KR101275364B1 - 초저온 공기 분리 시스템 - Google Patents

초저온 공기 분리 시스템 Download PDF

Info

Publication number
KR101275364B1
KR101275364B1 KR1020087022034A KR20087022034A KR101275364B1 KR 101275364 B1 KR101275364 B1 KR 101275364B1 KR 1020087022034 A KR1020087022034 A KR 1020087022034A KR 20087022034 A KR20087022034 A KR 20087022034A KR 101275364 B1 KR101275364 B1 KR 101275364B1
Authority
KR
South Korea
Prior art keywords
turbine
stream
column
gas stream
pressure
Prior art date
Application number
KR1020087022034A
Other languages
English (en)
Other versions
KR20080100362A (ko
Inventor
닐 마크 프로서
Original Assignee
프랙스에어 테크놀로지, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38477572&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101275364(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 프랙스에어 테크놀로지, 인코포레이티드 filed Critical 프랙스에어 테크놀로지, 인코포레이티드
Publication of KR20080100362A publication Critical patent/KR20080100362A/ko
Application granted granted Critical
Publication of KR101275364B1 publication Critical patent/KR101275364B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

두 개의 개별적인 터보 팽창기(14, 24)를 사용하여 액체 생산을 증가시키며, 하나(14)는 저압 칼럼(42)에 공급하기 충분한 압력보다 높지 않은 압력으로 배기하고, 다른 하나(24)는 고압 칼럼(40)에 공급하기 충분한 압력보다 낮지 않은 압력으로 배기, 터보 팽창기 중 하나(24)는 주변 온도 또는 적당히 냉각된 공급 공기를 공급받고 양호하게는 더 많은 또는 더 적은 액체 제품이 필요한지에 따라 간헐적으로 작동되는 초저온 정류에 의해 공기를 분리시키는 시스템.
Figure R1020087022034
초저온 공기 분리, 공기 분리, 초저온 정류, 공기 분리 장치

Description

초저온 공기 분리 시스템 {CRYOGENIC AIR SEPARATION SYSTEM}
본 발명은 전체적으로 초저온 공기 분리에 관한 것이며, 보다 구체적으로 액체 제품의 증가된 양을 생산하기 위한 초저온 공기 분리에 관한 것이다.
초저온 공기 분리는 그 과정을 실행하기 위해서는 저온 냉각을 생성할 필요성이 있기 때문에 매우 에너지 집약적인 과정이다. 구체적으로 이는 시스템으로부터 많은 양의 냉각을 필수적으로 제거해야하고, 많은 양의 액체 제품이 회수되는 경우이다. 따라서, 다량의 액체 생산 모드에서는 물론 소량의 액체 생산 모드에서도 능률적인 작업을 가능케 하는 초저온 공기 분리 장치 작동을 위한 방법이 매우 바람직할 것이다.
고압 칼럼(higher pressure column) 및 저압 칼럼(lower pressure column)을 구비한 이중 칼럼(double column)을 사용하는 초저온 공기 분리 장치 작동법이며,
(A) 125K 내지 200K 범주 내의 온도를 구비한 제1 가스 스트림을 냉터빈(cold turbine)에 통과시키고, 제1 가스 스트림을 냉터빈 내에서 저압 칼럼의 작동 압력보다 3 psi 이하만큼 큰 압력으로 터보 팽창시키며, 터보 팽창된 제1 가스 스트림을 저압 칼럼, 대기 및 제품 스트림 중 하나 이상으로 통과시키는 단계와,
(B) 200K 내지 320K 범주 내의 온도를 구비한 제2 가스 스트림을 온터빈(warm turbine)에 통과시키고, 제2 가스 스트림을 온터빈 내에서 고압 칼럼의 작동 압력 이상의 압력으로 터보 팽창시키며, 터보 팽창된 제2 가스 스트림을 고압 칼럼 및 냉터빈 중 하나 이상으로 전달하는 단계를 포함하는 초저온 공기 분리 장치 작동법이다.
본원에서 사용되는 용어 "칼럼(column)"은 증류 또는 분별 칼럼 또는 영역, 즉, 예컨대 칼럼 내에 장착된 수직으로 이격된 일련의 트레이 또는 플레이트상에 및/또는 조직화된 또는 무작위 패킹과 같은 패킹 요소 상에 증기상 및 액체상을 접촉시킴으로써 유체 혼합물의 분리를 수행하기 위해 액체상 및 증기상을 역류로 접촉시키는 접촉 칼럼 또는 영역을 의미한다. 증류 칼럼에 대한 추가적인 논의는 케미컬 엔지니어스 핸드북(Chemical Engineer's Handbook, fifth edition, edited by R.H. Perry and C. H. Chilton, Mcgraw-Hill Book Company, New York)의 제13장 연속적인 증류 공정 편을 참조한다. 이중 칼럼(double column)은 저압 칼럼(lower pressure column)의 하부 단부의 관계에서 열교환하는 상부 단부를 구비한 고압 칼럼(higher pressure column)을 포함한다.
증기 및 액체 접촉 분리 공정은 구성 성분의 증기압의 차이에 종속한다. 더 높은 증기압(또는 더 휘발성이거나 낮은 비등점)의 구성 성분은 증기상에 집중되는 경향이 있음에 반해, 더 낮은 증기압(또는 덜한 휘발성 또는 높은 비등점)의 구성 성분은 액체상에 집중되는 경향이 있다. 부분적인 응축은 증기 혼합물의 냉각이 휘발성 구성 성분(들)을 증기상으로 집중시키는데 사용될 수 있으며 그로 인해 덜 휘발성의 구성 성분(들)이 액체상에 있게 되는 분리 공정이다. 정류(rectification) 또는 연속 증류는 증기상 및 액체상의 역류 처리에 의해 얻어지는 바와 같이, 연속하는 기화와 응축을 결합한 분리 공정이다. 증기상 및 액체상의 역류 접촉은 일반적으로 단열적이며, 양상들간의 일체의(단계적) 또는 시차적(연속적) 접촉을 포함할 수 있다. 혼합물을 분리하기 위한 정류 원리에 사용되는 분리 공정 장치는 때때로 정류 칼럼, 증류 칼럼 또는 분별 칼럼의 용어를 서로 바꿔 사용한다. 초저온 정류는 150 절대온도 (K) 이하에서 적어도 일부가 수행되는 정류 공정이다.
본원에서 사용되는 용어 "간접적 열교환"의 의미는 두 유체가 서로 물리적인 접촉 또는 혼합되지 않고 열교환이 일어나는 것을 의미한다.
본원에서 사용되는 용어 "공급 공기"는 주변 공기와 같이 주로 산소, 질소 및 아르곤을 포함하는 혼합물을 의미한다.
본원에서 사용되는 용어 칼럼의 "상부" 및 "하부"는 칼럼의 중심에서 위 그리고 아래 부분을 의미한다.
본원에서 사용되는 용어 "터보 팽창" 및 "터보 팽창기" 또는 "터빈"은 각각 터빈 장치를 통과하여 유체의 압력과 온도를 감소시켜 냉각을 발생시키는 고압 유체의 유동을 위한 방법 및 장치를 의미한다.
본원에서 사용되는 용어 "초저온 공기 분리 장치"는 관, 밸브, 열교환기 등과 상호 접속됨은 물론 공급 공기가 초저온 정류에 의해 분리되어 질소, 산소 및/또는 아르곤을 생산하는 칼럼 또는 칼럼들을 의미한다.
본원에서 사용되는 용어 "압축기"는 일의 적용에 의하여 가스의 압력을 증가시키는 기계를 의미한다.
본원에서 사용되는 "과냉각(subcooling)"은 액체를 현재 압력에서의 포화 온도보다 더 낮은 온도로 냉각시키는 것을 의미한다.
본원에서 사용되는 용어 칼럼의 "작동 압력"은 칼럼의 기저부에서의 압력을 의미한다.
도1 내지 도5는 본 발명의 초저온 공기 분리법의 실시를 위한 양호한 구성의 개략도이다.
도6은 도1에서 도시된 본 발명의 초저온 공기 분리 시스템의 실시에서의 주 열교환기를 위한 냉각 커브의 그래프이다.
도면에서의 도면 부호는 동일한 요소에서는 동일하다.
전체적으로, 본 발명은 초저온 공기 분리 장치 작동법이며, 공급 공기(feed air) 또는 고압 칼럼(higher pressure column)으로부터의 질소 풍부화 증기(nitrogen-enriched vapor)일 수 있으며 그 온도가 일반적으로 125K 내지 200K, 더 양호하게는 140K 내지 190K의 범위를 가지는 가스 스트림이 냉터빈(cold turbine)으로 일컬어지는 제1 터빈을 통과하며 저압 칼럼(lower pressure column)의 작동 압력보다 3 psi(pounds per square inch) 이하만큼 큰 압력으로 터보 팽창된다. 냉터빈으로부터의 방출은 저압 칼럼 내부로 전달되고 또는 전달되거나 대기로 통기되거나 제품으로서 회수된다. 냉터빈이 작동하는 시간 중 최소한 일정 시간 동안, 일반적으로 200K 내지 320K, 보다 양호하게는 280K 내지 320K 범위 내의 온도를 갖는 공급 공기 스트림이 온터빈(warm turbine)으로 일컬어지는 제2 터빈을 통과하며 고압 칼럼의 작동 압력 이상의 압력까지 터보 팽창된다. 온터빈으로부터의 방출은 고압 칼럼 및/또는 냉터빈 내부로 전달된다. 더 적은 액체 제품 생산이 필요할 때에는 동력 소비를 감소시키기 위하여 온터빈 및 부스터에 가압된 공기의 유동을 종결시키거나 그 공급 압축기를 차단함으로써, 온터빈을 끌 수 있다. 또한, 온터빈 및 부스터로의 공급 유동 및/또는 온터빈 및 부스터의 유입 압력은 액체 제품의 양을 더 많이 또는 더 적게 생산할 필요가 있는지에 따라 정상 작동 범위 내에서 조절될 수 있다.
본 발명은 도면에서 도면 부호와 함께 더 자세히 설명된다. 도면에 도시된 초저온 공기 분리 장치는 아르곤 칼럼(44)과 함께 고압 칼럼(40)과 저압 칼럼(42)을 구비한 이중 칼럼(double column)을 포함한다. 냉터빈은 도면 부호 "14"로 식별되며 온터빈은 도면 부호 "24"로 식별된다.
도1을 참조하면, 공급 공기(60)는 압축기(1) 내에서 압축되고, 압축된 공급 공기 스트림(61)은 후냉각기(3; aftercooler) 내에서 냉각되어 스트림(62)을 생성한다. 고압 칼럼에 공급하기 위한 충분한 압력까지 압축하고 후냉각된 뒤, 공기 스트림(62)은 예비 정화기(5; prepurifier)를 통과한다. 스트림(63)은 스트림(64, 70, 80)으로 분리된다. 스트림(64)은 스트림(63)의 가장 큰 부분을 나타낸다. 그것은 주 열교환기(50; primary heat exchanger)로 직접 공급되어, 그곳에서 이슬점 온도 이상으로 천천히 냉각되고 스트림(66)으로 고압 칼럼(40)의 기저부에 공급된다. 부스터 공기 압축기(7)는 공기 스트림(70)을 압축하여 압축된 스트림(71, 90)을 생성한다. 압축기(7)의 방출 압력(스트림(71)의 압력)은 열교환기(50)로 유입하는 펌핑된 액체 산소(스트림(144))의 압력과 관련된다. 스트림(71)의 유동은 일반적으로 전체 공기 유동의 26% 내지 35%이다. 후냉각기(8)를 통과한 후, 스트림(72)은 열교환기(50) 내에서 냉각되고 응축(또는 초임계 압력 이상이면 가응축(pseudo-condensed))된다. 스트림(74)은 액체 터빈(30) 내에서 고압 칼럼(40)에 공급하기 충분한 압력으로 감압된다. 도2에서 도시된 바와 같이 더 낮은 산소 비등 압력에서는 액체 터빈(30)이 스로틀 밸브(31)로 대체된다. 스트림(75)은 분리되어, 액체 공기 유동의 일 부분(76)은 바닥부의 몇 단(stage) 위로 고압 칼럼(40) 내부로 유입되고 나머지 부분(77)은 스로틀 밸브(170)를 거쳐 압력이 낮아지고 스트림(78)으로서 저압 칼럼 내부로 유입된다.
스트림(90)은 압축기(7)로부터 중간 단계에서, 양호하게는 압축의 제1 또는 제2 단계 후에 배출되는 것으로 도시되고 있다. 스트림(90)의 압력은 130 psia(pounds per square inch absolute) 내지 400 psia 범위일 수 있다. 스트림(90)은 도시되지는 않았지만 인터쿨러(intercooler)를 거친 뒤, 배출되고 주변 온도(ambient temperature) 정도로 냉각된다. 만약 펌핑된 액체 산소 압력이 낮다면, 압축기(7)의 방출 압력이 스트림(90)을 위하여 충분히 높은 것이 가능하다. 이러한 경우, 스트림(90)은 도2에서 도시된 바와 같이 후냉각기(8)를 통과한 후 스트림(72)으로부터의 일 분리 스트림으로서 배출된다. 도2는 비교적 낮은 펌핑된 산소 압력을 구비한 도1의 장치의 변형을 도시한다. 스로틀 밸브(31)가 액체 터빈 대신 사용된다.
부스터(20)를 구동시키는 온터빈(24)은 본 발명의 중요한 구성 요소이다. 스트림(90)은 축(25)을 지나서 터빈(24)에 의해 배출되는 일 에너지에 의해 구동되는 부스터 압축기(20) 내에서 압력이 증가된다. 스트림(91)의 압력은 220 psia 내지 900 psia 범주일 수 있다. 냉각기(22) 내에서 주변 온도 정도로 냉각된 후, 스트림(92)은 터빈(24) 내에서 압력이 감소된다. 스트림(94)은 일반적으로 60 내지 100 psia의 범주 내에 있는 고압 칼럼의 작동 압력 이상에서 배기된다. 스트림(94) 온도는 약 155K 정도로 낮을 수 있고, 약 240K 정도로 높을 수 있다. 주 열교환기(50)는 최적 온도 수준에서 사이드 헤더(side header)를 구비하며 양호하게 설계된다. 스트림(94)은 열교환기(50)의 사이드 헤더 내부로 유입될 때 고압 칼럼에 공급되는 주 공급 스트림과 결합된다. 온터빈의 자가 부스트된(self-boosted) 구성(20, 24, 25)은 스트림(90)의 주어진 압력에 대한 압력 비를 터빈을 거치며 크게 상승시킨다. 이렇게 하는 것은 터빈(24)을 거치는 필요 유동을 최소화시킨다. 터빈(24)을 통과하는 유동은 열교환기(50)의 워엄 엔드(warm end)로부터 변환되기 때문에 중요하다. 터빈(24)을 통과하는 유동이 많을수록, 열교환기(50)내의 워엄 엔드의 온도 차이는 더 커진다. 이는 냉각 손실이 커졌음을 나타낸다. "20" 및 "24"로 도시된 터빈/부스터 장치는 전동 장치의 필요 없이 효율적인 공기 역학적인 디자인으로 이어지는 거의 이상적인 무차원 인자를 제공하는 것이 바람직하다. 그러나, 이것이 제공되더라도, 다른 터빈/부스터 구성이 "20" 및 "24"를 위해 사용될 수 있거나 발전기가 부스터(20) 대신 터빈 로딩 장치로서 사용될 수 있음을 알 수 있다.
도1에 도시된 실시예에서의 냉터빈은 공급 공기를 저압 칼럼으로 팽창시킨다. 터빈 팽창을 구비한 온터빈/부스터를, 저압 칼럼 또는 액체 생산이 없는 경우에 효과적인 다른 터빈 장치에 결합(예컨대 고압 칼럼으로부터의 질소 풍부화 증기의 팽창)하는 것이 바람직하다. 도시된 자가 부스트된 터빈 구성이 때로는 양호하다. 여기서 스트림(80)은 축(15)을 통하여 냉터빈(14)에 의해 구동되는 압축기(10) 내에서 압력이 증가된다. 또한 터빈(14)을 거치며 압력비가 증가하고, 필요 유동이 감소하고 더 나은 아르곤 및 산소의 회수를 제공한다. 생성 스트림(81)은 냉각기(12)를 통과하고, 생성 스트림(82)은 열교환기(50) 내에서 중간 온도(intermediate temperature)로 냉각된다. 스트림(84)의 온도는 통상적으로 125K 정도로 낮을 수 있고, 200K 정도로 높을 수 있으며, 양호하게는 140K 내지 190K 범주 내에 있다. 저압 칼럼의 작동 압력 보다 3 psi 이하만큼 큰 압력까지 배기된 후, 스트림(86)은 저압 칼럼(42) 내의 적당한 단으로 공급된다. 비교적 적은 유동이 이 유닛을 통과하도록 유지시키기도 하는 다른 장치에서, 스트림(80)은 압축기(70)의 제1 단계 후에 배출되어(가능하다면 스트림(90)과 합쳐) 열교환기(50)로 직접 공급되고, 부분적으로 냉각되어 터빈(14)으로 공급된다. 여기서 냉터빈은 발생기와 함께 가중되고, 그 압력비는 압축기(70)의 제1 단계에서의 스트림(80)의 압축으로 인하여 여전히 높다.
고압 칼럼(40) 내에서, 공급 공기는 초저온 정류에 의해 질소 풍부화 증기 및 산소 풍부화 액체(oxygen-enriched liquid)로 분리된다. 질소 풍부화 증기는 고압 칼럼(40)의 상부로부터 스트림(200)으로서 회수되어, 저압 칼럼(42)과의 간접적인 열교환으로 인하여 주 응축기(36)내의 하부액(bottom liquid)로 응축된다. 생성된 응축 질소 풍부화 액체(202)의 일 부분(201)은 환류(reflux)로서 고압 칼럼(40)으로 복귀된다. 생성된 응측 질소 풍부화 액체의 다른 부분(110)은 열교환기(48) 내에서 과냉각된다. 생성된 과냉각 질소 풍부화 액체(112)는 스로틀 밸브(172)를 통과하여 스트림(114)으로 저압 칼럼(112)의 상부로 유입되게 된다. 필요에 따라서는, 스트림(62)의 일 부분(116)은 액체 질소 제품으로서 회수될 수 있다.
산소 풍부화 액체는 고압 칼럼(40)의 하부로부터 스트림(100)으로 회수되고, 열교환기(48) 내에서 과냉각되어 스트림(102)을 생성하고, 스로틀 밸브(171)을 통과한 뒤 스트림(104)으로 저압 칼럼(42) 내로 전달된다. 도시된 실시예에서, 초저온 공기 분리 장치는 아르곤 생산을 더 포함한다. 이 실시예에서, 산소 풍부화 액체(102)의 일 부분(106)은 밸브(173)를 통과하고, 이후에 더 기술될 공정을 위하여 스트림(108)으로 아르콘 칼럼의 상부 응축기(38)로 전달된다.
저압 칼럼(42)은 일반적으로 16 내지 26 psia의 범주의 압력에서 작동한다. 저압 칼럼(42) 내에서, 다양한 공급물들은 초저온 정류로 인하여 질소가 풍부한 증기(nitrogen-rich vapor) 및 산소가 풍부한 액체(oxygen-rich liquid)로 분리된다. 질소가 풍부한 증기는 저압 칼럼(42)의 상부로부터 스트림(160)으로 배출되어 열교환기(48)와 주 열교환기(50)를 통과하면서 가온된 뒤 스트림(163)으로 기체의 질소 제품으로 회수된다. 제품의 순도 조절의 목적을 위하여, 잔여 질소 스트림(150)은 스트림(160)의 배출 높이의 아래에서 칼럼(42)으로부터 배출된 뒤, 열교환기(48) 및 주 열교환기(50)를 거쳐 스트림(153)으로 공정으로부터 제거된다. 산소가 풍부한 액체는 저압 칼럼(42)의 하부로부터 스트림(140)으로 배출되어 초저온 액체 펌프(34)에 의해 더 높은 압력으로 펌핑되어 가압된 액체 산소 스트림(144)을 형성한다. 필요에 따라서, 스트림(144)의 일 부분(142)은 액체 산소 제품으로서 회수될 수 있다. 잔여 부분은 주 열교환기(50)를 통과하며 유입되는 공급 공기와의 간접적인 열교환으로 인해 기화되어 스트림(145)으로서 기체의 산소 제품으로 회수된다.
주로 산소와 아르곤을 포함하는 스트림은 칼럼(42)으로부터 아르곤 칼럼(44) 내부로 스트림(120)으로 전달되고, 그곳에서 아르곤 풍부화 상부 증기와, 스트림(121)으로 칼럼(42)으로 복귀되는 산소가 더 풍부한 하부액으로 분리된다. 아르곤 풍부화 상부 증기는 스트림(122)으로서 아르곤 칼럼 상부 응축기(38)로 전달되고 그곳에서 스트림(108)으로 상부 응축기(38)에 제공된 부분적으로 기화된 산소 풍부화 액체에 대해 응축된다. 생성된 응축 아르곤(123)은 환류로서 스트림(203)으로 칼럼(44)으로 복귀되고, 스트림(123)의 일 부분(126)은 액체 아르곤 제품으로 회수된다. 상부 응축기(38)로부터의 생성된 산소 풍부화 유체는 증기 스트림(132) 및 액체 스트림(130)으로 저압 칼럼(42) 내부로 들어간다.
도6에 도시된 열교환기(50)에서의 냉각 커브는 온터빈(24)의 추가가 어떻게 더 많은 액체 생산을 가능케 하는지 보여준다. 냉각 커브에서 원으로 표시된 부분 에서, 가온 및 냉각 온도 프로파일은 조여 있으며, 보다 온난한 온도 수준에서 벌어지기 시작하는 것을 알 수 있다. 이는 온터빈에 의해 제공된 냉각의 결과이다. 여기에서 최소한의 핀치 온도(pinch temperature)는 온터빈의 배기 스트림(94)이 열교환기(50)로 공급되는 점에 대응한다. 온터빈의 냉각 없이는 가온 및 냉각 스트림의 온도 프로파일은 열교환기 내에서 더 높은 온도에서 벌어지기보다는 교차할 것이다. 이는 냉터빈(14) 유동에 더 많은 증가 없이는 같은 양의 액체가 생산될 수 없음을 의미한다. 냉터빈 유동의 증가는 아르곤 및 산소의 매우 열악한 회수로 귀결될 것이다. 또한 유동의 많은 범위를 담당하기 위하여 제2 냉터빈(병렬로)이 필요할 것이다. 제2 터빈으로서 가장 필요로 하는 온난한 온도 수준에서 냉각을 제공하는 온터빈을 구비하는 것이 더욱 효과적이다. 온난한 온도에서 냉각을 제공하는 것은 본원의 경우에서와 같이 효과적으로 작용될 수 있다면 아주 효과적이다.
도3의 실시예는 개량한 경우에 가장 양호한 구성이다. 도1과는 별개의 압축기(18)가 스트림(90)이 온 부스터 및 터빈(20, 24)으로 공급되기 전에 압력을 높인다는 점에서 도1과 상이하다. 처음부터 중간 단계의 분리 스트림없이 설계되었다면, 압축기(7)가 경제적으로 변경되어, 개량을 위한 소정의 중간 단계 위치로부터 스트림(90)의 배출을 담당하게 될 것 같지도 않다. 그렇다면, 최선의 대안은 추가적인 압축기(18)를 사용하여 온터빈/부스터를 위한 소정의 수준까지 공기 압력을 증가시키는 것이다. 압축기(18)는 온터빈에 걸친 소정의 압력비에 따라 양호하게는 1 또는 2 단계이다. 냉각기(19)는 스트림이 부스터(20)로 공급되기 전에 스트 림(89)으로부터 압축열을 제거한다.
도4는 터빈(24)의 공급물인 스트림(93)이 열교환기(50) 내에서의 부분적인 냉각으로 인하여 주변 온도보다 어느 정도 아래로 냉각되는 것을 제외하고는 도1과 유사하다. 이것은 도1의 실시예에 의해 보통 생산될 수 있는 액체보다 더 많은 양을 효과적으로 생산하는 데에만 필수적이다. 이러한 경우에서, 도1에서의 냉터빈 유동(터빈 "14")은 제어하기 힘들 정도로 커지게 된다. 이는 이렇게 높은 액체 비율에서는 주변 온도 수준의 공급물과 함께 터빈(24)을 작동함으로써 제공될 수 있는 것보다 낮은 온도에서 냉각이 필요하다는 것을 나타낸다. 액체 생산을 더 증가시킬 수 있는 충분히 낮은 온도라 할지라도, 부분적으로 스트림(93)을 냉각시킴으로써, 추가적인 터빈 냉각이 냉터빈보다 더 높은 온도 수준에서 효과적으로 (그리고 더욱 효율적으로) 다시 한번 제공될 수 있다. 또한, 이것은 주변 수준 터보 팽창과 함께 발생하는 합성된 냉각 손실을 줄이면서 열교환기(50)의 워엄 엔드(warm end) 온도 차이를 감소시킬 것이다. 이 실시예는 낮은 산소 비등 압력 또는 산소의 비등 없는 사이클 내에서의 온터빈을 경제적으로 사용하는데에도 필요할 수 있다.
도5에 도시된 실시예의 핵심적인 구성은 배기 스트림(94)이 열교환기(50)로부터의 중간 스트림과 함께 결합하여 부스트된 냉터빈(14)으로 공급된다는 것이다. 여기서 터빈(24)은 터빈(14)과 직렬로 되어 있다. 이는 통상 스트림(94)의 압력이 도1의 실시예에서보다 높다는 것을 의미하고, 이는 스트림(91, 92, 90)의 압력이 도1의 실시예에서보다 더 높다는 것도 의미한다. 이것이 스트림(90)이 압축기(7) 의 방출로부터 냉각기(8) 후에 분할 스트림으로서 배출되는 것으로 도시되는 이유이다. 이는 압축기(7)의 방출 압력에 종속되지만, 압축기(7)의 중간 단계 위치로부터 스트림(90)을 배출하는 것이 여전히 바람직할 수 있다. 이런 구성은 스트림(94)을 열교환기(50) 내의 중간 위치로 공급하는 것이 실용적이지 않을 때 사용될 수 있다. 일 예시는 온난한 터빈 배기 스트림을 허용하는 측면 노즐 및 분배기를 구비한 프리 디자인된 열교환기(50)가 없는 장치의 개량이다. 이런 구성은 보통 터빈(14)을 통과하는 잉여 유동을 야기한다.
비록 본 발명이 특정 양호한 실시예에 도면 부호와 함께 자세히 기재되었지만, 당업자는 청구항의 사상과 범주 내에서 다양한 실시예가 있음을 알 수 있다.

Claims (15)

  1. 고압 칼럼 및 저압 칼럼을 구비한 이중 칼럼을 사용하는 초저온 공기 분리 장치 작동법이며,
    공급 공기를 압축하고, 상기 공급 공기를 주 열교환기에서 냉각하고, 상기 공급 공기를 상기 이중 칼럼 내에서 정류시켜 액체 생성물을 제조하는 단계와,
    상기 공급 공기의 일부로 구성된 제1 가스 스트림을 더 압축하고, 상기 제1 가스 스트림을 부분적으로 냉각하며, 125K 내지 200K 범위 내의 제1 온도인 상기 제1 가스 스트림을 냉터빈(cold turbine)에 통과시키고, 상기 제1 가스 스트림을 상기 냉터빈 내에서 상기 저압 칼럼의 작동 압력보다 3 psi 이하만큼 큰 압력으로 터보 팽창시키며, 터보 팽창된 제1 가스 스트림을 상기 저압 칼럼으로 통과시키는 단계와,
    상기 공급 공기의 다른 일부로 구성된 제2 가스 스트림을, 상기 주 열교환기에서 상기 제2 가스 스트림을 냉각시키지 않고 터빈 장착 부스터 압축기 유닛의 부스터 압축기에서 더 압축하고, 상기 제2 공기 스트림으로부터 압축열을 제거하고 나서, 200K 내지 320K 범위 내의 제2 온도인 상기 제2 공기 스트림을 상기 터빈 장착 부스터 압축기 유닛의 온터빈(warm turbine)으로 통과시키고, 상기 제2 가스 스트림을 상기 온터빈 내에서 상기 고압 칼럼의 작동 압력 이상의 압력으로 터보 팽창시키며, 터보 팽창된 제2 가스 스트림을, 상기 주 열교환기의 중간 위치를 거쳐 상기 고압 칼럼 및 상기 냉터빈 중 하나 이상으로 통과시키는 단계와,
    상기 제2 가스 스트림의 유동 또는 상기 온터빈에 걸친 압력비를 조절하여 상기 액체 생성물의 제조를 변경하는 단계를 포함하는 초저온 공기 분리 장치 작동법.
  2. 제1항에 있어서, 적어도 어느 정도의 산소 생성물이 상기 초저온 공기 분리 장치로부터 액체 생성물로서 회수되는 초저온 공기 분리 장치 작동법.
  3. 제1항에 있어서, 적어도 어느 정도의 질소 생성물이 상기 초저온 공기 분리 장치로부터 액체 생성물로서 회수되는 초저온 공기 분리 장치 작동법.
  4. 제1항에 있어서, 아르곤 칼럼을 더 포함하며, 상기 저압 칼럼에서 상기 아르곤 칼럼으로 유체를 통과시켜서, 상기 아르곤 칼럼으로부터 아르곤 생성물을 회수하는 단계를 포함하는 초저온 공기 분리 장치 작동법.
  5. 제4항에 있어서, 회수되는 아르곤 생성물 중 적어도 어느 정도는 액체 생성물로서 회수되는 초저온 공기 분리 장치 작동법.
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제1항에 있어서, 상기 제2 온도가 280K 내지 320K의 범위 이내인 초저온 공기 분리 장치 작동법.
  12. 삭제
  13. 삭제
  14. 제1항에 있어서, 상기 온터빈으로의 유동을 조절하기 위하여 상기 냉터빈이 작동하는 시간 동안 상기 온터빈의 작동을 켜고 끄는 초저온 공기 분리 장치 작동법.
  15. 삭제
KR1020087022034A 2006-03-10 2007-03-07 초저온 공기 분리 시스템 KR101275364B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/372,153 2006-03-10
US11/372,153 US7533540B2 (en) 2006-03-10 2006-03-10 Cryogenic air separation system for enhanced liquid production
PCT/US2007/005879 WO2008054469A2 (en) 2006-03-10 2007-03-07 Cryognic air separation system

Publications (2)

Publication Number Publication Date
KR20080100362A KR20080100362A (ko) 2008-11-17
KR101275364B1 true KR101275364B1 (ko) 2013-06-17

Family

ID=38477572

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087022034A KR101275364B1 (ko) 2006-03-10 2007-03-07 초저온 공기 분리 시스템

Country Status (10)

Country Link
US (1) US7533540B2 (ko)
EP (1) EP2010846B2 (ko)
KR (1) KR101275364B1 (ko)
CN (1) CN101479550B (ko)
BR (1) BRPI0707994B1 (ko)
CA (1) CA2645047C (ko)
DE (1) DE602007012532D1 (ko)
ES (1) ES2360744T5 (ko)
MX (1) MX2007015762A (ko)
WO (1) WO2008054469A2 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024168A1 (de) * 2007-05-24 2008-11-27 Linde Ag Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
WO2009021351A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US8286446B2 (en) * 2008-05-07 2012-10-16 Praxair Technology, Inc. Method and apparatus for separating air
US8397535B2 (en) * 2009-06-16 2013-03-19 Praxair Technology, Inc. Method and apparatus for pressurized product production
US20110192194A1 (en) * 2010-02-11 2011-08-11 Henry Edward Howard Cryogenic separation method and apparatus
US20120036891A1 (en) * 2010-08-12 2012-02-16 Neil Mark Prosser Air separation method and apparatus
DE102012017484A1 (de) * 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft
US20160032935A1 (en) * 2012-10-03 2016-02-04 Carl L. Schwarz System and apparatus for compressing and cooling an incoming feed air stream in a cryogenic air separation plant
US10385861B2 (en) 2012-10-03 2019-08-20 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
US20160032934A1 (en) * 2012-10-03 2016-02-04 Carl L. Schwarz Method for compressing an incoming feed air stream in a cryogenic air separation plant
US10443603B2 (en) 2012-10-03 2019-10-15 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
TWI494162B (zh) * 2012-12-22 2015-08-01 Morningmoving Technology Co Ltd 利用增加氣體密度的溫度調整方法
WO2014154339A2 (de) * 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
US9574821B2 (en) * 2014-06-02 2017-02-21 Praxair Technology, Inc. Air separation system and method
US20160025408A1 (en) * 2014-07-28 2016-01-28 Zhengrong Xu Air separation method and apparatus
EP2980514A1 (de) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
US10401083B2 (en) * 2015-03-13 2019-09-03 Linde Aktiengesellschaft Plant for producing oxygen by cryogenic air separation
AU2017318652A1 (en) * 2016-08-30 2019-03-07 8 Rivers Capital, Llc Cryogenic air separation method for producing oxygen at high pressures
WO2018219501A1 (de) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
CN111433545B (zh) 2017-12-28 2022-03-04 乔治洛德方法研究和开发液化空气有限公司 在包括裂芯式主热交换器的空气分离单元中产生的富氮流的利用
US10816263B2 (en) * 2018-04-25 2020-10-27 Praxair Technology, Inc. System and method for high recovery of nitrogen and argon from a moderate pressure cryogenic air separation unit
US10663223B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US10663224B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
EP3870916B1 (de) 2018-10-26 2023-07-12 Linde GmbH Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE102019000335A1 (de) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Verfahren zur Bereitstellung von Luftprodukten und Luftzerlegungsanlage
EP3696486A1 (de) 2019-02-13 2020-08-19 Linde GmbH Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
EP3699535A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
EP3699534A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
EP3757493A1 (de) 2019-06-25 2020-12-30 Linde GmbH Verfahren und anlage zur gewinnung eines stickstoffreichen und eines sauerstoffreichen luftprodukts unter einsatz einer tieftemperaturzerlegung von luft
EP4081747A1 (de) 2019-12-23 2022-11-02 Linde GmbH Verfahren und anlage zur bereitstellung eines sauerstoffprodukts
WO2021230912A1 (en) 2020-05-11 2021-11-18 Praxair Technology, Inc. System and method for recovery of nitrogen, argon, and oxygen in moderate pressure cryogenic air separation unit
EP4150276A1 (en) 2020-05-15 2023-03-22 Praxair Technology, Inc. Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit
US11619442B2 (en) 2021-04-19 2023-04-04 Praxair Technology, Inc. Method for regenerating a pre-purification vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682157A (ja) * 1992-04-22 1994-03-22 Boc Group Plc:The 空気の分離
JPH08240380A (ja) * 1995-01-05 1996-09-17 Boc Group Plc:The 空気の分離
JP2005505740A (ja) * 2001-10-17 2005-02-24 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 極低温蒸留による空気の分離方法及びそのための装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1325881A (en) * 1969-08-12 1973-08-08 Union Carbide Corp Cryogenic separation of air
US4555256A (en) * 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
DE3738559A1 (de) * 1987-11-13 1989-05-24 Linde Ag Verfahren zur luftzerlegung durch tieftemperaturrektifikation
FR2652409A1 (fr) * 1989-09-25 1991-03-29 Air Liquide Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air.
US5108476A (en) * 1990-06-27 1992-04-28 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with dual temperature feed turboexpansion
JP2909678B2 (ja) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 圧力下のガス状酸素の製造方法及び製造装置
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
GB9405072D0 (en) * 1994-03-16 1994-04-27 Boc Group Plc Air separation
FR2721383B1 (fr) * 1994-06-20 1996-07-19 Maurice Grenier Procédé et installation de production d'oxygène gazeux sous pression.
GB9513766D0 (en) 1995-07-06 1995-09-06 Boc Group Plc Air separation
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
GB9618576D0 (en) 1996-09-05 1996-10-16 Boc Group Plc Air separation
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
US5829271A (en) * 1997-10-14 1998-11-03 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
US5934105A (en) * 1998-03-04 1999-08-10 Praxair Technology, Inc. Cryogenic air separation system for dual pressure feed
FR2776057B1 (fr) * 1998-03-11 2000-06-23 Air Liquide Procede et installation de separation d'air par distillation cryogenique
FR2776760B1 (fr) * 1998-03-31 2000-05-05 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US6000239A (en) * 1998-07-10 1999-12-14 Praxair Technology, Inc. Cryogenic air separation system with high ratio turboexpansion
US6220053B1 (en) * 2000-01-10 2001-04-24 Praxair Technology, Inc. Cryogenic industrial gas liquefaction system
US6227005B1 (en) * 2000-03-01 2001-05-08 Air Products And Chemicals, Inc. Process for the production of oxygen and nitrogen
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US7272954B2 (en) 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
FR2913760B1 (fr) * 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682157A (ja) * 1992-04-22 1994-03-22 Boc Group Plc:The 空気の分離
JPH08240380A (ja) * 1995-01-05 1996-09-17 Boc Group Plc:The 空気の分離
JP2005505740A (ja) * 2001-10-17 2005-02-24 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 極低温蒸留による空気の分離方法及びそのための装置

Also Published As

Publication number Publication date
CA2645047C (en) 2011-05-17
CN101479550A (zh) 2009-07-08
KR20080100362A (ko) 2008-11-17
CN101479550B (zh) 2012-11-21
MX2007015762A (es) 2008-10-27
WO2008054469A3 (en) 2008-11-20
ES2360744T5 (es) 2015-03-05
DE602007012532D1 (de) 2011-03-31
US7533540B2 (en) 2009-05-19
ES2360744T3 (es) 2011-06-08
CA2645047A1 (en) 2008-05-08
BRPI0707994B1 (pt) 2019-03-19
EP2010846A2 (en) 2009-01-07
US20070209389A1 (en) 2007-09-13
WO2008054469A2 (en) 2008-05-08
EP2010846B2 (en) 2014-11-19
EP2010846B1 (en) 2011-02-16
BRPI0707994A2 (pt) 2011-05-17

Similar Documents

Publication Publication Date Title
KR101275364B1 (ko) 초저온 공기 분리 시스템
JP5425100B2 (ja) 低温空気分離方法及び装置
EP0698772B1 (en) Method and apparatus for producing oxygen
AU669998B2 (en) Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
KR100343276B1 (ko) 가온된터빈재순환에의한극저온공기분리방법
KR960003272B1 (ko) 이중 공급공기 사이드 콘덴서를 갖는 저온공기분리 시스템
KR100225681B1 (ko) 저순도 산소 제조용 저온 정류 시스템
US7665329B2 (en) Cryogenic air separation process with excess turbine refrigeration
JPH07270066A (ja) 昇圧窒素を製造するための極低温精留システム
KR960003273B1 (ko) 이중 온도 공급된 터빈팽창을 사용한 저온 공기 분리 장치
US20180180357A1 (en) Process for producing one or more air products, and air separation plant
EP2634517B1 (en) Process and apparatus for the separation of air by cryogenic distillation
EP0624767B1 (en) Process and apparatus for producing oxygen
US5839296A (en) High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
EP0465929B1 (en) Cryogenic air separation for producing elevated pressure product gas
US5379599A (en) Pumped liquid oxygen method and apparatus
JP2000310481A (ja) 極低温空気分離方法及び設備
US6305191B1 (en) Separation of air
US6694776B1 (en) Cryogenic air separation system for producing oxygen
US20120125044A1 (en) Feed compression method and apparatus for air separation process
JPH11325716A (ja) 空気の分離
KR0168707B1 (ko) 질소의 제조를 위한 공기 분리 방법 및 장치
KR20230171441A (ko) 공기의 저온 분리를 위한 방법 및 플랜트

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170530

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 6