KR100633781B1 - Cement additive manufacture method for using bottom ash of thermoelectric power plant - Google Patents

Cement additive manufacture method for using bottom ash of thermoelectric power plant Download PDF

Info

Publication number
KR100633781B1
KR100633781B1 KR20050014645A KR20050014645A KR100633781B1 KR 100633781 B1 KR100633781 B1 KR 100633781B1 KR 20050014645 A KR20050014645 A KR 20050014645A KR 20050014645 A KR20050014645 A KR 20050014645A KR 100633781 B1 KR100633781 B1 KR 100633781B1
Authority
KR
South Korea
Prior art keywords
power plant
thermal power
flooring
cement
flooring material
Prior art date
Application number
KR20050014645A
Other languages
Korean (ko)
Other versions
KR20060093566A (en
Inventor
안지환
한기천
유광석
유영환
한기석
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR20050014645A priority Critical patent/KR100633781B1/en
Priority to PCT/KR2005/001899 priority patent/WO2006090954A1/en
Publication of KR20060093566A publication Critical patent/KR20060093566A/en
Application granted granted Critical
Publication of KR100633781B1 publication Critical patent/KR100633781B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01001Sorting and classifying ashes or fly-ashes from the combustion chamber before further treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01002Cooling of ashes from the combustion chamber by indirect heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01003Ash crushing means associated with ash removal means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법에 관한 것으로, 특히 화력발전소 보일러의 바닥재에 있어서; 상기 바닥재를 해수 냉각 처리 없이 공기로 냉각시키는 냉각 단계와; 상기 냉각 단계에서 냉각된 상기 바닥재를 분쇄기로 분쇄하는 분쇄 단계와; 상기 분쇄 단계에서 분쇄된 바닥재를 입도분급에 의해 50메쉬 이하로 선별하는 선별 단계와; 상기 선별 단계에서 분쇄된 상기 바닥재를 볼밀로 갈아 바닥재 미분말의 블레인 비표면적을 2,000∼4,000cm2/g로 제조하는 분말 제조 단계; 및 상기 분말 제조 단계에서 선별된 상기 바닥재 미분말을 포틀랜드 시멘트에 5~15 중량%로 혼합하는 혼합 단계로 이루어지는 것을 특징으로 한다.The present invention relates to a cement additive manufacturing method using a thermal power plant flooring, in particular in the flooring of a thermal power plant boiler; A cooling step of cooling the bottom ash with air without seawater cooling treatment; A grinding step of grinding the flooring material cooled in the cooling step with a grinder; A sorting step of sorting the bottom ash crushed in the crushing step to 50 mesh or less by particle size classification; A powder manufacturing step of grinding the flooring material pulverized in the screening step with a ball mill to produce a specific surface area of the powder of the flooring material of 2,000 to 4,000 cm 2 / g; And mixing the bottom ash fine powder selected in the powder manufacturing step with 5 to 15% by weight of Portland cement.

상기와 같이 이루어진 본 발명에 따르면 화력발전소 바닥재의 건조 및 해수에 매립되어 처분되는 종래의 방법에서 탈피하여 화력발전소 바닥재를 시멘트 첨가제로 활용할 수 있도록 하여 포틀랜드 시멘트에 일정량을 혼합하여 시멘트를 제조함으로써 콘크리트의 장기강도, 저수화열 및 내화학성을 증진시킬 수 있다.According to the present invention made as described above to avoid the conventional method of drying and disposal of the thermal power plant flooring material and landfilled so that the thermal power plant flooring material can be utilized as cement additives by mixing a certain amount in the cement of Portland to produce cement Long-term strength, heat of dehydration and chemical resistance can be improved.

화력발전소, 바닥재, 포졸란 반응성, 시멘트 첨가제, 공기 냉각 Thermal power plants, flooring, pozzolanic reactivity, cement additives, air cooling

Description

화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법{Cement additive manufacture method for using bottom ash of thermoelectric power plant}Cement additive manufacture method for using bottom ash of thermoelectric power plant}

도 1은 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법의 동작 흐름을 나타낸 동작 흐름도,1 is a flow chart showing the operation of the cement additive manufacturing method using a thermal power plant flooring according to the present invention,

도 2는 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법의 처리 공정을 나타낸 공정도,Figure 2 is a process chart showing the treatment process of the cement additive manufacturing method using a thermal power plant flooring according to the present invention,

도 3은 본 발명에 따른 화력발전소 바닥재의 입도별 XRD 분석결과를 나타낸 그래프.Figure 3 is a graph showing the results of the XRD analysis by particle size of the thermal power plant flooring according to the present invention.

<도면의 주요 부분에 관한 부호의 설명><Explanation of symbols on main parts of the drawings>

10 : 보일러 11 : 바닥재10: boiler 11: flooring

100 : 쿨러 110 : 분쇄기100: cooler 110: grinder

120 : 볼밀120: ball mill

본 발명은 시멘트 첨가제 제조 방법에 관한 것으로, 상세하게는 화력발전소에서 발생되는 바닥재중 포졸란 반응성을 가지는 부분을 선별하여 시멘트에 일정량 을 혼합함으로써 콘크리트의 장기강도, 저수화열 및 화학적 내구성을 증진시키도록 하는 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법에 관한 것이다.The present invention relates to a method for producing cement additives, and in particular, by selecting a portion having a pozzolanic reactivity in the floor ash generated in the thermal power plant to mix a certain amount in the cement to improve the long-term strength, heat of low hydration and chemical durability of the concrete It relates to a method for producing cement additives using thermal power plant flooring.

일반적으로 화력발전은 보일러에 석탄을 연소시켜 얻은 에너지로 물을 끊여 증기로 만들고, 그 증기로 터빈을 회전시켜 회전력을 얻은 후 터빈측에 연결된 발전기에서 전기를 발생시키는 방식을 말한다.In general, thermal power generation refers to a method in which water obtained by burning coal in a boiler is used to cut water into steam, and the turbine is rotated with steam to generate rotational power and generate electricity from a generator connected to the turbine side.

이러한 화력발전을 생산하는 곳을 화력발전소라 하며, 화력발전소의 보일러에서 발생되는 석탄회는 발생위치에 따라 보통 크게 비산재와 바닥재로 나뉘며, 비산재가 80중량%, 바닥재가 20중량% 정도의 비율로 발생한다.The place that produces these thermal power plants is called thermal power plant, and the coal ash generated from the boiler of thermal power plant is usually divided into fly ash and floor ash according to the generation position, and the fly ash is generated at the ratio of 80% by weight and floor ash by 20% by weight. do.

발생된 비산재는 분말도가 블레인 3,000-5,000cm2/g 정도로 시멘트 입자와 거의 유사한 분말도를 가지고 있다. 이와 같은 비산재는 자체적으로 수경성은 없지만 포졸란 활성, 즉 비산재에 함유되어 있는 가용성의 실리카 및 알루미나 등이 알칼리 분위기에서, 즉 시멘트가 수화할 때 생성되는 수산화칼슘과 상온에서 서서히 반응하여 칼슘실리케이트 및 칼슘알루미네이트의 수화물을 형성하여 장기적으로 불용성의 안정된 화합물을 만드는 성질을 가지고 있다.The generated fly ash has a powder level of about 3,000-5,000 cm 2 / g of powder, which is almost similar to cement particles. Such fly ash is not hydrophobic in itself, but pozzolanic activity, that is, soluble silica and alumina contained in fly ash, reacts slowly with calcium hydroxide, which is produced when the cement is hydrated, at room temperature. It has a property of forming a hydrate of to form a stable compound insoluble in the long term.

이러한 특성과 함께 비산재의 형태가 구형을 이루고 있기 때문에 유동성을 증가시켜 주어 콘크리트 혼화재로서 많이 사용하고 있다.In addition to these characteristics, the fly ash forms a spherical shape, which increases the fluidity and is widely used as a concrete admixture.

반면 바닥재는 발생 후 해수에 냉각되는 방식을 취하고 있으며, 그 입경은 1-2.5mm 정도로 보일러 하부에 모여 분쇄 후 대부분 회사장(ash pond)에 버려지게 된다. 이와 같이 바닥재는 대부분 매립되어 처분되고 있으나, 바닥재 또한 1,500℃이상의 고온에서 급냉된 물질이므로 비산재와 같은 특성을 나타내어 혼화재로서의 사용가능성이 높다. 그러나 혼화재로 사용함에 있어 입자크기가 크고 염분의 함유량이 높으며, 미연탄소의 함유량이 불균일하여 이에 대한 대책이 마련되어야 한다. On the other hand, the bottom ash is cooled in seawater after generation, and its particle diameter is collected at the bottom of the boiler about 1-2.5mm and is mostly discarded in the ash pond after crushing. As such, most flooring materials are disposed of and disposed of, but the flooring material is also a material quenched at a high temperature of 1,500 ° C. or higher, thus exhibiting the same characteristics as fly ash, so that it is highly usable as a mixed material. However, when used as admixtures, the particle size is large, the salt content is high, and the content of unburned carbon is uneven, so that countermeasures should be prepared.

화력발전소 바닥재는 그 입도가 불량하고 입자크기가 크기 때문에 재활용성이 낮으며, 화력발전소는 주로 해안 지역에 위치하여 종래의 화력발전소 바닥재는 재활용되지 못하고 자체의 회사장(매립장)에 매립 처분되어 왔다. Thermal power plant flooring materials are poorly recyclable because of their poor particle size and large particle size. Thermal power plants are mainly located in coastal areas, and conventional thermal power plant flooring materials are not recycled and have been disposed of in their own company's landfills. .

그러나, 점차적으로 기존 사용 중인 회사장의 포화상태가 도래하여, 회사장에서의 매립처분이 곤란하게 되며, 또한 신규로 회사장을 확보하기 위한 장소 확보가 어려우며, 지역주민과의 민원이나 환경적인 문제점을 안고 있어, 바닥재의 재활용에 대한 인식은 그 어느 때보다 높다고 할 수 있다.However, due to the saturation of the heads of existing workplaces, it becomes difficult to dispose of landfills at the heads of workplaces, and it is difficult to secure a place to secure new heads of workplaces. The perception of recycling flooring is higher than ever.

화력발전소 바닥재를 골재 대용이나 시멘트 첨가제로서 활용하고자 하는 몇 몇 연구가 진행되어 왔으나, 건조 등 처리 공정의 문제와 해수에 포함된 염소성분이 콘크리트 내의 철근 부식을 유발하는 등 콘크리트에 사용하는 데에는 경제적으로나 공정 및 최종 산물의 품질에 적합하지 않다.Several studies have been conducted to utilize thermal power plant flooring as an alternative to aggregate or cement additives.However, it is economical to use it in concrete, such as problems in the treatment process such as drying and chlorine in seawater causing corrosion of steel in concrete. Not suitable for process and final product quality.

특히, 화력발전소 바닥재는 포졸란 반응성을 가지는 것으로 알려져 있으나 콘크리트에 범용적으로 사용하기 위한 첨가제로는 철근 등의 부식을 유발하지 않게 위해 염소성분의 함유량을 필수적으로 제한하고 있어, 일반적으로 해수에 매립되어 처분되는 화력발전소 바닥재를 그대로 시멘트 첨가제로 제조하여 콘크리트에 사용하기에는 콘크리트의 물성 저하와 함께 처분량과 콘크리트에 범용적으로 사용하는 데 적합하지 않는 문제점이 있다.In particular, thermal power plant flooring is known to have pozzolanic reactivity, but as an additive for general use in concrete, the content of chlorine is essentially limited in order not to cause corrosion such as reinforcing steel and is generally buried in seawater. In order to use the thermal power plant flooring material disposed of as cement additives as it is in concrete, there is a problem in that it is not suitable for general use in the amount of disposal and concrete with the deterioration of physical properties of concrete.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 화력발전소 바닥재의 건조 및 해수에 매립되어 처분되는 종래의 방법에서 탈피하여 화력발전소 바닥재를 시멘트 첨가제로 활용할 수 있도록 하여 포틀랜드 시멘트에 일정량을 혼합하여 시멘트를 제조함으로써 콘크리트의 장기강도, 저수화열 및 내화학성을 증진시킬 수 있도록 하는 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법을 제공하도록 하는 데 있다.The present invention is to solve the problems as described above, to avoid the conventional method of drying and disposal of the thermal power plant flooring material is buried in the seawater so that the thermal power plant flooring material can be utilized as cement additives by mixing a certain amount of cement in Portland cement It is to provide a method for producing cement additives using thermal power plant flooring to improve the long-term strength, heat of low hydration and chemical resistance of concrete by manufacturing.

또한, 본 발명은 천연자원의 절약 및 시멘트 제조시 원료에 대한 원가절감과 매립되고 있는 폐자원을 유효 이용함으로써 환경적인 부가가치를 향상시킬 수 있도록 하는 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법을 제공하도록 하는 데 있다.In addition, the present invention is to provide a method for producing a cement additive using a thermal power plant flooring material that can improve the environmental added value by effectively saving the natural resources and reducing the cost of raw materials and the use of the landfill waste when manufacturing cement. There is.

또, 본 발명은 화력발전소 바닥재의 입도분급 및 분쇄에 의해 바닥재가 가지고 있는 포졸란 성질을 선택적으로 선별함으로써 화력발전소에서 발생하는 석탄회중 바닥재를 시멘트 첨가제로 활용하는 것으로 종래의 해수에 매립 처분함으로써 바닥재가 가지는 포졸란 반응성의 저해, 건조 및 해수 중의 염소 성분에 의한 콘크리트에 범용적으로 사용하는 데 장애를 일으키는 문제점을 해소하도록 할 수 있도록 하는 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법을 제공하도록 하는데 있다.In addition, the present invention utilizes coal ash bottoms generated in thermal power plants as cement additives by selectively selecting the pozzolanic properties of the floorings by particle size classification and pulverization of thermal power plant floorings. Eggplant is to provide a method for producing cement additives using thermal power plant flooring that can solve the problems of inhibition of pozzolanic reactivity, drying and obstacles to general use in concrete by chlorine components in seawater.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은,
화력발전소 보일러의 바닥재에 있어서; 상기 바닥재를 해수 냉각 처리 없이 공기로 냉각시키는 냉각 단계와; 상기 냉각 단계에서 냉각된 상기 바닥재를 분쇄기로 분쇄하는 분쇄 단계와; 상기 분쇄 단계에서 분쇄된 바닥재를 입도분급에 의해 50메쉬 이하로 선별하는 선별 단계와; 상기 선별 단계에서 분쇄된 상기 바닥재를 볼밀로 갈아 바닥재 미분말의 블레인 비표면적을 2,000∼4,000cm2/g로 제조하는 분말 제조 단계; 및 상기 분말 제조 단계에서 선별된 상기 바닥재 미분말을 포틀랜드 시멘트에 5~15 중량%로 혼합하는 혼합 단계로 이루어지는 것을 특징으로 한다.
Features of the present invention for achieving the above object,
In the flooring of a thermal power plant boiler; A cooling step of cooling the bottom ash with air without seawater cooling treatment; A grinding step of grinding the flooring material cooled in the cooling step with a grinder; A sorting step of sorting the bottom ash crushed in the crushing step to 50 mesh or less by particle size classification; A powder manufacturing step of grinding the flooring material pulverized in the screening step with a ball mill to produce a specific surface area of the powder of the flooring material of 2,000 to 4,000 cm 2 / g; And mixing the bottom ash fine powder selected in the powder manufacturing step with 5 to 15% by weight of Portland cement.

삭제delete

이하, 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법을 도 1 내지 도 3을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, the method for producing cement additives using the thermal power plant flooring according to the present invention will be described in detail with reference to FIGS. 1 to 3.

삭제delete

도 1은 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법의 동작 흐름을 나타낸 동작 흐름도이고, 도 2는 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법의 처리 공정을 나타낸 공정도이며, 도 3은 본 발명에 따른 화력발전소 바닥재의 입도별 XRD 분석결과를 나타낸 그래프이다.1 is a flow chart showing the operation flow of the cement additive manufacturing method using a thermal power plant flooring according to the present invention, Figure 2 is a process chart showing the treatment process of the cement additive manufacturing method using a thermal power plant flooring according to the present invention, Figure 3 is a graph showing the results of the XRD analysis by the particle size of the thermal power plant flooring according to the present invention.

도 1 내지 도 2를 참조하면 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법은, 보일러(10)의 바닥재(11)를 컨베이어 벨트 등을 이용하여 이송한 후 쿨러(100)를 통과시켜 바닥재(11)를 해수 냉각 처리 없이 공기로 냉각시키는 냉각 단계(S100)와, 냉각 단계에서 쿨러(100)를 통해 냉각되어 자유 낙하되는 바닥재(11)를 분쇄기(110)로 분쇄하는 분쇄 단계(S110)와, 분쇄 단계에서 제조된 바닥재 미분말(11)을 입도분급에 의해 50메쉬 이하로 선별하는 선별 단계(S120)와, 선별 단계에서 분쇄된 바닥재(11)를 볼밀(120)로 갈아 블레인 비표면적이 2,000∼4,000cm2/g의 바닥재 미분말(11)을 제조하는 분말 제조 단계(S130)와, 분말 제조 단계에서 선별된 바닥재 미분말(11)을 포틀랜드 시멘트에 5~15 중량%로 혼합하는 혼합 단계(S140)로 이루어지는 특징으로 한다.1 to 2, in the cement additive manufacturing method using the thermal power plant flooring according to the present invention, the flooring material 11 of the boiler 10 is transferred using a conveyor belt or the like, and then passed through the cooler 100 to the flooring material. Cooling step (S100) for cooling the air (11) with air without sea water cooling treatment, and the grinding step (S110) for crushing the flooring material 11, which is cooled through the cooler 100 in the cooling step and free-falls with the grinder 110 And, the screening step (S120) for sorting the bottom ash fine powder 11 prepared in the crushing step to 50 mesh or less by the particle size classification, and grinding the flooring material pulverized in the screening step with a ball mill (120), specific surface area Mixing step (S130) of preparing a flooring powder (11) of 2,000 ~ 4,000cm 2 / g and mixing the flooring powder (11) selected in the powder manufacturing step with 5 to 15% by weight in Portland cement ( S140) is characterized by.

한편, 입도분급이란 넓은 뜻으로는 화학성분, 입자지름, 모양, 색, 밀도, 방사성, 자성 및 정전특성 등에 따라 원료를 분리하는 것을 말하고, 좁은 뜻으로는 밀도가 같은 분립체를 입자지름에 따라 2 개 또는 그 이상의 입자군으로 나누는 조작을 말하며, 분급이라고도 한다.On the other hand, particle size classification means separating raw materials according to chemical composition, particle diameter, shape, color, density, radioactivity, magnetic and electrostatic properties. An operation that divides into two or more particle groups, also called classification.

먼저, 본 발명은 천연원료가 아닌 폐부산자원인 화력발전소 바닥재를 입도분급에 의해 선별하여 시멘트 첨가제를 제조하는 것을 특징으로 한다.First, the present invention is characterized by producing a cement additive by screening the flooring material of thermal power plant, which is a waste by-product, not natural raw materials, by particle size classification.

화력발전소에서 발생되는 화력발전소 바닥재가 해수에 의해 냉각하는 방식 대신에 공기로 냉각시켜 50메쉬 이하인 부분만을 선별하여 분쇄하여 포틀랜드 시멘트에 5~15 중량% 정도 혼합하여 제조한다.Instead of cooling by floor water, the bottom of the thermal power plant generated by the thermal power plant is cooled by air, and selected and pulverized only a portion of 50 mesh or less is mixed and manufactured by mixing about 5 to 15% by weight in Portland cement.

표 1은 화력발전소에 발생된 화력발전소 바닥재를 공기로 급냉시킨 뒤 입도별로 화학성분 분석을 실시한 결과이다.Table 1 shows the results of chemical components analysis by particle size after quenching the floor of thermal power plant generated by thermal power plants with air.

표 1에서 보면 바닥재의 주성분은 SiO2, Al2O3, Fe2O3, CaO로 이들의 함유량이 90중량% 이상이었으며, 비중은 2.73이다.As shown in Table 1, the main components of the flooring material were SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, and their contents were 90% by weight or more, and the specific gravity was 2.73.

<표 1>TABLE 1

화력발전소 바닥재의 입도별 화학조성 (단위 : 중량%)Chemical Composition by Thermal Particles of Thermal Power Plant Floor Unit (Unit: wt%)

Particle size(mesh)Particle size (mesh) SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO K2OK 2 O Na2ONa 2 O TiO2 TiO 2 MnOMnO P2O5 P 2 O 5 L.O.IL.O.I Cl (mg/kg)Cl (mg / kg) TotalTotal 51.7751.77 21.9921.99 15.6815.68 4.424.42 0.880.88 1.051.05 0.340.34 1.091.09 0.130.13 0.470.47 1.811.81 1005.11005.1 +4+4 52.2352.23 22.8922.89 15.4815.48 4.364.36 0.870.87 1.021.02 0.300.30 1.171.17 0.130.13 0.460.46 0.300.30 499.9499.9 -4/+8-4 / + 8 51.9951.99 22.7722.77 16.1116.11 4.984.98 0.960.96 1.071.07 0.330.33 1.111.11 0.120.12 0.510.51 0.180.18 499.9499.9 -8/+16-8 / + 16 53.1753.17 23.4123.41 14.5314.53 4.684.68 0.880.88 1.031.03 0.320.32 1.151.15 0.120.12 0.530.53 0.320.32 499.9499.9 -16/+30-16 / + 30 52.4852.48 21.9021.90 16.4216.42 4.294.29 0.840.84 1.031.03 0.320.32 1.041.04 0.140.14 0.450.45 0.550.55 599.8599.8 -30/+50-30 / + 50 52.9552.95 21.3621.36 15.9215.92 4.624.62 0.850.85 1.011.01 0.320.32 1.021.02 0.140.14 0.440.44 1.251.25 649.8649.8 -50/+100-50 / + 100 52.4852.48 20.6520.65 13.1913.19 4.884.88 0.850.85 1.081.08 0.360.36 0.970.97 0.130.13 0.420.42 4.734.73 1,599.51,599.5 -100/+200-100 / + 200 49.1649.16 19.5119.51 16.3016.30 4.054.05 0.910.91 1.141.14 0.450.45 0.950.95 0.150.15 0.410.41 7.237.23 2,299.32,299.3 -200/+270-200 / + 270 46.7046.70 18.9118.91 21.9621.96 3.593.59 0.900.90 1.021.02 0.400.40 0.990.99 0.160.16 0.440.44 4.964.96 2,999.32,999.3 -270-270 52.9252.92 22.6022.60 13.5113.51 3.523.52 0.680.68 1.021.02 0.410.41 1.141.14 0.080.08 0.520.52 3.703.70 1,999.41,999.4

표 2는 각 입도별로 나누어진 화력발전소 바닥재를 270메쉬 이하로 분쇄하여 한국산업규격(KS L 5405)에 따라 포졸란 반응성을 알아본 결과로 50메쉬 이하의 화력발전소 바닥재는 한국산업규격의 90% 이상을 만족하고 있어 시멘트 및 콘크리트용 첨가제로서 활용이 가능한 것이다. Table 2 shows the pozzolanic reactivity according to the Korean Industrial Standard (KS L 5405) by crushing the thermal power plant floorings divided by particle size to 270 mesh or less. As it satisfies this, it can be utilized as an additive for cement and concrete.

<표 2>TABLE 2

화력발전소 바닥재의 입도별 포졸란 반응성(단위 : %)Pozzolanic Reactivity by Particle Size of Thermal Power Plant Flooring (Unit:%)

Curing time (days)Curing time (days) Particle size fraction(mesh)Particle size fraction (mesh) -270-270 200/270200/270 100/200100/200 50/10050/100 30/5030/50 16/3016/30 8/168/16 4/84/8 +4+4 1414 75.275.2 73.573.5 73.173.1 72.172.1 70.270.2 71.571.5 70.470.4 68.168.1 64.064.0 2828 95.295.2 93.093.0 92.792.7 91.591.5 91.091.0 89.189.1 86.586.5 78.278.2 75.475.4

그리고, 도 3은 본 발명에 따른 화력발전소 바닥재의 입도별 XRD 분석결과를 나타낸 것으로, 화력발전소 바닥재의 주요 광물상은 mullite(Al6Si2O13)와 SiO2 (quartz, tridymite, crystobalite)이며, hematite(Fe2O3), anorthite[(Ca,Na)(Al, Si)2Si2O8] 또한 존재하는 것으로 나타났다. 특히, SiO2의 경우 50메쉬 이하의 작은 입도에서는 주로 quartz와 tridymite로 존재하였고, 그 이상의 입도에서는 crystobalite로 존재하였다.And, Figure 3 shows the XRD analysis results by particle size of the thermal power plant flooring according to the present invention, the main mineral phase of the thermal power plant flooring is mullite (Al 6 Si 2 O 13 ) and SiO 2 (quartz, tridymite, crystobalite), hematite (Fe 2 O 3 ) and anorthite [(Ca, Na) (Al, Si) 2 Si 2 O 8 ] were also present. In particular, SiO 2 was mainly present as quartz and tridymite at small particle sizes below 50 mesh and as crystobalite at above particle sizes.

이와 같이 화력발전소 바닥재의 입도에 따른 화학 및 광물학적 특성에 착안하여 포졸란 반응특성이 우수한 50메쉬 이하의 입자를 선별하고, 분말화하여 시멘트 첨가제로 사용할 수 있다.As described above, attention is paid to the chemical and mineral properties according to the particle size of the thermal power plant flooring, and particles of 50 mesh or less having excellent pozzolanic reaction characteristics can be selected, powdered, and used as cement additives.

이하 본 발명을 실시예를 들어 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

《실시예 1》<< Example 1 >>

표 1과 같은 화학조성을 갖는 화력발전소 바닥재를 입도분급에 의해 50메쉬 이하의 입도를 선별하고, 볼밀에서 분쇄하여 블레인 비표면적 4,000cm2/g인 화력발전소 바닥재 미분말을 제조하였다.A thermal power plant flooring material having a chemical composition as shown in Table 1 was selected for particle size of 50 mesh or less by particle size classification, and pulverized in a ball mill to produce a thermal power plant flooring powder having a specific surface area of 4,000 cm 2 / g.

분쇄하여 선별 제조된 화력발전소 바닥재 미분말을 보통 포틀랜드 시멘트에 대해 5∼15 중량% 치환하여 KS L 5105(수경성 시멘트 모르타르의 압축강도 시험방법)에 준하여 모르타르의 압축강도를 실시하였으며, 그 결과는 표 3과 같다.The fine powder of crushed thermal power plant floor ash was replaced by 5 to 15% by weight based on ordinary Portland cement. Same as

<표 3>TABLE 3

본 발명에 따른 모르타르의 압축강도Compressive strength of mortar according to the present invention

구 분division 배합비(중량%)Compounding ratio (% by weight) 압축강도(kg/cm2)Compressive strength (kg / cm 2 ) 보통 포틀랜드 시멘트 (OPC)Common Portland Cement (OPC) 화력발전소 바닥재 (BA)Thermal Power Plant Flooring (BA) 3일3 days 7일7 days 28일28 days 비교예Comparative example 100100 00 236236 340340 420420 실시예Example 9595 55 253253 346346 429429 9090 1010 254254 345345 450450 8585 1515 227227 324324 442442

그 결과, 비교예인 보통 포틀랜드 시멘트와 비교하여 압축강도 발현율은 물리적인 충전성 향상과 더불어 증진하는 특성을 나타내었다.As a result, the compressive strength expression rate showed the characteristics to improve with the physical filling properties compared to the ordinary portland cement as a comparative example.

《실시예 2》<< Example 2 >>

실시예 1에서와 같이 동일하게 화력발전소 미분말을 제조하여 미경화 및 경화 콘크리트의 물리특성을 측정하였다.As in Example 1, the thermal power plant fine powder was prepared and the physical properties of the uncured and hardened concrete were measured.

표 4는 본 발명의 실시예인 보통 포틀랜드 시멘트(OPC)에 화력발전소 바닥재(BA)를 5, 10, 15 중량% 대체와 비교예인 보통 포틀랜드 시멘트(OPC)의 콘크리트 배합설계표를 나타낸 것이다.Table 4 shows a concrete mix design table of ordinary Portland cement (OPC), which is a comparative example, and 5, 10, 15 wt% replacement of thermal power plant floor (BA) in ordinary Portland cement (OPC), an embodiment of the present invention.

<표 4>TABLE 4

구 분division Gmax (㎜)G max (mm) 목표 작업성Goal Workability W/C (%)W / C (%) S/a (%)S / a (%) W (㎏/㎥)W (㎏ / ㎥) 단위재료량(㎏/㎥)Unit material amount (㎏ / ㎥) 슬럼프 (㎝)Slump (cm) 공기량 (%)Air volume (%) CC BABA 비교예Comparative example OPCOPC 2525 15± 2.515 ± 2.5 5± 1.55 ± 1.5 55.055.0 49.549.5 165165 300300 -- 892892 959959 실시예Example BA 5%BA 5% 282282 18.018.0 891891 958958 BA 10%BA 10% 264264 36.036.0 890890 957957 BA 15%BA 15% 255255 45.045.0 889889 956956

콘크리트의 슬럼프는 본 발명에 따른 보통 포틀랜드 시멘트에 대해 치환 사용할 경우 증가하고, 유동성이 높은 콘크리트에서는 그 유동속도도 증대된다. 특히 결합재량이 많은 콘크리트의 경우 유동성 및 변형성의 개선효과가 크다.The slump of concrete increases when substituted for ordinary Portland cement according to the invention, and its flow rate also increases in high flowable concrete. Especially in the case of concrete with a large amount of binder, the effect of improving flowability and deformation is great.

또한, 화력발전소 비산재는 미연탄소 함유량이 적어 화학 혼화제의 흡착량이 비교적 작기 때문에 동일한 작업성을 얻기 위해 필요한 혼화제의 사용량은 보통 포틀랜드 시멘트 단독으로 사용한 경우보다 작아 단위수량 저감효과를 가져온다.In addition, since the fly ash of the thermal power plant has a small amount of unburned carbon and the adsorption amount of the chemical admixture is relatively small, the amount of the admixture necessary to obtain the same workability is smaller than that of the case of using portland cement alone.

경화 콘크리트의 압축강도를 실시하였으며, 그 결과는 표 5와 같다.The compressive strength of the hardened concrete was carried out, and the results are shown in Table 5.

<표 5>TABLE 5

본 발명에 따른 콘크리트의 압축강도Compressive strength of concrete according to the invention

구 분division 배합비(중량%)Compounding ratio (% by weight) 압축강도(kg/cm2)Compressive strength (kg / cm 2 ) 보통 포틀랜드 시멘트 (OPC)Common Portland Cement (OPC) 화력발전소 바닥재 (BA)Thermal Power Plant Flooring (BA) 7일7 days 28일28 days 비교예Comparative example 100100 00 229229 362362 실시예Example 9595 55 255255 387387 실시예Example 9090 1010 231231 360360 실시예Example 8585 1515 223223 336336

그 결과 보통 포틀랜드 시멘트와 동등 이상의 강도발현을 보이고 있다는 것을 알 수 있다. As a result, it can be seen that the strength is more than equivalent to that of the ordinary Portland cement.

따라서, 본 발명에 의해 제조된 화력발전소 바닥재는 포졸란 활성이 높은 50메쉬 이하의 입자를 선별적으로 분리함과 동시에 미분쇄하여 비표면적을 증가시킴으로써 시멘트의 초기 및 장기강도 증진율을 향상시킬 수 있다.Therefore, the thermal power plant flooring prepared according to the present invention can improve the initial and long-term strength improvement rate of cement by selectively separating and pulverizing particles having a pozzolanic activity of 50 mesh or less and increasing the specific surface area. .

이상에서 설명한 바와 같이 본 발명에 따른 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법에 의하면, 기존에 해수에 매립 처분되고 있는 화력발전소 바닥재를 공기로 냉각하여 분쇄한 후 시멘트에 혼합하여 사용함으로써 콘크리트의 장기강도 및 저수화열, 내화학성 등을 증진시켜 시멘트 원재료의 단가를 낮추고, 매립되고 있는 자원을 실질적으로 재활용할 수 있다.As described above, according to the cement additive manufacturing method using the thermal power plant flooring material according to the present invention, the thermal power plant flooring material, which is previously disposed of landfilled in seawater, is cooled by air, pulverized, mixed with cement, and used for long-term strength. And by lowering the heat of hydration, chemical resistance, etc., it is possible to lower the unit cost of the cement raw materials, and substantially recycle the landfill resources.

Claims (2)

화력발전소 보일러의 바닥재에 있어서;In the flooring of a thermal power plant boiler; 상기 바닥재를 해수 냉각 처리 없이 공기로 냉각시키는 냉각 단계와;A cooling step of cooling the bottom ash with air without seawater cooling treatment; 상기 냉각 단계에서 냉각된 상기 바닥재를 분쇄기로 분쇄하는 분쇄 단계와;A grinding step of grinding the flooring material cooled in the cooling step with a grinder; 상기 분쇄 단계에서 분쇄된 바닥재를 입도분급에 의해 50메쉬 이하로 선별하는 선별 단계와;A sorting step of sorting the bottom ash crushed in the crushing step to 50 mesh or less by particle size classification; 상기 선별 단계에서 분쇄된 상기 바닥재를 볼밀로 갈아 바닥재 미분말의 블레인 비표면적을 2,000∼4,000cm2/g로 제조하는 분말 제조 단계; 및A powder manufacturing step of grinding the flooring material pulverized in the screening step with a ball mill to produce a specific surface area of the powder of the flooring material of 2,000 to 4,000 cm 2 / g; And 상기 분말 제조 단계에서 선별된 상기 바닥재 미분말을 포틀랜드 시멘트에 5~15 중량%로 혼합하는 혼합 단계로 이루어지는 것을 특징으로 하는 화력발전소 바닥재를 이용한 시멘트 첨가제 제조 방법.Method for producing a cement additive using a thermal power plant flooring, characterized in that the mixing step consisting of mixing the powder of the flooring material selected in the powder manufacturing step to 5-15% by weight in Portland cement. 삭제delete
KR20050014645A 2005-02-22 2005-02-22 Cement additive manufacture method for using bottom ash of thermoelectric power plant KR100633781B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20050014645A KR100633781B1 (en) 2005-02-22 2005-02-22 Cement additive manufacture method for using bottom ash of thermoelectric power plant
PCT/KR2005/001899 WO2006090954A1 (en) 2005-02-22 2005-06-18 Cement additive manufacture method for using bottom ash of thermoelectric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050014645A KR100633781B1 (en) 2005-02-22 2005-02-22 Cement additive manufacture method for using bottom ash of thermoelectric power plant

Publications (2)

Publication Number Publication Date
KR20060093566A KR20060093566A (en) 2006-08-25
KR100633781B1 true KR100633781B1 (en) 2006-10-13

Family

ID=36927569

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20050014645A KR100633781B1 (en) 2005-02-22 2005-02-22 Cement additive manufacture method for using bottom ash of thermoelectric power plant

Country Status (2)

Country Link
KR (1) KR100633781B1 (en)
WO (1) WO2006090954A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880587B1 (en) * 2008-07-31 2009-02-04 (주)엘피시스 Self leveling bottom mortar agent manufacturing method
ES2350355B1 (en) * 2010-09-22 2011-10-27 Subicosa, S.L. USE OF THERMAL CENTRAL FUND ASHES AS A SUBPRODUCT FOR THE PRODUCTION OF CEMENT, CONCRETE AND OTHER MATERIALS.
KR101536416B1 (en) * 2013-09-27 2015-07-14 주식회사 포스코 Additive for concrete comprising bottom ash and the method for preparing thereof
JP6586359B2 (en) 2015-12-07 2019-10-02 川崎重工業株式会社 Ash discharge system
CN106082730A (en) * 2016-06-13 2016-11-09 中国科学院海洋研究所 A kind of zinc oxide complex cement base thermoelectricity material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051459A (en) * 2002-12-11 2004-06-18 김영일 Cement admixture composition based on coal ash
KR20040082226A (en) * 2003-03-18 2004-09-24 한국후라이애쉬시멘트공업(주) Composition of Artificial Stone by Using of Bottom Ash and Method of making the Same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040852A (en) * 1975-04-04 1977-08-09 Amax Resource Recovery Systems, Inc. Lightweight aggregate
GB1510392A (en) * 1976-01-19 1978-05-10 Ass Portland Cement Portland cement manufacture and utilisation of waste matter
US5362319A (en) * 1992-10-23 1994-11-08 Johnson William B Process for treating fly ash and bottom ash and the resulting product
CA2185943C (en) * 1995-09-21 2005-03-29 Donald Stephen Hopkins Cement containing bottom ash
AU2003252138A1 (en) * 2002-08-02 2004-03-29 Charles Edgar Price Cementitious composition comprising bottom ash, methods of making and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051459A (en) * 2002-12-11 2004-06-18 김영일 Cement admixture composition based on coal ash
KR20040082226A (en) * 2003-03-18 2004-09-24 한국후라이애쉬시멘트공업(주) Composition of Artificial Stone by Using of Bottom Ash and Method of making the Same

Also Published As

Publication number Publication date
KR20060093566A (en) 2006-08-25
WO2006090954A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
Hamada et al. The present state of the use of eggshell powder in concrete: A review
Ngayakamo et al. Development of eco-friendly fired clay bricks incorporated with granite and eggshell wastes
EP2215031B1 (en) Method for processing of pozzolans.
KR20060102756A (en) A concrete admixture using waste tailing and methode of thereof
KR101339332B1 (en) A Non-sintering Binder Having Bottom Ash
KR101896251B1 (en) Lightweight sidewalk block with water permeability and water holding capacity
KR101160890B1 (en) Composition for soil block
WO2018049264A1 (en) Cement formulations and methods
KR100616454B1 (en) Composition for concrete using industrial waste, concrete composition comprising the same and concrete structure
KR101151605B1 (en) A composition of waste gypsum block for pubric works, waste gypsum block using the same and a manufacturing method thereof
KR100633781B1 (en) Cement additive manufacture method for using bottom ash of thermoelectric power plant
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
KR20110032882A (en) Non-sintering binder using fly-ash and a concrete composition using thereof
KR101247293B1 (en) Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block
CN1331797C (en) Multifunctional chlorine-free alkali-free compound concrete slag admixture and its preparation process
JPWO2006098202A1 (en) Fired product
KR20150005019A (en) Composition of artificial aggregate of geopolymer bind and making method using inorganic waste sludges
CN104961363B (en) A kind of method of the active ground-slag of use shaft kiln factory and office reason discarded concrete system and aggregate
KR100967819B1 (en) Mortar composion for embankment material using sludge generated in poly crystalline silicon producing process and manufacturing method of embankment material
KR100470676B1 (en) Concrete composition using of bottom ash as replacement of aggregate for concrete mixing
KR100873872B1 (en) Method for producing lightweight aggregates of aggregate with crushed aggregate by-products and bottom ash mixture
KR101451501B1 (en) Composition of artificial aggregate and making method using inorganic sludge particle
KR101188498B1 (en) Composition for non-cement concrete using bottom ash and manufacturing method thereof
KR20210074783A (en) Construction materials using lithium residue
US20210363057A1 (en) Novel method of producing improved lightweight ceramic sand and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170918

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee