JP2005306707A - Method for manufacturing sintered body and sintered body - Google Patents

Method for manufacturing sintered body and sintered body Download PDF

Info

Publication number
JP2005306707A
JP2005306707A JP2004198275A JP2004198275A JP2005306707A JP 2005306707 A JP2005306707 A JP 2005306707A JP 2004198275 A JP2004198275 A JP 2004198275A JP 2004198275 A JP2004198275 A JP 2004198275A JP 2005306707 A JP2005306707 A JP 2005306707A
Authority
JP
Japan
Prior art keywords
raw material
sintered product
waste
main raw
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198275A
Other languages
Japanese (ja)
Inventor
Norihiko Misaki
紀彦 三崎
Yasunori Otsuka
靖紀 大塚
Hiroyuki Ninomiya
浩行 二宮
Tomonobu Ueyasu
知伸 上保
Katsushi Ono
勝史 小野
Norifumi Nagata
憲史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004198275A priority Critical patent/JP2005306707A/en
Publication of JP2005306707A publication Critical patent/JP2005306707A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high quality sintered body in a good productivity while eliminating a complicated process in the manufacturing of the sintered body using waste, or the like, as a main raw material. <P>SOLUTION: In the method for manufacturing the sintered body, one or more materials selected among the soil generated by construction, industrial waste or general waste are used as the main raw material, and the main raw material is adjusted to a mixed raw material having a prescribed chemical composition by adding and mixing a component control material and/or a sintering aid to the main raw material if necessary, then the mixed raw material is introduced into a rotary kiln in the powdery and/or granular state of 5 mm or less size and burned while granulating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、焼結物の製造方法及び焼結物に関するもので、特に、建設発生土、産業廃棄物等の廃棄物を主原料として用いた、高強度且つ低吸水性の焼結物の製造方法及び焼結物に関するものである。   The present invention relates to a method for producing a sintered product and a sintered product, and in particular, to produce a high-strength and low water-absorbing sintered product using waste such as construction generated soil and industrial waste as a main raw material. The present invention relates to a method and a sintered product.

建設現場や工事現場などから発生する土壌や残土、或いは産業廃棄物や一般廃棄物の発生量は、年間数百万トンにも達し、その大部分は有効利用されることなく埋立処分されているのが現状であるが、近年、その受け入れ側である埋立処分場については、その枯渇化が深刻化しており、発生する廃棄物を全て受け入れられない状況にある。
また、これらを廃棄するために必要な処分費についても、年々高騰の一途をたどっており、このような状況ゆえ、これらの廃棄物を不法投棄するなどの社会的な問題も発生している。
The amount of soil and residual soil generated from construction sites and construction sites, industrial waste and general waste reaches millions of tons per year, most of which is landfilled without being effectively used. However, in recent years, the landfill disposal site on the receiving side has become increasingly depleted and cannot accept all the generated waste.
In addition, disposal costs necessary for disposing of these materials have been increasing year by year, and this situation has caused social problems such as illegal dumping of these wastes.

こうした処分場の枯渇化の背景や、さらには、産業廃棄物は無機質な鉱物が主成分であるといったことから、産業廃棄物等にセメントと水を添加し、養生固化したものを裏打材、或いは埋め戻し材等として再利用する方法が提案されている(例えば、特許文献1)。 しかし、かかる特許文献1に開示されたような再利用の方法は、その処理を行うための処理費が高い割には、利用価値が低く、その実用化が進んでいないのが現状である。   The background of the depletion of such disposal sites, and furthermore, industrial waste is mainly composed of inorganic minerals, so cement and water are added to industrial waste etc. A method of reusing as a backfill material or the like has been proposed (for example, Patent Document 1). However, the reuse method as disclosed in Patent Document 1 has a low utility value for a high processing cost for performing the processing, and its practical use is not progressing.

また、セメント産業においても、産業廃棄物等をセメントの原料代替として利用しつつあるが、所定品質のセメントクリンカを得る為には、その使用し得る産業廃棄物等の種類及び使用量にも限界があり、また、近年のセメント需要の低迷に伴う減産の影響を受け、産業廃棄物等の発生量に対し、その処理量が追いついていない。   Also, in the cement industry, industrial waste is being used as a raw material substitute for cement, but in order to obtain a cement clinker of a prescribed quality, the type and amount of industrial waste that can be used is also limited. In addition, due to the impact of reduced production due to the recent slump in cement demand, the amount of industrial waste generated has not caught up.

また、上述したとおり、近年のセメント需要の減少はセメント産業にとっては深刻な問題であり、近年のセメント需要に対するセメントの生産能力、すなわち現有の生産設備は過剰となっていることから、止むを得ずロータリーキルン等を遊休化するなどの対応が行われているが、その設備を大幅に改造し、他の製造装置に転用すること、例えば、都市ゴミを発酵処理し、セメント原料を製造するシステムの一部として活用する方策などが提案されている(例えば、特許文献2)。
しかし、かかる遊休設備の活用方法は、その設備の改造工事にかかる費用は膨大なものであり、ロータリーキルンなどの設備をそのまま活用した新たな遊休設備等の活用方法が切望されている。
In addition, as mentioned above, the decline in cement demand in recent years is a serious problem for the cement industry, and the production capacity of cement for the recent cement demand, that is, the existing production facilities is excessive, so it must be stopped. First, rotary kilns etc. have been made idle, but the facilities are drastically remodeled and diverted to other production equipment.For example, municipal waste is fermented to produce cement raw materials. A policy to be utilized as a part has been proposed (for example, Patent Document 2).
However, the utilization method of such an idle facility is enormous in the cost of remodeling the facility, and a new utilization method of an idle facility, etc. that directly utilizes facilities such as a rotary kiln is desired.

一方、従来のコンクリート用骨材は天然産の石材や砂が使用されているが、これらは年々その生産が逼迫しており、地域によっては、良質なものが得られず、これらに置き換わる材料が強く望まれている。
また、天然資源や環境保護といった観点からも、その対策の実施が望まれている。
On the other hand, natural aggregates and sand are used for conventional concrete aggregates, but their production is tight year by year, and in some areas, high quality products cannot be obtained, and there are materials that can replace them. It is strongly desired.
In addition, from the viewpoint of natural resources and environmental protection, implementation of such measures is desired.

特開2001−19524号公報Japanese Patent Laid-Open No. 2001-19524 特開2001−191060号公報JP 2001-191060 A

本発明は、上述した背景技術が有する課題及び要望に鑑みて成されたものであって、その目的は、建設発生土、産業廃棄物、或いは一般廃棄物の大量使用を可能にすると共に、これらの廃棄物を主原料とした焼結物を製造するにあたり、遊休設備或いは現有設備をそのまま活用し、煩雑な工程を省き、生産性よく、高品質の焼結物を製造する方法、及び廃棄物を主原料とした高品質の焼結物を提供することにある。   The present invention has been made in view of the problems and demands of the above-described background art, and its purpose is to enable large-scale use of construction generated soil, industrial waste, or general waste. When manufacturing sintered products using wastes of the above as raw materials, idle facilities or existing facilities can be used as they are, methods for producing high-quality sintered products with good productivity, eliminating complicated processes, and waste It is to provide a high-quality sintered product made mainly of

本発明者らは、上記した課題を解決するため鋭意研究を重ねた結果、廃棄物同士を適当に組み合わせることにより、或いは廃棄物に成分調整剤及び/又は焼結助剤を添加混合することにより所定の化学組成の原料に調整した後、該原料を粉状のまま、或いは所定以下の粒状に成形してロータリーキルンで焼成することにより、適度な大きさを有し、内部まで十分に焼結した高品質の焼結物が得られることを見出し、本発明を完成させた。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have appropriately combined wastes or added and mixed a component adjusting agent and / or a sintering aid to the wastes. After adjusting to a raw material of a predetermined chemical composition, the raw material is in a powder form or formed into a predetermined granular shape and fired with a rotary kiln, so that it has an appropriate size and is fully sintered to the inside. The present inventors have found that a high-quality sintered product can be obtained and completed the present invention.

即ち、本発明は、建設発生土、産業廃棄物、或いは一般廃棄物から選ばれた1種以上を主原料とし、該主原料に必要に応じて成分調整剤及び/又は焼結助剤を添加混合して所定の化学組成の原料に調整した後、該原料を5mm以下の粉状及び/又は粒状の状態でロータリーキルンに投入し、造粒しながら焼成する焼結物の製造方法とした。
なお、上記本発明で用いる、建設発生土、産業廃棄物、或いは一般廃棄物は、水分を除いた含有量として、CaO、SiO2、Al23を合計50重量%以上含有することが好ましい。
That is, the present invention uses at least one selected from construction generated soil, industrial waste, or general waste as a main raw material, and a component adjusting agent and / or a sintering aid is added to the main raw material as necessary. After mixing and adjusting to a raw material having a predetermined chemical composition, the raw material was put into a rotary kiln in a powder and / or granular state of 5 mm or less, and a method for producing a sintered product that was fired while granulating was used.
The construction generated soil, industrial waste, or general waste used in the present invention preferably contains CaO, SiO 2 , Al 2 O 3 in total of 50% by weight or more as the content excluding moisture. .

ここで、上記原料の化学組成は、CaOが5〜30重量%、SiO2が30〜70重量%、Al23が10〜40重量%に成るように調整することが好ましい。また、廃棄物から成る上記主原料、及び該主原料に必要に応じて添加混合する上記成分調整剤及び/又は焼結助剤の粒度は、平均粒子径で1〜300μmのものが好ましく、特には平均粒子径で1〜50μmのものが好ましい。さらに、安定した焼成を可能とする為などの目的で、ロータリーキルンに融着防止材を吹き込み、転動造粒された焼成中の造粒物に付着させることは好ましい。 Here, the chemical composition of the raw material is preferably adjusted so that CaO is 5 to 30% by weight, SiO 2 is 30 to 70% by weight, and Al 2 O 3 is 10 to 40% by weight. The particle size of the main raw material consisting of waste and the component modifier and / or sintering aid added to and mixed with the main raw material as required is preferably 1 to 300 μm in average particle size, especially Preferably have an average particle size of 1 to 50 μm. Further, for the purpose of enabling stable firing, it is preferable to blow an anti-fusing material into the rotary kiln and attach it to the granulated product during rolling and granulation.

また、本発明は、建設発生土、産業廃棄物、或いは一般廃棄物から選ばれた1種以上を主原料とした焼結物であって、絶乾密度が1.0〜2.5g/cm3、24時間吸水率及び減圧吸水率が0.1〜15%、特には0.1〜6%、直径が5〜10mmの粒子の圧壊荷重が0.2kN以上、特には0.5kN以上、又は直径が10〜15mmの粒子の圧壊荷重が0.5kN以上、特には1.0kN以上である焼結物とした。 In addition, the present invention is a sintered product mainly composed of one or more selected from construction generated soil, industrial waste, or general waste, and has an absolutely dry density of 1.0 to 2.5 g / cm. 3 , 24-hour water absorption and reduced-pressure water absorption are 0.1 to 15%, particularly 0.1 to 6%, the crushing load of particles having a diameter of 5 to 10 mm is 0.2 kN or more, particularly 0.5 kN or more, Alternatively, a sintered product in which the crushing load of particles having a diameter of 10 to 15 mm is 0.5 kN or more, particularly 1.0 kN or more.

ここで、上記焼結物は、鉱物種として少なくともアノーサイトを15〜50重量%含有していることが好ましい。また、上記焼結物は、CaOを5〜30重量%、SiO2を30〜70重量%、Al23を10〜40重量%含有していることが好ましい。 Here, the sintered product preferably contains at least 15 to 50% by weight of anorthite as a mineral species. Further, the sintering was, CaO 5 to 30 wt%, a SiO 2 30 to 70 wt%, it is preferable that the Al 2 O 3 containing 10 to 40 wt%.

上記した本発明に係る焼結物の製造方法によれば、ロータリーキルンによる転動により造粒するため、予め廃棄物等の原料を所定の大きさに成形する煩雑な成形工程が省け、しかも、粉状或いは小さい粒状で焼成を行なうため、所謂生焼けの状態が生じ難く、高強度且つ低吸水性の焼結物を生産性よく製造することができる効果がある。   According to the above-described method for producing a sintered product according to the present invention, since granulation is performed by rolling with a rotary kiln, a complicated molding process for previously molding a raw material such as waste into a predetermined size can be omitted, Since firing is performed in the form of particles or small particles, a so-called burnt state hardly occurs, and there is an effect that a sintered product having high strength and low water absorption can be produced with high productivity.

また、上記した本発明に係る焼結物によれば、高強度で且つ低吸水率であるため、コンクリート用の骨材、路盤材、埋め戻し材、セメント原料の粘土の代替等として好適に使用することができ、しかも、建設発生土、産業廃棄物などの廃棄物を主原料とするため、廃棄物の有効利用、及び遊休のロータリーキルンをそのまま使用できるため、遊休設備の有効活用と言う観点からも、優れた効果を奏する発明となる。   Moreover, according to the sintered product according to the present invention described above, since it has high strength and low water absorption, it is suitably used as an aggregate for concrete, a roadbed material, a backfill material, a substitute for clay as a cement raw material, and the like. In addition, since wastes such as construction generated soil and industrial waste are used as the main raw material, waste can be used effectively and idle rotary kilns can be used as they are. Is an invention that exhibits excellent effects.

以下、上記した本発明に係る焼結物の製造方法及び焼結物の実施の形態を、詳細に説明する。   Hereinafter, the manufacturing method of the sintered product and the embodiment of the sintered product according to the present invention will be described in detail.

本発明で使用する建設発生土とは、建設現場や工事現場の掘削、ダムの浚渫工事等で発生する土壌、泥土、残土、さらには廃土壌等を言い、これらにハンドリング性や輸送性を向上させるため、消石灰などの改質材を添加した改質土も含む。また、本発明で使用する産業廃棄物としては、例えば生コンスラッジ、各種汚泥(例えば、浄水汚泥、建設汚泥、製鉄汚泥等)、建設廃材、コンクリート廃材、ボーリング廃土、各種焼却灰(例えば、石炭灰、焼却飛灰、溶融飛灰等)、鋳物砂、ロックウール、廃ガラス、高炉2次灰等が挙げられる。更に、本発明で使用する一般廃棄物としては、例えば下水汚泥、下水汚泥乾燥粉、下水汚泥焼却灰、都市ゴミ焼却主灰、都市ゴミ焼却飛灰、貝殻等が挙げられる。
本発明においては、上記した建設発生土、産業廃棄物、或いは一般廃棄物から選ばれた1種以上を主原料として使用する。
なお、以下、建設発生土、一般廃棄物、産業廃棄物から選ばれる一種以上を廃棄物等と言うことがある。
The construction-generated soil used in the present invention refers to soil, mud, residual soil, waste soil, etc. generated by excavation at construction sites and construction sites, dredging work of dams, etc., and these improve handling and transportability. Therefore, modified soil to which a modifying material such as slaked lime is added is also included. In addition, as industrial waste used in the present invention, for example, raw consludge, various sludges (for example, purified water sludge, construction sludge, iron sludge, etc.), construction wastes, concrete wastes, boring waste soil, various incineration ash (for example, coal Ash, incinerated fly ash, molten fly ash, etc.), foundry sand, rock wool, waste glass, blast furnace secondary ash, and the like. Further, examples of the general waste used in the present invention include sewage sludge, sewage sludge dry powder, sewage sludge incineration ash, municipal waste incineration main ash, municipal waste incineration fly ash, and shells.
In the present invention, at least one selected from the above-mentioned construction generated soil, industrial waste, or general waste is used as a main raw material.
Hereinafter, one or more types selected from construction generated soil, general waste, and industrial waste may be referred to as waste.

本発明で使用する上記廃棄物等は、平均粒子径で1〜300μmのものを用いると、焼結性が良いために推奨され、特に好ましくは、平均粒子径で1〜50μmのものを用いる。300μmより大きい場合は、粉砕等によって粒度を調整したものを用いることができる。この際、粉砕は連続式、バッチ式を問わないが、経済性の観点から連続式が推奨される。平均粒子径が1μmに満たない場合は、原料の焼結性は向上するものの、粉砕にかかるコストが高騰するために好ましくない。廃棄物等は、粉砕の前後に必要に応じロータリードライヤーなどの乾燥機で乾燥して用いても良い。   The wastes and the like used in the present invention are recommended to have an average particle size of 1 to 300 μm because of good sinterability, and particularly preferably those having an average particle size of 1 to 50 μm. When larger than 300 micrometers, what adjusted the particle size by grinding | pulverization etc. can be used. At this time, the pulverization may be a continuous type or a batch type, but a continuous type is recommended from the viewpoint of economy. When the average particle diameter is less than 1 μm, the sinterability of the raw material is improved, but the cost for pulverization is undesirably increased. Wastes and the like may be used after drying with a dryer such as a rotary dryer before and after pulverization.

上記廃棄物等のなかには、強熱減量分として数%から数10%程度の有機物を含むものもあるが、本発明では後述するように、原料形態は粉末、或いは所定の粒径以下の粒子状態で焼成するため、焼成過程での燃焼反応が容易に進行し、有機物は完全に燃焼するため、使用する廃棄物等には有機物含有量に対する規制は一切設ける必要はない。   Some of the above-mentioned wastes and the like contain an organic matter of several percent to several tens of percent as a loss on ignition, but in the present invention, as described later, the raw material form is powder or a particulate state having a predetermined particle size or less. Since the combustion reaction proceeds easily in the firing process and the organic matter is completely combusted, it is not necessary to provide any restrictions on the organic matter content in the waste used.

本発明においては、上記廃棄物等を主原料として用い、該主原料に、必要に応じて成分調整剤及び/又は焼結助剤を添加し、予め所定の化学組成の原料とする。但し、廃棄物等の大量使用の観点から、成分調整剤及び/又は焼結助剤は極力使用しないことが好ましく、このために、上記した建設発生土、一般廃棄物、産業廃棄物を適宜組み合わせ、主原料である廃棄物等自体の化学組成を、目標とする原料の化学組成とする、或いは少なくとも目標とする原料の化学組成に近づけることは好ましい。   In the present invention, the above-mentioned waste or the like is used as a main raw material, and a component adjusting agent and / or a sintering aid is added to the main raw material as necessary to obtain a raw material having a predetermined chemical composition. However, from the viewpoint of large-scale use of waste, etc., it is preferable not to use component modifiers and / or sintering aids as much as possible. For this purpose, the above-mentioned construction generated soil, general waste, and industrial waste are appropriately combined. It is preferable that the chemical composition of the waste material, which is the main raw material, is the chemical composition of the target raw material, or at least close to the chemical composition of the target raw material.

目標とする原料の化学組成は、CaOが5〜30重量%、SiO2が30〜70重量%、Al23が10〜40重量%含まれているように調整することが好ましい。
これは、CaOが5重量%に満たない場合には、焼成温度が著しく上昇し、実用的ではないことや、易焼結性が悪くなるなど焼結物品質のコントロールが困難になるために好ましくなく、逆にCaOが30重量%よりも大く含まれていると、やはり焼成温度が上昇し、易焼結性が悪くなるために好ましくない。また、SiO2が30重量%よりも少ないと、焼成温度が上昇し、易焼結性が悪くなるために好ましくなく、70重量%よりも大きいと、焼成温度が著しく上昇し、実用的ではなく好ましくない。Al23が10重量%よりも少ないと、液相の多量発生など、安定した運転が困難になるために好ましくなく、Al23が40%重量を越える量存在すると、焼成温度が著しく上昇し、実用的ではないために好ましくない。
The chemical composition of the target raw material is preferably adjusted so that CaO is contained in an amount of 5 to 30% by weight, SiO 2 is contained in an amount of 30 to 70% by weight, and Al 2 O 3 is contained in an amount of 10 to 40% by weight.
This is preferable because when CaO is less than 5% by weight, the firing temperature is remarkably increased, which is impractical and difficult to control the quality of the sintered product such as poor sinterability. On the other hand, if CaO is contained in an amount of more than 30% by weight, the firing temperature rises and the sinterability deteriorates, which is not preferable. Further, if the SiO 2 content is less than 30% by weight, the firing temperature rises and the sinterability deteriorates, which is not preferable. If it exceeds 70% by weight, the firing temperature rises remarkably and is not practical. It is not preferable. If Al 2 O 3 is less than 10% by weight, it is not preferable because stable operation such as generation of a large amount of liquid phase becomes difficult. If Al 2 O 3 is present in an amount exceeding 40% by weight, the firing temperature is remarkably high. It is not preferable because it rises and is not practical.

ここで、成分調整剤とは、例えば、SiO2源としては、ケイ石粉、粘土、カオリン、ベントナイトといったものが挙げられる。また、Al23源としては、アルミナ粉、アルミ灰、CaO源としては、石灰石粉、消石灰、生石灰、セメント、石膏などが挙げられる。 Here, examples of the component adjusting agent include silica powder, clay, kaolin, bentonite and the like as the SiO 2 source. Examples of the Al 2 O 3 source include alumina powder, aluminum ash, and examples of the CaO source include limestone powder, slaked lime, quicklime, cement, and gypsum.

上記成分調整剤の粒度については、廃棄物等との反応性から、平均粒子経で1〜300μmであることが好ましく、特には平均粒子経で1〜50μmであることが好ましい。300μmより大きい場合は、粉砕や分級によって粒度を調整したものを用いることができる。
成分調整剤の粒度が1μmより小さいと、粉砕等にかかる費用が高騰するために好ましくなく、300μmを超えると、廃棄物等との反応性が著しく悪くなり、成分調整剤としての効果が得られないために好ましくない。
About the particle size of the said component regulator, it is preferable that it is 1-300 micrometers by average particle diameter from the reactivity with a waste etc., and it is especially preferable that it is 1-50 micrometers by average particle diameter. When larger than 300 micrometers, what adjusted the particle size by grinding | pulverization or classification can be used.
If the particle size of the component modifier is smaller than 1 μm, it is not preferable because the cost for pulverization and the like increases, and if it exceeds 300 μm, the reactivity with the waste and the like is remarkably deteriorated, and the effect as a component modifier is obtained. Not preferred because

一方、焼結助剤とはその名のとおり、焼結反応を促すために添加するものであって、主原料である廃棄物等、或いは廃棄物等と上記成分調整剤の混合物にすでに焼結性が備わっていれば、とくに添加する必要はない。しかしながら、これらの原料成分では十分な焼結性が確保できない場合には、焼結助剤を添加する。   On the other hand, as the name suggests, the sintering aid is added to promote the sintering reaction, and is already sintered into the main raw material waste, etc., or a mixture of waste etc. and the above-mentioned component modifier. If it has the characteristics, it is not necessary to add. However, if these raw material components cannot ensure sufficient sinterability, a sintering aid is added.

焼結助剤には、種々のものが挙げられるが、例えば上記に示した成分調整剤のうち、粘土やカオリン、ベントナイト、各種のAl23源やセメントなどは、焼結を促す効果を合わせもっている。また、MgOも焼結を促す効果を有しており、MgOは勿論のこと、この成分を含有するMg(0H)2やMgCO3、或いはCaCO3・MgCO3(ドロマイト)、MgO・Al23(スピネル)、2MgO・SiO2(フオルステライト)なども好適である。また、鉄鋼副産物であるフェロニッケルスラグなどもMgOの含有量が高いばかりでなく、その有効利用といった観点からもより好適な材料と言える。 There are various sintering aids. For example, among the above-described component modifiers, clay, kaolin, bentonite, various Al 2 O 3 sources and cements, etc. have an effect of promoting sintering. I have a match. MgO also has an effect of promoting sintering. Mg (0H) 2 , MgCO 3 , CaCO 3 · MgCO 3 (dolomite), MgO · Al 2 O containing MgO as well as MgO are of course included. 3 (spinel), 2MgO.SiO 2 (forsterite) and the like are also suitable. Also, ferronickel slag, which is a by-product of steel, can be said to be a more suitable material from the viewpoint of not only high content of MgO but also effective utilization thereof.

KやNaなどのアルカリ金属の酸化物や複合酸化物、例えば炭酸ナトリウムや炭酸カリウムなども焼結反応を促進する効果を示すことが知られており、その複合酸化物である正長石、曹長石などの長石族、硝石、雲母族、霞石も好適である。また、廃ガラスや赤泥などもその有効利用の観点から好適な材料と言える。
また、Feを含有する酸化物や複合酸化物、例えばFe23粉末や鉄さいなども焼結反応を促進する効果を合わせ持っているため、これらを必要に応じて添加しても良い。
Alkali metal oxides and composite oxides such as K and Na, such as sodium carbonate and potassium carbonate, are also known to show the effect of promoting the sintering reaction. Also suitable are feldspars such as feldspar, glass, mica and meteorite. Waste glass and red mud are also suitable materials from the viewpoint of their effective use.
In addition, Fe-containing oxides and composite oxides, such as Fe 2 O 3 powder and iron powder, have the effect of promoting the sintering reaction, so these may be added as necessary.

上記添加する焼結助剤の粒度としては、やはり廃棄物等との反応性から、平均粒子経で1〜300μmが好ましく、特には平均粒子経で1〜50μmであることが好ましい。300μmより大きい場合は、粉砕等によって粒度を調整したものを用いることができる。 焼結助剤の粒度が1μmより小さいと、粉砕等に掛かる費用が高騰するために好ましくなく、300μmを超えると、廃棄物等との反応性が悪くなり、焼結助剤としての効果が得られないために好ましくない。   The particle size of the sintering aid to be added is preferably 1 to 300 μm in average particle size, and more preferably 1 to 50 μm in average particle size, due to reactivity with waste and the like. When larger than 300 micrometers, what adjusted the particle size by grinding | pulverization etc. can be used. If the particle size of the sintering aid is smaller than 1 μm, it is not preferable because the cost for pulverization and the like increases, and if it exceeds 300 μm, the reactivity with the waste etc. becomes worse, and the effect as a sintering aid is obtained. It is not preferable because it is not possible.

また、焼結助剤の添加量としては、焼結物中の焼結助剤成分元素の酸化物換算値として、MgOが0.1〜10重量%、R2Oが0.1〜10重量%、Fe23が0.1〜10重量%とすることが好ましい。
なお、R2Oとは、アルカリ金属酸化物の総称で、R2O(重量%)=Na2O(重量%)+0.685K2O(重量%)で表すことができる。
MgOが0.1重量%よりも小さいと、焼結助剤としての効果が得られないために好ましくなく、10重量%よりも大きいと、焼結助剤としての効果はそれ以上増加しないために好ましくない。R2Oが0.1重量%よりも小さいと、焼結助剤としての効果が得られなくなるために好ましくなく、10重量%より大きいと、焼結時の液相の発生が急激になり、安定した運転が行えなくなるために好ましくない。また、Fe23が0.1重量%よりも小さいと、焼結助剤としての効果が得られないために好ましくなく、10重量%よりも大きいと、焼結時の液相の発生が急激になり、安定した運転が行えなくなることや、焼成の雰囲気等によっては、O2を放出し、焼結物に多数の気泡を発生させる原因となるために好ましくない。
Further, the addition amount of sintering aid, as oxide equivalent value of the sintering auxiliary component elements in the sinter, MgO 0.1 to 10 wt%, R 2 O is 0.1 to 10 wt %, Fe 2 O 3 is preferably 0.1 to 10% by weight.
R 2 O is a general term for alkali metal oxides, and can be represented by R 2 O (wt%) = Na 2 O (wt%) + 0.685 K 2 O (wt%).
If MgO is smaller than 0.1% by weight, the effect as a sintering aid is not obtained, and if it is larger than 10% by weight, the effect as a sintering aid is not further increased. It is not preferable. When R 2 O is less than 0.1% by weight, the effect as a sintering aid cannot be obtained. This is not preferable, and when it is more than 10% by weight, generation of a liquid phase during sintering becomes abrupt. It is not preferable because stable operation cannot be performed. On the other hand, if Fe 2 O 3 is less than 0.1% by weight, the effect as a sintering aid cannot be obtained, which is not preferable. If it is more than 10% by weight, a liquid phase is generated during sintering. Depending on the abruptness and the inability to perform a stable operation, or the firing atmosphere, O 2 is released and a large number of bubbles are generated in the sintered product.

上記した廃棄物等から成る主原料、或いは該主原料に必要に応じて添加される成分調整剤及び/又は焼結助剤との混合は、ナウターミキサーやエアーブレンデングサイロなど公知の混合機で行なえばよく、連続式、バッチ式の何れを用いても良い。要は、均質な混合物が得られれば良く、混合時間等は使用する設備に応じて適宜設定すれば良いが、混合が不十分となると、良好な焼結物が得られなくなるために最大の注意を払う必要がある。   Mixing with the main raw material consisting of the above-mentioned waste or the like, or a component adjusting agent and / or a sintering aid added to the main raw material as necessary is a known mixer such as a nauter mixer or an air blending silo. In this case, either a continuous type or a batch type may be used. In short, it is only necessary to obtain a homogeneous mixture, and the mixing time and the like may be appropriately set according to the equipment to be used. However, if mixing is insufficient, the best precautions are obtained because a good sintered product cannot be obtained. Need to pay.

また、粒度の粗い原料を用いる場合や混合度を高めたい場合は、チューブミルなどの粉砕を伴うものを使用してもよく、公知の粉砕機であれば、連続式、バッチ式を問わず何れも用いることができる。粉砕混合時間は、経済性や混合性から、概ね30分〜1時間程度が良いが、使用する設備に応じて適宜設定すると良い。   In addition, when using raw materials with a coarse particle size or when it is desired to increase the mixing degree, a tube mill or the like may be used, and any known crusher may be used, regardless of whether it is a continuous type or a batch type. Can also be used. The pulverization and mixing time is preferably about 30 minutes to 1 hour from the viewpoint of economy and mixing properties, but may be appropriately set according to the equipment used.

混合された原料は、5mm以下の粉状及び/又は粒状の状態でロータリーキルンに投入され、造粒しながら焼成することにより焼結物が製造される。   The mixed raw material is put into a rotary kiln in a powder and / or granular state of 5 mm or less, and sintered while being granulated to produce a sintered product.

原料は、粉状の状態のままでロータリーキルンに投入しても良いが、野外ホッバーからベルトフィーダーを介してキルンに送入する場合など、発塵や周辺環境に配慮が必要な場合、或いはハンドリンク面において問題を生じさせる可能性がある場合は、原料粉末を5mm以下の粒状に整粒し、ロータリーキルンヘ投入しても良い。   The raw material may be put into the rotary kiln in the powder state, but when dust generation and the surrounding environment need to be taken into consideration, such as when sending it to the kiln via a belt feeder from an outdoor hobber, or hand linking If there is a possibility of causing a problem in terms of surface, the raw material powder may be sized to 5 mm or less and charged into the rotary kiln.

この際、整粒にパンペレタイザーや押し出し成形機を用いても特段問題はないが、これらは習熟された技能を必要とすることや設備コスト上の観点から好ましくなく、例えばバグミルやスクリューフィーダーを使用し、原料輸送経路、或いは整粒中の原料に直接散水することで、設備が簡素にでき、これといった特別な技能を必要としないことから推奨される。また、整粒物の粒子径のコントロールは、散水量で調整することができ、最適な散水量は、原料粉末の粉末度や含水量によって異なるため、整粒物の状態を見ながら、適宜調節すると良い。
整粒物が5mm以下であれば、どのような形状をしていても良く、整粒ののち、解砕や分級にて5mm以下に調整したものを用いても良い。この整粒物が5mmを超えると、内部まで均質に焼成し難くなるために好ましくない。
At this time, there is no particular problem even if a pan pelletizer or an extrusion molding machine is used for sizing, but these are not preferable from the viewpoint of the skill required and equipment cost, for example, using a bag mill or screw feeder However, it is recommended that the facility can be simplified by directly sprinkling the raw material transport route or the raw material being sized, and this special skill is not required. In addition, the control of the particle size of the sized product can be adjusted by the amount of water spray, and the optimal water spray amount varies depending on the fineness and water content of the raw material powder. Good.
As long as the sized product is 5 mm or less, any shape may be used, and after sizing, a product adjusted to 5 mm or less by crushing or classification may be used. If this sized product exceeds 5 mm, it is difficult to uniformly sinter the interior, which is not preferable.

こうして混合された粉状の原料、或いは5mm以下に整粒された粒状の原料は、ロータリーキルンで焼成される。
ロータリーキルンの使用は、セメント産業において、遊休設備の有効活用と言った観点から推奨されることは言うまでもないが、ロータリーキルンは、安定した品質の焼結物が連続して得られ易く、工業生産に向いていることに加え、前述の原料の配合調整による相乗効果も合わさって、極めて安定的に焼結物を製造することが可能となる。
The powdery raw material thus mixed or the granular raw material adjusted to 5 mm or less is fired in a rotary kiln.
Needless to say, the use of a rotary kiln is recommended in the cement industry from the viewpoint of effective utilization of idle equipment, but a rotary kiln is suitable for industrial production because it is easy to obtain stable quality sintered products continuously. In addition, it is possible to manufacture a sintered product extremely stably by combining the above-described synergistic effect by adjusting the blending of raw materials.

ロータリーキルンを用いた焼成は、好ましくは800〜1500℃、より好ましくは、1150〜1350℃にて行うが、所望とする焼結物の品質(例えば、絶乾密度、吸水率等)を勘案し、適宜調製すると良い。
なお、焼成温度が800℃未満では、十分な焼成が行なわれず、原料が造粒されないまま排出される憂いがあるために好ましくない。また、1500℃を越えると、原料が溶融してしまい、運転に支障をきたすために好ましくない。
Firing using a rotary kiln is preferably performed at 800 to 1500 ° C., more preferably 1150 to 1350 ° C., taking into account the quality of the desired sintered product (eg, absolutely dry density, water absorption rate, etc.) It is good to prepare appropriately.
A firing temperature of less than 800 ° C. is not preferable because sufficient firing is not performed and the raw material may be discharged without being granulated. Moreover, when it exceeds 1500 degreeC, a raw material will fuse | melt and it is unpreferable since it will interfere with a driving | operation.

ここで使用するロータリーキルンは、排気系にサイクロンなどの原料循環予熱設備、プレヒーター、廃熱ボイラー等を付設していても、していなくても良い。また、窯尻にリフターを備えているものや、ロータリーキルンの内径を途中で窄めたり、広げるなどの加工を加えたものであっても良い。   The rotary kiln used here may or may not be provided with a material circulation preheating facility such as a cyclone, a preheater, a waste heat boiler, or the like in the exhaust system. Moreover, what provided the lifter in the kiln bottom, and what added processing, such as narrowing or expanding the internal diameter of a rotary kiln on the way, may be used.

燃料としては、重油、微粉炭、再生油、LPG、NPGなど一般的に用いられているものであれば、単体或いは混焼で使用しても良く、所定の焼成温度になるよう焚き込み量を調整する。近年、セメントキルンにおいては、廃プラスチック、廃タイヤ、廃木材や肉骨粉などが、燃料代替として用いられているが、そのようなものが燃料の一部として使用されていても良い。   As fuel, if it is generally used such as heavy oil, pulverized coal, reclaimed oil, LPG, NPG, etc., it can be used alone or in a mixed firing, and the amount of pouring is adjusted so that the predetermined firing temperature is reached To do. In recent years, in plastic kilns, waste plastics, waste tires, waste wood, meat and bone powder and the like have been used as fuel substitutes, but such may be used as part of the fuel.

ロータリーキルンでの焼成時間は、経済性の観点から概ね15〜120分とするのが適当であるが、所定品質の焼結物が得られるよう、適宜調製すると良い。また、焼成時のロータリーキルン内のO2分圧は、一般的な焼成範囲である3〜12%に調整すれば良いが、とくに限定されるものではない。また、サイクロンなどの原料循環系を備えていないロータリーキルンにて焼成を行う場合は、ロータリーキルン窯尻の風速が概ね5m/s以下となるよう、ドラフトを調整すると良く、ロータリーキルン窯尻の風速が5m/sを超えると、多量の原料が系外へ飛散して焼結物の収率が低下するために好ましくない。 The firing time in the rotary kiln is suitably about 15 to 120 minutes from the viewpoint of economy, but may be appropriately prepared so as to obtain a sintered product of a predetermined quality. The O 2 partial pressure in the rotary kiln during firing may be adjusted to 3 to 12%, which is a general firing range, but is not particularly limited. In addition, when firing in a rotary kiln that does not have a material circulation system such as a cyclone, it is better to adjust the draft so that the wind speed of the rotary kiln kiln bottom is approximately 5 m / s or less, and the wind speed of the rotary kiln kiln bottom is 5 m / s. If it exceeds s, a large amount of raw material scatters out of the system and the yield of the sintered product decreases, which is not preferable.

焼成中は、焼結物の品質をより高める目的、またより安定した運転を目的として、融着防止材をロータリーキルンの窯前から吹き込んでも良く、既に所望とする品質の焼結物が得られている場合、また安定した運転が行なわれている場合には、特に融着防止材を使用する必要はない。
融着防止材としては、珪石、アルサイト、アルミナ、セメントの粉末やセメントの主要鉱物であるエーライト、ビーライト粉末などを用いることができる。
During firing, for the purpose of improving the quality of the sintered product and for the purpose of more stable operation, an anti-fusing material may be blown from before the kiln of the rotary kiln, and a sintered product of the desired quality has already been obtained. If there is a stable operation, it is not necessary to use an anti-fusing material.
As the anti-fusing material, quartzite, alusite, alumina, cement powder, alite, belite powder, etc., which are the main minerals of cement, can be used.

融着防止材の粒子径は、概ね平均粒子径で10〜1000μmのものを用いると、融着防止効果が得られ易いので好ましく、その純度は高いものほど良い。融着防止材の平均粒子径が10μmより小さいと、焼成中に原料化して焼結物中に取り込まれる可能性が高く、融着防止材としての効果が減少してしまうことや、焼結物品質の低下を生じるために好ましくない。逆に融着防止材の平均粒子径が1000μmより大きいと、送入部位等の磨耗が著しく、これら消耗部位や部品の交換が頻繁になるために好ましくない。さらに融着防止材の平均粒子径が数ミリを超えると、融着防止材としての効果が減少し、また焼結物に融着したものとの分離が困難になるために好ましくない。   When the particle size of the anti-fusing material is approximately 10 to 1000 μm in average particle size, the anti-fusing effect is easily obtained, and the higher the purity, the better. If the average particle size of the anti-fusing material is smaller than 10 μm, it is highly likely that it will be used as a raw material during firing and incorporated into the sintered product, and the effect as an anti-fusing material will be reduced, This is not preferable because it causes a reduction in quality. On the contrary, if the average particle diameter of the anti-fusing material is larger than 1000 μm, it is not preferable since the wear of the feeding site and the like is remarkable and the exchange of these consumable sites and parts is frequent. Further, if the average particle diameter of the anti-fusing material exceeds several millimeters, the effect as the anti-fusing material is reduced, and separation from the material fused to the sintered product becomes difficult.

融着防止材の吹き込み方法としては、焼点に融着防止材が所定量吹き付けられるものであれば、とくに限定されないが、例えば水冷管或いは空冷管などの送入管をロータリーキルンの窯前に挿入し、エジェクタなどの空気圧送やモノーポンプなどの輸送ポンプによって、融着防止材を吹き付けると装置が簡便にでき推奨される。
また、融着防止材の吹き込み量は、ロータリーキルンに送入する混合原料に対し、3〜10重量%が好ましく、3重量%よりも少ないと、融着防止材としての効果が得られ難く、10重量%を超えても、融着防止材による融着防止効果はそれ以上増加しないため、経済的な面からみても好ましくない。
The method of blowing the anti-fusing material is not particularly limited as long as a predetermined amount of the anti-fusing material can be sprayed on the burning point. For example, a feed pipe such as a water-cooled tube or an air-cooled tube is inserted before the kiln of the rotary kiln. However, if the anti-fusing material is sprayed by a pneumatic pump such as an ejector or a transport pump such as a mono pump, the apparatus can be simplified and recommended.
Further, the blowing amount of the anti-fusing material is preferably 3 to 10% by weight with respect to the mixed raw material fed into the rotary kiln, and if it is less than 3% by weight, it is difficult to obtain the effect as the anti-fusing material. Even if it exceeds the weight percent, the anti-fusing effect of the anti-fusing material does not increase any more, which is not preferable from an economical viewpoint.

上記のようなロータリーキルンによる原料の焼成によって、絶乾密度が1.0g/cm3以上、2.5g/cm3以下、24時間吸水率、減圧吸水率が0.1%以上、15%以下、直径5〜10mmの焼結物の圧壊荷重が0.2kN以上、又は直径10〜15mmの焼結物の圧壊荷重が0.5kN以上の焼結物が得られる。 By firing the raw material with the rotary kiln as described above, the absolutely dry density is 1.0 g / cm 3 or more, 2.5 g / cm 3 or less, the water absorption rate for 24 hours, the reduced pressure water absorption rate is 0.1% or more, 15% or less, A sintered product having a crushing load of 0.2 kN or more of a sintered product having a diameter of 5 to 10 mm or a crushing load of a sintered product having a diameter of 10 to 15 mm of 0.5 kN or more is obtained.

この本発明に係る焼結物は、24時間吸水率が低いばかりでなく、減圧吸水率も低いのが特徴であり、上記した24時間吸水率、減圧吸水率が0.1%以上、15%以下である焼結物が得られるのは無論、24時間吸水率、減圧吸水率が共に0.1%以上、6%以下で、直径5〜10mmの焼結物の圧壊荷重が0.5kN以上、又は直径10〜15mmの焼結物の圧壊荷重が1.0kN以上の焼結物も容易に得ることができる。
ここで、減圧吸水率とは、一定の減圧下にて強制的に吸水を行う方法であり、具体的には、密閉容器中に焼結物を水没させ、真空ポンプで−400mmHgまで容器内を減圧し、15分間静置した後に徐々に大気に開放し、焼結物に含水した水量から減圧時の吸水率を測定した値である。
この減圧吸水率は、コンクリートのポンプ圧送時の配管内における骨材の吸水性を推察する指標となるものであり、焼結物をコンクリート用の骨材として使用する場合には、コンクリートとした際の良好なワーカビリティーを確保するために、焼結物は、24時間吸水率のみならず、減圧吸水率を低くすることが重要になる。
This sintered product according to the present invention is characterized by not only low water absorption for 24 hours but also low water absorption under reduced pressure, and the above-described 24-hour water absorption and vacuum water absorption are 0.1% or more and 15%. Of course, it is possible to obtain a sintered product of the following: 24 hour water absorption and reduced pressure water absorption are both 0.1% or more and 6% or less, and the crushing load of the sintered product having a diameter of 5 to 10 mm is 0.5 kN or more. Alternatively, a sintered product having a crushing load of 1.0 kN or more of a sintered product having a diameter of 10 to 15 mm can be easily obtained.
Here, the reduced-pressure water absorption is a method of forcibly absorbing water under a constant reduced pressure. Specifically, the sintered product is submerged in a sealed container, and the inside of the container is -400 mmHg with a vacuum pump. This is a value obtained by measuring the water absorption at the time of depressurization from the amount of water contained in the sintered product after gradually reducing the pressure and allowing to stand for 15 minutes.
This reduced water absorption rate is an index for inferring the water absorption of the aggregate in the pipe when pumping concrete, and when using the sintered product as an aggregate for concrete, In order to ensure good workability, it is important for the sintered product to reduce not only the 24-hour water absorption rate but also the reduced-pressure water absorption rate.

表面のみの焼成が進行し易い従来のペレット焼成は、外観上は緻密質であっても、焼結物内部に焼成むらが生じていることが多く、それによって、24時間吸水率が低い場合においても、減圧吸水率が高くなることが一般的であるが、本発明によって得られる焼結物は、焼成過程において、核となる溶融粒子が他の溶融粒子を巻き込みながら粒成長し、焼結度を高めながら焼成が進行することから、表面から内部まで非常に焼きむらの少ない非常に均質で緻密質な焼結物が得られる。そのため、24時間吸水率が低いことは勿論のこと、同時に減圧吸水率も低くなると言った特徴があり、加えて強度も備わったものとなる。また、5mm以下の粉状及び/又は粒状の状態でロータリーキルンに投入するため、廃棄物等の主原料に含有されている有機物が、焼成中に燃焼され易いといった特徴もあり、焼成中の焼結物の発泡化が抑制され、結果として絶乾密度も高い焼結物が得られ易い。   In the case of conventional pellet firing in which firing of only the surface is easy to proceed, even if the appearance is dense, firing unevenness is often generated inside the sintered product, and thus the water absorption rate is low for 24 hours. In general, the vacuum water absorption increases, however, the sintered product obtained by the present invention grows while the molten particles as a core entrain other molten particles in the firing process, and the degree of sintering is increased. Since the firing proceeds while increasing the temperature, a very homogeneous and dense sintered product with very little unevenness of firing from the surface to the inside can be obtained. Therefore, not only the water absorption rate for 24 hours is low, but also the water absorption rate under reduced pressure is reduced at the same time, and the strength is also provided. In addition, since it is put into a rotary kiln in a powdery and / or granular state of 5 mm or less, there is a feature that organic substances contained in main raw materials such as waste are easily burned during firing, and sintering during firing. As a result, it is easy to obtain a sintered product having a high dry density.

また、本発明に係る焼結物には、鉱物種として少なくともアノーサイト(CaO・2SiO2・Al23)が含有されていることが好ましい。
この焼結物は、生成相の主体が珪酸塩鉱物、アノーサイト、ガラスからなるものであるが、焼結物の原料となる廃棄物等は、数種の珪酸塩鉱物から構成されており、この珪酸塩鉱物同士が反応し、結合相としてガラスが生成する。更に該ガラスと珪酸塩鉱物との反応によって強固な鉱物質であるアノーサイトが析出し、主にガラスと珪酸塩鉱物との間に介在する。この強固な鉱物質であるアノーサイトが介在することにより、高い強度を発現することができる。
In addition, the sintered product according to the present invention preferably contains at least anorthite (CaO.2SiO 2 .Al 2 O 3 ) as a mineral species.
This sintered product is mainly composed of silicate mineral, anorthite, and glass, but the waste that is the raw material of the sintered product is composed of several types of silicate minerals. The silicate minerals react with each other to produce glass as a binder phase. Furthermore, the anorthite which is a strong mineral substance precipitates by reaction with this glass and a silicate mineral, and mainly interposes between glass and a silicate mineral. High strength can be expressed by the presence of anorthite, which is a strong mineral substance.

生成相中に占めるアノーサイトの含有量は、15〜50重量%、より好ましくは、20〜40重量%である。アノーサイトの含有量が15重量%未満では、珪酸塩鉱物粒子間の結合がガラスによって担われる比率が高まることから、高い結合力が得られず、焼結物強度が低下するために好ましくない。逆に50重量%を超えると、結晶質相が増大することにより、易焼結性を維持することが困難となるために好ましくない。   The content of anorthite in the produced phase is 15 to 50% by weight, more preferably 20 to 40% by weight. If the content of anorthite is less than 15% by weight, the ratio of the bonding between the silicate mineral particles being increased by the glass is increased, so that a high bonding strength cannot be obtained and the strength of the sintered product is lowered, which is not preferable. On the other hand, if it exceeds 50% by weight, it is not preferable because the crystalline phase increases, making it difficult to maintain the sinterability.

また、本発明に係る焼結物の化学組成は、CaOが5〜30重量%、SiO2が30〜70重量%、Al23が10〜40重量%であることが好ましい。
これは、このような化学組成の焼結物は、易焼結性が良く、上記した性状、すなわち絶乾密度及び圧壊荷重が高く、24時間吸水率及び減圧吸水率が共に低い良好な性状を有する焼結物となるために好ましい。
The chemical composition of the sinter according to the present invention, CaO 5 to 30 wt%, SiO 2 30 to 70 wt%, it is preferable Al 2 O 3 is 10 to 40 wt%.
This is because the sintered product having such a chemical composition has good sinterability and has the above-described properties, that is, a high dry density and a high crushing load, and a low property for both the 24-hour water absorption rate and the reduced-pressure water absorption rate. This is preferable because it has a sintered product.

以上、詳述した本発明によれば、高強度で且つ低吸水率の焼結物が得られるため、コンクリート用の骨材、路盤材、埋め戻し材、セメント原料の粘土の代替等として好適に使用することができ、しかも、建設発生土、産業廃棄物などの廃棄物を主原料とするため、廃棄物の有効利用、及び遊休のロータリーキルンをそのまま使用できるため、遊休設備の有効活用と言う観点からも、優れた効果を奏する発明となる。   As described above, according to the present invention described in detail, since a sintered product having high strength and low water absorption can be obtained, it is suitable as an aggregate for concrete, a roadbed material, a backfill material, a substitute for clay as a cement raw material, and the like. Since it can be used, and since wastes such as construction generated soil and industrial waste are used as the main raw material, it is possible to use waste effectively and idle rotary kilns can be used as they are. Therefore, the invention has excellent effects.

試験例Test example

〔試験例1〜10〕
試験に使用した廃棄物等(建設発生土2種類、下水汚泥1種類、石炭灰2種類)の化学組成を表1に示す。また、試験に使用した成分調製剤(石灰石、炭酸カルシウム、普通ポルトランドセメント、ベントナイト)、及び焼結助剤(フェロニッケルスラグ)の化学組成を表2に示す。
[Test Examples 1 to 10]
Table 1 shows the chemical composition of wastes and the like used in the test (two types of construction generated soil, one type of sewage sludge, and two types of coal ash). Table 2 shows chemical compositions of the component preparation agents (limestone, calcium carbonate, ordinary portland cement, bentonite) and sintering aid (ferronickel slag) used in the test.

Figure 2005306707
Figure 2005306707
Figure 2005306707
Figure 2005306707

表1及び表2に示した原料を、表3に示した種々の割合で計量し、本発明の好ましい範囲の化学組成に配合し、該計量原料を、130m3のエアーブレンディングサイロに80ton投入し、エアーによる曝流混合を各々6時間行った。
続いて、得られた原料を、内径1.5m、長さ20mのロータリーキルンに1ton/hで投入し、滞留時間が60分となる条件で、緻密質な焼結物が得られるように燃料であるA重油の焚き量を調整しながら焼成した。この際、焼結物の融着を防止する目的で、平均粒子径30μmの珪石粉末を、窯前から30kg/hで焼点付近へ吹き込みながら焼成した。
The raw materials shown in Table 1 and Table 2 are weighed at various ratios shown in Table 3, blended into the chemical composition within the preferred range of the present invention, and the metered raw material is put into a 130 m 3 air blending silo at 80 tons. The aeration mixing with air was performed for 6 hours each.
Subsequently, the obtained raw material is charged into a rotary kiln having an inner diameter of 1.5 m and a length of 20 m at 1 ton / h, and fuel is used so that a dense sintered product can be obtained under the condition that the residence time is 60 minutes. Firing was performed while adjusting the amount of A heavy oil. At this time, for the purpose of preventing fusion of the sintered product, silica powder having an average particle diameter of 30 μm was fired from the front of the kiln at 30 kg / h while being blown near the burning point.

Figure 2005306707
Figure 2005306707

こうして得られた焼結物は、外観上緻密質なものであった。
得られた焼結物を、目開き5、10、15mmの篩いにて篩い分けし、5〜10mm、10〜15mmの焼結物について、それぞれ化学組成を蛍光10線の定量分析にて行い、また、絶乾密度、吸水率を、JIS A 1110に準拠して測定した。これに併せて、−400mmHgの減圧下で、15分間吸水させた減圧吸水率を測定し、さらに焼結物強度を測定するため、土木学会基準の高強度フライアッシュ人工骨材の圧壊荷重試験方法に準拠して圧壊荷重を測定した。また、この焼結物を粉砕し、粉末10線回折装置を用いてアノーサイトの生成量を内部標準法(内部標準物質;CaF2)によって定量分析を行った。 その結果を、表4に示す。
The sintered product thus obtained was fine in appearance.
The obtained sintered product is sieved with sieves having openings of 5, 10 and 15 mm, and the sintered composition of 5 to 10 mm and 10 to 15 mm is subjected to a chemical composition by quantitative analysis of fluorescent 10 rays, respectively. Further, the absolute dry density and water absorption were measured according to JIS A 1110. In addition to this, in order to measure the reduced-pressure water absorption rate of water absorption for 15 minutes under a reduced pressure of −400 mmHg, and to further measure the strength of the sintered product, the test method for crushing load of high-strength fly ash artificial aggregates according to the Japan Society of Civil Engineers The crushing load was measured according to the above. The sintered product was pulverized, and the amount of anorthite produced was quantitatively analyzed by an internal standard method (internal standard material; CaF 2 ) using a powder 10-line diffractometer. The results are shown in Table 4.

Figure 2005306707
Figure 2005306707

表4から明らかのように、何れの試験例においても、24時間吸水率、減圧吸水率が共に低く、且つ高強度の焼結物が得られた。   As is clear from Table 4, in any of the test examples, a 24-hour water absorption rate and a reduced-pressure water absorption rate were both low, and a high-strength sintered product was obtained.

〔試験例11〜14〕
試験に使用した原料は、上記試験例1〜10と同様で、その原料を、表5に示す配合割合にて計量し、該計量物を、130m3のエアーブレンディングサイロに80ton投入し、エアーによる曝流混合を各々6時間行った。
続いて、得られた原料を、粒径5〜15mmに成るように、パンペレタイザーで球形状に造粒し、該造粒物を、60℃で3時間養生し、該造粒物の強度を高めた。
続いて、粒径5〜15mmの造粒物を、内径1.5m、長さ20mのロータリーキルンに1ton/hで投入し、滞留時間が60分となる条件で、緻密質な焼結物が得られるように燃料であるA重油の焚き量を調整しながら焼成した。この際、焼結物の融着を防止する目的で、平均粒子径30μmの珪石粉末を、窯前から30kg/hで焼点付近へ吹き込みながら焼成を行なった。
[Test Examples 11 to 14]
The raw materials used in the test are the same as in Test Examples 1 to 10, and the raw materials are weighed at the blending ratios shown in Table 5, and the measured materials are put into an air blending silo of 130 m 3 by 80 tons. The aeration mixing was performed for 6 hours each.
Subsequently, the obtained raw material is granulated into a spherical shape with a pan pelletizer so as to have a particle size of 5 to 15 mm, and the granulated product is cured at 60 ° C. for 3 hours to increase the strength of the granulated product. Increased.
Subsequently, a granulated product having a particle size of 5 to 15 mm is put into a rotary kiln having an inner diameter of 1.5 m and a length of 20 m at 1 ton / h, and a dense sintered product is obtained under the condition that the residence time is 60 minutes. It baked, adjusting the amount of fueling of A heavy oil which is a fuel so that it might be. At this time, for the purpose of preventing fusion of the sintered product, the silica powder having an average particle diameter of 30 μm was fired while being blown near the burning point at 30 kg / h from before the kiln.

Figure 2005306707
Figure 2005306707

こうして得られた焼結物は、外観上緻密質なものであった。
得られた焼結物について、上記試験例1〜10と同様の項目について、同様の方法で測定を行なった。
その結果を、表6に示す。
The sintered product thus obtained was fine in appearance.
About the obtained sintered compact, it measured by the same method about the item similar to the said Test Examples 1-10.
The results are shown in Table 6.

Figure 2005306707
Figure 2005306707

表6から明らかのように、絶乾密度、24時間吸水率については上記試験例1〜10の焼結物と遜色のないものが得られたが、圧壊荷重、減圧吸水率については、上記試験例1〜10の焼結物に比して劣るものであった。   As is clear from Table 6, the absolute dry density and the 24-hour water absorption were inferior to those of the sintered products of Test Examples 1 to 10, but the crushing load and the vacuum water absorption were the above tests. It was inferior compared with the sintered compact of Examples 1-10.

〔試験例15〜19〕
試験に使用した建設発生土、下水汚泥、石炭灰、及び成分調整剤3種類(炭酸カルシウム、珪石粉、アルミナ粉)の化学組成を、表7に示す。
[Test Examples 15 to 19]
Table 7 shows the chemical compositions of the construction-generated soil, sewage sludge, coal ash, and the three component modifiers (calcium carbonate, silica stone powder, and alumina powder) used in the test.

Figure 2005306707
Figure 2005306707

表7に示した原料を、表8に示した割合で各々計量し、焼結物を製造する原料として使用した以外は、上記試験例1〜10と同様にして焼結物を製造した。   Sintered materials were produced in the same manner as in Test Examples 1 to 10 except that the raw materials shown in Table 7 were weighed at the ratios shown in Table 8 and used as raw materials for producing sintered materials.

Figure 2005306707
Figure 2005306707

試験例15の配合割合の原料を使用した場合には、1150℃まで焼成温度を上昇させたが、明らかに生焼けの焼結物しか得られなかった。特殊なロータリーキルンを用いれば焼成可能と考えられるが、焼成温度が高く、製造コストの高騰は避けられず、実用的ではないことが分かった。
試験例16の配合割合の原料を使用した場合には、上記試験例15の場合と同様に、1550℃まで焼成温度を上昇させたが、明らかに生焼けの焼結物しか得られず、実用的ではないことが分かった。
試験例17の配合割合の原料を使用した場合には、その焼成中に生走りと溶融を繰り返すなど、焼成をコントロールすることができず、明らかに生焼けの焼結物しか得られなかった。
試験例18の配合割合の原料を使用した場合には、1550℃まで焼成温度を上昇させたが、明らかに生焼けの焼結物しか得られなかった。特殊なロータリーキルンを用いれば焼成可能と考えられるが、焼成温度が高く、製造コストの高騰は避けられず、実用的ではないことが分かった。
試験例19の配合割合の原料を使用した場合には、上記試験例18の場合と同様に、1550℃まで焼成温度を上昇させたが、明らかに生焼けの焼結物しか得られず、実用的ではないことが分かった。
When the raw material having the blending ratio of Test Example 15 was used, the firing temperature was increased to 1150 ° C., but apparently only a burnt sintered product was obtained. Although it is considered that firing can be performed using a special rotary kiln, it has been found that the firing temperature is high and the production cost is inevitably increased, which is not practical.
When the raw materials having the blending ratio of Test Example 16 were used, the firing temperature was increased to 1550 ° C. as in the case of Test Example 15, but apparently only a burned sintered product was obtained, which was practical. It turns out that it is not.
When the raw material of the blending ratio of Test Example 17 was used, firing could not be controlled, for example, repeated running and melting during firing, and apparently only a burned sintered product was obtained.
When the raw material having the blending ratio of Test Example 18 was used, the firing temperature was increased to 1550 ° C., but apparently only a burnt sintered product was obtained. Although it is considered that firing can be performed using a special rotary kiln, it has been found that the firing temperature is high and the production cost is inevitably increased, which is not practical.
When the raw materials having the blending ratios of Test Example 19 were used, the firing temperature was increased to 1550 ° C. as in the case of Test Example 18 above. It turns out that it is not.

Claims (7)

建設発生土、産業廃棄物、或いは一般廃棄物から選ばれた1種以上を主原料とし、該主原料に必要に応じて成分調整剤及び/又は焼結助剤を添加混合して所定の化学組成の原料に調整した後、該原料を5mm以下の粉状及び/又は粒状の状態でロータリーキルンに投入し、造粒しながら焼成することを特徴とする、焼結物の製造方法。   One or more selected from construction-generated soil, industrial waste, or general waste is used as the main raw material, and component adjusters and / or sintering aids are added to and mixed with the main raw material as required. A method for producing a sintered product, wherein the raw material is adjusted to a raw material having a composition, and then the raw material is put into a rotary kiln in a powdery and / or granular state of 5 mm or less and fired while granulating. 上記原料の化学組成を、CaOが5〜30重量%、SiO2が30〜70重量%、Al23が10〜40重量%に調整することを特徴とする、請求項1に記載の焼結物の製造方法。 The chemical composition of the raw material, CaO 5 to 30 wt%, SiO 2 30 to 70 wt%, Al 2 O 3 is equal to or is adjusted to 10 to 40 wt%, baked according to claim 1 A method for producing a knot. 上記建設発生土、産業廃棄物、或いは一般廃棄物から選ばれた1種以上から成る主原料、及び該主原料に必要に応じて添加混合する上記成分調整剤及び/又は焼結助剤の粒度を、平均粒子径で1〜300μmとすることを特徴とする、請求項1又は2に記載の焼結物の製造方法。   The main raw material composed of one or more selected from the above-mentioned construction generated soil, industrial waste, or general waste, and the particle size of the above-mentioned component adjusting agent and / or sintering aid added to and mixed with the main raw material as necessary The average particle diameter is 1 to 300 μm, The method for producing a sintered product according to claim 1 or 2. 上記ロータリーキルンに融着防止材を吹き込み、転動造粒された焼成中の造粒物に付着させることを特徴とする、請求項1、2又は3に記載の焼結物の製造方法。   The method for producing a sintered product according to claim 1, 2 or 3, wherein an anti-fusing material is blown into the rotary kiln and adhered to the granulated product during rolling and granulation. 建設発生土、産業廃棄物、或いは一般廃棄物から選ばれた1種以上を主原料とした焼結物であって、絶乾密度が1.0〜2.5g/cm3、24時間吸水率及び減圧吸水率が0.1%以上、15%以下、直径が5〜10mmの粒子の圧壊荷重が0.2kN以上、又は直径が10〜15mmの粒子の圧壊荷重が0.5kN以上であることを特徴とする、焼結物。 Sintered material containing one or more selected from construction generated soil, industrial waste, or general waste as the main raw material, with an absolute dry density of 1.0 to 2.5 g / cm 3 , 24 hour water absorption And the reduced-pressure water absorption is 0.1% or more and 15% or less, the crushing load of particles having a diameter of 5 to 10 mm is 0.2 kN or more, or the crushing load of particles having a diameter of 10 to 15 mm is 0.5 kN or more. A sintered product characterized by 鉱物種として少なくともアノーサイトを15〜50重量%含有することを特徴とする、請求項5に記載の焼結物。   The sintered product according to claim 5, wherein the sintered body contains at least 15 to 50% by weight of anorthite as a mineral species. CaOを5〜30重量%、SiO2を30〜70重量%、Al23を10〜40重量%含有することを特徴とする、請求項5、又は6に記載の焼結物。
The CaO 5 to 30 wt%, a SiO 2 30 to 70% by weight, characterized by containing Al 2 O 3 10 to 40 wt%, claim 5, or sintered product according to 6.
JP2004198275A 2004-03-25 2004-07-05 Method for manufacturing sintered body and sintered body Pending JP2005306707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198275A JP2005306707A (en) 2004-03-25 2004-07-05 Method for manufacturing sintered body and sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004088329 2004-03-25
JP2004198275A JP2005306707A (en) 2004-03-25 2004-07-05 Method for manufacturing sintered body and sintered body

Publications (1)

Publication Number Publication Date
JP2005306707A true JP2005306707A (en) 2005-11-04

Family

ID=35435878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198275A Pending JP2005306707A (en) 2004-03-25 2004-07-05 Method for manufacturing sintered body and sintered body

Country Status (1)

Country Link
JP (1) JP2005306707A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131496A (en) * 2005-11-11 2007-05-31 Chugoku Electric Power Co Inc:The Method for producing coal ash sintered compact from coal ash powder as raw material
JP2007210838A (en) * 2006-02-09 2007-08-23 Ube Ind Ltd Hydraulic composition and its manufacturing method
JP2007223859A (en) * 2006-02-24 2007-09-06 Taiheiyo Cement Corp Fired material
JP2007254244A (en) * 2006-03-27 2007-10-04 Taiheiyo Cement Corp Method for manufacturing artificial aggregate
KR101131853B1 (en) 2009-11-26 2012-03-30 선일공업 (주) Preparation and coating method of lightweight aggregates using bottom ash and waste glass
JP2012236730A (en) * 2011-05-11 2012-12-06 Tokuyama Corp Method for efficiently using shell
JP2013513539A (en) * 2009-12-11 2013-04-22 セリン イ Manufacturing method of lightweight construction materials using sludge waste
JP2015123385A (en) * 2013-12-25 2015-07-06 太平洋セメント株式会社 Fired product, and production method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131496A (en) * 2005-11-11 2007-05-31 Chugoku Electric Power Co Inc:The Method for producing coal ash sintered compact from coal ash powder as raw material
JP4601539B2 (en) * 2005-11-11 2010-12-22 中国電力株式会社 Method for producing coal ash sintered body using coal ash powder as raw material
JP2007210838A (en) * 2006-02-09 2007-08-23 Ube Ind Ltd Hydraulic composition and its manufacturing method
JP4728829B2 (en) * 2006-02-09 2011-07-20 宇部興産株式会社 Hydraulic composition and method for producing the same
JP2007223859A (en) * 2006-02-24 2007-09-06 Taiheiyo Cement Corp Fired material
JP2007254244A (en) * 2006-03-27 2007-10-04 Taiheiyo Cement Corp Method for manufacturing artificial aggregate
KR101131853B1 (en) 2009-11-26 2012-03-30 선일공업 (주) Preparation and coating method of lightweight aggregates using bottom ash and waste glass
JP2013513539A (en) * 2009-12-11 2013-04-22 セリン イ Manufacturing method of lightweight construction materials using sludge waste
JP2012236730A (en) * 2011-05-11 2012-12-06 Tokuyama Corp Method for efficiently using shell
JP2015123385A (en) * 2013-12-25 2015-07-06 太平洋セメント株式会社 Fired product, and production method thereof

Similar Documents

Publication Publication Date Title
US7837412B2 (en) Binder for mine tailings, alluvial sand and the like
CA2352926C (en) Binder for mine tailings
CN113490651A (en) Activation of natural pozzolans and uses thereof
JP5624722B2 (en) Cement clinker and cement
JP2006255609A (en) Method for manufacturing sintered product and sintered product
JP2007261880A (en) Sintered matter production method
PL199964B1 (en) Method for producing a glass and glass produced thereby
JP2006272174A (en) Manufacturing method of sintered object
KR101247293B1 (en) Composition for making non-cement block using ashes and steel making slag, manufacturing method of non-cement block
JP5490352B2 (en) Method for producing cement clinker
JP2005306707A (en) Method for manufacturing sintered body and sintered body
JP2007275868A (en) Calcined product manufacturing method
JP4963553B2 (en) Method for producing fired product
JPH11246256A (en) Concrete composition
JP2007260503A (en) Manufacturing method of burned matter
JP6333690B2 (en) Cement clinker, manufacturing method thereof, and solidified material
JP5279191B2 (en) Method for producing fired product
US20040157181A1 (en) Method for manufacturing cement clinker
CN109663799A (en) A kind of Technology of Steel Slag Processing for thoroughly changing wholly-owned source
SK50762006A3 (en) Method for producing of Portland clinker with use of alternative raw material, especially of blast furnace slag
Baloochi et al. Waste paper ash as a hydraulic road binder: Hydration, mechanical and leaching considerations
JP4447494B2 (en) Manufacturing method of sintered product
US6416251B1 (en) Process for the stabilization of soluble chromium contaminated solid by down draft sintering
JP2008156197A (en) Method for producing fired material
JP2005281075A (en) Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818