KR101247293B1 - Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block - Google Patents

Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block Download PDF

Info

Publication number
KR101247293B1
KR101247293B1 KR1020120015968A KR20120015968A KR101247293B1 KR 101247293 B1 KR101247293 B1 KR 101247293B1 KR 1020120015968 A KR1020120015968 A KR 1020120015968A KR 20120015968 A KR20120015968 A KR 20120015968A KR 101247293 B1 KR101247293 B1 KR 101247293B1
Authority
KR
South Korea
Prior art keywords
weight
composition
cement
manufacturing
coal ash
Prior art date
Application number
KR1020120015968A
Other languages
Korean (ko)
Inventor
박영섭
Original Assignee
(주)솔프로이앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)솔프로이앤이 filed Critical (주)솔프로이앤이
Priority to KR1020120015968A priority Critical patent/KR101247293B1/en
Application granted granted Critical
Publication of KR101247293B1 publication Critical patent/KR101247293B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0263Hardening promoted by a rise in temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A composition for manufacturing a cement-free block is provided to obtain environmentally friendly cement-free block by using coal ash and sulphate of soda as an aggregate and reinforcing agent. CONSTITUTION: A composition for manufacturing a cement-free block comprises a coal ash and steel-making slag, alkali activator, and sulphate of soda. The alkali activator contains silicate glass, NaOH, and water. A manufacturing method of the cement-free block comprises a step of obtaining 10-30 weight% of a coal ash, 60-80 weight% of a steel-making slag, alkali activator, and 1-5 weight% of sulphate of soda; a step of molding the composition; and a step of curing the molded product at 80-90>=.

Description

석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물 및 이를 이용한 무시멘트 블록의 제조방법{Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block}Composition for making cement block manufacturing using coal ash and steel slag and manufacturing method of cement block using same {composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block}

본 발명은 석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물 및 이를 이용한 무시멘트 블록의 제조방법에 관한 것으로서, 더욱 상세하게는 산업현장에서 발생되는 폐기물인 석탄회, 제강슬래그, 망초를 재활용하여 시멘트를 전혀 사용하지 않는 친환경적인 무시멘트 블록제조용 조성물 및 이를 이용한 무시멘트 블록의 제조방법에 관한 것이다. The present invention relates to a composition for producing cement blocks using coal ash and steel slag and a method of manufacturing cement blocks using the same, and more particularly, to recycling cement, waste ash generated from industrial sites, and recycling cement. It relates to an environmentally friendly cement block manufacturing composition not used at all, and a method for producing a cement block using the same.

일반적으로 건설 산업에 이용되는 모르타르 및 콘크리트는 결합재, 물 및 골재로 구성되는데 이때 이용되는 대표적인 무기결합재인 시멘트(또는 시멘트 클링커)는 제조 공정 중에 원료의 주성분이 CaCO3인 석회석을 열처리하는 과정에서 막대한 에너지가 소비되며, 시멘트 제조량의 44중량% 이상인 다량의 CO2 가스가 발생하게 된다. 이때 발생하는 이산화탄소가 전 세계 온실가스 방출량의 약 7%에 해당된다.In general, the mortar and concrete used in the construction industry is composed of a binder, water and aggregate. Cement (or cement clinker), which is a representative inorganic binder, is enormous in the process of heat treating limestone whose main component is CaCO 3 during the manufacturing process. Energy is consumed and a large amount of CO 2 is more than 44% by weight of cement production Gas is generated. The carbon dioxide generated represents about 7% of global greenhouse gas emissions.

따라서 CO2 배출 규제와 관련하여 시멘트 제조업종의 CO2 감축 목표치가 어떻게 설정되느냐에 따라 앞으로 시멘트 클링커의 생산량 감축이 불가피 할 것인데, 세계의 시멘트 수요량은 21세기 초반까지 매년 2.5 ∼ 5.8 % 정도의 증가가 예상되고 있으므로, 교통의정서의 준수와 시멘트 수요의 증가를 동시에 충족시키기 위해서는 상기 CO2 의 배출이 감소되거나 전혀 없는 새로운 무기결합재의 개발이 시급하다.Therefore, CO 2 geotinde be with respect to emissions regulations unavoidable production cuts in the cement manufacturing sector of CO 2 in the future cement, depending on how the reduction targets set clinker, cement demand in the world increases of 2.5 to 5.8% per year until the early 21st century it is expected that, the development of new inorganic binder with no reduction in the emission of CO 2 or is an urgent need to increase compliance with the cement demand of transport protocols at the same time meet.

현재 이러한 문제를 인식하고 CO2를 감소시키기 위해 국내외의 콘크리트 제조업체들은 친환경 콘크리트에 대한 관심 증가와 함께 보통 포틀랜드 시멘트(OPC) 제조시 방출되는 이산화탄소 감축을 위한 기술개발을 위해 노력하고 있다. 이에 대한 결과로서 고로슬래그나 석탄회 등과 같은 산업부산물을 시멘트에 대해 일부 치환한 콘크리트의 사용이 점차 보편화되고 있다.In order to recognize this problem and reduce CO 2 , domestic and international concrete manufacturers are working to develop technologies for reducing CO 2 emitted during manufacturing of Portland cement (OPC), together with increasing interest in eco-friendly concrete. As a result of this, the use of concrete, which partially substituted industrial by-products such as blast furnace slag and coal ash with cement, is becoming more common.

하지만, 고로슬래그나 석탄회 등은 시멘트의 일부를 치환한 정도에 불과하므로 여전히 시멘트가 사용되는 있는 실정이다. However, blast furnace slag or coal ash is only a part of cement, so that cement is still used.

특히, 석탄회는 석탄을 원료로 하는 화력발전소에서 생성되는 미세한 분말의 산업 부산물로서 콘크리트 및 시멘트 혼화재로 활용되고 있으나 재활용되는 석탄회의 대부분은 CaO의 함량이 15~30중량%로 높고, SiO2 함량이 상대적으로 낮은 C급 석탄회이며, F급 석탄회 또는 CaO의 함량이 낮은 석탄회는 자경성이 없을 뿐만 아니라 유기물 및 분연탄소의 성분이 남아 있어 재활용률이 매우 미미하다. In particular, coal ash is an industrial by-product of fine powder generated from coal-fired power plants, and is used as a concrete and cement admixture. However, most of the recycled coal ash has a high content of CaO of 15 to 30% by weight and a high content of SiO 2. Relatively low C-class coal ash, F-class coal or low-CaO coal ash is not hardened and has a low recycling rate due to the remaining organic matter and fumed carbon.

본 발명은 상기의 문제점을 개선하고자 창출된 것으로서, 석탄회를 시멘트 대체제로 활용하고 제강슬래그 및 망초를 골재와 강도증진제로 활용함으로써 산업현장에서 발생되는 폐기물을 이용하여 시멘트를 전혀 사용하지 않는 친환경적인 무시멘트 블록제조용 조성물 및 이를 이용한 무시멘트 블록의 제조방법을 제공하는 데 그 목적이 있다. The present invention was created to improve the above problems, by using coal ash as a cement substitute and steelmaking slag and forget-me-not as aggregates and strength enhancers by using waste generated in the industrial site without using cement at all. It is an object of the present invention to provide a composition for producing a cement block and a method for manufacturing a cement block using the same.

상기의 목적을 달성하기 위한 본 발명의 무시멘트 블록제조용 조성물은 석탄회, 제강슬래그 소재의 골재, 알칼리 활성화제, 망초를 함유하는 것을 특징으로 한다. The composition for producing cement blocks of the present invention for achieving the above object is characterized by containing coal ash, aggregate of steelmaking slag, alkali activator, and forget-me-not.

상기 알칼리 활성화제는 물유리, 수산화나트륨, 물을 함유하는 것을 특징으로 한다. The alkali activator is characterized in that it contains water glass, sodium hydroxide, water.

상기 조성물은 맥반석을 더 함유하는 것을 특징으로 한다. The composition is characterized in that it further contains elvan.

상기 조성물은 사문석 및 차돌, 연망간석을 혼합한 혼합물을 용융시켜 형성한 세라믹볼을 더 함유하는 것을 특징으로 한다. The composition is characterized in that it further comprises a ceramic ball formed by melting a mixture of serpentine, marble, and manganese.

그리고 상기의 목적을 달성하기 위한 본 발명의 무시멘트 블록의 제조방법은 석탄회 10 내지 30중량%, 제강슬래그 소재의 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%를 배합하여 조성물을 수득하는 배합단계와; 상기 조성물을 성형하는 성형단계와; 상기 성형단계에서 성형된 성형물을 80 내지 90℃의 고온에서 양생하는 양생단계;를 포함하는 것을 특징으로 한다. And the method of manufacturing a cement block of the present invention for achieving the above object is 10 to 30% by weight of coal ash, 60 to 80% by weight aggregate of steelmaking slag, 5 to 20% by weight of alkali activator, 1 to 5% by weight of forget-me-not. A blending step of blending the% to obtain a composition; A molding step of molding the composition; It characterized in that it comprises a; curing step of curing the molding molded in the molding step at a high temperature of 80 to 90 ℃.

상기 배합단계는 맥반석, 세라믹볼을 더 배합하여 상기 조성물을 수득하고, 상기 세라믹볼은 사문석 및 차돌, 연망간석을 혼합한 혼합물을 1200 내지 1400℃로 가열하여 용융시킨 후 급랭시킨 다음 분쇄한 분쇄물을 입상화시킨 것을 특징으로 한다. In the compounding step, the mixture is further mixed with elvan and ceramic balls to obtain the composition, and the ceramic balls are melted by heating to 1200 to 1400 ° C. with a mixture of serpentine, marble and lead manganese, and then quenched and pulverized. It characterized by having granulated.

상술한 바와 같이 본 발명에 의하면 석탄회를 시멘트 대체제로 활용하고 제강슬래그 및 망초를 골재와 강도증진제로 활용함으로써 산업현장에서 발생되는 폐기물을 이용하여 시멘트를 전혀 사용하지 않는 친환경적인 무시멘트 블록제조용 조성물 및 이를 이용한 무시멘트 블록의 제조방법을 제공할 수 있다. As described above, according to the present invention, by using coal ash as a cement substitute and steelmaking slag and forget-me-not as aggregates and strength enhancers, an environmentally friendly cement block manufacturing composition does not use cement at all by using waste generated in an industrial site, and It is possible to provide a method for manufacturing a cement block using the same.

본 발명은 석회석 의존도를 낮추어 환경부하저감 효과와 더불어, 산업폐기물 재활용하여 시멘트를 대체할 수 있다. The present invention can reduce the dependence of limestone and reduce the environmental load, and can replace the cement by recycling industrial waste.

도 1은 무시멘트 블록의 유해성 실험 결과를 나타내는 그래프이고,
도 2는 무시멘트 블록의 미네랄 용출 실험결과를 나타내는 그래프이고,
도 3은 무시멘트 블록의 전기전도도 실험결과를 나타내는 그래프이고,
도 4는 무시멘트 블록의 중금속 흡착 실험결과를 나타내는 그래프이다.
1 is a graph showing the results of the hazard test of the cement block,
Figure 2 is a graph showing the mineral dissolution test results of the cement block,
3 is a graph showing the electrical conductivity test results of the cement block,
4 is a graph showing the results of heavy metal adsorption of the cement block.

이하, 본 발명의 바람직한 실시 예에 따른 석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물 및 이를 이용한 무시멘트 블록의 제조방법에 대하여 구체적으로 설명한다.Hereinafter, a composition for manufacturing cement block using coal ash and steel slag according to a preferred embodiment of the present invention and a method of manufacturing the cement block using the same will be described in detail.

본 발명의 일 실시 예에 따른 무시멘트 블록제조용 조성물은 석탄회, 제강슬래그 소재의 골재, 알칼리 활성화제, 망초를 함유한다. The composition for manufacturing cement blocks according to an embodiment of the present invention contains coal ash, aggregate of steelmaking slag, alkali activator, and forget-me-not.

본 발명에서 석탄회는 시멘트를 대체한다. 석탄회(ash)는 석탄의 유기성 가연 성분이 연소된 후에 남는 잔류 광물질로서, 석탄회의 대부분이 화력발전소에서 발생하고 있으며 그 이외에도 폐기물 소각로와 열병합 발전소 및 기타 산업현장에서도 연소공정으로 인하여 발생된다. In the present invention, coal ash replaces cement. Ash is a residual mineral that remains after the combustion of organic combustible components of coal. Most of the ash is generated from coal-fired power plants. In addition, ash is generated from combustion incinerators, cogeneration plants and other industrial sites.

석탄회는 입자의 크기에 따라 크게 두 가지로 구분되는데, 입자의 크기가 100㎛이하일 때는 플라이애쉬(fly ash)이고 그 이상일 때는 바텀애쉬(bottom ash)로 취급된다. 플라이애쉬는 입자가 가벼워 분산되어 날아다니다가 연소가스와 함께 집진기에 의해 채취되고, 바텀애쉬는 입자가 무거워 연소로의 하부로 떨어지게 된다. 이들 석탄회는 연소설비 내에서 포집되는 위치가 다르기 때문에 소결 상태, 밀도, 입자의 크기 등 물성이 다르게 나타나게 된다.Fly ash is classified into two types according to the size of the particles. When the size of the particles is 100 μm or less, it is treated as a fly ash and when it is larger than the bottom ash. Fly ash is light and dispersed in the fly, and is collected by the dust collector together with the combustion gas, bottom ash is heavy and falls to the bottom of the furnace. Since these coal ashes are collected at different locations in the combustion facility, physical properties such as sintered state, density, and particle size are different.

본 발명에서 석탄회로 플라이애쉬 또는 바텀애쉬를 이용할 수 있으나, 시멘트 대체용으로 플라이애쉬가 바람직하다. 플라이애쉬는 주요 화학성분으로는 실리카(SiO2), 알루미나(Al2O3), 산화철(Fe2O3), 산화칼슘(CaO), 산화마그네슘(MgO), 산화칼륨(K2O) 등을 포함한다. 이중에서 실리카(SiO2), 알루미나(Al2O3), 산화철(Fe2O3)의 성분이 가장 많은 양을 차지하고 있는데, 이 세가지 성분이 90% 이상을 차지한다. Although coal fly fly ash or bottom ash may be used in the present invention, fly ash is preferred for cement replacement. Fly ash is mainly composed of silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), calcium oxide (CaO), magnesium oxide (MgO), potassium oxide (K 2 O), etc. It includes. Among them, silica (SiO 2 ), alumina (Al 2 O 3 ), and iron oxide (Fe 2 O 3 ) are the largest components, and these three components account for more than 90%.

본 발명에서 석탄회는 10 내지 30중량%로 함유될 수 있다. 석탄회의 함량이 10중량% 미만이면 강도가 낮고, 30중량%를 초과하면 상승된 효과를 가지기 어렵다.Coal ash in the present invention may be contained in 10 to 30% by weight. If the content of coal ash is less than 10% by weight, the strength is low, and if it exceeds 30% by weight, it is difficult to have an elevated effect.

본 발명에서 제강슬래그는 골재로 이용된다. 제강슬래그는 분쇄하여 KS규격에 적합한 굵은 골재 및 잔 골재로 활용된다. 본 발명의 블록 제조용 조성물은 잔 골재 20 내지 30중량%, 굵은 골재 40 내지 50중량%를 함유할 수 있다. Steelmaking slag is used as aggregate in the present invention. Steelmaking slag is crushed and used as coarse aggregate and fine aggregate suitable for KS standard. The composition for producing a block of the present invention may contain 20 to 30% by weight of fine aggregate, 40 to 50% by weight of coarse aggregate.

제강슬래그는 선철을 전로에서 정련하여 불순 물인 탄소,인,유황을 제거하는 과정 중에 발생하는 슬래그라는 점에서 고로슬래그와 구분된다. 제강슬래그는 주요 화학성분으로 산화칼슘(CaO), 실리카(SiO2), 산화철(Fe2O3) 등을 포함한다. 제강슬래그를 골재로 이용함으로써 천연골재 채취로 인한 환경 훼손을 방지하고 폐기물 재활을 통한 비용절감 등의 효과를 가질 수 있다. Steelmaking slag is distinguished from blast furnace slag in that slag generated during the process of refining pig iron in the converter to remove impurities such as carbon, phosphorus and sulfur. Steelmaking slag contains calcium oxide (CaO), silica (SiO 2 ), iron oxide (Fe 2 O 3 ), etc. as main chemical components. By using steelmaking slag as aggregate, it is possible to prevent environmental damage caused by natural aggregate collection and to reduce costs through waste rehabilitation.

상술한 제강슬래그 소재의 골재는 60 내지 80중량%로 함유될 수 있다. 골재의 함량이 10중량% 미만이면 투과성이 낮고, 30중량%를 초과하면 강도가 저하된다. Aggregate of the steelmaking slag material described above may be contained in 60 to 80% by weight. If the content of the aggregate is less than 10% by weight, the permeability is low, and if it exceeds 30% by weight, the strength is lowered.

석탄회를 시멘트 대체물질로 사용하기 위해서는 강한 알칼리성 활성화제를 이용하여 미분말을 경화시키는 것이 바람직하다. 알칼리 활성화제는 물유리, 수산화나트륨, 물을 함유한다. 이러한 알칼리 활성화제는 물에 수산화나트륨과 물유리를 혼합하여 pH 12.0 내지 14.0의 강알칼리성을 갖는 수용액으로 제조한다. 이러한 알칼리 활성화제는 물유리는 석탄회의 활성화를 유도할 뿐만 아니라, 석탄회의 경화시간을 단축시킬 수 있다. 본 발명에서 알칼리 활성화제는 5 내지 20중량%로 함유될 수 있다. In order to use coal ash as a cement substitute, it is preferable to harden fine powder using a strong alkaline activator. Alkali activators contain water glass, sodium hydroxide, water. Such an alkali activator is prepared as an aqueous solution having a strong alkalinity of pH 12.0 to 14.0 by mixing sodium hydroxide and water glass in water. Such alkali activator water glass not only induces activation of coal ash, but also can shorten the curing time of coal ash. Alkali activator in the present invention may be contained in 5 to 20% by weight.

본 발명에서 망초는 조기강도 증진을 위해 사용된다. 망초(芒硝)는 제철산업에서 이산화황(SO2)을 제거하는 탈황공정에서 부산물로 발생한다. 탈황공정에서 발생하는 부산물은 주성분인 망초(Na2SO4) 외에도 불순물로 황, 탄산나트륨, 실리카, 철 등을 포함한다. 따라서 다른 불순물을 정제하여 사용할 수 있고, 불순물과 망초가 혼합된 탈황공정의 부산물 자체를 이용할 수 있다. In the present invention, the forget-me-not is used for early strength enhancement. Manganese is produced as a by-product in the desulfurization process to remove sulfur dioxide (SO 2 ) in the steel industry. By-products generated during the desulfurization process include sulfur, sodium carbonate, silica, iron, etc., as impurities, in addition to the main component, manganese (Na 2 SO 4 ). Therefore, other impurities can be purified and used, and the by-products of the desulfurization process mixed with impurities and forget-me-not can be used.

본 발명에서 망초는 1 내지 5중량%로 함유될 수 있다. 망초의 함량이 1중량% 미만이면 조기 강도가 낮고 고, 5중량%를 초과하면 상승된 효과를 가지기 어렵다.In the present invention, the forget-me-not may be contained in 1 to 5% by weight. If the content of forget-me-not is less than 1% by weight, the early strength is low, and if it exceeds 5% by weight, it is difficult to have an elevated effect.

본 발명의 다른 실시 예에 따른 무시멘트 블록제조용 조성물은 맥반석을 더 함유할 수 있다. Cementum block manufacturing composition according to another embodiment of the present invention may further contain elvan.

가령, 석탄회 10 내지 30중량%, 제강슬래그 소재의 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%, 맥반석 0.1 내지 0.5중량%로 조성될 수 있다. For example, it may be composed of 10 to 30% by weight of coal ash, 60 to 80% by weight aggregate of steelmaking slag, 5 to 20% by weight of alkali activator, 1 to 5% by weight of forget-me-not and elvan rock 0.1 to 0.5% by weight.

맥반석(麥飯石)은 화성암류 중의 석영변암에 속하는 암석으로 풍화되어 깨지기 쉬운 것이 특징이다. 맥반석은 도자기의 원료로 쓰이는 백색점토와 같이 카오린화(도토화)되어 있는 경우가 많으며, 흑운모도 거의 산화철의 형태이다. 맥반석의 주성분은 무수규산(SiO2)과 산화알루미늄(Al2O3)이며, 1㎤당 3만∼15만개의 다층다공질로 구성되어 있고, 비표면적이 넓어 오염물질, 중금속 등을 흡착, 분해하는 작용을 하며, 또한 시멘트 독성중화, 항균, 방충 및 강한 탈취력을 보인다고 알려져 있다. Elvan stone is a rock that belongs to quartz stool in igneous rocks and is easily broken. Elvanite is often kaolinized like white clay, which is used as a raw material for ceramics, and biotite is almost in the form of iron oxide. The main components of the elvan are silicic anhydride (SiO 2 ) and aluminum oxide (Al 2 O 3 ), which are composed of 30,000 to 150,000 multi-layer porous materials per cm 3 , and have a large specific surface area to adsorb and decompose contaminants and heavy metals. In addition, it is known to exhibit cement toxicity neutralization, antibacterial, insect repellent and strong deodorizing power.

본 발명에서 맥반석은 미네랄 성분을 용출시키고 중금속의 흡착이 증진시켜 친환경적인 블록을 제공한다. 또한, 맥반석은 블록의 다공성을 증진시켜 블록의 경량화 및 중금속 흡착에 유리하다. 또한, 맥반석은 원적외선을 방사하여 인체에 이로운 기능을 갖는다. In the present invention elvan rock elutes the mineral component and promotes the adsorption of heavy metals to provide an environmentally friendly block. In addition, elvan improves the porosity of the block, which is advantageous in lightening the block and adsorbing heavy metals. In addition, elvan has a beneficial function to the human body by radiating far infrared rays.

본 발명에서 맥반석은 0.1 내지 0.5중량%로 함유될 수 있다. 맥반석의 함량이 1중량% 미만이면 효과가 낮고, 5중량%를 초과하면 강도가 저하된다. 맥반석은 원석을 분쇄하여 50 내지 150메쉬 크기로 이용하는 것이 바람직하다. Elvan rock in the present invention may be contained in 0.1 to 0.5% by weight. If the content of elvan is less than 1% by weight, the effect is low. If it exceeds 5% by weight, the strength is lowered. Elvan is preferably pulverized ore using 50 to 150 mesh size.

본 발명의 또 다른 실시 예에 따른 무시멘트 블록제조용 조성물은 세라믹볼을 더 함유할 수 있다. The composition for manufacturing cement blocks according to still another embodiment of the present invention may further contain ceramic balls.

가령, 석탄회 10 내지 30중량%, 제강슬래그 소재의 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%, 맥반석 0.1 내지 0.5중량%, 세라믹볼 3 내지 10중량%로 조성될 수 있다. For example, 10 to 30% by weight of coal ash, 60 to 80% by weight aggregate of steelmaking slag, 5 to 20% by weight of alkali activator, 1 to 5% by weight of forget-me-not, 0.1 to 0.5% by weight of ganban stone, 3 to 10% by weight of ceramic ball It can be formulated as.

상기 세라믹볼은 사문석 및 차돌, 연망간석을 혼합한 혼합물을 용융시킨 후 급랭시킨 분쇄물을 입상화시킨 것이다. The ceramic ball is a granulated granulated product that is quenched after melting a mixture of serpentine, marble and soft manganese.

사문석(serpentine)은 화학성분이 Mg3Si2O5(OH)4인 단사정계(單斜晶系)에 속하는 함수마그네슘 층상 규산염광물로, 황록색, 녹색, 암녹색, 갈적색, 갈황색을 띤다. Serpentine is a hydrous magnesium layered silicate mineral belonging to a monoclinic system whose chemical composition is Mg 3 Si 2 O 5 (OH) 4 , and has yellowish green, green, dark green, brownish red, and brownish yellow color.

차돌은 옥수와 석영이 주성분인 암석으로서, 회색, 갈색, 흑색 등 여러 가지 빛깔이 있으며 반투명 또는 불투명하다. 차돌은 플린트 , 수석(燧石), 화석(火石)이라고도 불리운다. Chadol is a rock composed mainly of agate and quartz, and is multicolored in gray, brown, and black color and is translucent or opaque. Chadol is also called flint, chief or fossil.

연망간석(pyrolusite)은 정방정계에 속하는 광물로 색깔은 보통 철흑색 또는 강회색을 띤다. 주성분은 MnO2이고, 경도 2.5, 비중 4.8이다. 연망간석은 철흑색 또는 강회색(鋼灰色)을 띠며, 금속 광택이 있다. Pyrolusite is a mineral belonging to the tetragonal system and its color is usually iron black or strong gray. The main component is MnO 2 , hardness 2.5, specific gravity 4.8. The soft manganese is iron black or strong gray and has a metallic luster.

세라믹볼은 평균입도 1 내지 5mm크기로 형성된다. 이러한 세라믹볼은 블록 내에서 골재 사이에 포집되어 물이 통과할 수 있는 공극을 형성하는 데 유리하다. 또한, 세라믹볼은 중금속 흡착 및 미네랄 용출을 증대시키고, 용융과정을 통해 광물에 포함된 규산을 가용화시킴으로써 식물의 생육에 필요한 규산이나 고토를 공급하는 효과를 갖는다. 이는 본 발명의 조성물로 제조된 무시멘트 블록이 호안이나 식생용으로 설치되는 경우 식물의 생육에 많은 도움을 줄 수 있다. Ceramic balls are formed with an average particle size of 1 to 5mm. Such ceramic balls are advantageously formed in the block between aggregates to form voids through which water can pass. In addition, the ceramic ball has the effect of increasing the adsorption of heavy metals and mineral elution, solubilizing silicic acid contained in the mineral through the melting process to supply the silicic acid or soil required for plant growth. This can be very helpful for the growth of plants when the cement block made of the composition of the present invention is installed for revetment or vegetation.

이하, 무시멘트 블록을 제조하는 방법에 대하여 설명한다. Hereinafter, a method of manufacturing a cement block will be described.

무시멘트 블록 제조방법의 일 예로, 배합단계와 성형단계, 양생단계로 이루어진다.As an example of the cement block manufacturing method, it consists of a compounding step, molding step, curing step.

먼저, 배합단계에서 석탄회 10 내지 30중량%, 제강슬래그 소재의 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%를 배합하여 반죽된 조성물을 수득한다.First, in the blending step, 10 to 30% by weight of coal ash, 60 to 80% by weight aggregate of steelmaking slag, 5 to 20% by weight of alkali activator, and 1 to 5% by weight of forget-me-not are obtained to obtain a kneaded composition.

다음으로 반죽된 조성물을 일정한 모양으로 성형하는 성형단계를 수행한다. 성형은 조성물을 성형틀에 투입하여 수행한다. 성형은 진동 가압 성형기의 성형틀에 조성물을 투입하여 가압성형할 수 있다. 또한, 유압프레스의 성형틀에 투입하여 성형할 수 있다. 블록의 용도에 따라 다양한 크기와 형태로 성형할 수 있음은 물론이다. 또한, 성형틀로 거푸집을 이용할 수 있다. Next, a molding step of molding the kneaded composition into a predetermined shape is performed. Molding is carried out by putting the composition into a mold. Molding may be press-molded by putting the composition in the mold of the vibration pressure molding machine. Moreover, it can shape | mold by putting into the shaping | molding die of a hydraulic press. Of course, it can be molded in various sizes and shapes depending on the use of the block. Moreover, formwork can be used as a molding die.

성형 후 양생시켜 무시멘트 블록을 제조한다. 석탄회의 경화성을 높이기 위해서는 높은 양생온도가 필요하다. 따라서 충분한 강도발현을 위해 양생은 80 내지 90℃의 고온으로 수행하는 것이 바람직하다. 양생은 12시간 내지 72시간 동안 할 수 있다. Curing after molding produces cement blocks. High curing temperature is required to increase the hardenability of the ash. Therefore, curing is preferably performed at a high temperature of 80 to 90 ℃ for sufficient strength. Curing can be carried out for 12 to 72 hours.

상술한 방법으로 제조된 블록은 식생용, 투수용, 수질정화용, 옹벽용 등의 다양한 용도로 활용될 수 있다. 가령 호안블록, 어소블록, 수중블록, 옹벽블록, 잔디블록, 보도블록, 경계석 등으로 이용될 수 있다. 특히, 블록은 많은 공극이 형성된 다공질 구조를 가지므로 통기성과 투수성이 우수하다. Blocks produced by the above-described method can be utilized for various purposes, such as for vegetation, water permeation, water purification, retaining wall. For example, it can be used as a retreat block, an associate block, an underwater block, a retaining wall block, a grass block, a sidewalk block, a boundary stone, and the like. In particular, since the block has a porous structure in which many voids are formed, it is excellent in breathability and permeability.

블록 제조방법의 다른 예로 배합단계에서 맥반석을 더 혼합할 수 있다. 가령, 배합단계는 석탄회 10 내지 30중량%, 제강슬래그 소재의 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%, 맥반석 0.1 내지 0.5중량%를 배합한다. As another example of the block manufacturing method, the elvan can be further mixed in the compounding step. For example, the blending step is 10 to 30% by weight of coal ash, 60 to 80% by weight aggregate of steelmaking slag, 5 to 20% by weight of alkali activator, 1 to 5% by weight of forget-me-not and 0.1 to 0.5% by weight of ganban stone.

블록 제조방법의 또 다른 예로 배합단계에서 세라믹볼을 더 함유할 수 있다. 가령, 석탄회 10 내지 30중량%, 제강슬래그 소재의 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%, 맥반석 0.1 내지 0.5중량%, 세라믹볼 3 내지 10중량%로 조성될 수 있다. As another example of the block manufacturing method may further contain a ceramic ball in the compounding step. For example, 10 to 30% by weight of coal ash, 60 to 80% by weight aggregate of steelmaking slag, 5 to 20% by weight of alkali activator, 1 to 5% by weight of forget-me-not, 0.1 to 0.5% by weight of ganban stone, 3 to 10% by weight of ceramic ball It can be formulated as.

상기 세라믹볼은 사문석 및 차돌, 연망간석을 혼합한 혼합물을 용융시킨 후 급랭시킨 분쇄물을 입상화시킨 것이다. The ceramic ball is a granulated granulated product that is quenched after melting a mixture of serpentine, marble and soft manganese.

세라믹볼을 제조하기 위한 방법을 살펴보면, 준비된 사문석 및 차돌, 연망간석은 햄머밀, 볼밀, 로쉬밀 등의 분쇄기를 사용하여 평균 10 내지 100㎛의 입도 크기를 갖도록 각각 분쇄한다. 분쇄된 각 분말들은 일정 비율로 혼합한다. 가령, 사문석 100중량부에 대하여 차돌 40 내지 80중량부, 연망간석 10 내지 30중량부를 혼합할 수 있다. Looking at the method for producing a ceramic ball, the prepared serpentine, marble and lead manganese are each pulverized to have an average particle size of 10 to 100㎛ using a grinder such as a hammer mill, a ball mill, a Rosh mill. Each milled powder is mixed in a proportion. For example, it can mix 40-80 weight part of cushions and 10-30 weight part of manganese stones with respect to 100 weight part of serpentine.

혼합된 혼합물은 용융단계에서 1200 내지 1400℃로 가열하여 용융시킨다. 혼합물이 충분히 가열되지 않으면 광물상의 용융과 재결이 부족하여 가용성 규산성분의 함량이 충분치 않다. 따라서 본 발명에서는 용융시 광물이 충분이 용융될 수 있도록 1200 내지 1400℃에서 1 내지 3시간 정도 충분히 가열하여 용융시킨다. 용융된 용융물은 흐르는 물로 급랭시키는 것이 바람직하다. 급랭시킨 경우 입자가 작고 균일하게 생성되므로 분쇄작업이 용이하다. 냉각된 고화물은 건조 시켜 수분을 제거한 다음 분쇄한다. The mixed mixture is melted by heating to 1200 to 1400 ° C. in the melting step. If the mixture is not heated sufficiently, the melting and recrystallization of the mineral phase will be insufficient, resulting in insufficient content of soluble silicic acid. Therefore, in the present invention, a sufficient amount of minerals are melted by heating at 1200 to 1400 ° C. for 1 to 3 hours so that sufficient minerals are melted during melting. The molten melt is preferably quenched with running water. In the case of quenching, the particles are small and uniformly produced, which facilitates the grinding operation. The cooled solids are dried to remove moisture and then ground.

상기 건조공정을 거친 고화물은 침상구조를 파괴하고 크기를 균일화하기 위해 분쇄공정을 거쳐 입자화된 분쇄물로 가공한다. 분쇄공정은 햄머밀, 볼밀, 로쉬밀 등을 사용하여 분쇄하게 된다. 바람직하게 평균입도 1 내지 5mm의 입도 크기를 갖도록 분쇄한다. 분쇄 후 분쇄물을 구 형태로 구상화시킬 수 있도록 통상적인 연마과정을 더 거칠 수 있다. The solidified through the drying process is processed into a granulated powder through a grinding process in order to destroy the needle structure and to uniformize the size. The grinding process is pulverized using a hammer mill, a ball mill, a roche mill, and the like. Preferably it is ground to have a particle size of 1 to 5mm average particle size. After grinding, the grinding process may be further roughened so that the powder may be spherical.

이하, 본 발명의 이해를 돕기 위하여 실시 예를 제시하나, 하기 실시 예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시 예에 한정되는 것은 아니다.EXAMPLES Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

(실시예1)(Example 1)

석탄회 13.5중량%, 제강슬래그 소재의 굵은 골재 43중량% 및 잔골재 28중량%, 알칼리 활성화제(물유리:NaOH:물의 중량비=4:1:2.5) 12중량%, 망초 3.2중량%, 맥반석 0.3중량%를 배합하여 반죽한 다음 원통형의 성형틀에 채워 넣은 후 85℃에서 24시간 양생하여 지름 10cm, 높이 20cm인 공시체(specimen)를 제조하였다. 13.5% by weight of ash, 43% by weight of coarse aggregate of steelmaking slag and 28% by weight of fine aggregate, 12% by weight of alkali activator (water glass: NaOH: water ratio = 4: 1: 2.5), 3.2% by weight of forget-me-not, 0.3% by weight of ganban stone After kneading and kneading, it was filled in a cylindrical mold, and cured at 85 ° C. for 24 hours to prepare a specimen having a diameter of 10 cm and a height of 20 cm.

(실시예2)(Example 2)

석탄회 13.2중량%, 제강슬래그 소재의 굵은 골재 43중량% 및 잔골재 28중량%, 알칼리 활성화제(물유리:NaOH:물의 중량비=4:1:2.5) 12중량%, 망초 3.2중량%를 배합하여 반죽한 다음 원통형의 성형틀에 채워 넣은 후 85℃에서 24시간 양생하여 지름 10cm, 높이 20cm인 공시체(specimen)를 제조하였다. Kneaded with 13.2% by weight of coal ash, 43% by weight of coarse aggregate of steelmaking slag, 28% by weight of fine aggregate, 12% by weight of alkali activator (water glass: NaOH: water ratio = 4: 1: 2.5), 3.2% by weight of forget-me-not Next, the cylindrical mold was filled and cured at 85 ° C. for 24 hours to prepare a specimen having a diameter of 10 cm and a height of 20 cm.

<1. 물성실험><1. Physical property test>

상기 실시예 1 및 2의 공시체의 압축강도를 측정하여 그 결과를 하기 표 1에 나타내었다. 압축강도 시험은 KS F 2405의 방법에 따라 실시하였다. The compressive strength of the specimens of Examples 1 and 2 was measured and the results are shown in Table 1 below. The compressive strength test was carried out according to the method of KS F 2405.

구분division 압축강도Compressive strength 실시예1Example 1 27.3MPa27.3 MPa 실시예2Example 2 25.8MPa25.8 MPa

상기 표 1의 결과로부터 본 발명의 무시멘트의 블록은 강도면에서 우수한 것으로 나타났다. From the results of Table 1, the block of cement of the present invention was found to be excellent in strength.

<2. 블록의 유해성 실험><2. Block Hazard Test>

블록의 유해성 평가는 “폐기물 공정시험법"의 용출시험법에 준하여 다음과 같은 절차로 진행하였다.The hazard evaluation of the block was carried out according to the dissolution test method of the "Waste Process Test Method" as follows.

상시 실시예 1의 공시체를 직경 5mm이하로 파쇄하여 시료로 이용하였다. 시료와 용매(증류수)의 비를 1:10(w:v)으로 혼합하였다. 용매는 염산을 이용하여 pH 5.8~6.3으로 조절하였다. 수평진탕기(Horizontal shaker, LAB-TECH, LMS 1003)로 6시간 동안 교반한 다음 3,000rpm에서 20분간 원심분리하였다.The specimen of Example 1 was always crushed to 5 mm or less in diameter and used as a sample. The ratio of sample and solvent (distilled water) was mixed at 1:10 (w: v). The solvent was adjusted to pH 5.8-6.3 using hydrochloric acid. After stirring for 6 hours with a horizontal shaker (Horizontal shaker, LAB-TECH, LMS 1003) was centrifuged for 20 minutes at 3,000rpm.

블록의 유해성 평가를 위한 분석대상 항목은 Pb, Cu, Cd, Cr6 +, CN, As, PCE, TCE로 하였으며, ICP 및 GC로 분석하였다. 실험결과는 하기 표 2 및 도 1에 나타내었다.Analyte entry for a block of hazard assessment was as Pb, Cu, Cd, Cr 6 +, CN, As, PCE, TCE, and analyzed by ICP and GC. The experimental results are shown in Table 2 and FIG. 1.

구분division 시료농도(mg/L)Sample concentration (mg / L) 기준(mg/L)Standard (mg / L) PbPb 0.180.18 3.003.00 CuCu -- 3.003.00 CdCD -- 0.300.30 Cr6 + Cr 6 + -- 1.501.50 CNCN -- 3.003.00 AsAs -- 1.501.50 PCEPCE -- 0.100.10 TCETCE -- 0.300.30

상기 표 2 및 도 1를 참조하면, 납이 0.18mg/L가 용출되었으나 이는 기준치 3.00mg/L보다는 낮은 것으로 나타났으며, 그 이외의 항목은 불검출로 확인되었다.따라서 본 발명의 무시멘트 블록 제조용 조성물로 제조된 블록은 중금속 등 유해물질의 용출농도가 폐기물관리법의 기준치보다 낮기 때문에 친환경적인 블록으로 활용될 수 있다. Referring to Table 2 and FIG. 1, lead was eluted at 0.18 mg / L, but it was found to be lower than the reference value of 3.00 mg / L, and other items were found to be non-detection. Blocks made of the composition can be used as an environmentally friendly block because the concentration of the dissolution of harmful substances such as heavy metals is lower than the standard of the waste management law.

<3.미네랄 용출실험><3.Mineral dissolution test>

실시예 1 및 2의 공시체의 미네랄 성분 용출 특성을 파악하기 위해서 250mL의 삼각플라스크에 증류수 100mL를 넣고 2종류의 시료를 각각 5g씩 투입하여 진탕기에서 3시간 교반 후 3,000rpm에서 15분간 원심분리하였다. 상등액에 포함된 대상 미네랄 성분(Fe, K, Mg, Na)은 ICP로 분석하여 도 2의 그 결과를 나타내었다. In order to determine the elution characteristics of the mineral components of the specimens of Examples 1 and 2, 100 mL of distilled water was added to a 250 mL Erlenmeyer flask, and 5 g of each of the two samples were added, stirred for 3 hours in a shaker, and centrifuged at 3,000 rpm for 15 minutes. . The target mineral components (Fe, K, Mg, Na) contained in the supernatant were analyzed by ICP and the results are shown in FIG. 2.

시료로 실시예 1 및 2의 공시체를 직경 5mm이하로 각각 파쇄하여 이용하였다. As the samples, the specimens of Examples 1 and 2 were used by crushing each of them to a diameter of 5 mm or less.

도 2를 참조하면, 철과 마그네슘은 검출되지 않은 것으로 나타났으나 2종류의 시료 모두에서 칼륨과 나트륨은 일정량이 검출되었다. 특히, 맥반석을 함유한 시료(실시예1의 공시체)의 경우 맥반석을 함유하지 않은 시료(실시예2의 공시체)에 비해 미네랄의 검출량이 더 높게 나타났다. 2, it was found that iron and magnesium were not detected, but a certain amount of potassium and sodium were detected in both samples. In particular, in the case of the sample containing elvan rock (the specimen of Example 1), the amount of detection of minerals was higher than that of the sample without the elvan rock (the specimen of Example 2).

따라서 본 발명은 미네랄 용출에 효과적이고, 특히 맥반석을 첨가한 경우 용출량이 증가하는 것으로 확인되었다. Therefore, the present invention is effective for mineral elution, and it was confirmed that the amount of elution increased especially when elvan was added.

한편, 도 3에 시료의 주입량을 달리하여 전기전도도 변화를 관찰한 결과를 나타내었다. 시료의 양을 증가시키면 전기전도도가 증가하였고, 동일한 시료 량의 조건에서는 맥반석을 함유한 경우 전기전도도가 증가하는 것을 알 수 있었다. 이는 맥반석이 첨가하면 이온성을 띄는 미네랄성분의 용출로 전기전도도가 증가하는 것으로 판단된다. On the other hand, Figure 3 shows the results of observing the electrical conductivity change by varying the injection amount of the sample. Increasing the amount of sample increased the electrical conductivity, it was found that the electrical conductivity increased when containing the elvan rock under the same sample amount conditions. If elvan is added, it is believed that the electrical conductivity is increased by the elution of ionic minerals.

참고로, 도 2 및 도 3의 그래프에서 점선 막대는 맥반석을 함유하지 않은 실시예 2의 공시체 시료이고, 사선막대는 맥반석을 함유한 실시예 1의 공시체 시료를 의미한다. For reference, in the graphs of FIGS. 2 and 3, the dotted bar indicates the specimen sample of Example 2 that does not contain the ganguerite, and the diagonal bar means the specimen sample of Example 1 that contains the ganguerite.

<4.중금속 흡착실험><4.Heavy metal adsorption test>

실시예 1 및 2의 공시체의 중금속 흡착특성을 파악하기 위해서 250mL의 삼각플라스크에 증류수 100mL를 넣고 2종류의 시료를 각각 5g 투입하였다. 시료로 실시예 1 및 실시예 2의 공시체를 직경 5mm이하로 파쇄하여 이용하였다. In order to grasp the heavy metal adsorption characteristics of the specimens of Examples 1 and 2, 100 mL of distilled water was added to a 250 mL Erlenmeyer flask and 5 g of two kinds of samples were added. The specimens of Examples 1 and 2 were crushed to 5 mm or less in diameter and used as samples.

본 실험에서 대상 중금속은 Pb와 Cu로 하였으며, Pb(CH3COO)2·3H2O와 CuSO4·5H2O의 시약을 이용하여 Pb와 Cu의 농도가 각각 50mg/L이 되도록 증류수에 용해 시켰다. 시료와 시약이 혼합된 증류수를 12시간 교반 한 다음 3,000rpm에서 15분간 원심분리하였다. 그리고 Pb와 Cu의 농도를 ICP로 분석하였다. The heavy metals in this experiment were Pb and Cu, and dissolved in distilled water so that the concentrations of Pb and Cu were 50 mg / L, respectively, using Pb (CH 3 COO) 2 · 3H 2 O and CuSO 4 · 5H 2 O reagents. I was. Distilled water mixed with the sample and the reagent was stirred for 12 hours, and then centrifuged at 3,000 rpm for 15 minutes. And the concentration of Pb and Cu was analyzed by ICP.

도 4를 참조하면, 2종류의 시료 모두 중금속 흡착에 효과가 있는 것으로 나타났다. 특히, 맥반석을 함유한 시료의 경우 증금속 흡착 효과가 더 큰 것으로 나타났다. Referring to FIG. 4, it was found that both types of samples were effective in the adsorption of heavy metals. In particular, the samples containing elvan showed a greater metal adsorption effect.

참고로, 도 4의 그래프에서 가로축에서 0은 맥반석을 함유하지 않은 실시예 2의 공시체 시료이고, 15는 맥반석을 함유한 실시예 1의 공시체 시료를 의미한다. For reference, in the graph of FIG. 4, 0 represents a specimen sample of Example 2 containing no elvan, and 15 represents a specimen sample of Example 1 containing elvan.

이상, 본 발명은 도면에 도시된 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 등록청구범위에 의해서만 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the invention. . Therefore, the true scope of protection of the present invention should be defined only by the appended claims.

Claims (6)

석탄회, 제강슬래그 골재, 알칼리 활성화제, 망초를 함유하는 것을 특징으로 하는 석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물.Coal ash, steel slag aggregate, alkali activator, a composition for producing cement block utilizing the coal ash and steelmaking slag, characterized in that it contains. 제 1항에 있어서, 상기 알칼리 활성화제는 물유리, 수산화나트륨, 물을 함유하는 것을 특징으로 하는 석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물.[Claim 2] The composition of claim 1, wherein the alkali activator comprises water glass, sodium hydroxide, and water. 제 1항에 있어서, 맥반석을 더 함유하는 것을 특징으로 하는 석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물.The composition for producing cement blocks using coal ash and steelmaking slag according to claim 1, further comprising elvan. 제 3항에 있어서, 사문석 및 차돌, 연망간석을 혼합한 혼합물을 용융시켜 형성한 세라믹볼을 더 함유하는 것을 특징으로 하는 석탄회와 제강슬래그를 활용한 무시멘트 블록제조용 조성물.4. The composition for producing cement blocks according to claim 3, further comprising a ceramic ball formed by melting a mixture of serpentine, marble and soft manganese. 석탄회 10 내지 30중량%, 제강슬래그 골재 60 내지 80중량%, 알칼리 활성화제 5 내지 20중량%, 망초 1 내지 5중량%를 배합하여 조성물을 수득하는 배합단계와;
상기 조성물을 성형하는 성형단계와;
상기 성형단계에서 성형된 성형물을 80 내지 90℃에서 양생하는 양생단계;를 포함하는 것을 특징으로 하는 무시멘트 블록의 제조방법.
A blending step of combining 10 to 30% by weight of fly ash, 60 to 80% by weight of steelmaking slag aggregate, 5 to 20% by weight of alkali activator, and 1 to 5% by weight of forget-me-not;
A molding step of molding the composition;
Curing step of curing the molded article molded in the molding step at 80 to 90 ℃; manufacturing method of the cement block characterized in that it comprises a.
삭제delete
KR1020120015968A 2012-02-16 2012-02-16 Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block KR101247293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120015968A KR101247293B1 (en) 2012-02-16 2012-02-16 Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120015968A KR101247293B1 (en) 2012-02-16 2012-02-16 Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block

Publications (1)

Publication Number Publication Date
KR101247293B1 true KR101247293B1 (en) 2013-04-02

Family

ID=48441864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120015968A KR101247293B1 (en) 2012-02-16 2012-02-16 Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block

Country Status (1)

Country Link
KR (1) KR101247293B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726354B1 (en) 2014-11-04 2017-04-17 한국과학기술원 Pre-treating Composition for Manufacturing Delayed Slag And Method for Manufacturing Alcali Activated Slag Using the Same
KR101795804B1 (en) 2015-08-11 2017-11-08 (주)제이앤씨세기 Building Material Compositions
CN111672874A (en) * 2020-06-12 2020-09-18 陕西正元环保科技产业(集团)有限公司 Method for recycling slag and fly ash and boiler system of coal-fired power plant
CN113045327A (en) * 2021-04-19 2021-06-29 中国科学院过程工程研究所 Ceramsite and preparation method and application thereof
KR102308206B1 (en) 2021-02-18 2021-10-06 두정산업개발 주식회사 High perfomance mortar composite for manufacturing boundary block having high strength and durability, manufacturing method of boundary block using the same and constrcuting method of the boundary block using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191919A (en) * 1992-12-16 1994-07-12 Gashin Kyo Production of brick-like block from coal cinder and ash
KR100908498B1 (en) * 2008-03-03 2009-07-21 전남대학교산학협력단 Alkall-activated brick with no cement
KR101018008B1 (en) * 2008-08-22 2011-03-02 한국화학연구원 Manufacturing method of cement zero concrete using mixed slag and fly ash as binder
KR101018007B1 (en) * 2008-08-22 2011-03-02 한국화학연구원 Method for manufacturing concrete using coal ash as binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191919A (en) * 1992-12-16 1994-07-12 Gashin Kyo Production of brick-like block from coal cinder and ash
KR100908498B1 (en) * 2008-03-03 2009-07-21 전남대학교산학협력단 Alkall-activated brick with no cement
KR101018008B1 (en) * 2008-08-22 2011-03-02 한국화학연구원 Manufacturing method of cement zero concrete using mixed slag and fly ash as binder
KR101018007B1 (en) * 2008-08-22 2011-03-02 한국화학연구원 Method for manufacturing concrete using coal ash as binder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726354B1 (en) 2014-11-04 2017-04-17 한국과학기술원 Pre-treating Composition for Manufacturing Delayed Slag And Method for Manufacturing Alcali Activated Slag Using the Same
KR101795804B1 (en) 2015-08-11 2017-11-08 (주)제이앤씨세기 Building Material Compositions
CN111672874A (en) * 2020-06-12 2020-09-18 陕西正元环保科技产业(集团)有限公司 Method for recycling slag and fly ash and boiler system of coal-fired power plant
KR102308206B1 (en) 2021-02-18 2021-10-06 두정산업개발 주식회사 High perfomance mortar composite for manufacturing boundary block having high strength and durability, manufacturing method of boundary block using the same and constrcuting method of the boundary block using the same
CN113045327A (en) * 2021-04-19 2021-06-29 中国科学院过程工程研究所 Ceramsite and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Jiang et al. Characteristics of steel slags and their use in cement and concrete—A review
Nunes et al. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials
De Brito et al. Recycled aggregate in concrete: use of industrial, construction and demolition waste
de Paiva et al. Utilization of inorganic solid wastes in cementitious materials–A systematic literature review
KR101002547B1 (en) The greener clay brick recycling the dredged soils and sludge &amp; manufacturing method thereof
KR101699012B1 (en) The soil fill materials using product of industry
KR20060102756A (en) A concrete admixture using waste tailing and methode of thereof
KR101247293B1 (en) Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block
KR101194871B1 (en) Ground solidifier composition using activated slag and pozzolanic reaction and manufacturing method thereof
KR101174617B1 (en) Nature-friendly covering material using no-cement type composite for stabilizing ground
KR20180017837A (en) Composition agent
CN112608046A (en) Coal-fired furnace slag composite mixed material and preparation method and application thereof
AU2012278447B2 (en) Method for manufacturing light-weight construction material using waste product and light-weight construction material manufactured thereby
KR102305174B1 (en) Binder for secondary concrete product and manufacturing method of secondary concrete product
KR20180051903A (en) Surface mixing method
JPWO2006098202A1 (en) Fired product
Contreras et al. Recycling of industrial wastes for value-added applications in clay-based ceramic products: A global review (2015–19)
JP5490352B2 (en) Method for producing cement clinker
KR100633781B1 (en) Cement additive manufacture method for using bottom ash of thermoelectric power plant
Saikia et al. Use of industrial waste and municipality solid waste as aggregate, filler or fiber in cement mortar and concrete
KR101188498B1 (en) Composition for non-cement concrete using bottom ash and manufacturing method thereof
KR20020082321A (en) Concrete 2th production using waste lime
JP2005306707A (en) Method for manufacturing sintered body and sintered body
KR102522763B1 (en) Binder for secondary concrete product and manufacturing method of secondary concrete product
KR20210126847A (en) the grinding aid composition for improving the initial strength and the blast furnace slag cement binding material composition utilizing the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
N231 Notification of change of applicant
FPAY Annual fee payment

Payment date: 20160322

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170320

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 7

R401 Registration of restoration