KR101266394B1 - 거리측정 센서의 입사각 영향에 따른 오차 보정방법 - Google Patents

거리측정 센서의 입사각 영향에 따른 오차 보정방법 Download PDF

Info

Publication number
KR101266394B1
KR101266394B1 KR1020110136646A KR20110136646A KR101266394B1 KR 101266394 B1 KR101266394 B1 KR 101266394B1 KR 1020110136646 A KR1020110136646 A KR 1020110136646A KR 20110136646 A KR20110136646 A KR 20110136646A KR 101266394 B1 KR101266394 B1 KR 101266394B1
Authority
KR
South Korea
Prior art keywords
distance
incident angle
error
sensor
calculating
Prior art date
Application number
KR1020110136646A
Other languages
English (en)
Inventor
김도익
박찬수
오상록
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020110136646A priority Critical patent/KR101266394B1/ko
Application granted granted Critical
Publication of KR101266394B1 publication Critical patent/KR101266394B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Abstract

본 발명은 거리측정 센서의 입사각 영향에 따른 오차 보정방법에 관한 것으로, 더 상세하게는, 광원을 사용하여 거리를 측정하는 거리측정 센서가 물체까지의 거리를 측정할 때, 물체와 광원 간의 입사각 크기로 발생하는 오차를 보정하는 방법에 관한 것이다. 본 발명의 일 실시예에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법은, 거리측정 센서의 입사각 변화에 따른 측정거리 오차를 통계적으로 미리 산출하는 단계; 상기 거리측정 센서에서 측정 물체까지의 거리를 측정하는 단계; 상기 거리측정 센서의 팬-틸트(pan-tilt) 움직임을 통해 상기 측정 물체의 소정 영역 내의 좌표들에 대한 거리를 산출하는 단계; 상기 측정 물체의 소정 영역의 좌표들에 대해 측정된 거리값을 통합하여, 측정 물체 표면의 면 벡터를 산출하는 단계; 상기 거리측정 센서의 광원과 상기 측정 물체가 만나는 입사각을 계산하는 단계; 및 상기 입사각에 따른 보정거리 오차를 산출하여 상기 거리측정 센서의 측정값을 보정하는 단계를 포함한다.

Description

거리측정 센서의 입사각 영향에 따른 오차 보정방법 {CALIBRATION METHOD TO MINIMIZE THE EFFECT OF INCIDENCE ANGLE IN MEASURING DISTANCE}
본 발명은 거리측정 센서의 입사각 영향에 따른 오차 보정방법에 관한 것으로, 더 상세하게는, 광원을 사용하여 거리를 측정하는 거리측정 센서가 물체까지의 거리를 측정할 때, 물체와 광원 간의 입사각 크기로 발생하는 오차를 보정하는 방법에 관한 것이다.
광원을 활용하는 거리측정 센서는 비접촉식 방식으로 원거리에 있는 측정 물체까지 비교적 정확한 거리를 측정할 수 있다는 장점을 갖고 있다. 그러나 측정 물체와 센서에서 발사된 광원이 만나는 입사각에 의해 거리측정 오차가 발생하는데, 이는 정밀한 거리 측정을 어렵게 하는 요인이 되고 있다.
종래의 거리측정 센서로, 공개특허 1999-0042349호는 레이저 광선을 피사체에 입사시킨 후, 반사되는 레이저 광을 측정하고, 고정 변수값을 활용하여 거리를 측정하는 방식에 대해 개시한다. 또한, 공개특허 2011-0066712호는 피사체로 레이저를 발사한 후 회귀되는 시간만으로 거리를 측정하는 방법에 대해 개시한다. 또한, 공개특허 2002-0054843호는 레이저의 출력 후 반사파가 돌아오기까지의 지연시간 보정 회로를 사용하여 지연시간에 의한 실거리 오차값을 보정한다.
상기와 같은 종래의 거리 측정 및 오차 보정 방법들은, 센서 자체의 측정 방식을 개선시키는 방식으로 측정값의 보정을 수행하고 있다.
그러나, 센서 자체의 성능을 개선하지 않더라도, 거리측정 센서의 광원과 측정 물체 간의 입사각이 측정오차에 미치는 영향을 분석하여 이를 개선시키는 것으로도 상당한 수준의 측정오차를 감소시킬 수 있으므로, 이러한 방식을 이용하는 오차 보정방법의 개발이 요구된다.
특허문헌 1: 한국공개특허 1999-0042349호 (주식회사 엘지이아이) 1999. 06. 19. 요약, 청구항 1, 도 2 특허문헌 2: 한국공개특허 2011-0066712호 (이충구, 이선구) 2011. 06. 17. 요약, 청구항 1, 도 2 특허문헌 3: 한국공개특허 2002-0054843호 (삼성탈레스 주식회사, 박태진) 2002. 07. 08. 요약, 청구항 1, 도 1
본 발명의 목적은 기존 광원을 활용한 거리측정 센서의 측정오차를 줄여 물체까지 보다 정확한 거리를 측정할 수 있도록 하는, 거리측정 센서의 입사각 영향에 따른 오차 보정방법을 제공하는 것이다.
전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법은, 거리측정 센서의 입사각 변화에 따른 측정거리 오차를 통계적으로 미리 산출하는 단계; 상기 거리측정 센서에서 측정 물체까지의 거리를 측정하는 단계; 상기 거리측정 센서의 팬-틸트(pan-tilt) 움직임을 통해 상기 측정 물체의 소정 영역 내의 좌표들에 대한 거리를 산출하는 단계; 상기 측정 물체의 소정 영역의 좌표들에 대해 측정된 거리값을 통합하여, 측정 물체 표면의 면 벡터를 산출하는 단계; 상기 거리측정 센서의 광원과 상기 측정 물체가 만나는 입사각을 계산하는 단계; 및 상기 입사각에 따른 보정거리 오차를 산출하여 상기 거리측정 센서의 측정값을 보정하는 단계를 포함한다.
상기 측정거리 오차를 통계적으로 미리 산출하는 단계는, 상기 거리측정 센서의 입사각에 따른 거리오차의 평균값과 표준오차를 통계화하여, 보정 거리오차를 실험데이터의 테이블(table) 형식 또는 커브 피팅(curve fitting) 형식을 통한 통계적 함수로 미리 산출하는 단계를 포함할 수 있다.
상기 거리측정 센서의 팬-틸트(pan-tilt) 움직임을 통해 측정 물체의 소정 영역 내의 좌표들에 대한 거리를 산출하는 단계는, 센서가 3차원 영역의 거리측정이 가능한 경우 팬-틸트(pan-tilt) 움직임이 생략될 수도 있다.
상기 거리측정 센서의 광원과 측정 물체가 만나는 입사각을 계산하는 단계는, 거리측정 센서에서 광원을 발사하는 벡터값 PS와, 면 벡터 PT를 이용하여, 하기 수학식 2와 같이 입사각을 계산할 수 있다.
[수학식 2]
Figure 112011100404016-pat00001
여기서, (·) 연산자는 두 벡터 간의 내적을 의미한다.
상기 거리측정 센서의 측정값을 보정하는 단계는, 상기 측정 물체와 광원이 이루는 입사각에 따른 보정거리 오차를 산출하고, 상기 거리측정 센서의 측정값에서 상기 보정거리 오차를 차분하여, 상기 측정 물체에 대한 보정된 거리값을 획득하는 단계를 포함할 수 있다.
본 발명에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법은, 거리측정 센서의 광원이 측정 물체와 만날 때의 입사각에 따른 거리측정 오차를 보정하여, 측정 물체까지의 보다 정확한 거리 측정이 가능하다는 효과가 있다.
또한, 본 발명에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법은, 광원을 활용한 거리측정 센서의 주된 오차요인 중 하나인 입사각의 영향을 줄여주고, 이를 통해 측정 물체까지의 거리 및 물체의 형상을 보다 정확히 측정할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법의 순서도이다.
도 2는 거리측정 센서의 입사각 변화에 따른 측정거리 오차의 통계적 산출을 위해 사용하는 장치를 설명하기 위한 도면이다.
도 3은 도 2의 측정 결과를 도시하는 그래프이다.
도 4는 거리측정 센서의 광원과 물체가 만나는 입사각을 계산하기 위한 방법을 설명하기 위한 도면이다.
이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법에 대하여 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 거리측정 센서의 입사각 영향에 따른 오차 보정방법의 순서도이다.
도 1을 참조하면, 우선, 거리측정 센서(200)의 입사각 변화에 따른 측정거리 오차를 통계적으로 미리 산출한다(S110).
도 2는, 측정거리 오차의 통계적 산출을 위해 사용하는 장치를 설명하기 위한 도면을 나타내며, 거리측정 센서(200)와 측정 물체(300)는 각각 LM 가이드(guide)(420)를 따라 이동하는 2개의 슬라이드 유닛(400a, 400b) 상에 배치되어 있으며 거리측정 센서(200)와 측정 물체(300) 간 실제 거리는 d로 표현한다. 측정 물체(300)와 슬라이드 유닛(400a) 사이, 거리측정 센서(200)와 슬라이드 유닛(400b) 사이에는 각각 회전 스테이지(410a, 410b)가 배치되어, 거리측정 센서(200)와 측정 물체(300)의 회전 각도를 임의로 조절할 수 있다. 일 예로, 거리측정 센서(200)의 각도를 고정시킨 상태에서 측정 물체(300)의 회전 각도를 조절함으로써, 거리측정 센서(200)에서 발사되는 광원이 측정 물체(300)에 도달할 때의 입사각을 조절할 수 있고, 이를 통해 거리측정 센서(200)의 광원의 입사각이 변할 때, 측정 물체(300)까지의 측정거리 오차를 얻을 수 있다.
도 3은 거리측정 센서(200)로 레이저 스캐너를 사용할 경우, 센서의 입사각과 거리오차의 관계를 나타내는 그래프이다.
도 3을 참조하면, 레이저 스캐너와 측정 물체(300)가 동일한 거리(d)에 있는 상태에서, 레이저 스캐너의 광원의 다양한 입사각에 따라 5000회 실험을 수행했을 때 발생하는 오차의 평균값과 표준편차가 그래프에 표시되었다.
레이저 스캐너의 경우, 입사각이 0도에서 ±60도까지 변화할 때, 측정오차의 피크-투-피크(peak-to-peak) 값이 평균적으로 약 20mm 정도 변화하는 것을 확인할 수 있으며, 입사각이 작을 수록 측정 오차의 표준편차도 작게 나타나는 것을 확인할 수 있다.
상기와 같이 입사각에 따른 거리오차의 평균값과 표준오차를 통계화하여, 보정 거리오차를 실험데이터의 테이블(table) 형식 또는 커브 피팅(curve fitting) 형식을 통한 통계적 함수로 미리 산출할 수 있다.
다시, 도 1을 참조하면, 측정거리 오차를 통계적으로 산출한 후에, 거리측정 센서(200)에서 측정 물체(300)까지의 거리를 측정한다(S120). 여기서, 거리측정 센서(200)에서 측정한 측정 물체(300)까지의 거리값은 광원의 입사각에 따른 오차를 반영하지 않았으므로, 거리오차가 존재하게 된다. 따라서, 거리오차를 보정해야 실제 거리를 산출할 수 있으며, 이를 수식으로 표현하면 다음과 같다.
Figure 112011100404016-pat00002
여기서, dc 는 보정된 거리, dm 은 거리측정 센서(200)에서 측정 물체(300)까지의 측정된 거리, de 는 보정 거리오차를 나타낸다.
상기 보정 거리오차 de 는 도 2를 통해 설명한 방식으로 실험데이터의 테이블(table) 형식 또는 커브 피팅(curve fitting) 형식을 통해 미리 정해진 통계적 함수로부터 산출될 수 있는 것으로, 입사각을 알면, 이를 대입하여, 보정 거리오차를 계산할 수 있다.
계속하여, 거리측정 센서(200)의 팬-틸트(pan-tilt) 움직임을 통해 측정 물체(300)의 소정 영역(A) 내의 좌표들에 대한 거리를 산출한다(S130).
이를 도 4를 통해 예시적으로 설명하면, 도 4에서, PS는 거리측정 센서(200)에서 발사되는 광원의 벡터값이고, PT는 광원이 도달하는 측정 물체(300) 표면의 면 벡터값이다. 면 벡터값 PT를 산출하기 위해, 우선, 거리측정 센서(200)에 팬-틸트 움직임을 주며, 측정 물체(300)의 소정 영역(A)에 해당하는 영역의 좌표들과의 거리를 측정한다. 여기서, 거리측정 센서(200)의 팬-틸트(pan-tilt) 움직임을 통해 측정 물체의 소정 영역 내의 좌표들에 대한 거리 산출 시, 거리측정 센서(200)가 3차원 영역의 거리를 측정할 수 있다면 팬-틸트(pan-tilt) 움직임이 생략될 수도 있다.
이어서, 상기 측정된 소정 영역(A)의 좌표들에 대한 거리값을 활용하여, 측정 물체(300) 표면의 면 벡터 PT를 산출한다(S140). 즉, 거리측정 센서(200)에 팬-틸트 움직임을 가함으로써, 측정 물체(300)의 2차원 혹은 3차원 지도를 얻을 수 있는데, 이 지도로부터 측정 물체(300) 표면에 해당하는 면 벡터를 추출할 수 있다. 여기서, 소정 영역(A)의 크기는 거리측정 센서(200)의 팬-틸트 움직임의 크기에 따라 결정되며, 거리측정 센서(200)가 적용되는 환경에 따라 센서의 정확도 및 허용 측정시간을 고려하여 적절히 팬-틸트 움직임의 크기를 조절할 수 있으며 이에 따라 소정 영역(A)의 크기도 결정할 수 있다.
면 벡터 PT와 센서 광원의 벡터값 PS를 알면, 거리측정 센서(200)의 광원과 측정 물체(300)가 만나는 입사각 θ를 하기 식과 같이 구할 수 있다.
Figure 112011100404016-pat00003
여기서, (·) 연산자는 두 벡터 간의 내적을 의미한다.
즉, 상기 수식을 이용하여, 거리측정 센서(200)의 광원과 측정 물체(300)가 만나는 입사각을 계산한다(S150). 이후, 앞서 입사각이 거리오차에 미치는 영향을 미리 분석하여 통계적으로 결정하였으므로, 측정 물체(300)와 광원이 이루는 입사각에 따른 보정거리 오차 de 를 산출하고, 거리측정 센서(200)에서 측정된 거리 dm 을 보정하여, 보정된 거리 dc 를 획득한다(S160).
따라서, 본 발명은 거리측정 센서(200)에서 발사하는 광원과 측정 물체(300) 간 입사각 크기로 인해 발생하는 거리 오차를 미리 분석하고, 측정 물체(300) 표면에 대한 면 벡터값 산출을 통해 거리측정 센서(200)의 측정 물체(300)에 대한 입사각을 산출하고, 이를 거리오차 보정에 활용함으로써, 거리측정 센서(200)의 측정 정밀도를 개선할 수 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
200: 거리측정 센서
300: 측정 물체
400a, 400b: 슬라이드 유닛
410a, 410b: 회전 스테이지
420: LM 가이드

Claims (4)

  1. 거리측정 센서에서 발사하는 광원과 측정 물체 간 입사각 크기로 인해 발생하는 측정거리 오차를 통계적으로 미리 산출하는 단계;
    상기 거리측정 센서에서 측정 물체까지의 거리를 측정하는 단계;
    상기 거리측정 센서의 팬-틸트(pan-tilt) 움직임을 통해 상기 측정 물체의 소정 영역 내의 좌표들에 대한 거리를 산출하는 단계;
    상기 측정 물체의 소정 영역의 좌표들에 대해 측정된 거리값을 통합하여, 측정 물체 표면의 면 벡터를 산출하는 단계;
    상기 거리측정 센서의 광원과 상기 측정 물체가 만나는 입사각을 계산하는 단계; 및
    상기 입사각에 따른 보정거리 오차를 산출하여 상기 거리측정 센서의 측정값을 보정하는 단계를 포함하는 것을 특징으로 하는, 거리측정 센서의 입사각 영향에 따른 오차 보정방법.
  2. 제1항에 있어서, 상기 측정거리 오차를 통계적으로 미리 산출하는 단계는,
    상기 거리측정 센서의 입사각에 따른 거리오차의 평균값과 표준오차를 통계화하여, 보정 거리오차를 실험데이터의 테이블(table) 형식 또는 커브 피팅(curve fitting) 형식을 통한 통계적 함수로 미리 산출하는 단계를 포함하는 것을 특징으로 하는, 거리측정 센서의 입사각 영향에 따른 오차 보정방법.
  3. 제1항에 있어서, 상기 거리측정 센서의 광원과 측정 물체가 만나는 입사각을 계산하는 단계는, 거리측정 센서에서 광원을 발사하는 벡터값 PS와, 면 벡터 PT를 이용하여, 하기 수학식 2와 같이 입사각을 계산하는 것을 특징으로 하는, 거리측정 센서의 입사각 영향에 따른 오차 보정방법:
    [수학식 2]
    Figure 112011100404016-pat00004

    여기서, (·) 연산자는 두 벡터 간의 내적을 의미한다.
  4. 제1항에 있어서, 상기 거리측정 센서의 측정값을 보정하는 단계는,
    상기 측정 물체와 광원이 이루는 입사각에 따른 보정거리 오차를 산출하고, 상기 거리측정 센서의 측정값에서 상기 보정거리 오차를 차분하여, 상기 측정 물체에 대한 보정된 거리값을 획득하는 단계를 포함하는 것을 특징으로 하는, 거리측정 센서의 입사각 영향에 따른 오차 보정방법.
KR1020110136646A 2011-12-16 2011-12-16 거리측정 센서의 입사각 영향에 따른 오차 보정방법 KR101266394B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110136646A KR101266394B1 (ko) 2011-12-16 2011-12-16 거리측정 센서의 입사각 영향에 따른 오차 보정방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110136646A KR101266394B1 (ko) 2011-12-16 2011-12-16 거리측정 센서의 입사각 영향에 따른 오차 보정방법

Publications (1)

Publication Number Publication Date
KR101266394B1 true KR101266394B1 (ko) 2013-05-22

Family

ID=48666633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110136646A KR101266394B1 (ko) 2011-12-16 2011-12-16 거리측정 센서의 입사각 영향에 따른 오차 보정방법

Country Status (1)

Country Link
KR (1) KR101266394B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292769A (zh) * 2013-06-19 2013-09-11 陈磊磊 一种基于最小区域的平面倾斜度误差评定方法
KR20160104552A (ko) * 2015-02-26 2016-09-05 스미도모쥬기가이고교 가부시키가이샤 형상계측장치, 가공장치 및 형상계측방법
KR101791881B1 (ko) * 2016-01-27 2017-11-07 (주)파이버프로 열차 선로의 궤간 측정 장치 및 그 제어 방법
CN112904315A (zh) * 2021-01-12 2021-06-04 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241766B1 (ko) 1997-06-24 2000-02-01 김영환 광학식 거리측정 장치의 거리보정과 테스트 장치 및 그 방법
JP4500097B2 (ja) 2003-08-20 2010-07-14 サンクス株式会社 光学測定装置及び光学測定装置における距離算出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241766B1 (ko) 1997-06-24 2000-02-01 김영환 광학식 거리측정 장치의 거리보정과 테스트 장치 및 그 방법
JP4500097B2 (ja) 2003-08-20 2010-07-14 サンクス株式会社 光学測定装置及び光学測定装置における距離算出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292769A (zh) * 2013-06-19 2013-09-11 陈磊磊 一种基于最小区域的平面倾斜度误差评定方法
CN103292769B (zh) * 2013-06-19 2015-11-25 桂林电子科技大学 一种基于最小区域的平面倾斜度误差检测方法
KR20160104552A (ko) * 2015-02-26 2016-09-05 스미도모쥬기가이고교 가부시키가이샤 형상계측장치, 가공장치 및 형상계측방법
CN105928482A (zh) * 2015-02-26 2016-09-07 住友重机械工业株式会社 形状测量装置、加工装置及形状测量方法
KR101701084B1 (ko) 2015-02-26 2017-01-31 스미도모쥬기가이고교 가부시키가이샤 형상계측장치, 가공장치 및 형상계측방법
CN105928482B (zh) * 2015-02-26 2020-09-29 住友重机械工业株式会社 形状测量装置、加工装置及形状测量方法
KR101791881B1 (ko) * 2016-01-27 2017-11-07 (주)파이버프로 열차 선로의 궤간 측정 장치 및 그 제어 방법
CN112904315A (zh) * 2021-01-12 2021-06-04 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质
CN112904315B (zh) * 2021-01-12 2024-04-26 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质

Similar Documents

Publication Publication Date Title
TWI420081B (zh) 測距系統及測距方法
US9151595B1 (en) Laser thickness gauge and method including passline angle correction
CN110208771B (zh) 一种移动二维激光雷达的点云强度改正方法
KR101266394B1 (ko) 거리측정 센서의 입사각 영향에 따른 오차 보정방법
JP2012167944A (ja) ステレオカメラ校正方法及び装置
US11454721B2 (en) Object monitoring system including distance measuring device
US20160156899A1 (en) Three-dimensional measurement apparatus and control method for the same
WO2020094709A3 (de) Verfahren und computerprogrammprodukt zur oct-messstrahljustierung
US11112236B2 (en) Optical displacement meter
US10684120B2 (en) Wire rope measuring device and wire rope measuring method
WO2019100810A1 (zh) 辐射图像校正方法和校正装置及校正系统
US10746529B1 (en) Optical displacement meter
US9341470B2 (en) Light section sensor
CN106840035B (zh) 建立物件轮廓影像的扫描装置及方法
TWI428568B (zh) 測距方法、測距系統與其處理軟體
CN104748699A (zh) 光学测量系统及方法
Langmann Wide area 2D/3D imaging: development, analysis and applications
Lim et al. A novel one-body dual laser profile based vibration compensation in 3D scanning
US10627519B2 (en) Information processing device and information processing method
CN109827607A (zh) 线结构光焊缝跟踪传感器的标定方法及装置
KR101613829B1 (ko) 미분 모아레를 이용한 3차원 형상 측정방법 및 장치
Uriarte et al. Modeling distance nonlinearity in tof cameras and correction based on integration time offsets
JP2014132252A (ja) 測定方法、測定装置および物品の製造方法
JP2013181895A (ja) 移動量測定装置
JP2009186216A (ja) 3次元形状測定装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee