016-03-03 | Jfeスチール株式会社 | Steel sheet for cans and method for producing same |
CN107002190B (en) * | 2014-10-28 | 2019-03-05 | 杰富意钢铁株式会社 | Two panels steel plate for tanks and its manufacturing method |
CN107429360B (en) * | 2015-03-31 | 2019-06-25 | 杰富意钢铁株式会社 | The manufacturing method of steel plate for tanks and steel plate for tanks |
JP6108044B2 (en) * | 2015-03-31 | 2017-04-05 | Jfeスチール株式会社 | Steel plate for can lid and manufacturing method thereof |
CA3012447C (en) | 2016-02-29 | 2021-02-02 | Jfe Steel Corporation | Steel sheet for can and method for manufacturing the same |
CN106086643B (en) * | 2016-06-23 | 2018-03-30 | 宝山钢铁股份有限公司 | The uncoated tinplate base and its secondary cold-rolling method of a kind of high-strength high-elongation |
EP3476964B1 (en) * | 2016-09-29 | 2021-01-27 | JFE Steel Corporation | Steel sheet for crown caps, production method therefor, and crown cap |
CN107177788B (en) * | 2017-06-01 | 2019-05-24 | 首钢集团有限公司 | A kind of secondary cold-rolling tin plate and its production method |
WO2019103041A1 (en) * | 2017-11-27 | 2019-05-31 | Jfeスチール株式会社 | Steel sheet, method for producing same, and secondary cold rolling mill |
DE102020126437A1 (en) | 2020-10-08 | 2022-04-14 | Thyssenkrupp Rasselstein Gmbh | packaging sheet product |
EP3875626B1 (en) * | 2020-03-06 | 2024-07-17 | ThyssenKrupp Rasselstein GmbH | Packaging sheet product |
DE102020106164A1 (en) | 2020-03-06 | 2021-09-09 | Thyssenkrupp Rasselstein Gmbh | Cold rolled flat steel product for packaging |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000068896A (en) * | 1997-09-04 | 2000-11-25 | 에모토 간지 | Steel plates for drum cans, method of manufacturing the same, and drum can |
JP2005350737A (en) * | 2004-06-11 | 2005-12-22 | Nippon Steel Corp | Thin steel sheet for can provided with strong can body strength and press workability and its production method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637336A (en) * | 1986-06-27 | 1988-01-13 | Nippon Steel Corp | Production of extra-thin steel sheet for welded can having excellent flanging property |
JP3534960B2 (en) * | 1996-10-08 | 2004-06-07 | 新日本製鐵株式会社 | Steel plate for welded can body having high yield strength and method for producing the same |
JP3573389B2 (en) * | 1996-10-08 | 2004-10-06 | 新日本製鐵株式会社 | Double cold rolled steel plate for weld can with easy flange forming and method of manufacturing the same |
JP3727151B2 (en) * | 1997-09-04 | 2005-12-14 | Jfeスチール株式会社 | Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum |
JP3931455B2 (en) * | 1998-11-25 | 2007-06-13 | Jfeスチール株式会社 | Steel plate for can and manufacturing method thereof |
JP4244486B2 (en) * | 1999-08-05 | 2009-03-25 | Jfeスチール株式会社 | Steel plate for high-strength can and manufacturing method thereof |
DE60124792T2 (en) * | 2000-02-23 | 2007-03-29 | Jfe Steel Corp. | High strength hot rolled steel sheet with excellent strain age properties and manufacturing process therefor |
CN1145709C (en) * | 2000-02-29 | 2004-04-14 | 川崎制铁株式会社 | High tensile cold-rolled steel sheet having excellent strain aging hardening properties |
JP4839527B2 (en) * | 2000-05-31 | 2011-12-21 | Jfeスチール株式会社 | Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same |
WO2001092593A1 (en) * | 2000-05-31 | 2001-12-06 | Kawasaki Steel Corporation | Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same |
KR100543956B1 (en) * | 2000-09-21 | 2006-01-23 | 신닛뽄세이테쯔 카부시키카이샤 | Steel plate excellent in shape freezing property and method for production thereof |
TW200827460A (en) * | 2006-08-11 | 2008-07-01 | Nippon Steel Corp | DR steel sheet and manufacturing method thereof |
JP4853325B2 (en) * | 2007-02-23 | 2012-01-11 | Jfeスチール株式会社 | Thin wall cold-rolled steel sheet for drums and method for producing the same |
JP5434212B2 (en) * | 2008-04-11 | 2014-03-05 | Jfeスチール株式会社 | Steel plate for high-strength container and manufacturing method thereof |
-
2009
- 2009-04-01 CN CN200980112164.0A patent/CN101983251A/en active Pending
- 2009-04-01 BR BRPI0911139-5A patent/BRPI0911139B1/en not_active IP Right Cessation
- 2009-04-01 KR KR1020137009033A patent/KR20130045948A/en not_active Application Discontinuation
- 2009-04-01 CN CN2013101081228A patent/CN103205657A/en active Pending
- 2009-04-01 KR KR1020107021741A patent/KR101302817B1/en active IP Right Grant
- 2009-04-01 US US12/935,564 patent/US20110076177A1/en not_active Abandoned
- 2009-04-01 WO PCT/JP2009/057153 patent/WO2009123356A1/en active Application Filing
- 2009-04-02 JP JP2009089936A patent/JP5365312B2/en active Active
- 2009-04-03 TW TW098111149A patent/TWI390052B/en active
-
2014
- 2014-03-03 US US14/195,598 patent/US20140174609A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000068896A (en) * | 1997-09-04 | 2000-11-25 | 에모토 간지 | Steel plates for drum cans, method of manufacturing the same, and drum can |
JP2005350737A (en) * | 2004-06-11 | 2005-12-22 | Nippon Steel Corp | Thin steel sheet for can provided with strong can body strength and press workability and its production method |
Also Published As
Publication number | Publication date |
---|---|
CN101983251A (en) | 2011-03-02 |
KR20100119821A (en) | 2010-11-10 |
US20140174609A1 (en) | 2014-06-26 |
WO2009123356A1 (en) | 2009-10-08 |
US20110076177A1 (en) | 2011-03-31 |
BRPI0911139A8 (en) | 2018-01-30 |
KR20130045948A (en) | 2013-05-06 |
JP5365312B2 (en) | 2013-12-11 |
JP2009263788A (en) | 2009-11-12 |
BRPI0911139A2 (en) | 2015-10-06 |
TWI390052B (en) | 2013-03-21 |
TW200948985A (en) | 2009-12-01 |
BRPI0911139B1 (en) | 2018-03-13 |
CN103205657A (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101302817B1 (en) | High-strength steel plate for a can and method for manufacturing said high-strength steel plate | |
JP5453884B2 (en) | Steel plate for high-strength container and manufacturing method thereof | |
KR101638719B1 (en) | Galvanized steel sheet and method for manufacturing the same | |
JP5135868B2 (en) | Steel plate for can and manufacturing method thereof | |
JP5609223B2 (en) | High-strength steel sheet with excellent warm workability and manufacturing method thereof | |
JP5434212B2 (en) | Steel plate for high-strength container and manufacturing method thereof | |
KR101989712B1 (en) | Steel sheet for two-piece can and manufacturing method therefor | |
JP5076544B2 (en) | Manufacturing method of steel sheet for cans | |
JP4244486B2 (en) | Steel plate for high-strength can and manufacturing method thereof | |
JP4943244B2 (en) | Steel sheet for ultra-thin containers | |
JP2001107187A (en) | High strength steel sheet for can and its producing method | |
JP5316036B2 (en) | Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof | |
CN110494581B (en) | Two-piece steel sheet for can and method for producing same | |
JP2011174101A (en) | High tensile strength cold rolled steel sheet, and method for producing the same | |
JP2007321169A (en) | Method for producing high-strength hot-dip galvanized steel sheet having excellent formability | |
JP7585896B2 (en) | Steel sheet for cans and its manufacturing method | |
JP2013147744A (en) | Steel sheet for aerosol can bottom and method for producing the same | |
KR101330286B1 (en) | High strength hot-rolled sheet steel having execellent surface properties and manufacturing method thereof | |
KR101433445B1 (en) | Method for manufacturing formable hot-rolled steel having excellent surface quality and the hot-rolled steel by the same method | |
CN115852245A (en) | Cold-rolled bainite weathering steel and preparation method thereof | |
KR20130116699A (en) | Method for manufacturing formable hot-rolled steel having excellent corrosion resistance and the hot-rolled steel by the same method | |
KR20130111684A (en) | Formable hot-rolled steel sheet having excellent surface properties and manufacturing method thereof | |
KR20130111685A (en) | Method for manufacturing high strength hot-rolled steel having excellent anti-aging and the hot-rolled steel by the same method | |
KR20130126792A (en) | Method for manufacturing high strength steel sheet having excellent surface quality and the steel steel by the same method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
A107 | Divisional application of patent | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160727 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170804 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180730 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190729 Year of fee payment: 7 |