KR101270177B1 - 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치 - Google Patents

자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치 Download PDF

Info

Publication number
KR101270177B1
KR101270177B1 KR1020120155112A KR20120155112A KR101270177B1 KR 101270177 B1 KR101270177 B1 KR 101270177B1 KR 1020120155112 A KR1020120155112 A KR 1020120155112A KR 20120155112 A KR20120155112 A KR 20120155112A KR 101270177 B1 KR101270177 B1 KR 101270177B1
Authority
KR
South Korea
Prior art keywords
magnet
main magnet
magnetic
sensor device
pole
Prior art date
Application number
KR1020120155112A
Other languages
English (en)
Inventor
노용우
유휘룡
구성자
조성호
김동규
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Priority to KR1020120155112A priority Critical patent/KR101270177B1/ko
Application granted granted Critical
Publication of KR101270177B1 publication Critical patent/KR101270177B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/87Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

본 발명은 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치에 관한 것이다. 이는 도관의 내부를 주행하며 주변으로 자기력을 방출하여 도관의 상태를 검사하는 것으로서, 주행방향으로 연장되며 연장방향 중앙 상면에 센싱부설치면을 가지고, 자로(magnetic path)를 제공하는 요크의 역할을 하는 베이스와; 상기 센싱부설치면에 장착되며 누설자속을 탐지하는 다수의 홀센서를 구비한 센싱부와; 상기 베이스 상부의 센싱부 일측편에 위치하는 일정두께의 판상 자석으로서, N극과 S극이 두께 방향으로 착자되고 외력에 의해 회전 가능한 제 1메인자석과; 상기 센싱부를 사이에 두고 제 1메인자석의 반대편에 구비되며 N극과 S극이 두께 방향으로 착자되어 있는 판상의 제 2메인자석과; 상기 제 1메인자석을 회전 가능하게 지지하는 제 1자석홀더와; 상기 제 1자석홀더를 통해 제 1메인자석을 회전시켜, 제 1메인자석과 제 2메인자석 사이에 형성되는 자속을 조절하는 제 1구동부를 포함하는 것을 특징으로 한다.

Description

자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치{Sensor device for Magnetic Flux Leakage Inspection having intensity of magnetic force modulating function}
본 발명은 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치에 관한 것이다.
소재나 제품 등의 내부 조직이나 균열 상태 등을 검사하기 위한 비파괴검사(Non-Destructive Inspection)에는, 방사선투과검사, 초음파탐상, 자기탐상, 자기누설, 전자유도검사법 등이 알려져 있다.
상기한 여러 가지 비파괴 검사법 중, 자기누설검사법은, 센서시스템의 자세나 진동 또는 이동속도가 불안정하더라도 출력신호의 일정 품질을 유지할 수 있어, 유체가 흐르고 있는 이를테면 가스관이나 송유관과 같은 철재질의 도관 검사에 가장 많이 적용되는 검사기법이다.
특히 상기 자기누설검사법은 초음파의 전파에 필수적인 접촉매질(couplant)이 없는 가스배관의 검사에 적용할 수 있는 유일한 방법이다.
상기한 자기누설검사를 위한 센서장치는 도관에 자기력를 최대한 많이 인가할 수 있는 구조를 가지며, 기본적으로 두 개의 영구자석과, 상기 영구자석을 연결하여 자로(magnetic path)를 제공하는 요크와, 상기 영구자석의 사이에 설치되며 결함부위에서 누설되는 자기장의 밀도를 측정하는 홀(Hall)센서로 구성된다.
상기 홀센서는, 자기장의 방향과 크기를 알아내는데 사용되는 소자로서, 자기장의 세기에 비례하는 출력을 발생한다.
한편, 상기한 센서장치를 이용해 도관을 검사하기 위해서는, 도관의 내부를 주행하는 배관검사용 주행로봇에 센서장치를 탑재하여야 한다. 상기 주행로봇은, 다수의 휠이 구비되어 있는 견인수단으로서, 외부로부터 전달된 신호에 따라 주행하며 센서장치를 견인한다.
상기 센서장치는 주행로봇에 연결된 상태로 도관의 내부를 이동하면서 자기력을 연속 방출하여 검사를 수행한다.
그런데, 상기 센서장치에서 발생하는 자기력은 매우 강력하므로, 검사 내내 강력한 자기력을 발생하는 센서장치를 움직이는 데에는 상당한 견인력을 필요로 한다. 이에 따라 센서장치에도 휠이 설치되는 것이다.
그러나, 센서장치에 휠을 적용한다 하더라도, 센서장치가 도관의 휘어진 부분이나 연결부분을 통과하는 경우에는 휠이 도관의 내벽면에 닿지 못하여 센서장치의 본체가 도관에 달라붙게 된다. 이럴 경우 주행로봇을 움직이지 못하여 더 이상의 검사를 수행할 수 없게 된다.
이러한 문제를 해결하기 위하여, 미국특허공보 제8,232,796호에, 출력되는 자기력의 세기를 조절할 수 있는 도관센서디바이스가 개시된 바 있다.
그러나 상기 미국특허공보에 개시된 도관센서디바이스는 그 성능이 좋지 않다는 단점이 있었다. 그 이유는 자기력이 통과하는 자로(磁路, magnetic path)에 자기장을 교란하거나 자기누설을 야기할 수 있는 기어나 샤프트나 샤프트를 수용하는 공간부 등과 같은 방해물이 위치하기 때문이다.
비파괴 검사용 센서시스템에 있어서 배관의 착자 및 포화는 센서시스템의 성능을 결정하는 매우 중요한 요소이고, 착자레벨의 증감은 자기장이 통과하는 자로의 단면적에 비례하는데, 상기와 같이 종래의 센서디바이스는 자기회로의 단면적이 좁아 그만큼 성능이 떨어지는 것이다.
이와같이, 종래의 센서디바이스는 자기력이 통과하는 단면적이 좁으므로, 자기력의 최대치와 최소치의 차이가 얼마나지 않아, 센서디바이스 외부로 출력되는 자기력의 감쇄율도 크지 않다. 필요시 센서디바이스 외부로 인가되는 자기력을 크게 줄일 수 없는 것이다. 따라서 가령 센서디바이스가 도관의 내벽면 달라붙은 경우 도관으로부터 센서디바이스를 떼어내기 힘든 것이다.
본 발명은 상기 문제점을 해소하고자 창출한 것으로서, 자기력이 통과하는 자기회로(magnetic path)의 단면적이 넓고 방해물이 없으므로, 착자레벨을 최대로 유지할 수 있어 그만큼 검사성능이 뛰어남은 물론 필요시 자기력을 충분히 작게 감소시킬 수 있어 도관의 굴곡부위나 연결부위 등에서도 거침없이 주행할 수 있는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치를 제공함에 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치는, 도관의 내부를 주행하며 주변으로 자기력을 방출하여 도관의 상태를 검사하는 것으로서, 주행방향으로 연장되며 연장방향 중앙 상면에 센싱부설치면을 가지고, 자로(magnetic path)를 제공하는 요크의 역할을 하는 베이스와; 상기 센싱부설치면에 장착되며 누설자속을 탐지하는 다수의 홀센서를 구비한 센싱부와; 상기 베이스 상부의 센싱부 일측편에 위치하는 일정두께의 판상 자석으로서, N극과 S극이 두께 방향으로 착자되고 외력에 의해 회전 가능한 제 1메인자석과; 상기 센싱부를 사이에 두고 제 1메인자석의 반대편에 구비되며 N극과 S극이 두께 방향으로 착자되어 있는 판상의 제 2메인자석과; 상기 제 1메인자석을 회전 가능하게 지지하는 제 1자석홀더와; 상기 제 1자석홀더를 통해 제 1메인자석을 회전시켜, 제 1메인자석과 제 2메인자석 사이에 형성되는 자속을 조절하는 제 1구동부를 포함하는 것을 특징으로 한다.
또한, 상기 센서장치에는; 상기 제 2메인자석을 회전 가능하게 지지하는 제 2자석홀더와, 상기 제 2자석홀더를 통해 제 2메인자석을 회전시키는 제 2구동부가 더 포함되는 것을 특징으로 한다.
또한, 상기 제 1메인자석의 양측부에는, N극과 S극이 그 두께방향으로 착자되고 S극이 베이스를 향하도록 배치된 판상의 제 1고정자석이 구비되고, 상기 제 2메인자석의 양측부에는, N극과 S극이 두께방향으로 착자되고, N극이 베이스를 향하도록 배치된 판상의 제 2고정자석이 더 구비되는 것을 특징으로 한다.
아울러, 상기 제 1구동부는; 상기 베이스의 일단부에 장착된 상태로 회전토크를 발생하는 제 1토크발생기와, 상기 제 1토크발생기의 회전토크를 상기 제 1자석홀더로 전달하는 전동수단을 포함하고, 상기 제 2구동부는; 상기 베이스의 타단부에 장착된 상태로 회전토크를 발생하는 제 2토크발생기와, 상기 제 2토크발생기의 회전토크를 상기 제 2자석홀더로 전달하는 전동수단을 갖는 것을 특징으로 한다.
또한, 상기 제 1메인자석 및 제 1고정자석과, 제 2메인자석 및 제 2고정자석은, 상기 센싱부를 사이에 두고 대칭을 이루며, 상기 제 1메인자석과 제 2메인자석은 베이스의 길이방향으로 연장된 하나의 중심축을 중심으로 회전하는 것을 특징으로 한다.
또한, 상기 베이스에는; 상기 제 1,2자석과 제 1,2고정자석을 그 내부에 수용하는 커버가 구비되고, 상기 커버의 외측에는 센서장치의 이동시 구름운동하는 다수의 휠이 장착된 것을 특징으로 한다.
또한, 상기 전동수단은; 상기 제 1,2자석홀더에 고정되는 종동기어와, 상기 종동기어와 치합한 상태로 상기 제 1,2토크발생기에 의해 회전하여 종동기어를 회전시키는 구동기어를 포함하는 것을 특징으로 한다.
상기와 같이 이루어지는 본 발명의 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치는, 자기력이 통과하는 자기회로(magnetic path)의 단면적이 넓고 방해물이 없으므로, 착자레벨을 최대로 유지할 수 있어 그만큼 검사성능이 뛰어남은 물론 필요시 자기력을 충분히 작게 감소시킬 수 있어 도관의 굴곡부위나 연결부위 등에서도 거침없이 주행할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치의 사시도이다.
도 2는 상기 도 1에 도시한 센서장치의 일부 분해 사시도이다.
도 3은 상기 도 1에 도시한 센서장치의 구조를 설명하기 위하여 도시한 분해 사시도이다.
도 4는 상기 도 1에 도시한 센서장치의 내부 구조를 나타내 보인 도면이다.
도 5 및 도 6은 상기 도 1에 도시한 센서장치의 동작 원리를 설명하기 위하여 도시한 도면이다.
도 7은 상기 도 1에 도시한 센서장치의 정상 작동상태를 도시한 단면도이다.
도 8은 상기 도 1에 도시한 센서장치의 자기력 세기를 감쇄시킨 모습을 도시한 단면도이다.
이하, 본 발명에 따른 하나의 실시예를 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치(11)의 외부 모습을 도시한 사시도이고, 도 2 및 도 3은 상기 도 1에 도시한 센서장치의 내부 구조를 설명하기 위한 분해 사시도이다. 또한 도 4는 상기 도 1에 도시한 센서장치의 단면 사시도이다.
도 1내지 도 4에 도시한 바와같이, 본 실시예에 따른 비파괴검사용 센서장치(11)는, 도관 내 주행방향으로 연장된 블록 형태의 베이스(13)와, 상기 베이스(13)의 길이방향 중앙 상부에 설치되는 센싱부(39)와, 상기 센싱부(39)를 가운데 두고 센싱부(39)의 일측(이를테면 전방(前方))에 설치되는 제 1메인자석(25) 및 제 1고정자석(29)과, 상기 센싱부(39)를 사이에 두고 제 1메인자석(25)의 반대편에 설치되는 제 2메인자석(26) 및 제 2고정자석(30)을 포함한다.
또한 상기 베이스(13)의 일단부에는 제 1토크발생기(17)가 설치되고, 반대편 타단부에는 제 2토크발생기(18)가 설치된다. 상기 제 1토크발생기(17)는 제 1메인자석(25)과 동력이음되어 제 1메인자석(25)을 회전시키기 위한 것이고, 제 2토크발생기(18)는 제 2메인자석(26)을 회전시키기 위한 것이다.
아울러 상기 제 1메인자석(25) 및 제 2메인자석(26)은, 사이드커버(33)와 아우터커버(37)와 프론트커버(15)와 리어커버(35)에 각기 수용되어 보호된다.
먼저, 상기 베이스(13)는 사각 블록의 형태를 취하며 그 상면 중앙에 센싱부설치면(13b)을 가진다. 상기 센싱부설치면(13b)은 상부로 개방되며 소정 면적을 갖는 사각 영역으로서 상기 센싱부(39)가 설치될 공간을 제공한다.
또한 상기 센싱부설치면(13b)을 중심에 두고 그 양측부에는 만곡홈(13a)이 형성된다. 상기 만곡홈(13a)은 일정곡률을 갖는 부분 원통형 홈으로서 상기 제 1,2메인자석(25,26)이 그 자리에서 회전할 수 있도록 공간을 제공한다.
아울러 상기 각 만곡홈(13a)의 양측부에는 고정자석안착면(13c)이 마련된다. 상기 고정자석안착면(13c)은 만곡홈(13a)을 사이에 두고 대칭을 이루는 영역으로서, 상기 제 1,2고정자석(29,30)을 고정한다. 상기 제 1,2고정자석(29,30)은 각 고정자석안착면(13c)에 고착되어 움직이지 않는다.
상기 베이스(13)는, 상기 제 1,2메인자석(25,26) 및 제 1,2고정자석(29,30)에 의해 형성된 자기력의 일부를 통과시키는 통로의 역할을 하는 것으로서 그 내부에 어떠한 장치나 공간도 형성되어 있지 않고 꽉 차 있는 소위 솔리드 타입 부재이다. 즉 상기 베이스(13)의 내부 조직은 어느 지점에서나 동일한 조성 및 밀도를 갖는 것이다.
상기 베이스(13)의 양단부에는 구동기어홈(13d)이 형성되어 있다. 상기 구동기어홈(13d)은, 구동기어(19)를 회전 가능하게 수용하는 홈이다. 상기 구동기어(19)는 구동기어홈(13d)에 수용된 상태로 제 1,2토크발생기(17,18)로부터 회전력을 받아 회전하며 치합하고 있는 종동기어(21)를 회전시킨다.
상기 제 1메인자석(25)은 일정두께를 갖는 판상형 자석으로서, N극(25a)과 S극(25b)이 그 두께 방향으로 착자되어 있다. 상기 제 1메인자석(25)은 일측 만곡홈(13a)의 상부에 회전 가능하게 설치되며 상기 종동기어(21)의 회전에 의해 회전 가능하다.
또한 상기 제 1메인자석(25)의 상하면에는 자석커버(27)가 밀착 고정된다. 상기 자석커버(27)는 부분 원통형 부재로서 제 1메인자석(25)의 상하면에 고정된 상태로 그 양단부가 제 1자석홀더(41)에 물린다. 상기 자석홀더(41)는 베어링(23)에 지지된 상태로 종동기어(21)의 회전력을 받아 제 1메인자석(25)을 회전시킨다.
특히 상기 자석커버(27)는 상기 만곡홈(13a)의 바닥면에 접한다. 이와같이 자석커버(27)를 만곡홈(13a)에 접하도록 설계한 것은 누설자속을 최소화하기 위한 것이다. 즉 상기 제 1메인자석(25)에서 출력된 자기력이 주변으로 누설되지 않고 자석커버(27)를 통해 베이스(13)로 곧바로 이동하도록 유도하는 것이다. 자석커버(27)가 자기통로의 역할을 하는 것이다.
상기 자석홀더(41)는 대략 디스크의 형태를 취하며 상기 제 1메인자석(25)과 자석커버(27)를 묶은 상태로 회전하여 제 1메인자석(25)를 회전시킨다.
도 6에 도시한 바와같이, 제 1메인자석(25)을 사이에 두고 상호 대향하는 한 쌍의 제 1자석홀더(41) 중 바깥쪽 자석홀더(41)의 회전축(41a)에는 종동기어(21)와 베어링(23)이 설치된다. 상기 베어링(23)은 프론트커버(15)에 장착된 상태로 회전축(41a)을 회전 가능하게 지지한다.
또한 상기 종동기어(21)는 회전축(41a)에 고정된 상태로 상기 구동기어(19)의 회전력을 전달받아 회전하며 상기 제 1자석홀더(41)를 회전시킨다. 상기 구동기어(19)와 종동기어(21)가 제 1메인자석(25)를 회전시키기 위한 전동수단인 것이다.
여하튼, 상기 제 1자석홀더(41)의 회전에 의해, 상기 제 1메인자석(25)은, 회전축(41a)을 중심으로 자전하여, 이를테면 N극이 베이스(13)를 향하거나 S극이 베이스를 향하도록 위치될 수 있다.
상기 제 1고정자석(29)도 제 1메인자석(25)과 마찬가지로, 두 께 방향으로 착자된 판상의 자석으로서, 제 1메인자석(25)과 동일한 두께를 갖는다. 상기 제 1고정자석(29)은 제 1메인자석(25)을 사이에 두고 대칭 배치되며, S극이 베이스(13)에 접하도록 세팅된다. 따라서 상기 제 1메인자석(25)의 N극이 베이스를 향하도록 위치되었다면 제 1메인자석(25)과 제 1고정자석(29)이 상호 작용하여 도 5에 도시한 바와같은 작은 크기의 자기장을 형성한다.
한편, 상기 센싱부설치면(13b)의 타측에 위치한 만곡홈(13a)의 상부에는 제 2메인자석(26)이 위치한다. 상기 제 2메인자석(26)도 두께방향으로 착자되어 S극(26b)와 N극(26a)을 갖는 판상 자석이다. 상기 제 2메인자석(26)은 제 1메인자석(25)과 동일한 것이며 동일한 동작을 한다. 도면부호를 다르게 부여한 것은 제 1메인자석(25)과의 구분을 위한 것이다.
상기 제 2메인자석(26)의 상하부에는 자석커버(27)가 고정된다. 상기 자석커버(27)는 제 2메인자석(26)에 고정된 상태로 제 2자석홀더(42)에 물려 제 2자석홀더(42)의 회전에 의해 제 2메인자석(26)과 함께 회전한다.
상기 제 2자석홀더(42)는 제 1자석홀더(41)와 같은 것으로서 두 개가 하나의 쌍을 이루며 바깥쪽 제 2자석홀더(42)에는 회전축(42a)을 갖는다. 상기 회전축(42a)에는 종동기어(21)와 베어링(23)이 구비되고, 상기 종동기어(21)에는 구동기어(19)가 치합한다. 아울러 상기 구동기어(19)는 제 2토크발생기(18)의 구동샤프트(18a)에 고정되어 제 2토크발생기(18)의 작동시 종동기어(21)를 통해 제 2메인자석(26)을 회전시킨다.
상기 제 2메인자석(26)의 양측부에는 제 2고정자석(30)이 구비된다. 상기 제 2고정자석(30)은 제 1고정자석(29)와 동일한 것으로서, 다만 설치방향이 다르다. 즉 제 2고정자석(30)은 N극(29a)이 베이스(13)를 향하도록 설치되는 것이다.
아울러, 상기 베이스(13)의 상부공간은, 사이드커버(33)와 아우터커버(37)와 프론트커버(15) 및 리어커버(35)에 의해 밀폐된다.
상기 사이드커버(33)는 베이스(13)의 고정자석안착면(13c) 상부에 고정된 상태로 제 1,2고정자석(29,30)의 양측부를 각각 커버하는 판상의 부재이다. 또한 아우터커버(37)는 도관의 내주면에 대향하는 부분으로서 상기 제 1,2메인자석(25,26) 및 제 1,2고정자석(29,30)의 상부를 커버한다. 상기 아우터커버(37)의 재질은 베이스(13)의 재질과 동일한다.
상기 리어커버(35)는 상기 센싱부설치면(13b)을 사이에 두고 평행하게 배치된 평판이며 상기 제 1,2자석홀더(41,42)을 회전 가능하게 지지한다.
상기 각 리어커버(35)에 대향 배치되는 프론트커버(15)는, 베이스(13)의 양단부에 고정되어 상기 제 1,2메인자석(25,26)을 회전 가능하게 지지함과 아울러 상기 구동기어(19)와 종동기어(21)를 수용하과 외부로는 상기 제 1,2토크발생기(17,18)와 결합한다.
상기 제 1,2토크발생기(17,18)는 각 프론트커버(15)에 고정된 상태로 상기 구동기어(19)를 회전시킨다.
아울러 상기 각 프론트커버(15)에는 다수의 휠(31)이 회전 가능하게 설치된다. 상기 휠(31)은 도관의 내주면에 접한 상태로 구름운동하는 바퀴로서 센서장치(11)의 주행을 가능하게 한다.
도 5 및 도 6은 상기 도 1에 도시한 제 1메인자석(25)의 동작을 설명하기 위하여 도시한 도면이다. 도면에서는 설명의 편의상 제 1메인자석(25)과 제 1고정자석(29)을 예로서 나타내었지만, 제 2메인자석(26) 및 제 2고정자석도 동일한 구조를 가지며 동일한 동작을 한다.
도 5를 참조하면, 상기 제 1메인자석(25)의 양측부에 제 1고정자석(29)이 설치되어 있음을 알 수 있다. 상기 제 1고정자석(29)의 두께는 제 1,2메인자석(25)과 동일하다.
또한 상기 제 1고정자석(29)의 S극(29b)은 베이스(13)에 접촉된 상태이고, 제 1메인자석(25)의 S극(25b)도 베이스(13)를 향해 배향되어 있다.
이에 비해 반대편에 위치하고 있는 제 2고정자석(30)의 경우 N극(29a)이 베이스(13)에 접하고 S극(29b)이 상부를 향한다. 또한 탐지상태(자기력의 세기가 최대로 출력되는 상태)에서, 제 2메인자석(26)의 N극은 베이스(13)를 향해 배향된다.
상기한 탐지상태라 함은, 도관내에 센서장치를 주행시키며 자기력을 출력하여 검사를 수행하는 상태를 의미한다. 상기 탐지상태에서의 제 1,2메인자석(25,26)의 배향은 상호 반대이다.
즉, 도 7에 도시한 바와같이 제 1메인자석(25)의 S극이 베이스(13)를 향하고 제 2메인자석(26)이 N극이 베이스를 향하거나, 반대로 제 1메인자석(25)의 N극이 베이스를 향하고 제 2메인자석(26)의 S극이 베이스를 향하는 상태는 것이다.
상기 제 1,2메인자석(25,26)에는 종동기어(21)가 고정되어 있고, 상기 종동기어(21)의 하부에는 구동기어(19)가 치합되어 있다. 상기 구동기어(19)는 프론트커버(15) 바깥에 설치되어 있는 제 1토크발생기(17)의 구동샤프트(17a)에 고정되어, 제 1토크발생기(17)의 작동에 의해 언제든지 회전하여 뒤집힐 수 있다.
상기 상태에서, 도 6에 도시한 바와같이, 제 1메인자석(25)을 뒤집어 N극(25a)이 베이스를 향하게 하면, 반대편 제 2메인자석(26)으로 향하던 제 1메인자석(25)의 자기력이 양옆의 고정자석(29)로 향하게 된다. 반대편의 제 2메인자석(26)을 향하던 자기력이 감쇄된 것이다.
도 7은 상기 센서장치를 이용해 도관을 탐상할 때의 모습을 도시한 도면이다.
도시한 바와같이, 본 실시예에 따른 센서장치(11)가 도관(A)의 내벽면에 최대한 밀착한 상태로 자기력을 발생하고 있다. 이 때 상기 홀센서(39a)가 도관(A)의 내벽면에 접함은 물론이다.
기본적으로, 상기 센서장치(11)를 통해 도관(A)의 상태를 검사하기 위해서는, 검사 대상인 도관(A)에 되도록 많은 자속(magnetic flux)을 통과시켜야 한다. 전체 자속밀도가 클수록 결함부위에서 누설되는 자속 밀도가 크고 홀센서(39a)가 보다 미세한 결함부위까지 감지할 수 있기 때문이다.
도 7은 최대한의 자기력을 출력하는 상태로서, 상기 제 1메인자석(25)의 N극이 도면상 상부를 향하고, 제 2메인자석(26)의 S극이 자기력을 받아들일 수 있도록 상부를 향하고 있다.
이 때 상기 제 1,2고정자석(29,30)도 상기한 자기장의 형성에 관여하여 자속을 더욱 크게 증가시킨다. 상기한 바와같이, 제 1고정자석(29)는 N극이 상부를 향하도록, 제 2고정자석(30)은 S극이 상부를 향하도록 장착되어 있으므로, 도면상 좌측 자석군과 우측 자석군은 상호 반응하여 최대의 자기력을 출력하는 것이다.
특히 도시한 바와같이, 베이스(13)의 내부 즉 자로(magnetic path)에는 빈공간이나 다른 방해물이 내장되어 있지 않으므로 우측 자석군에서 좌측자석군으로 이동하는 자기플럭스는 거의 누설되지 않고 온전히 베이스(13)를 통과한다.
이와같이 베이스(13)에서의 자기누설이 없다는 것은, 도관(A)을 통해 좌측에서 우측으로 이동하는 자기플럭스의 값이 크다는 의미이다. 즉 홀센서(39a)를 지나가는 자기플럭스 값이 큰 것이다. 홀센서(39a)를 통과하는 자기플럭스의 값 자체가 크므로, 도관의 결함부위가 아무리 미세하더라도 결함부위에서 누설된 자기력의 절대값이 크므로 결함부위를 정확하게 발견할 수 있다.
상기한 자기장 패턴을 유지한 상태로 도관(A)의 내부를 주행하다가, 가령 엘보우나 T자 연결부위를 만나 휠(31)이 도관(A)의 내주면으로부터 떨어질 경우에는, 주행을 계속할 수 없기 때문에 센서장치(11)의 외부로 출력되는 자기력을 감쇄시킨다.
휠(31)이 도관의 내주면으로부터 떨어진다는 말은 상기 아우터커버(37)가 도관 내벽면에 달라붙는다는 의미이다. 상기 아우터커버(37)도 자기력이 통과하는 통로로서 그 자체가 자기력을 가지므로 도관에 달라붙으면 자기력을 감쇄 내지 제거하지 않는 이상 도관으로부터 떨어지지 않는다.
이러한 경우 상기 제 1메인자석(25)이나 제 2메인자석(26) 중 어느 하나를 180도 회전시켜 뒤집는다. 도 8은 제 1메인자석(25)을 180도 회전시켜 뒤집은 모습이다.
도 8은 상기 센서장치(11)에서 출력되는 자기력의 세기를 감쇄시킨 모습을 도시한 단면도이다.
도면을 참조하면, 상기 제 1메인자석(25)이 180도 회전하여 S극(25b)이 상부를 향하도록 전환되어 있음을 알 수 있다. 제 1메인자석(25)의 설치 방향이 제 2메인자석(26)과 같은 것이다.
제 1메인자석(25)의 상부와 제 2메인자석(26)의 상부가 모두 S극이므로, 제 1메인자석(25)과 제 2메인자석(26) 간의 자기장은 매우 크게 축소되며 도관으로 흘러들어가는 자속도 매우 작다. 도관에 미치는 센서장치(11)의 자기력이 현저히 작아진 것이다.
더욱이 제 1메인자석(25)이 뒤집어지면서 제 1메인자석(25)은 양측의 제 1고정자석(29)과 반응하여 도 6에 도시한 패턴의 자기장을 형성한다. 제 1메인자석(25)과 제 1고정자석(29)간의 자기장은, 제 1메인자석(25)과 제 1고정자석(29) 사이의 간격이 좁은 만큼, 멀리 돌지 않고 매우 좁은 영역에 밀집되어 자기력이 센서장치(11) 외부로 거의 나가지 않는다.
상기한 설명에서는 제 1메인자석(25)을 회전시켰지만, 제 1메인자석(25)은 그대로 두고 제 2메인자석(26)을 회전시켜 뒤집어도 같은 결과를 얻을 수 있다.
즉 제 2메인자석(26)을 180도 회전시켜 N극이 상부로 올라오도록 전환하면 제 1메인자석(25) 간의 자기플럭스가 현저히 감소하여 외부로 출력되는 자기력이 작아지는 것이다.
여하튼, 상기와 같이 일측 메인자석을 180도 뒤집어 도관에 미치는 자기력을 감쇄시킨 상태로 주행로봇을 주행시키면 주행로봇의 추진력만으로 도관으로부터 센서장치(11)를 분리할 수 있다.
상기 센서장치(11)가 도관(A)에서 분리된 후, 휠(31)이 도관의 내벽면에 닿게 되면 상기 제 1메인자석과 제 2메인자석을 도 7에 도시한 바와같이 세팅한 후 검사를 계속한다.
이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정하지 않고, 본 발명의 기술적 사상의 범위내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.
11:센서장치 13:베이스 13a:만곡홈
13b:센싱부설치면 13c:고정자석안착면 13d:구동기어홈
15:프론트기어 17:제 1토크발생기 17a:구동샤프트
18:제 2토크발생기 18a:구동샤프트 19:구동기어
21:종동기어 23:베어링 25:제 1메인자석
25a:N극 25b:S극 26:제 2메인자석
26a:N극 26b:S극 27:자석커버
29:제 1고정자석 29a:N극 29b:S극
30:제 2고정자석 31:휠 33:사이드커버
35:리어커버 37:아우터커버 39:센싱부
39a:홀센서 41:제 1자석홀더 41a:회전축
42:제 2자석홀더 42a:회전축

Claims (7)

  1. 도관의 내부를 주행하며 주변으로 자기력을 방출하여 도관의 상태를 검사하는 것으로서,
    주행방향으로 연장되며 연장방향 중앙 상면에 센싱부설치면을 가지고, 자로(magnetic path)를 제공하는 요크의 역할을 하는 베이스와;
    상기 센싱부설치면에 장착되며 누설자속을 탐지하는 다수의 홀센서를 구비한 센싱부와;
    상기 베이스 상부의 센싱부 일측편에 위치하는 일정두께의 판상 자석으로서, N극과 S극이 두께 방향으로 착자되고 외력에 의해 회전 가능한 제 1메인자석과;
    상기 센싱부를 사이에 두고 제 1메인자석의 반대편에 구비되며 N극과 S극이 두께 방향으로 착자되어 있는 판상의 제 2메인자석과;
    상기 제 1메인자석을 회전 가능하게 지지하는 제 1자석홀더와;
    상기 제 1자석홀더를 통해 제 1메인자석을 회전시켜, 제 1메인자석과 제 2메인자석 사이에 형성되는 자속을 조절하는 제 1구동부를 포함하는 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
  2. 제 1항에 있어서,
    상기 센서장치에는;
    상기 제 2메인자석을 회전 가능하게 지지하는 제 2자석홀더와,
    상기 제 2자석홀더를 통해 제 2메인자석을 회전시키는 제 2구동부가 더 포함되는 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
  3. 제 2항에 있어서,
    상기 제 1메인자석의 양측부에는, N극과 S극이 그 두께방향으로 착자되고 S극이 베이스를 향하도록 배치된 판상의 제 1고정자석이 구비되고,
    상기 제 2메인자석의 양측부에는, N극과 S극이 두께방향으로 착자되고, N극이 베이스를 향하도록 배치된 판상의 제 2고정자석이 더 구비되는 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
  4. 제 2항 또는 제 3항에 있어서,
    상기 제 1구동부는;
    상기 베이스의 일단부에 장착된 상태로 회전토크를 발생하는 제 1토크발생기와,
    상기 제 1토크발생기의 회전토크를 상기 제 1자석홀더로 전달하는 전동수단을 포함하고,
    상기 제 2구동부는;
    상기 베이스의 타단부에 장착된 상태로 회전토크를 발생하는 제 2토크발생기와,
    상기 제 2토크발생기의 회전토크를 상기 제 2자석홀더로 전달하는 전동수단을 갖는 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
  5. 제 3항에 있어서,
    상기 제 1메인자석 및 제 1고정자석과, 제 2메인자석 및 제 2고정자석은, 상기 센싱부를 사이에 두고 대칭을 이루며,
    상기 제 1메인자석과 제 2메인자석은 베이스의 길이방향으로 연장된 하나의 중심축을 중심으로 회전하는 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
  6. 제 5항에 있어서,
    상기 베이스에는;
    상기 제 1,2자석과 제 1,2고정자석을 그 내부에 수용하는 커버가 구비되고,
    상기 커버의 외측에는 센서장치의 이동시 구름운동하는 다수의 휠이 장착된 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
  7. 제 4항에 있어서,
    상기 전동수단은;
    상기 제 1,2자석홀더에 고정되는 종동기어와,
    상기 종동기어와 치합한 상태로 상기 제 1,2토크발생기에 의해 회전하여 종동기어를 회전시키는 구동기어를 포함하는 것을 특징으로 하는 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치.
KR1020120155112A 2012-12-27 2012-12-27 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치 KR101270177B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120155112A KR101270177B1 (ko) 2012-12-27 2012-12-27 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120155112A KR101270177B1 (ko) 2012-12-27 2012-12-27 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치

Publications (1)

Publication Number Publication Date
KR101270177B1 true KR101270177B1 (ko) 2013-05-31

Family

ID=48667302

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120155112A KR101270177B1 (ko) 2012-12-27 2012-12-27 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치

Country Status (1)

Country Link
KR (1) KR101270177B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944991B1 (ko) * 2017-08-07 2019-02-01 주식회사 파이앤 센서 모듈 및 이를 이용한 노출배관 주행 검사 장치
CN110125035A (zh) * 2019-04-24 2019-08-16 南京博克纳自动化系统有限公司 油管漏磁探伤机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122074A (ja) 2007-11-19 2009-06-04 Hitachi Ltd ワイヤーロープの探傷装置
JP2009175027A (ja) 2008-01-25 2009-08-06 Jfe Engineering Corp 磁化装置、管内検査装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122074A (ja) 2007-11-19 2009-06-04 Hitachi Ltd ワイヤーロープの探傷装置
JP2009175027A (ja) 2008-01-25 2009-08-06 Jfe Engineering Corp 磁化装置、管内検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944991B1 (ko) * 2017-08-07 2019-02-01 주식회사 파이앤 센서 모듈 및 이를 이용한 노출배관 주행 검사 장치
CN110125035A (zh) * 2019-04-24 2019-08-16 南京博克纳自动化系统有限公司 油管漏磁探伤机
CN110125035B (zh) * 2019-04-24 2023-12-19 南京博克纳自动化系统有限公司 油管漏磁探伤机

Similar Documents

Publication Publication Date Title
JP5537647B2 (ja) 走行レンジ選択レバーのポジションを検知するための装置、及び該装置の装備された自動車
US8146449B2 (en) Device and method for nondestructive testing of pipelines
CA2312196C (en) Device for inspecting conduits made from ferromagnetic materials
CA2584471C (en) Device for testing material and measuring thickness on a test object having at least electrically conducting and ferromagnetic material parts
KR101944991B1 (ko) 센서 모듈 및 이를 이용한 노출배관 주행 검사 장치
JP2007285772A (ja) 配管検査方法及びこれに用いる配管検査装置
CA2548938A1 (en) Apparatus and method for detection of defects using flux leakage techniques
WO2020065659A1 (en) Spherical robot for internal inspection of pipelines
CN206930619U (zh) 一种油气输送管道内检测装置
KR101986428B1 (ko) 회전형 비파괴 탐상장치
KR101270177B1 (ko) 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치
KR20030074670A (ko) 강자성체의 응력 측정
KR101270178B1 (ko) 자기력 세기 조절 기능을 갖는 비파괴검사용 센서장치
JP2015172496A (ja) 管内走行超音波検査装置
CN108802169A (zh) 一种油气输送管道内检测装置
JP2004125752A (ja) 測定装置および測定方法
KR101314450B1 (ko) 배관 비파괴 검사로봇용 앵커장치
US20220171403A1 (en) In-situ detection robot for loess geological information
CA2125618A1 (en) Support device for in-line pipe inspection tool
RU2587695C1 (ru) Магнитный дефектоскоп для обнаружения дефектов в сварных швах
FR3013844A1 (fr) Dispositif pour le controle non destructif d'un objet a controler
KR102341795B1 (ko) 파이프의 내부 라이닝 검사장치
US20230054659A1 (en) Inspection device and inspection unit
JPH1114608A (ja) 電磁超音波探触子
JP2000088816A (ja) Ppm電磁超音波トランスジューサを用いた探傷装置及びppm電磁超音波トランスジューサ

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170412

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 7