KR101262619B1 - 강성 조절이 가능한 계류 돌핀 - Google Patents

강성 조절이 가능한 계류 돌핀 Download PDF

Info

Publication number
KR101262619B1
KR101262619B1 KR1020120060006A KR20120060006A KR101262619B1 KR 101262619 B1 KR101262619 B1 KR 101262619B1 KR 1020120060006 A KR1020120060006 A KR 1020120060006A KR 20120060006 A KR20120060006 A KR 20120060006A KR 101262619 B1 KR101262619 B1 KR 101262619B1
Authority
KR
South Korea
Prior art keywords
mooring
inner tube
dolphin
stiffness
floating structure
Prior art date
Application number
KR1020120060006A
Other languages
English (en)
Inventor
이영욱
채지용
Original Assignee
군산대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 군산대학교산학협력단 filed Critical 군산대학교산학협력단
Priority to KR1020120060006A priority Critical patent/KR101262619B1/ko
Application granted granted Critical
Publication of KR101262619B1 publication Critical patent/KR101262619B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B2021/003Mooring or anchoring equipment, not otherwise provided for
    • B63B2021/005Resilient passive elements to be placed in line with mooring or towing chains, or line connections, e.g. dampers or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B2021/505Methods for installation or mooring of floating offshore platforms on site

Abstract

본 발명은 강성 조절이 가능한 계류 돌핀에 관한 것이다. 본 발명에 따른 계류 돌핀은 지지관, 내관, 계류 수단과 돌기를 포함한다. 내관은 지지관 내부로 상하 슬라이딩 이동할 수 있으며, 내관의 이동으로 계류 돌핀은 스프링의 역할을 하며 수직 및 수평 진동을 제어할 수 있다. 내관의 하면에는 홀이 형성되는데, 홀의 지름 크기를 조절함으로써 계류 돌핀의 유효 강성을 조절할 수 있다. 돌기는 지지관의 내부에 위치하며, 탄성 부재로 형성됨으로써 내관이 슬라이딩 이동할 때 마찰을 주어 내관의 급격한 이동을 방지한다.
본 발명에 따르면 내관이 지지관 내부를 슬라이딩 이동함으로써 적응적으로 계류 돌핀의 높이를 조절할 수 있으며, 이에 따라 계류 돌핀 전체의 높이를 감소시킬 수 있다. 또한, 유효 강성이 강하여 부유식 구조물의 수직 및 수평 진동을 효과적으로 억제할 수 있다.

Description

강성 조절이 가능한 계류 돌핀 {Mooring dolphin adjustable rigidness}
본 발명은 강성 조절이 가능한 계류 돌핀에 관한 것으로, 보다 구체적으로는 원통 형태의 관으로 형성되며 해저에 고정되는 지지관과, 상면 및 복수의 홀이 형성된 하면을 구비하는 관 형태로 형성되며 지지관 내부에 삽입되어 상하로 이동가능한 내관과, 내관의 상부에 위치하며 내관과 부유식 구조물을 연결하는 계류 수단을 포함하는 강성 조절이 가능한 계류 돌핀에 관한 것이다.
사람들의 여가에 대한 관심이 증가함에 따라 수상 레저에 대한 관심도 증가하고 있다. 이에 최근에는 물가나 해변에 여가 시설을 짓고 수상 레저를 즐기는 것에서 나아가 물 위에 숙박 시설을 비롯한 각종 여가 시설을 건축하고 있다. 비단 여가를 즐기기 위한 것뿐 아니라, 사면이 바다인 우리나라의 지리적 특성을 이용, 해양 자원 및 해양 공간을 활용하여 수상 시설을 짓고, 업무를 위한 공간, 문화 예술을 위한 공간으로 활용하고 있다. 물 위에 지어지는 수상 시설이나 리조트 단지 등은 자연을 더욱 가까이 할 수 있어 자연친화적이며, 한정된 육지를 벗어나 해양 공간을 활용할 수 있다는 점에서 의미가 크다.
이렇게 물 위에 떠 있는 부유 시스템을 갖는 건축물을 플로팅 건축물이라 하는데, 휴양 뿐 아니라 거주, 업무를 위한 공간 등 다양한 용도로 사용되고 있다. 플로팅 건축물에는 해상 공항이나 해상 도시와 같이 대규모 시설부터 주택, 방갈로 등의 소규모 시설까지 다양하다. 플로팅 건축물에 대한 관심이 높아지면서, 플로팅 건축물에 대한 연구 및 진동을 억제하거나 안정성을 높일 수 있는 연구 역시 활발하게 진행되고 있다.
육지에 위치한 저수지나 호수 등에 건설되는 플로팅 건축물의 경우에는 수면이 비교적 일정하고 풍랑이 심하지 않아 계류된 플로팅 건축물의 진동을 제어하는 것이 비교적 용이하다. 하지만, 해양에 건축되는 플로팅 건축물의 경우에는 조수 간만, 파도 및 풍랑 등 플로팅 건축물의 안정을 위해 고려해야할 요소가 많다.
일반적으로, 초대형 플로팅 건축물을 계류하는 방법으로 안정성이 높은 말뚝식 돌핀을 이용하는 돌핀 링크 방식이 많이 이용된다. 하지만, 기존의 돌핀 링크 방식은 조수 간만의 차이가 큰 지역에 설치되는 경우 수면의 높이가 최대치일 때를 산정하여 계류 돌핀을 설치하여야 하기 때문에 돌핀의 높이가 과대하게 높아진다는 문제가 있다. 이에 따라 돌핀이 수면 위로 노출되는 부분이 많아 외관이 좋지 않으며, 수직 방향의 진동 및 부유식 구조물의 회전을 충분히 억제하기 어렵다는 문제가 있다.
따라서 해수면의 높이가 변하거나 파고가 높더라도 이에 적응적으로 계류 돌핀의 높이를 변경할 수 있어, 계류 돌핀의 외관을 해치지 않는 돌핀 계류 시설이 필요하다. 또한, 계류 돌핀의 안정성을 높여 해수면 높이의 변화나 파랑에도 부유식 구조물에 미치는 영향을 최소화하고 강성이 과대하지 않으면서도 부유식 구조물의 진동을 충분히 억제할 수 있는 돌핀 계류 시설의 개발이 필요하다.
본 발명의 목적은 수면으로 노출되는 부분이 많지 않아 부유식 구조물의 외관을 해치지 않는 돌핀 계류를 제공하는 것이다.
또한, 본 발명의 목적은 해수면 높이가 큰 폭으로 변화하더라도 부유식 구조물에 미치는 영향을 최소화할 수 있으며, 부유식 구조물의 진동을 억제할 수 있는 돌핀 계류를 제공하는 것이다.
위와 같은 목적을 달성하기 위하여, 본 발명의 실시예에 따른 강성 조절이 가능한 계류 돌핀은 지지관, 내관, 계류 수단을 포함한다. 지지관은 원통 형태로 형성되며, 해저에 고정된다. 내관은 상면 및 복수의 홀이 형성된 하면을 구비하는 관 형태로 형성되며, 지지관 내부에 삽입되어 상하로 이동가능하다. 계류 수단은 내관의 상부에 위치하며, 내관과 부유식 구조물을 연결한다.
본 발명의 다른 실시예에 따른 강성 조절이 가능한 계류 돌핀에서 지지관의 내측에는 복수의 돌기가 형성될 수 있다.
본 발명의 또 다른 실시예에 따른 강성 조절이 가능한 계류 돌핀에서 돌기는 탄성 재료로 형성될 수 있다.
본 발명의 또 다른 실시예에 따른 강성 조절이 가능한 계류 돌핀은 하면에 형성된 복수의 홀의 지름 크기를 조절함으로써 강성을 조절할 수 있다.
본 발명의 강성 조절이 가능한 돌핀 계류는 수면으로 노출되지 않아 부유식 구조물의 외관을 손상시키지 않는다.
본 발명의 강성 조절이 가능한 돌핀 계류는 해수면의 높이가 급격히 변하거나, 파랑이 높아도 부유식 구조물의 수직 및 수평 진동을 억제하여 구조물을 안정적으로 유지할 수 있다.
도 1은 본 발명의 실시예에 따른 강성 조절이 가능한 돌핀 계류를 나타내는 도면이다.
도 2는 도 1에서 A-A'의 단면도이다.
도 3은 본 발명의 실시예에 따라 내관이 이동하는 것을 나타내는 도면이다.
도 4는 내관에 형성된 홀의 지름 크기에 따른 내관의 유효 강성을 설명하는 도면이다.
도 5는 본 발명의 실시예에 따른 강성 조절이 가능한 계류 돌핀에서 홀의 지름을 달리한 것을 나타내는 도면이다.
도 6은 계류의 강성에 따른 수직 및 수평 진동의 제어 성능을 나타내는 도면이다.
도 7은 본 발명의 실시예에 따른 계류 돌핀을 부유식 구조물에 설치한 예를 나타내는 도면이다.
도 8은 본 발명의 실시예에 따른 계류 돌핀을 부유식 구조물에 설치한 예를 나타내는 도면이다.
도 9는 부유식 구조물에 설치된 돌핀 계류의 수에 따른 부유식 구조물의 진동 억제 성능을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.
도 1은 본 발명의 실시예에 따른 강성 조절이 가능한 돌핀 계류를 나타내는 도면이고, 도 2는 도 1에서 A-A'의 단면도이다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 강성 조절이 가능한 돌핀 계류(100)는 지지관(110), 내관(120), 계류 수단(130)을 포함한다. 지지관(110)은 철강(steel) 재질로 형성되며, 지지관(110)의 두께는 계류하고자 하는 부유식 구조물의 하중 및 계류 환경에 따라 결정된다. 부유식 구조물의 하중이 커질수록 지지관(110)의 두께도 두꺼워진다. 지지관(110)은 지지관(110)의 하부가 해저에 매설됨으로써 고정된다. 지지관(110)이 매설되는 깊이는 돌핀 계류가 설치되는 지역의 환경 및 지지되는 시설에 따라 달라질 수 있다. 지지관(110)의 높이 역시 돌핀 계류가 설치되는 지역의 환경 및 지지되는 시설에 따라 달라질 수 있으나, 본 실시예에서는 매설되는 지역의 평균 해수면 높이의 70~80%로 하였다.
내관(120)은 철강 재질로 형성된다. 내관(120)은 내부가 비어 있는 관 형태로 형성되며, 상면(122) 및 하면(124)을 구비한다. 내관(120)의 하면(124)에는 복수의 홀(124a)이 형성된다. 내관(120)은 지지관(110)의 내부에 삽입되어 상하로 슬라이딩 이동한다. 내관(120)은 해수면의 높이가 변하거나 파랑에 의해 부유식 구조물이 움직임에 따라 상하로 이동한다. 내관(120)의 내부에는 해수가 채워진다. 내관(120)이 이동하는 동안 홀(124a)로 해수가 유입 또는 유출되며 홀(124a) 내의 해수의 높이가 해수면의 높이와 균형을 이루게 된다. 해수면이 낮아져 부유식 구조물이 하방향으로 이동하면, 내관(120)은 지지관(110) 내부를 슬라이딩하여 하방향으로 이동한다. 내관(120)이 하방향으로 이동함에 따라 내관(120) 하면(124)의 홀(124a)을 통해 해수가 유입된다. 반대로, 해수면의 높이가 높아져 부유식 구조물이 상방향으로 이동하면 내관(120)은 지지관(110) 내부를 슬라이딩하여 상방향으로 이동한다. 내관(120)이 상방향으로 이동함에 따라 홀(124a)을 통해 해수가 유출입되며, 내관(120) 내부의 해수면의 높이는 대기압에 의해 해수면의 높이와 균형을 이루게 된다.
내관(120)의 길이는 계류 돌핀이 설치되는 지역의 환경 조건에 따라 차이가 있지만, 지지관(110)의 길이와 비슷하게 형성될 수 있다. 내관(120)의 일부는 항상 지지관(110)에 삽입된 채로 지지관(110)에 의해 지지된다. 해수면의 높이가 최대가 되더라도, 내관(120)이 상하로 슬라이딩 이동하면서 지지관(110)을 이탈하지 않도록 내관(120)의 충분한 길이가 지지관(110)에 의해 지지되도록 설계한다. 해수면이 높아지더라도 내관(120)이 지지관(110)을 이탈하지 않도록 지지관(110) 또는 내관(120)에 걸림 장치를 구비할 수도 있다.
계류 수단(130)은 내관(120)의 상부에 위치한다. 계류 수단(130)은 부유식 구조물과 내관(120)을 연결시킨다. 계류 수단(130)은 내관(120)의 상부에 천공된 계류홀(126)에 삽입되어 고정된다. 계류 수단(130)을 부유식 구조물에 연결하여 부유식 구조물을 내관(120)에 계류시킨다. 계류 수단(130)은 내관(120)의 상부에 체결 수단을 장착하여 고정시킬 수도 있다. 계류 수단(130)은 막대형 또는 밧줄의 형태일 수 있으며, 수평 방향의 진동을 흡수할 수 있도록 탄성 재료로 형성될 수 있다. 계류 수단(130)은 부유식 구조물에 연결됨에 있어 부유식 구조물이 해수면 밖으로 노출되는 부분에 연결될 수도 있지만, 물에 잠기는 부분에 연결될 수도 있다.
한편, 지지관(110)의 내측에는 복수의 돌기(112)가 형성될 수 있다. 도 2에 도시된 바와 같이, 복수의 돌기(112)는 지지관(110) 내측 둘레를 따라 일정한 간격으로 배열되며, 해수면의 최저 높이에서 내관(120)이 지지관(110) 내부에 삽입되었을 때의 깊이까지 형성될 수 있다. 복수의 돌기(112)는 탄성 재료로 형성된다. 돌기(112)는 지지관(110)과 내관(120)이 일정한 간격을 유지하도록 한다. 지지관(110)과 내관(120)은 일정 간격, 즉 돌기(112)의 두께만큼 떨어져 있으며, 이러한 공간을 통해 해수가 이동할 수 있어 내관(120)이 상하로 이동할 때 저항에 의해 완충 작용을 한다. 또한, 내관(120)은 돌기(112)에 접촉하여 상하로 슬라이딩 이동함으로써 내관(120)과 지지관(110)이 서로 닿음으로써 내는 마찰에 의한 소음을 억제할 수 있다. 한편, 돌기(112)는 탄성 재료로 형성되므로, 내관(120)이 지지관(110) 내부를 슬라이딩 이동할 때 돌기(112)와의 마찰이 발생하고 내관(120)이 급속도로 이동하는 것을 방지할 수 있다. 즉, 해수면의 높이가 변하거나 파고가 높은 경우에도 돌기(112)와 내관(120)의 마찰에 의해 내관(120)이 급속도로 이동하는 것을 방지하며, 이에 따라 계류된 부유식 구조물이 크게 진동하는 것을 억제할 수 있다.
도 3은 본 발명의 실시예에 따라 내관이 이동하는 것을 나타내는 도면이고, 도 4는 내관에 형성된 홀의 지름 크기에 따른 내관의 유효 강성을 설명하는 도면이며, 도 5는 본 발명의 실시예에 따른 강성 조절이 가능한 계류 돌핀에서 홀의 지름을 달리한 것을 나타내는 도면이다.
내관(120)의 슬라이딩 이동에 따른 강성 변화를 보다 구체적으로 살펴본다.
지지관(110)은 수면 아래에 위치하므로 내부 공간으로 해수가 차 있다. 내관(120)은 일부가 수면 위로 노출되므로, 해수면이 안정적인 상태에서, 대기압에 의해 내관(120)의 내부에는 해수면의 높이와 동일한 위치까지 해수가 차 있게 된다. 도 3에 도시된 바와 같이, 내관(120)이 지지관(110) 내부에서 슬라이딩하여 하방향으로 이동할 때, 홀(124a)을 통해서 해수가 이동한다. 해수가 이동하면서 내관(120)의 유효 강성에 변화가 생기고, 내관(120)은 유효 강성이 변화하면서 스프링의 역할을 하게 된다. 내관(120)이 하방향으로 이동하면 내관(120) 내부의 해수가 상방향으로 이동한다. 하지만 내관 내부에 차 있는 해수의 이동 속도는 내관(120)의 이동 속도보다 느리므로 내관(120)의 이동에 있어 완충 작용을 한다. 즉, 해수면의 높이가 급작스럽게 낮아져 내관(120)이 하방향으로 이동하더라도 내관(120) 내부의 해수의 이동에 의해 내관(120)의 급격한 이동이 억제되며 계류된 부유식 구조물의 진동을 억제할 수 있다. 반대로 해수면이 상승하여 내관(120)이 상방향으로 이동하는 경우에도 내관(120) 내부의 해수가 천천히 빠져 나와 이동함으로써 완충 작용을 하게 되고 부유식 구조물의 진동을 억제할 수 있다.
내관(120)의 내부에 차 있는 해수가 이동함으로써 내관의 유효 강성이 변화된다. 내관(120)은 하면에 홀(124a)을 형성함으로써 스프링의 역할을 하며, 홀(124a)의 지름 크기에 따라 스프링의 강도가 달라지는 것과 같은 작용을 한다. 도 4의 (a) 및 (b)에 도시된 바와 같이, 홀(124a)의 지름에 따라 해수의 이동 속도가 다르며, 이에 따라 시간에 따른 체적의 변화량이 달라진다. 해수가 홀(124a)을 통해 이동하더라도, 해수의 위치 에너지와 운동 에너지의 합은 항상 일정하다. 즉, 식 (1)의 베르누이의 법칙이 성립한다.
Figure 112012044660894-pat00001
--------------=------ (식 1)
해수가 높이 z1에서 높이 z2로 이동한 경우를 가정해보면,
높이 z1에서의 압력 p1은,
Figure 112012044660894-pat00002
-------------------------------- (식 2)
높이 z2에서의 압력 p2는,
Figure 112012044660894-pat00003
-------------------------------- (식 3)
이다.
(식 1)에 (식 2)와 (식 3)을 대입하면 다음과 같다. (단, 수직하중
Figure 112012044660894-pat00004
에 의한 압력 효과는 높이 z1에서는 '0' , 높이 z2에서는
Figure 112012044660894-pat00005
라고 가정한다.)
Figure 112012044660894-pat00006
----------- (식 4)
(
Figure 112012044660894-pat00007
는 수직하중,
Figure 112012044660894-pat00008
는 실린더의 단면적,
Figure 112012044660894-pat00009
는 물의 밀도이다.)
양 변을 정리하면, (식 5) 및 (식 6)이 도출된다.
Figure 112012044660894-pat00010
------------------------------------------ (식 5)
Figure 112012044660894-pat00011
----------------------------- (식 6)
한편,
Figure 112012044660894-pat00012
동안
Figure 112012044660894-pat00013
의 높이 변화가 있다고 가정하면, 체적의 변화량
Figure 112012044660894-pat00014
는 다음과 같다.
Figure 112012044660894-pat00015
----------------------------------- (식 7)
Figure 112013019389402-pat00029
----------------------------------- (식 8)
(식 5)와 (식 8)에 의해 높이 변화에 대한 1초 동안의 유효 강성
Figure 112012044660894-pat00017
는 다음과 같다.
Figure 112012044660894-pat00018
------------------------------------------- (식 9)
즉, 해수의 높이 변화량이 작을수록 내관(120)의 유효 강성이 커진다. 본 발명에 따른 강성 조절이 가능한 계류 돌핀(100)은 내관(120) 하면(124)에 홀(124a)이 형성됨으로써, 해수가 내관(120) 내에서 이동하고 이에 따라 내관의 유효 강성을 높일 수 있다. 또한, 내관(120) 하면(124)에 형성된 홀(124a)의 크기를 조절함에 따라 홀(124a)에 의한 해수의 높이 변화량이 조절되고, 이에 따라 계류 돌핀(100)의 유효 강성을 조절할 수 있다.
다음은 본 발명의 실시예에 따른 돌핀 계류에서 내관(120) 하면(124)에 형성된 복수의 홀(124a)의 단면적을 달리하여 해수의 이동 시간 및 속도를 측정한 것이다. 도 5의 (a), (b), (c)에 도시된 바와 같이, 내관(120)의 지름은 78mm이며, 홀(124a)의 지름은 각각 7mm, 10mm, 15mm인 계류 돌핀을 이용하여 측정하였다. 홀(124a)은 각각 4개씩 형성하였다. 홀(124a)이 형성되지 않을 경우 내관(120) 하면 (124)의 지름에 따른 단면적은 4776mm2이며, 홀(124a)의 지름에 따라 내관(120) 하면(124)의 단면적이 달라진다.
다음 표 1에 각각의 내관에 따른 단면적 및 공극률을 비교하였다.
CASE 1 CASE 2 CASE 3
지름 7mm 10mm 15mm
전체면적 4776 mm2
공극면적 38.5 mm2 × 4
= 154 mm2
78.5 mm2 × 4
= 314 mm2
176.6 mm2 × 4
= 706.4 mm2
Figure 112012044660894-pat00019
3.22 % 6.57 % 14.79 %
도 5에 도시된 케이스 1은, 내관(120) 하면(124)에 형성된 홀(124a)의 지름이 7mm이므로 4개의 홀(124a)의 단면적은 154mm2, 전체 면적 대비 공극률은 3.22%이다. 케이스 2의 경우 내관(120) 하면(124)에 형성된 홀(124a)의 지름은 10mm이므로 4개의 홀(124a)의 단면적은 314mm2이고, 내관(120)의 전체 면적 대비 공극률은 6.57%이다. 케이스 3은 홀(124a)의 지름이 15mm이므로 4개의 홀(124a)의 단면적은 706.4mm2이고, 내관(120)의 전체 면적 대비 공극률은 14.79%이다.
각각의 계류 돌핀을 이용하여 해수의 이동 시간 및 속도를 측정한 결과는 다음 표 2 및 표 3과 같다. 작용 수직 하중은 0.45kgf이다.
<이동시간(s)>
CASE 1 CASE 2 CASE 3
1차 5.7 4.1 2.3
2차 5.8 4.1 2.2
3차 5.8 4.2 2.2
4차 5.8 4.1 2.2
5차 5.8 4.1 2.3
평균 5.78 4.12 2.24
<속도(m/s)>
CASE 1 CASE 2 CASE 3
1차 0.0702 0.0976 0.1739
2차 0.0690 0.0976 0.1818
3차 0.0690 0.0952 0.1818
4차 0.0690 0.0976 0.1818
5차 0.0690 0.0976 0.1739
평균 0.0692 0.0971 0.1787
표 2및 표 3에서도 알 수 있다시피, 공극률이 클수록 해수가 이동하는 데에 걸리는 시간이 짧으며, 해수의 이동 속도도 제일 큰 것을 알 수 있다. 공극률이 작으면, 즉 홀(124a)의 지름이 작으면 해수가 이동하는 속도가 느리므로 강도가 높은 스프링처럼 작용한다. 반대로 홀(124a)의 지름이 큰 경우에는 해수가 이동하는 속도가 크며 강도가 약한 스프링처럼 작용하게 된다.
본 발명의 실시예에 따른 강성 조절이 가능한 계류 돌핀은 내관에 형성된 홀 지름의 크기를 조절함으로써 계류 돌핀의 강성을 조절할 수 있다. 동일한 지름의 지지관을 사용한다 하더라도 내관에 형성된 홀의 크기가 달라짐에 따라 성능이 달라지므로 계류 돌핀이 설치되는 지역에 따라 계류 돌핀의 강성을 과대하지 않게 설계할 수 있다. 한편, 내관의 이동에 따라 계류 돌핀은 완충 작용도 하는데, 홀의 지름이 너무 작아지면 강성이 높아지는 만큼 완충 효과는 약해진다. 따라서 홀의 지름 크기는 강성과 완충 효과를 고려하여 계류되는 부유식 구조물의 하중과 계류 환경에 따라 결정한다.
도 6은 계류의 강성에 따른 수직 및 수평 진동의 제어 성능을 나타내는 도면이다.
부유식 구조물이 계류의 강성에 따라 해석에 따른 운동 응답을 확인해 보고자 하였다. 부유식 구조물은 24m×12m×2.5 체적의 함체로 하여 계류 돌핀을 4곳에 고정하였으며, 함체의 흘수는 2m, 수심은 5m로 하였다. 파랑이 오는 입사각은 0˚(함체의 장변방향)로 하였다.
도 6의 (a)에서, 돌핀 계류가 없는 경우, 강성이 20kgf/m인 돌핀 계류, 강성이 100kgf/m인 돌핀 계류, 강성이 200kgf/m인 돌핀 계류에 의해 부유식 구조물이 계류된 경우의 수직 변위(heave)가 나타나 있다. 단주기에서 장주기로 갈수록 변위가 커지는데, 계류 돌핀이 없는 경우 변위가 제일 크며, 강성이 200kgf/m인 계류 돌핀을 이용하는 경우 변위가 가장 낮은 것을 알 수 있다.
또한, 도 6의 (b)에 도시된 바와 같이, 단변 축에서의 회전(pitch)의 경우 계류 돌핀이 없는 경우 변위의 최대값이 약 9˚로 가장 크나, 강성이 20kgf/m인 돌핀 계류의 경우 변위의 최대값이 약 8˚, 강성이 100kgf/m인 돌핀 계류의 경우 변위의 최대값이 약 4.5˚, 강성이 200kgf/m인 돌핀 계류의 경우 변위의 최대값이 약 2.8˚로 강성이 클수록, 즉 스프링이 강할수록 회전에 대한 제어력이 강한 것을 알 수 있다.
도 7은 본 발명의 실시예에 따른 계류 돌핀을 부유식 구조물에 설치한 예를 나타내는 도면이고, 도 8은 본 발명의 실시예에 따른 계류 돌핀을 부유식 구조물에 설치한 예를 나타내는 도면이며, 도 9는 부유식 구조물에 설치된 돌핀 계류의 수에 따른 부유식 구조물의 진동 억제 성능을 나타내는 도면이다.
도 7에 도시된 바와 같이, 부유식 구조물(100)은 4개의 계류 돌핀에 계류되어 있다. 부유식 구조물(100)의 진동은 4개의 계류 돌핀에 분산된다. 도 8에서는 부유식 구조물(100)이 6개의 계류 돌핀에 계류되어 있으며, 부유식 구조물(100)의 진동은 6개의 계류 돌핀에 분산된다. 부유식 구조물은 96m×48m×2.5 체적의 함체, 흘수는 2m인 것으로 하였다. 계류 돌핀의 예제 해석에서 수심은 5m, 파주기 2.14초, 유의 파고는 0.43m이다.
도 9의 (a) 및 (b)에는 계류 돌핀을 4 곳 및 6 곳에 설치하여 해석한 결과가 도시되어 있다. 도 9의 (a) 및 (b)에서 계류 돌핀의 강성 설계는 함체가 물에 잠기는 부피에 물의 밀도를 곱한 값을 각각 계류 돌핀의 개수로 나눈 값으로 산정하였으며, 결과 값을 그대로 이용하는 경우 강성이 과대해질 수 있어 적절한 설계 강성을 찾기 위하여 각각 1/10, 1/100, 1/1000 배수를 곱한 값으로 설정하였다.
주파수가 증가함에 따라 가속도가 증가하며, 부유식 구조물의 진동은 커진다. 범례에서 ■로 나타낸 것은 저수지의 수직 진동(heave)의 가속도이다. ●는 계류 돌핀의 강성값을 1/1000 배수로, ▲는 1/100 배수, ◆는 1/10배수로 설정한 경우의 가속도 값을 나타낸다. 계류 돌핀의 강성이 강할수록 가속도 값이 작은 것을 알 수 있으며, 이는 6개의 계류 돌핀을 사용한 경우에도 동일하다. 8시간을 기준으로 그 이상의 가속도가 나타나는 경우 숙박용으로 부적합하며, 계류 돌핀의 강성값을 1/100, 1/10 배수로 하여 계류 돌핀을 설계하는 것이 적절함을 알 수 있다. 특히 부유식 구조물의 부력 대비 1/10배수로 설정하는 경우 진동을 효과적으로 억제하는 것을 알 수 있다. 계류에 의하여 수직 진동을 억제함으로써 수직 진동 가속도가 인체에 미치는 영향을 최소화할 수 있으며, 계류하고자 하는 구조물 및 계류 지역의 환경에 따라 돌핀 계류의 강성을 적절하게 조절할 수 있다.
본 발명의 실시예에 따른 강성 조절이 가능한 계류 돌핀은 내관이 지지관 내부에 삽입되어 상하로 이동함으로써 해수면이 낮아지면 계류 돌핀의 높이도 같이 낮아지기 때문에, 해수면이 낮은 상태에서도 계류 돌핀이 많이 노출되지 않는다. 이에 따라, 계류 돌핀의 전체 높이를 40% 정도 감소시킬 수 있으며, 부유식 구조물의 외관을 해치치 않는다. 또한, 내관에 형성된 홀의 크기를 조절함으로써 과대하지 않게 강성이 조절된 계류 돌핀을 설계할 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명이 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
100 : 계류 돌핀 110 : 지지관
112 : 돌기 120 : 내관
122 : 상면 124 : 하면
124a : 홀 126 : 계류홀
130 : 계류 수단

Claims (4)

  1. 원통 형태의 관으로 형성되며, 해저에 고정되는 지지관;
    상면, 및 복수의 홀이 형성된 하면을 구비하는 관 형태로 형성되며, 상기 지지관 내부에 삽입되어 상하로 이동가능한 내관; 및
    상기 내관의 상부에 위치하며, 상기 내관과 부유식 구조물을 연결하는 계류수단;을 포함하고,
    상기 내관의 상기 하면에 형성된 상기 복수의 홀의 직경을 조절함으로써 강성을 조절하되, 상기 복수의 홀의 직경이 작을수록 강성이 강해지는 것을 특징으로 하는 강성 조절이 가능한 계류 돌핀.
  2. 제1항에 있어서,
    상기 지지관의 내측에는 복수의 돌기가 형성된 것을 특징으로 하는 강성 조절이 가능한 계류 돌핀.
  3. 제2항에 있어서,
    상기 돌기는 탄성 재료로 형성된 것을 특징으로 하는 강성 조절이 가능한 계류 돌핀.
  4. 삭제
KR1020120060006A 2012-06-04 2012-06-04 강성 조절이 가능한 계류 돌핀 KR101262619B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120060006A KR101262619B1 (ko) 2012-06-04 2012-06-04 강성 조절이 가능한 계류 돌핀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120060006A KR101262619B1 (ko) 2012-06-04 2012-06-04 강성 조절이 가능한 계류 돌핀

Publications (1)

Publication Number Publication Date
KR101262619B1 true KR101262619B1 (ko) 2013-05-08

Family

ID=48665837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120060006A KR101262619B1 (ko) 2012-06-04 2012-06-04 강성 조절이 가능한 계류 돌핀

Country Status (1)

Country Link
KR (1) KR101262619B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954345B1 (ko) 2018-07-27 2019-06-11 한림코퍼레이션(주) 플로팅 플랫폼을 이용한 접안시설
KR20220071732A (ko) 2020-11-24 2022-05-31 한전케이디엔주식회사 연료하역부두 계류 돌핀에 형성되는 IoT 스마트 센서 장비

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954345B1 (ko) 2018-07-27 2019-06-11 한림코퍼레이션(주) 플로팅 플랫폼을 이용한 접안시설
KR20220071732A (ko) 2020-11-24 2022-05-31 한전케이디엔주식회사 연료하역부두 계류 돌핀에 형성되는 IoT 스마트 센서 장비

Similar Documents

Publication Publication Date Title
US10989163B2 (en) Device for conversion of wave energy into electrical energy and the process for its deployment at the exploitation location
CA2564703C (en) Configurations and methods for wave energy extraction
JP5926244B2 (ja) 海岸侵食を最小化するためおよび水面活動を弱める他の用途のためのブイシステムおよび方法
KR101660695B1 (ko) 에너지 생산을 위한 부유식 정박시설
KR102001278B1 (ko) 낮은 수직운동의 반잠수식 해양 구조물
US4829928A (en) Ocean platform
CN108473185B (zh) 低运动半潜式井台
KR101262619B1 (ko) 강성 조절이 가능한 계류 돌핀
CN105756848A (zh) 一种超大型浮体调谐透空减振发电装置
CN110651086A (zh) 波浪捕获和衰减结构
KR101402763B1 (ko) 수상시설용 롤링피칭 감쇠장치
KR20090124351A (ko) 부침식 연직막체 방파제
KR101627926B1 (ko) 요동저감형 부유식구조물
KR101359521B1 (ko) 드릴링 파이프의 고정구조체 및 드릴링 파이프의 고정구조체가 구비된 선박
JP2001020248A (ja) 消波構造物
JP4469985B2 (ja) 消波構造物
JP2024514545A (ja) 水域用の太陽光発電ユニット
US2214453A (en) Floating structure
KR102184752B1 (ko) 부유구조물용 도교
KR102190017B1 (ko) 앵커식 플로팅소파시스템 및 그 시공방법
KR101383596B1 (ko) 유공을 이용한 해상풍력 지지구조물 및 그 시공방법
CN114735136A (zh) 一种浅水条件下漂浮式新能源发电装置用系泊系统
JPH0410266Y2 (ko)
KR101491670B1 (ko) 부유식 해양구조물
CN117144957A (zh) 双自由度海底升压站基础装置及海底升压设备

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 7

R401 Registration of restoration