KR101295991B1 - 고휘도 방전 램프 - Google Patents

고휘도 방전 램프 Download PDF

Info

Publication number
KR101295991B1
KR101295991B1 KR1020100000130A KR20100000130A KR101295991B1 KR 101295991 B1 KR101295991 B1 KR 101295991B1 KR 1020100000130 A KR1020100000130 A KR 1020100000130A KR 20100000130 A KR20100000130 A KR 20100000130A KR 101295991 B1 KR101295991 B1 KR 101295991B1
Authority
KR
South Korea
Prior art keywords
electrode
shaft
axis
diameter
wall
Prior art date
Application number
KR1020100000130A
Other languages
English (en)
Other versions
KR20100081278A (ko
Inventor
아고스톤 보로크즈키
스자바 호바쓰
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20100081278A publication Critical patent/KR20100081278A/ko
Application granted granted Critical
Publication of KR101295991B1 publication Critical patent/KR101295991B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode

Landscapes

  • Discharge Lamp (AREA)

Abstract

본 발명에 따르면, 방전 공간을 밀폐시키는 내벽(2)을 구비하는 방전 용기와, 상기 방전 공간 내에 수용되어 있는 이온화가능한 재료와, 적어도 2개의 전극(3)으로서, 상기 방전 용기의 내벽(2)으로부터 연장되고 전극(3)의 팁(7)에서 종료되는 전극 축(6)과 매립부(4)를 각각 구비하며, 상기 팁(7) 사이의 전기 아크의 조성을 위해 상기 공간 내에 배치되는, 상기 적어도 2개의 전극(3)을 포함하고, 상기 전극(3)의 전극 축(6) 각각은, 상기 전극(3)의 팁(7)과 매립부(4) 사이에 배치된 후육부(20-27)와, 상기 후육부(20-27)와 매립부(4) 사이에서 연장되고, 제 1 길이(X) 및 제 1 축 직경(D1)을 갖는, 제 1 축 부분(11)과, 상기 전극(3)의 팁(7)과 후육부(20-27) 사이에서 연장되고, 제 2 길이(Y) 및 제 2 축 직경(D2)을 갖는, 제 2 축 부분(12)을 포함하는, 고휘도 방전 램프(1)에 있어서, 상기 후육부(20-27)는 제 1 및 제 2 축 직경(D1, D2) 중 하나보다 더 큰 전체 직경을 갖고, 이에 의해 제 2 축 부분의 비표면과 제 1 축 부분의 비표면보다 더 큰 비표면을 각각 가지며, 열 소산에 의해 내벽(2)에서의 전극 축(6)의 온도를 제한하도록 구성되고, 상기 후육부(20-27)는 제 1 축 직경(D1)의 적어도 50%인 내벽(2)으로부터의 최소 거리를 가지며, 상기 제 2 축 부분(12)의 제 2 길이(Y)는 상기 제 2 축 직경(D2)의 적어도 100%이며, 상기 제 1 길이(X)는 제 2 길이(Y) 이하인 것을 특징으로 하는 고휘도 방전 램프가 제공된다.

Description

고휘도 방전 램프{HIGH INTENSITY DISCHARGE LAMP}
본 발명은 고휘도 방전(HID) 램프, 더 구체적으로는 온도 제한에 적합한 전극을 구비한 방전 램프에 관한 것이다.
고휘도 방전 램프의 전극 구성은 적합한 전극 작동을 위해 동시에 성취되어야만 하는 복수의 요건에 의해 지배된다. 램프는 신뢰성있게 시동되어야 하고, 정적 상태(steady-state) 조건에서 적절하게 기능하여야 한다. 전극의 시동 및 정적 상태 작동 체재는 적당한 전극 구성에 대해 다양하고 종종 모순되는 제한을 설정한다.
램프 작동의 시동(즉, 점화) 및 준비 천이 상태(run-up transition phase) 동안에, 전극은 상당한 정도의 전류 변화로 글로우 및 글로우-아크 천이 모드를 경험하게 된다. 장기간의 유효 제품 수명 동안에, 이러한 천이 상태는 방출 플라즈마로부터의 무거운 입자의 충격에 의한 스퍼터링과, 그 용융 온도에 가까운 또는 종종 그 이상인 전극 재료의 과도한 증발율로 인한, 전극 열화를 감소시키기 위해 가능한 짧아야만 한다. 전극 작동의 이러한 천이 상태 과정 중에, 방출 플라즈마가 램프에서 발생되고, 플라즈마로부터 전극으로의 적절한 에너지 전달이 일반적으로 요구된다. 전달된 에너지는, 전기장에 의해 보조되는 열이온 전극 방출이 램프를 작동 상태로 유지하도록 램프의 요구되는 테이크-오버 전류(take-over current)를 제공하고, 그 후 램프를 정적 상태 조건이 되도록 하는 온도까지 전극을 가열한다.
일단 전극이 그것의 정적 상태 작동 온도까지 가열되었다면, 전극의 공간적인 온도 분포는 방출 플라즈마와 함께 그 경계면에 요구되는 방출 전류를 제공하도록 적절하게 조절되어야 한다. 한편, 전극 전방면을 가로질러 또한 전극 축을 따르는 적절한 온도 구배는 전극 재료의 과도한 증발, 플리커링(flickering), 앵커 지점 이동, 및 전극 풋 포인트의 과열을 회피하도록 설정되어야 한다.
높은 테이크-오버, 준비 및/또는 정적 상태 작동 전류를 가진 고휘도 방전 램프, 특히 자동차용의 고휘도 방전 램프의 전극과 관련된 일련의 요건이 더 요구된다. 자동차용 고휘도 방전 램프의 경우에, 광학 프로젝션 시스템(자동차 헤드램프)의 램프의 성능에 관련된 전극 축 직경, 전극 팁의 기하학적 형상 및 배치에 대한 추가적인 제한이 있다. 또한, '즉각적인 광(instant light)' 발생과 '고온 재시동(hot re-start)' 능력의 요건은 램프 작동의 시동 및 준비 천이 상태 동안의 높은 램프 전류와 큰 전극 과부하를 의미한다. 자동차 헤드램프는 일반적으로 램프 준비 동안에 70W 내지 90W의 전력으로 가열되는데, 이러한 전력은 정격 정적 상태 램프 전력값 및 램프 작동 상태에 도달하도록 약 30초 이내에 35W까지 점진적으로 감소된다. 따라서, 이러한 준비(run-up) 상태 동안에, 전극 몸체의 대부분은 정적 상태 조건과 비교하여 더 높은 온도에서 작동된다. 이로 인하여 극도로 높은 전극 풋 포인트 온도로 되는 반면, 주변 방전 용기 벽 온도는 비작동 램프의 온도 값에 가깝게 낮다. 고온의 전극 풋 포인트 및 그 지점을 지나서의 용기 벽 내의, 즉 방출 용기의 기밀식 밀폐를 책임지는 밀봉 부분(압착 밀봉 부분)에서의, 높은 공간적인 및 일시적인 온도 구배로 인하여 전극을 둘러싸는 밀봉부의 유리에 열로 인한 기계적 응력이 매우 높은 수준으로 된다. 이러한 열로 인한 높은 기계적 응력은 램프가 반복적으로 시동된 후 오프되는 경우에 압착 또는 수축 밀봉 부분에 크랙 및 크랙 전파를 발생시킨다. 이로 인하여 누설 채널이 형성되고, 이어서 방전 챔버의 투여 성분 및 주입 가스의 손실이 있게 되어, 최종적으로는 램프가 비작동 상태가 된다. 이러한 단수명 램프는 제품 수명 성능 및 신뢰도에 심각한 영향을 미치게 되어, 주행 안전성에도 부정적인 영향을 끼치며, 차량 유지 보수 비용도 증가된다.
고휘도 방전 램프의 전극이 종종 전극 팁에 가까운 코일 구조를 구비하고 있다는 것은 종래기술에 알려져 있다. 이러한 코일 구성부품의 역할은 부분적으로는 점화를 돕는 것이고, 또한 부분적으로는 개선된 방사 냉각을 통해 전극 축을 따라 특히 전극 팁에 가까운 영역에서 적절한 축방향 온도 구배를 설정하는 것이다.
이러한 코일 구성을 가진 메탈 할라이드 램프가 예를 들어 미국 특허 제 4,105,908 호에 개시되어 있다. 이러한 공지된 램프의 글로우-아크 천이는 텅스텐 축 상의 개방된 턴스텐 와이어 코일을 포함하는 전극을 사용함으로써 가속되고, 상기 코일은 코아 상에 오버와인드(overwind)를 오픈-와인딩(open-winding)한 후, 축 상에 2층의 복합 와이어를 클로우즈-와인딩(close-winding)함으로써 제조되는 2층의 복합 와이어를 포함하고 있다. 비록, 이러한 구조가 시동 시에 스퍼터링을 감소시키고, 글로우-아크 천이 시간을 감소시키지만, 개시된 코일 구조는 전극 팁에 비교적 가깝게 배치되고, 이것은 자동차 산업에 있어서 고휘도 방전 램프에 설정되는 적용 표준과는 모순되는 것이다. 이에 의해, 이러한 공지된 램프는 이 기술 분야에서 사용될 수 없다.
고압 전기 방전 램프가 미국 특허 제 4,232,243 호에 개시되어 있다. 그 전극은 바람직하게는 전극 팁에 비교적 가깝게 배치되어 있는 텅스텐 와이어 코일을 포함하고 있고, 이러한 구성은 전술한 것과 동일한 불리한 점을 갖고 있다.
미국 특허 제 4,893,057 호에 또한 고휘도 방전 램프가 개시되어 있다. 이러한 공지된 고휘도 방전 램프에는 전극 팁으로의 아크의 신속한 천이를 제공하는 "올-메탈(all-metal)" 전극이 통합되어 있다. 전극은 팁 단부에서 밀접하게 감싸진 코일을 구비하는 소정 길이의 토륨 텅스텐 와이어(thoriated tungsten wire)를포함하여, 전극 팁의 신속한 가열이 코일 간극으로부터 팁으로의 아크의 신속한 천이를 촉진시킨다. 또한, 전극 풋 포인트에서의 온도를 제한하는 대신에, 코일은 전극 팁에 비교적 가까이 있고, 배타적으로 점화에 기여한다.
자동차용으로 고휘도 방전 램프에 현재 사용되는 전극은 더 간단한 기하학적 형상을 갖고 있다. 이러한 전극은 적어도 명확하게 아크 챔버 내부에 있지 않은 전극 축 상의 코일 구성부품을 갖고 있지 않다. 이것은 이 램프가 몇가지 추가 제한에 순응해야만 하기 때문인데, 상기 제한은 기본적으로 램프가 사용되는 헤드램프/프로젝팅 반사체의 광학 구성에 관련되어 있다. 이러한 광학적 고려와 관련된 엄격한 제한과 램프의 방전 용기의 극도로 컴팩트한 기하학적 형상은 전극 축 상의 팁에 그리고 근접하게 배치되는 추가적인 구성부품을 허용하지 않는다. 전극의 축방향 온도 분포는, 전극 축의 실린더 측의 표면 상에서 방출 플라즈마, 방사 및 전도/대류 냉각과 접하는 전극 팁에서의 입력 전력과, 전극 풋 포인트 영역을 향해 축 단면부를 가로지르는 전도 전력 손실과의 사이의 전력 균형에 의해 지배된다.
또한, 전극 풋 포인트에서의 유리 벽 상의 열적 부하를 낮추기 위해, 높은 작동 전류의 고휘도 방전 램프의 전극 상에 코일이 사용될 수 있다는 것이 당업계에 일반적으로 공지되어 있다. 전술한 전극 축의 팁에 가까이 배치된 코일과 달리, 이러한 코일이 방전 챔버 외부에 배치되어 있고, 방전 챔버의 벽 재료에 의해 포위되어 있는데, 즉 방전 챔버 단부의 유리-금속의 벌크 유리 재료 내에 '압착(pinched)'되어 있다. 전극 풋 포인트 표면을 증가시키고, 이에 따라 코일 전극 부분을 포위하는 유리 상의 단위 표면 당 전력 부하를 저하시키는 이러한 코일 구조의 이점에도 불구하고, 고휘도 방전 램프 제품에 자주 사용되지 않는다. 그 한 가지 이유로는 유리 벽 내의 코일 구성부품을 포위하는 미세 채널의 투여 손실(dose loss)이 있다. 램프 작동 동안에, 투여 성분은 방전 챔버로부터 외부로 점차 이동하고, 밀봉부 내의 전극 상의 코일 둘레에서 미세 채널을 채우게 된다. 이러한 투여 이동으로 인하여 램프 파라미터가 점차 변화하게 된다. 이것은 아크 챔버 내의 투여양과 그 온도{저온 스팟 온도(cold spot temperature)}가, 램프의 전기적인 그리고 광학적인 파라미터를 결정하는 특히, 메탈 할라이드 램프의 광속(luminous flux)과 색상 성능을 결정하는 중요한 요소이기 때문이다. 미세 채널 내의 상당한 투여 손실에 의해 유발되는 램프 성능의 이러한 점진적인(종종, 매우 급격한) 변화는 수용될 수 없다.
밀봉부 내의 전극 상의 코일을 둘러싸는 미세 채널 내의 투여 손실의 다른 결과는 마이크로 채널 내의 투여 저장소의 조성이다. 예를 들어, 메탈 할라이드 투여 성분의 열팽창 계수는 채널을 포위하는 석영 유리의 열팽창 계수보다 상당히 더 크기 때문에, 저장소 내의 메탈 할라이드 투여 성분과 석영 유리 사이의 열팽창 부조화로부터의 기계적 응력에 의해 크랙이 생성될 수 있다. 마지막으로, 램프가 누설되어 작동하지 않게 되거나, 또는 파열될 수도 있다.
따라서, 방전 용기 내의 전극 축을 따르는 향상된 열 소산(주로 방사에 의해, 그리고 추가로 방전 용기 내의 주변 방출 가스 및 수증기를 통한 전도/대류에 의해)에 의해 전극 풋 포인트의 온도를 제한하는 전극을 구비하는 고휘도 방전 램프를 제공할 특별한 필요가 있다. 또한, 매립 코일을 구비하는 것보다 더 간단한 풋 포인트 온도 제한 구조에 대한 요구가 있다. 또한, 방전 용기의 중앙 영역을 향하는 팁 부분에 인접하는 추가의 어떠한 구성요소도 구비하지 않는 전극 구조체를 갖는 이러한 램프를 제공할 필요가 있다.
본 발명의 예시적인 실시예에 있어서,
방전 공간을 밀폐시키는 벽을 구비하는 방전 용기와,
상기 방전 공간 내에 수용되어 있는 이온화가능한 재료와,
적어도 2개의 전극으로서, 상기 방전 용기의 벽으로부터 연장되고 전극의 팁에서 종료되는 전극 축과 매립부를 각각 구비하며, 상기 팁 사이의 전기 아크의 조성을 위해 상기 공간 내에 배치되는, 상기 적어도 2개의 전극을 포함하고,
상기 전극의 전극 축 각각은,
상기 전극의 팁과 매립부 사이에 배치된 후육부와,
상기 후육부와 매립부 사이에서 연장되고, 제 1 길이 및 제 1 축 직경을 갖는, 제 1 축 부분과,
상기 전극의 팁과 후육부 사이에서 연장되고, 제 2 길이 및 제 2 축 직경을 갖는, 제 2 축 부분을 포함하는, 고휘도 방전 램프에 있어서,
상기 후육부는 제 1 및 제 2 축 직경 중 하나보다 더 큰 전체 직경을 갖고, 이에 의해 제 2 축 부분의 비표면과 제 1 축 부분의 비표면보다 더 큰 비표면을 각각 가지며, 열 소산에 의해 내벽에서의 전극 축의 온도를 제한하도록 구성되고,
상기 후육부는 제 1 축 직경의 적어도 50%인 내벽으로부터의 최소 거리를 가지며, 상기 제 2 축 부분의 제 2 길이는 상기 제 2 축 직경의 적어도 100%이며, 상기 제 1 길이는 제 2 길이 이하인 것을 특징으로 하는 고휘도 방전 램프가 제공된다.
제안된 전극 구조는 바람직하게는 높은 테이크-오버, 준비 및/또는 정적 작동 전류를 가진 고휘도 방전 램프에 사용될 수 있다. 제안된 전극의 기하학적 형상은 특히 자동차용의 고휘도 방전 램프에 적용될 수 있다. 본 발명은 종래 기술에 비하여, 내벽에 가까이 배치된 후육부가 전극의 풋 포인트의 효과적인 냉각을 보장하면서, 전극 축의 잔여 부분은 영향을 받지 않으며, 이에 의해 전극 팁 둘레에 추가의 구성요소가 바람직하지 않은 용례에 사용될 수 있다는 장점을 갖는다.
이하, 본 발명을 첨부된 도면을 참고하여 더 자세히 설명하겠다.
도 1은 고휘도 방전 램프의 바람직한 실시예의 종단면도,
도 2는 도 1에 도시되어 있는 전극 구조에 대한 확대 개략 단면도,
도 3 내지 도 10은 전극 구조의 다른 바람직한 실시예에 대한 개략적인 단면도.
먼저 도 1 및 도 2를 참조하면, 고휘도 방전 램프(1)가 전극 구조의 예시적인 실시형태로 도시되어 있다. 고휘도 방전 램프(1)는 방전 공간을 둘러싸는 내벽(2)을 구비하는 방전 용기와, 상기 공간 내에 수용되어 있는 이온화가능한 재료를 포함하고 있다.
적어도 2개의 전극(3)이 램프 내에 배치되어 있고, 각각 방전 용기의 압착 밀봉 또는 수축 밀봉 부분(5)에 의해 바람직하게는 내벽(2) 내에 밀봉되어 있는 매립부(4)를 구비하고 있다. 전극(3)은 또한 내벽(2)으로부터 팁(7)으로 연장되어 있는 전극 축(6)을 구비하고 있다. 전극은 팁(7) 사이에 전기 아크를 조성하기 위해 방전 공간 내에 배치되어 있다.
전극(3)의 각 전극 축(6)은,
전극(3)의 팁(7)과 매립부(4) 사이의 후육부(20)와,
상기 후육부(20)와 매립부(4) 사이에서 연장되고, 제 1 길이(X) 및 제 1 축 직경(D1)을 구비하는 제 1 축 부분(11)과,
상기 전극의 팁(7)과 후육부(20) 사이에서 연장되고, 제 2 길이(Y)와 제 2 축 직경(D2)을 구비하는 제 2 축 부분(12)을 포함하고 있다. 상기 후육부는 바람직하게는 전극 축(6) 상에 배치된 코일로 형성된다.
후육부(20)는 제 1 및 제 2 축 직경(D1, D2)이 반드시 서로 다르지는 않다고 가정하면 제 1 및 제 2 축 직경(D1, D2) 중 임의의 것보다 더 큰 전체 직경(D)을 갖고 있다. 후육부가 더 큰 직경을 갖고 있기 때문에, 후육부는 또한 제 1 및 제 2 축 부분(11, 12) 보다 큰 비표면(specific surface)을 갖고 있다. 이 문장에서, 전체 직경은 모든 포위하는 직경 즉, 전극 축과 평행하고 후육부(20)를 밀폐시키는 가장 작은 실제 원통의 직경을 의미한다. 이 문장에서, 비표면은 소정의 전극 부분에 대한 부분 표면/부분 길이의 비를 의미한다. 더 큰 비표면으로 인하여, 후육부(20)는 내벽(2)에서 즉, 전극 풋-포인트(foot point)에서 열 소산에 의해 주로 방사에 의해서 그리고 추가로 대류/전도에 의해 방전 용기 내의 수증기와 주변 가스를 통해 전극 축(6)의 온도를 제한한다.
제안된 전극 구조의 원하는 효과를 달성하기 위해, 후육부(20)는 방전 용기의 내벽(2)과 접촉하지 않고, 바람직하게는 내벽(2)에 인접하게 배치되어야 한다. 이러한 방식으로, 후육부(20) 둘레에서 내벽(2)에 대한 어떠한 부정적이고 집중적인 과열 효과도 없이, 전극 풋 포인트의 국부적인 온도 제한이 전극 축(6)의 향상된 열 소산에 의해 즉, 방전 용기 단부에서의 용기 내벽(2)과 더 고온인 전극 축(6) 사이에서의 향상된 열 교환에 의해 달성된다. 우리의 실험에 따르면 후육부(20)는 제 1 축 직경(D1)의 적어도 50%의 최소 거리만큼 내벽(2)으로부터 이격되어야만 한다. 이 문장에서, 최소 거리는 후육부의 가장 가까운 지점의 내벽(2)으로부터 내벽(2)까지의 거리를 의미한다. 이러한 최소 거리는 내벽(2)과 후육부(20)의 원하지 않은 접촉과 관련된 제조 및 배치 정확성에 대한 우려를 제거하면서, 또한 전극 풋 포인트의 국부적인 온도 제한 기능을 보장할 것이다. 또한, 후육부(20)는 정적 아크를 보장하기 위해 즉, 팁(7)과 후육부(20) 사이의 아크 "점핑(jumping)"에 의해 유발되는 플리커링 효과(flickering effect)를 회피하기 위해, 전극의 팁(7)으로부터 이격되어야만 한다. 우리의 실험에 따르면 플리커링 효과는 제 2 축 부분의 길이(Y)가 제 2 축 직경(D2)의 적어도 100%라면 회피된다. 전극 풋 포인트의 국부적인 온도 제한을 위해, 전극 팁(7)에서의 아크 안정성을 위해, 그리고 방전 용기의 중앙 영역이 추가적인 전극 구성부품이 없게 되도록 하기 위해, 1 길이(X)는 제 2 길이(Y) 이하이어야 한다.
따라서, 제안된 전극 구조는 전극 축 상에 후육부(20)를 갖고 있다. 후육부(20)는 바람직하게는 전극 축 상에 배치된 코일 요소로서 형성되어 있다. 그러나, 종래 기술의 전극 구조와 달리, 이러한 후육부(20)는 전부 아크 챔버의 내측에 위치하고, 방전 용기 벽과 어떠한 직접적인 접촉이 전혀 없다. 후육부(20)는 전극 풋 포인트에 가능한 가깝게 배치되어야만 한다. 이러한 방식으로, 일반적인 종래 기술의 논의에서 설명한 바와 같이 방전 용기의 벽 재료에 의해 덮혀져 있는 코일을 갖고 있는 전극 구성의 단점이 제거될 수 있다. 이에 의해, 코일 둘레에서의 유리-금속에서의 미세 크랙의 발생 및 전파가 회피될 수 있다.
동시에, 전극 축(6)의 풋 포인트의 온도가 제한되는데, 즉 전극 축(6)은 후육부의 표면 상의 주요 방사 파워 손실에 의해 효과적으로 냉각된다. 이러한 주요 방사 냉각 효과는, 전극 축(6)의 온도가 전극의 전류 과부하로 인해 후육부 영역에서 훨씬 더 높은 경우에, 램프의 시동 및 준비 상태 동안에 가장 효과적이다. 이러한 방식으로, 제안된 전극 구조에서, 전극 풋 포인트에서의 방전 챔버 벽 상의 열적 부하는, 전극 축(6)을 통해 풋 포인트를 향하는 전도된 파워가 후육부(20) 상의 주요 방사 파워 손실의 양에 의해 감소되기 때문에 저하된다.
한편, 제안된 전극 구조의 후육부(20)는 전극의 팁(7)으로부터 이격되어 있기 때문에, 전극 축(6)의 전면의 온도는 기본적으로 램프의 정적 작동 상태 하에서 후육부(20)에 의해 영향을 받지 않는다. 이것이 코일이 전극 축의 팁 영역에 가까이 배치되어 있는 종래 기술의 구성과 대비되는 것이다. 변화되지 않는 전극 팁 온도 분포에 추가하여, 전극의 팁 부분과 관련된 광학적 제한도 제안된 구조에 의해 쉽게 만족될 수 있는데, 그 이유는 팁에 인접한 전극 축의 기하학적 형상이 후육부(20)에 의해 영향을 받지 않기 때문이다.
후육부(20)의 치수는 전극 풋 포인트와 전극 팁에서의 온도와, 전극 팁 영역에 대한 기하학적 제한과, 제조 및 배치 정확성 제한을 위해 설정된 동시 요건에 따라 조정되어야만 한다. 후육부(20)는 정적 상태 조건 동안에 훨씬 더 감소된 최적 방사 파워 손실 뿐 아니라 시동 및 준비 상태 동안에 고 요건(주요) 방사 파워 손실을 보장하여야만 한다.
바람직한 실시예에 있어서, 제 2 길이는 제 2 축 직경(D2)의 적어도 150%, 바람직하게는 적어도 200%이다. 팁(7)으로부터의 이러한 이격은 전극 풋 포인트에 대한 더욱 집중적인 냉각을 가능하게 하는 한편, 팁(7)의 주변에서의 전극 파라미터가 덜 영향을 받는다.
전술한 실시예에 있어서, 제 1 축 직경(D1) 및 제 2 축 직경(D2)은 그 길이를 따라 균일한 직경을 갖는 전극 축(6)을 적용함에 따라 동일하다. 그러나, 제 1 및 제 2 축 직경(D1, D2)은 상이할 수도 있는 반면, 후육부(20)는 항상 제 1 및 제 2 축 직경(D1, D2) 중 임의의 것보다 더 큰 전체 직경(D)을 갖고 있다.
후육부는 또한 전극 축(6) 상의 축방향 유사 대칭 몸체(axially quasi-symmetric body)로서 형성될 수 있다. 도 3 내지 도 10에는 전극 축(6) 상의 축방향 유사 대칭 몸체에 대한 예시적인 실시예가 도시되어 있다. 이러한 몸체는 별개로 제조될 수 있고, 예를 들어 전극 축(6) 상에서 용접에 의해 고정되거나, 또는 전극 축(6)과 일체로 제조될 수 있다. 몸체는 비표면을 더 증가시켜서 전극 풋 포인트를 더 효과적으로 냉각하기 위해 리브형의 또는 편평하지 않은 표면을 가질 수 있다. 후육부(21)는 도 3에 도시되어 있는 것과 같이 원통형일 수 있다. 원형 리브(31)가 마련되어 있는 원통형의 후육부(22)가 도 4에 도시되어 있다. 몸체는 구형, 타원형, 또는 원추형 형상을 가질 수도 있다. 타원형 몸체를 가진 후육부(23)가 도 5에 도시되어 있다.
특히 바람직한 실시예에 있어서, 후육부의 몸체는 내벽(2)을 향해 경사져 있는 형상을 가지고 있고, 경사진 형상은 바람직하게는 방전 용기의 내벽(2)의 형상을 따른다. 이러한 후육부(24, 25)는 각각 도 6 및 7에 과장된 형태로 도시되어 있다. 후육부(24, 25)의 치수는 아크 튜브 자체의 임의의 제조 문제점을 회피하도록 선택되어야만 하는데, 즉 후육부(24, 25)는 용기의 단부 부분의 밀봉이 수행되기 이전에 방전 용기의 단부 부분의 구멍에 장착하여 끼워넣어야만 한다. 도 6의 후육부(24)는 방전 용기의 내벽(2)과 대체로 평행하게 뻗어 있는 외벽을 구비한 타원형 부분 형상을 갖고 있다. 도 7의 후육부(25)에는 원형 리브(32)가 마련되어 있는데, 그 에지는 방전 용기의 내벽(2)의 형상을 대체로 추종하여, 즉 리브(32)의 에지와 내벽(2) 사이의 거리가 모든 리브(32)에 대해 대략 동일하다. 이러한 실시예는 2가지의 주요한 이점을 갖고 있다. 첫째로, 후육부(24, 25)는 대체로 균일한 방식으로 내벽(2)을 가열하고, 이에 의해 방전 용기의 국부적인 과열을 회피하게 된다. 둘째로, 후육부(24, 25)는 가능한 내벽(2)에 가깝게 배치되면서, 가능한 최대 비표면을 제공하여, 이에 의해 높은 열 소산 효율을 보장하고 방전 용기의 중앙 부분이 어떠한 추가적인 전극 요소가 없게 한다. 이것은 적용가능한 표준이 램프의 중앙 영역에서의 특수한 전극 요소의 추가를 금지할 수 있는 예를 들어, 자동차 용례에서 매우 중요하다.
더 바람직한 실시예에 있어서, 후육부는 전극 축(6) 상의 코일로서 형성되고, 코일은 바람직하게는 전극 축 상에 용접되고, 더 바람직하게는 용융된다. 이러한 용융된 후육부(26)는 도 8에서 볼 수 있다. 용접 또는 용융된 구조에 의해, 후육부(26)와 전극 축(6)의 접촉면 사이에서의 열전도가 향상되고, 더 견고한 구성이 달성된다. 도 9에 도시되어 있는 바와 같이, 후육부(27)를 형성하는 코일은 바람직하게는 매립부(4)를 향하는 그 측부 상에서보다 팁을 향하는 그 측부상에 더 많은 권취층을 갖는 다중층 코일일 수 있다. 후육부는 종래 기술의 코일이 전극 팁(7)에 형성되는 것과 본질적으로 동일한 방식으로 전극 축(6)의 표면 둘레에 매우 용이하게 코일로서 형성될 수 있다. 경사진 코일 구조는 도 6 및 도 7의 실시예와 같은 유사한 장점을 갖는다.
전술한 전극 구조의 실시예는 전극 팁에 종래 기술의 전극 제조 기법의 적용을 가능하게 한다. 도 10에 도시되어 있는 바와 같이, 후육부(20)에 추가하여, 제 2 축 부분(12)에는 팁에서의 추가의 후육부(33)가 마련되어 있을 수 있다. 추가의 후육부(33)는 바람직하게는 종래 기술로부터 알려진 코일로서 형성되는데, 이 코일은 제 2 축 부분(12) 상에 용접, 더 바람직하게는 용융되고, 예를 들어 구형상으로 성형될 수 있다. 추가의 후육부(33)는 후육부의 임의의 실시형태로 사용될 수 있다.
전극 축 및 후육부는 당업계에서 사용되는 임의의 적절한 재료일 수 있다. 예를 들어, ThO2, 희토류 산화물과 같은 첨가물을 갖거나 첨가물이 없는 텅스텐, 또는 예를 들어, K, Al, 및/또는 Si를 함유하고 있는 텅스텐 합금이 전극 축 및 후육부에 적합하다. 후육부에 대해서는, 추가 합금 첨가물로서 텅스텐을 갖거나 텅스텐이 없는, Mo, Re, Os 및/또는 이들의 합금과 같은 낮은 용융 온도를 가진 재료도 사용될 수 있다.
전술한 전극 구성은 특히 높은 테이크-오버, 준비 및/또는 정적 상태 작동 전류를 가진 고휘도 방전 램프에, 더 구체적으로는 자동차용 고휘도 방전 램프에 적용될 수 있다. 제어된 전극 구성은 개선된 신뢰성과 더 긴 제품 수명을 제공한다. 이러한 이득은 전극 풋 포인트에서의 방전 램프의 벽 상의 열적 부하를 감소시켜서, 램프가 반복적으로 온-오프되는 동안에 전극을 둘러싸는 방전 용기의 벽에서의 크랙의 발생 및 전파 가능성을 감소시킴으로써 달성된다.
최선의 실시형태를 포함하고 있는 전술한 설명은 실시예를 이용하여 본 발명을 개시하고 있고, 또한 당업자가 본 발명을 제조 및 이용가능하게 하고 있다. 본 발명의 보호 범위는 특허청구범위에 의해 정해지며, 당업자가 상정할 수 있는 다른 실시예를 포함할 수 있다. 이러한 다른 실시예는, 특허청구범위의 문자 그대로의 표현과 다르지 않은 구성 요소를 갖고 있거나, 또는 특허청구범위의 문자 그래로의 표현과 작은 차이를 가진 균등한 구성 요소를 포함하고 있다면, 특허청구범위의 보호범위 내에 있는 것으로 의도된다.
1 : 고휘도 방전 램프 2 : 내벽
3 : 전극 4 : 매립부
5 : 압착 밀봉 부분 6 : 전극 축
11 : 제 1 축 부분 12 : 제 2 축 부분
20 : 후육부 31, 32 : 원형 리브
X : 제 1 길이 Y : 제 2 길이
D1 : 제 1 축 직경 D2 : 제 2 축 직경

Claims (16)

  1. 고휘도 방전 램프에 있어서,
    방전 공간을 밀폐시키는 내벽을 구비하는 방전 용기와,
    상기 방전 공간 내에 수용되어 있는 이온화가능한 재료와,
    적어도 2개의 전극으로서, 상기 방전 용기의 상기 내벽으로부터 연장되어 상기 전극의 팁에서 종료되는 전극 축과 매립부를 각각 구비하며, 상기 팁 사이의 전기 아크의 조성을 위해 상기 방전 공간 내에 배치되는, 상기 적어도 2개의 전극을 포함하고,
    상기 전극의 상기 전극 축의 각각은,
    상기 전극의 상기 팁과 상기 매립부 사이에 배치된 후육부와,
    상기 후육부와 상기 매립부 사이에서 연장되고, 상기 매립부와 동일한 직경의 제 1 축 직경 및 제 1 길이를 갖는 제 1 축 부분과,
    상기 전극의 상기 팁과 상기 후육부 사이에서 연장되고, 제 2 길이 및 제 2 축 직경을 갖는 제 2 축 부분을 포함하며,
    상기 후육부는 상기 제 1 및 제 2 축 직경 중 임의의 것보다 더 큰 전체 직경을 가짐으로써, 상기 제 1 축 부분의 비표면 및 상기 제 2 축 부분의 비표면 각각보다 더 큰 비표면을 가지며, 열 소산에 의해 내벽에서의 상기 전극 축의 온도를 제한하도록 구성되고,
    상기 후육부는 상기 제 1 축 직경의 적어도 50%인 상기 내벽으로부터의 최소 거리를 가지며, 상기 제 2 축 부분의 상기 제 2 길이는 상기 제 2 축 직경의 적어도 100%이며, 상기 제 1 길이는 상기 제 2 길이 이하이며,
    상기 후육부는 경사진 형상을 갖는 축방향 유사 대칭 몸체(axially quasi-symmetric body)로 형성되고, 상기 축방향 유사 대칭 몸체의 상기 경사진 형상은 상기 방전 용기의 상기 내벽의 형상을 따르는
    고휘도 방전 램프.
  2. 제 1 항에 있어서,
    상기 제 2 길이는 상기 제 2 축 직경의 적어도 150%인 것을 특징으로 하는
    고휘도 방전 램프.
  3. 제 1 항에 있어서,
    상기 제 2 길이는 상기 제 2 축 직경의 적어도 200%인 것을 특징으로 하는
    고휘도 방전 램프.
  4. 제 1 항에 있어서,
    상기 제 1 축 직경 및 상기 제 2 축 직경은 서로 동일한 것을 특징으로 하는
    고휘도 방전 램프.
  5. 삭제
  6. 제 1 항에 있어서,
    상기 축방향 유사 대칭 몸체는 상기 축방향 유사 대칭 몸체의 비표면을 더 증가시키도록 리브형 표면을 구비하는 것을 특징으로 하는
    고휘도 방전 램프.
  7. 제 1 항에 있어서,
    상기 축방향 유사 대칭 몸체는 구형, 원통형, 타원형 또는 원추형 형상을 갖는 것을 특징으로 하는
    고휘도 방전 램프.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 제 1 항에 있어서,
    상기 제 2 축 부분은 상기 팁에서 추가의 후육부를 구비하는 것을 특징으로 하는
    고휘도 방전 램프.
  15. 제 14 항에 있어서,
    상기 추가의 후육부는 상기 전극 축 상에 용접 또는 용융된 코일로서 형성되는 것을 특징으로 하는
    고휘도 방전 램프.
  16. 삭제
KR1020100000130A 2009-01-05 2010-01-04 고휘도 방전 램프 KR101295991B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/348,662 2009-01-05
US12/348,662 US8188663B2 (en) 2009-01-05 2009-01-05 High intensity discharge lamp

Publications (2)

Publication Number Publication Date
KR20100081278A KR20100081278A (ko) 2010-07-14
KR101295991B1 true KR101295991B1 (ko) 2013-08-13

Family

ID=42234811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100000130A KR101295991B1 (ko) 2009-01-05 2010-01-04 고휘도 방전 램프

Country Status (6)

Country Link
US (1) US8188663B2 (ko)
JP (1) JP5301423B2 (ko)
KR (1) KR101295991B1 (ko)
CN (1) CN101866812A (ko)
DE (1) DE102009059329A1 (ko)
TW (1) TWI390585B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919759B2 (ja) * 2011-11-25 2016-05-18 株式会社Gsユアサ セラミックメタルハライドランプ
EP3050180B1 (en) * 2013-09-24 2018-12-05 The Board of Trustees of the University of Illionis Modular microplasma microchannel reactor devices, miniature reactor modules and ozone generation devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017849A (ja) * 1983-07-08 1985-01-29 Toshiba Corp 小形金属蒸気放電灯
JPS6028155A (ja) * 1983-07-26 1985-02-13 Toshiba Corp 小形金属蒸気放電灯
JP2006269081A (ja) * 2005-03-22 2006-10-05 Ushio Inc ショートアーク放電ランプ
JP2008235128A (ja) * 2007-03-23 2008-10-02 Orc Mfg Co Ltd 放電ランプ及びその電極の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177714A (en) * 1936-10-27 1939-10-31 Gen Electric Gaseous electric discharge lamp device
BE541432A (ko) * 1954-09-22
JPS5416670B2 (ko) * 1973-07-26 1979-06-23
JPS5111686A (ja) * 1974-07-19 1976-01-29 Tokyo Shibaura Electric Co Kinzokujokihodento
US4105908A (en) * 1976-04-30 1978-08-08 General Electric Company Metal halide lamp having open tungsten coil electrodes
NL7711134A (nl) * 1976-10-19 1978-04-21 Gen Electric Co Ltd Elektrische hoge druk ontladingslamp.
JPS5676156A (en) * 1979-11-24 1981-06-23 Matsushita Electronics Corp High-pressure sodium-vapor lamp
US4893057A (en) * 1983-05-10 1990-01-09 North American Philips Corp. High intensity discharge lamp and electodes for such a lamp
JPS62177853A (ja) * 1986-01-31 1987-08-04 Toshiba Corp 小形金属蒸気放電灯
JP4535808B2 (ja) * 2003-08-26 2010-09-01 昭和電工株式会社 縮れ状炭素繊維とその製法
JP2006269165A (ja) * 2005-03-23 2006-10-05 Ushio Inc 超高圧水銀ランプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017849A (ja) * 1983-07-08 1985-01-29 Toshiba Corp 小形金属蒸気放電灯
JPS6028155A (ja) * 1983-07-26 1985-02-13 Toshiba Corp 小形金属蒸気放電灯
JP2006269081A (ja) * 2005-03-22 2006-10-05 Ushio Inc ショートアーク放電ランプ
JP2008235128A (ja) * 2007-03-23 2008-10-02 Orc Mfg Co Ltd 放電ランプ及びその電極の製造方法

Also Published As

Publication number Publication date
DE102009059329A1 (de) 2010-07-08
TWI390585B (zh) 2013-03-21
JP5301423B2 (ja) 2013-09-25
US8188663B2 (en) 2012-05-29
CN101866812A (zh) 2010-10-20
TW201042701A (en) 2010-12-01
US20100171422A1 (en) 2010-07-08
KR20100081278A (ko) 2010-07-14
JP2010177188A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
KR101369190B1 (ko) 고 휘도 방전 램프 및 그 제조 방법
US7489081B2 (en) Light burner and method for manufacturing a light burner
WO2008110967A1 (en) Low power discharge lamp with high efficacy
KR101295991B1 (ko) 고휘도 방전 램프
EP2321838B1 (en) Discharge lamp with improved discharge vessel
TWI396222B (zh) Discharge lamp
JP4431174B2 (ja) 高圧ガス放電ランプ
US20050077828A1 (en) Discharge lamp
KR20100031692A (ko) 고 강도 방전 램프, 고 강도 방전 램프를 위한 전극 및 전극 제조 방법
JP4872454B2 (ja) 電磁波励起光源装置
US20070182330A1 (en) Lamp with improved lamp behaviour during initiation of the lamp
JP2004111373A (ja) 金属蒸気放電ランプおよび照明装置
JP2007123017A (ja) 水銀フリーメタルハライドランプ
JP2009146629A (ja) 放電ランプ
JP2002075281A (ja) 放電灯
KR20120069557A (ko) 쇼트 아크형 방전 램프

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee