KR101131853B1 - Preparation and coating method of lightweight aggregates using bottom ash and waste glass - Google Patents

Preparation and coating method of lightweight aggregates using bottom ash and waste glass Download PDF

Info

Publication number
KR101131853B1
KR101131853B1 KR20090115381A KR20090115381A KR101131853B1 KR 101131853 B1 KR101131853 B1 KR 101131853B1 KR 20090115381 A KR20090115381 A KR 20090115381A KR 20090115381 A KR20090115381 A KR 20090115381A KR 101131853 B1 KR101131853 B1 KR 101131853B1
Authority
KR
South Korea
Prior art keywords
weight
waste glass
parts
bottom ash
lightweight aggregate
Prior art date
Application number
KR20090115381A
Other languages
Korean (ko)
Other versions
KR20110058550A (en
Inventor
추용식
이종규
송훈
정연조
이한백
공태웅
이수형
권춘우
Original Assignee
선일공업 (주)
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선일공업 (주), 한국세라믹기술원 filed Critical 선일공업 (주)
Priority to KR20090115381A priority Critical patent/KR101131853B1/en
Publication of KR20110058550A publication Critical patent/KR20110058550A/en
Application granted granted Critical
Publication of KR101131853B1 publication Critical patent/KR101131853B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/061Ashes from fluidised bed furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/165Ceramic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 바텀애쉬와 폐유리 및 발포제를 혼합하는 혼합단계, 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시키는 성형체 제조단계, 상기 성형체 표면을 폐유리분말로 코팅하는 코팅단계, 및 상기 코팅된 성형체를 로터리 킬른에서 소성시키는 소성단계를 포함하여 이루어지는 경량골재의 제조방법에 관한 것으로, 단열성이 뛰어나고 낮은 흡수율과 비중을 보이는 경량 골재를 제조 할 수 있는 방법을 제공할 수 있으며, 나아가 바텀애쉬와 폐유리를 경량골재의 원료로 사용하는 경우 폐기물 위탁처리비용의 절감 및 재활용에 의한 경제적 효과와 더불어 폐기물의 고부가가치 창출의 이중 효과를 볼 수 있다.The present invention is a mixing step of mixing the bottom ash and waste glass and blowing agent, manufacturing a molded body for pelletizing while adding a binder to the mixed raw material, a coating step for coating the surface of the molded body with waste glass powder, and the coated molded body The present invention relates to a method for manufacturing a lightweight aggregate comprising a firing step of firing in a rotary kiln, and can provide a method for producing a lightweight aggregate having excellent thermal insulation and showing low absorption rate and specific gravity, and further, bottom ash and waste glass. Is used as a raw material of light weight aggregate, it can see the dual effect of creating high value added of waste as well as economic effect by reducing and consigning waste disposal cost.

바텀애쉬, 폐유리, 발포제, 코팅, 경량골재 Bottom ash, waste glass, foaming agent, coating, lightweight aggregate

Description

바텀애쉬와 폐유리를 사용한 경량골재 제조 및 코팅방법{Preparation and coating method of lightweight aggregates using bottom ash and waste glass}Preparation and coating method of lightweight aggregates using bottom ash and waste glass}

본 발명은 경량골재의 제조방법에 관한 것으로, 특히 바텀애쉬와 폐유리를 사용하여 제조한 비중과 흡수율이 낮은 경량골재의 제조방법에 관한 것이다.The present invention relates to a method for producing lightweight aggregate, and more particularly, to a method for producing lightweight aggregate having low specific gravity and water absorption using bottom ash and waste glass.

국내 건축물에 사용되는 단열소재 중 경량 골재는 대부분 수입에 의존하고 있으며, 국내에서 경량골재 제조에 사용되는 슬러지류(하수, 정수슬러지등)와 플라이애쉬 등은 1,100℃이상의 고온에서 소성함으로써 다량의 소성에너지를 소비하여 경제성이 낮아지는 단점을 가지고 있다. 그러므로 소성온도가 낮고, 단열특성 등 물리적 특성이 우수한 원료 및 공정기술 개발이 필요한 실정이다. 또한 최근 건축물의 고층화에 따른 경량화가 요구됨에 따라 국내에서도 경량골재의 사용량이 점차 증가하고 있는 추세이다. 이에 따라 국내 업체에서도 좀 더 우수한 경량골재를 제조하기 위해 다수의 연구를 추진시행하고 있다. 현재 사용되는 대부분 경량골재의 비중은 1 전후의 일반 경량골재에 한정되어 있다. 또한 생산되는 대부분 의 경량골재는 수분흡수율이 표 1에서와 같이 10 ~ 20% 이상의 높은 값으로, 흡수율 제어가 우선적으로 이루어져야 한다. Most of the light weight aggregate among insulation materials used in domestic buildings depend on imports, and sludges (sewage, water purification sludge, etc.) and fly ash, etc. used in the manufacture of light weight aggregates in Korea are fired at a high temperature of 1,100 ℃ or higher. It has the disadvantage of lowering economic efficiency by consuming energy. Therefore, it is necessary to develop raw materials and process technologies having low firing temperature and excellent physical properties such as thermal insulation. In addition, as the demand for light weight due to the recent increase in the height of buildings, the use of lightweight aggregate is gradually increasing in Korea. Accordingly, a number of studies are being carried out by domestic companies to manufacture more lightweight aggregates. Currently, the weight of most of the light weight aggregates used is limited to general light weight aggregates around 1. In addition, most of the light weight aggregate produced has a high water absorption of 10 to 20% or more as shown in Table 1, the absorption control should be made first.

경량골재Lightweight aggregate 건조단위중량(kg/m3)Drying unit weight (kg / m 3 ) 유래origin 수분흡수율(중량%)Water absorption (wt%) Expanded Shale,
Clay, Slate
Expanded Shale,
Clay, slate
550?1050550? 1050 가공된 천연물Processed natural products 5?155? 15
Sinter Fly ashSinter fly ash 600?1000600? 1000 합성물composite 14?2414-24 Expanded PerliteExpanded Perlite 65?25065-250 가공된 천연물Processed natural products 10?5010? 50 Exfoliated
vermiculite
Exfoliated
vermiculite
65?25065-250 가공된 천연물Processed natural products 20?3520? 35
Brick rubbleBrick rubble ?750? 750 합성물composite 19?3619? 36

그러나 현재까지 수분 흡수율을 제어하여 콘크리트의 작업성 및 내구성을 좀 더 양호하게 하는 경량골재는 개발되지 않은 상태이다. 또한 비중이 0.5 전후인 경량 골재의 생산은 독일 등 일부 선진국에 국한되어 있다. 독일에서 생산되는 경량 골재는 유리 분말을 사용하여 제조하며, 유리 분말의 연화점 및 용융점은 기존 원료(점토류 등)보다 매우 낮기 때문에 경량골재의 제조온도(소성온도)를 낮출 수 있는 장점을 갖는다. 유리 분말로 제조된 경량 골재는 수분 흡수가 적어 흡수율이 낮은 특징도 갖는다. 경량골재의 내부에 존재하는 기공은 개기공과 폐기공으로 구성되어 있으며, 특히 골재 내부는 표면층에서 내부 영역으로 갈수록 기공의 크기가 커지는 현상이 발생하기도 한다. 또한 일반 경량골재보다 기공이 많아 비중이 낮아지고 골재 내의 많은 기공은 단열특성을 우수하게 하는 장점을 갖는다. However, to date, lightweight aggregates that control the water absorption rate to improve the workability and durability of concrete have not been developed. In addition, the production of lightweight aggregate with specific gravity around 0.5 is limited to some developed countries such as Germany. The lightweight aggregate produced in Germany is manufactured using glass powder, and the softening point and melting point of the glass powder are much lower than the existing raw materials (clay, etc.), and thus have the advantage of lowering the manufacturing temperature (firing temperature) of the lightweight aggregate. Lightweight aggregates made of glass powder also have low water absorption and low water absorption. The pores present in the interior of the lightweight aggregate is composed of open pores and discarded pores, in particular, the interior of the aggregate may be a phenomenon that the size of the pores increases from the surface layer to the inner region. In addition, since the porosity is lower than the general lightweight aggregate, the specific gravity is lowered, and many pores in the aggregate have an advantage of excellent thermal insulation characteristics.

다량의 개기공을 형성되면 수분 흡수가 매우 크고, 이에 따라 단열특성 등 물성발현에도 한계를 갖게 된다. 또한 단열재 중의 수분은 심할 경우 단열재와 접촉되어 있는 내장 및 외장의 표면을 부식시키는 특징도 있다. 그러므로 소재에 존재하는 기공을 주로 폐기공화하여 수분 흡수 및 이동을 억제할 수 있는 방법이 도출되어야 한다. If a large amount of open pores are formed, the water absorption is very large, and thus there is a limit in the expression of physical properties such as thermal insulation properties. In addition, the moisture in the heat insulating material is also characterized by corroding the surface of the interior and exterior that is in contact with the heat insulating material. Therefore, a method for suppressing water absorption and migration by mainly discarding pores present in the material should be derived.

최근에는 소성온도를 낮추고, 내산성이 우수한 폐유리를 사용하여 발포 유리블록을 제조하고 있으며, 이는 일정 크기 이상의 정형 제품으로 단열성도 우수하여 화력발전소의 연돌 내부 라이닝재로 사용되고 있다. 하지만 운반 및 작업도중 블록이 파손되는 현상과 작업효율을 고려하여 일정 크기 이상의 정형으로만 제조되어 사용처에 한계를 갖는다는 단점을 가지고 있다. 또한 블록 표면부는 단독기공으로 이루어져 있으나, 내부로는 연결기공이 형성되어 블록에 크랙이 발생할 경우 흡수율이 크게 증가하는 단점이 있어, 유리발포블록은 경량 구조체 등에 적용되기에는 무리가 있다. 그러나 유리분말을 사용하여 작은 크기의 구형으로 제조될 경우, 폐기공 형성량을 증대시키고, 이에 따라 흡수율을 낮출 수 있을 뿐만 아니라 단열성도 우수하여 범용의 제품으로 사용될 수 있다. Recently, foaming glass blocks are manufactured using waste glass with low firing temperature and excellent acid resistance, which are used as lining materials for stacks of thermal power plants due to their excellent thermal insulation. However, in consideration of the phenomenon that the block is broken during transportation and work and the work efficiency, it has a disadvantage in that it is manufactured only in a predetermined size or more and has a limitation in the place of use. In addition, the block surface portion is composed of a single pore, but there is a disadvantage that the absorption rate is greatly increased when the connection pores are formed in the block, the glass foam block is difficult to be applied to a lightweight structure. However, when the glass powder is manufactured in a small sphere size, it is possible to increase the amount of waste pores, thereby lowering the absorption rate and excellent thermal insulation, so that it can be used as a general-purpose product.

한편 석탄재는 국내 10개 화력발전소에서 연간 약 600만톤이 발생하며, 이중 약 350만톤(58%)은 시멘트 대체제로 사용하고 나머지 약 250만톤(42%)은 인근 매립장에 매립 처리하고 있다. 석탄재중 비산재(플라이애시)는 상당량이 재활용되고 있으나 바닥재(바텀애시)는 활용하기 어려워 전량 매립장에 매립 처분하고 있지만, 이 또한 폐기물 매립한계에 따라 처리가 어려운 시점이다.Meanwhile, about 6 million tons of coal ash is generated annually in 10 domestic thermal power plants, of which about 3.5 million tons (58%) are used as cement substitutes and the remaining 2.5 million tons (42%) are landfilled in nearby landfills. Although fly ash (fly ash) in coal ash is recycled in a considerable amount, floor ash (bottom ash) is difficult to utilize, so all of it is disposed of in landfills, but this is also a difficult time for disposal.

따라서 폐기물인 바텀애쉬와 폐유리의 재활용이 필요하며, 기존의 경량소재보다 소성에너지를 낮춤으로써 경제성이 우수하고 많은 기공을 갖으면서도 흡수율이 매우 낮은 친환경 경량골재의 개발이 필요하다. Therefore, it is necessary to recycle the bottom ash and waste glass, which are wastes, and it is necessary to develop eco-friendly lightweight aggregates with low economical efficiency and low water absorption by lowering plastic energy than existing lightweight materials.

본 발명은 바텀애쉬와 폐유리를 사용하면서 비중 및 흡수율이 낮은 경량골재의 제조방법을 제공함에 그 목적이 있다. It is an object of the present invention to provide a method for producing lightweight aggregate having low specific gravity and water absorption while using bottom ash and waste glass.

본 발명의 경량골재의 제조방법은 바텀애쉬와 폐유리 및 발포제를 혼합하는 혼합단계; 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시키는 성형체 제조단계; 상기 성형체 표면을 폐유리분말로 코팅하는 코팅단계; 및 상기 코팅된 성형체를 로터리 킬른에서 소성시키는 소성단계;를 포함하여 이루어지는 것을 특징으로 한다.Method for producing a lightweight aggregate of the present invention is a mixing step of mixing the bottom ash and waste glass and blowing agent; A molded article manufacturing step of pelletizing while adding a caking additive to the mixed raw materials; Coating the surface of the molded body with waste glass powder; And firing the coated molded body in a rotary kiln.

본 발명의 경량골재의 제조방법은 상기 혼합단계에서 바텀애쉬와 폐유리는 0.1 : 99.9 내지 30 : 70 중량비이고, 바텀애쉬와 폐유리의 합 100 중량부에 대하여 발포제 0.1 ~ 10 중량부 혼합하는 것을 특징으로 한다.In the method for producing a lightweight aggregate of the present invention, the bottom ash and the waste glass in the mixing step is 0.1: 99.9 to 30: 70 by weight, the mixing of 0.1 to 10 parts by weight of the blowing agent based on 100 parts by weight of the bottom ash and waste glass. It features.

본 발명의 경량골재의 제조방법에서 상기 발포제는 탄산칼슘, 흑연 및 삼이산화철 중에서 선택된 어느 하나인 것을 특징으로 한다.In the manufacturing method of the lightweight aggregate of the present invention, the blowing agent is characterized in that any one selected from calcium carbonate, graphite and iron trioxide.

본 발명의 경량골재의 제조방법에서 상기 성형체 제조단계는 상기 혼합단계의 혼합된 원료 100 중량부에 점결제 1 내지 40 중량부 첨가하는 것을 특징으로 한다.In the manufacturing method of the lightweight aggregate of the present invention, the molded product manufacturing step is characterized in that 1 to 40 parts by weight of a binder is added to 100 parts by weight of the mixed raw materials of the mixing step.

본 발명의 경량골재의 제조방법에서 상기 점결제는 물유리 수용액인 것을 특 징으로 한다.In the manufacturing method of the lightweight aggregate of the present invention, the binder is characterized in that the water glass aqueous solution.

본 발명의 경량골재의 제조방법에서 상기 성형체 제조단계는 펠렛타이저의 교반날개와 바닥면 사이 간격을 소정의 성형체의 입자크기에 따라 조정하고 상기 교반날개를 50 ~ 1000 rpm에서 1 ~ 100 분 회전시키는 것을 특징으로 한다.In the manufacturing method of the lightweight aggregate of the present invention, the molded article manufacturing step is to adjust the interval between the stirring blade and the bottom surface of the pelletizer according to the particle size of the predetermined molded body and to rotate the stirring blade for 1 to 100 minutes at 50 ~ 1000 rpm It is characterized by.

본 발명의 경량골재의 제조방법에서 상기 코팅단계는 성형체 100 중량부에 폐유리분말 1 내지 60 중량부 코팅하는 것을 특징으로 한다.In the manufacturing method of the light weight aggregate of the present invention, the coating step is characterized by coating 1 to 60 parts by weight of waste glass powder in 100 parts by weight of the molded body.

본 발명의 경량골재의 제조방법에서 상기 소성단계는 로터리킬른에서 600 ~ 1200 ℃로 0.1 ~ 60분 소성하는 것을 특징으로 한다.The firing step in the production method of the light weight aggregate of the present invention is characterized in that the firing at 0.1 ~ 60 minutes at 600 ~ 1200 ℃ rotary kiln.

본 발명의 경량골재는 상기 방법으로 제조되고, 비중 0.6 ~ 1.2이고, 수분흡수율 5% 이하인 것을 특징으로 한다.Light weight aggregate of the present invention is produced by the above method, specific gravity 0.6 ~ 1.2, characterized in that the moisture absorption of less than 5%.

본 발명의 경량골재는 입자 크기가 0.1 ~ 30 mm인 것을 특징으로 한다.Light weight aggregate of the present invention is characterized in that the particle size is 0.1 ~ 30 mm.

본 발명은 단열성이 뛰어나고 낮은 흡수율과 비중을 보이는 경량 골재를 제조 할 수 있는 방법을 제공할 수 있으며, 나아가 바텀애쉬와 폐유리를 경량골재의 원료로 사용하는 경우 폐기물 위탁처리비용의 절감 및 재활용에 의한 경제적 효과와 더불어 폐기물의 고부가가치 창출의 이중 효과를 볼 수 있다.The present invention can provide a method for producing a lightweight aggregate having excellent insulation and low absorption rate and specific gravity, and furthermore, in the case of using bottom ash and waste glass as a raw material of lightweight aggregate, it is possible to reduce waste recycling cost and recycle. In addition to the economic effects of this, there is a dual effect of creating high added value of waste.

본 발명의 경량골재의 제조방법은 바텀애쉬와 폐유리 및 발포제를 혼합하는 혼합단계; 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시키는 성형체 제조단계; 상기 성형체 표면을 폐유리분말로 코팅하는 코팅단계; 및 상기 코팅된 성형체를 로터리 킬른에서 소성시키는 소성단계;를 포함하여 이루어진다.Method for producing a lightweight aggregate of the present invention is a mixing step of mixing the bottom ash and waste glass and blowing agent; A molded article manufacturing step of pelletizing while adding a caking additive to the mixed raw materials; Coating the surface of the molded body with waste glass powder; And a firing step of firing the coated molded body in a rotary kiln.

본 발명의 혼합단계에서 바텀애쉬와 폐유리는 0.1 : 99.9 내지 30 : 70 중량비, 바람직하게는 10 : 90 내지 25 : 75 중량비이다. 바텀애쉬가 상기 하한치 미만이면 경량골재의 수분흡수율이 너무 높고, 상기 상한치를 초과하면 비중이 1.2를 초과한다.The bottom ash and waste glass in the mixing step of the present invention is 0.1: 99.9 to 30: 70 weight ratio, preferably 10: 90 to 25: 75 weight ratio. If the bottom ash is less than the lower limit, the moisture absorption of the lightweight aggregate is too high, and if the upper limit is exceeded, the specific gravity exceeds 1.2.

상기 바텀애쉬와 폐유리의 합 100 중량부에 대하여 발포제 0.1 ~ 10 중량부, 바람직하게는 0.2 ~ 4 중량부, 더욱 바람직하게는 0.25 ~ 2 중량부이다. 발포제 함량이 상기 하한치 미만이면 경량골재 내부의 기공생성이 충분하지 않아 비중이 너무 높아지고, 상기 상한치를 초과하면 폐유리로 경량골재를 코팅하더라도 파괴강도가 낮아져 파쇄되기 쉽고 파쇄로 인하여 폐기공이 열려 수분흡수율이 증대된다.나중에 폐유리로 경량골재를 코팅하더라도 혼합하는 것을 특징으로 한다. 본 발명의 발포제는 탄산칼슘, 흑연(graphite) 및 삼이산화철(Fe2O3 또는 헤마타이트) 등이 바람직하다.The foaming agent is 0.1 to 10 parts by weight, preferably 0.2 to 4 parts by weight, more preferably 0.25 to 2 parts by weight based on 100 parts by weight of the bottom ash and the waste glass. If the foaming agent content is less than the lower limit, the specific gravity is too high due to insufficient porosity inside the lightweight aggregate, and if the upper limit is exceeded, even if the lightweight aggregate is coated with waste glass, the fracture strength is lowered and the waste is easily opened due to the crushing. This will be increased. The latter may be mixed even if the light aggregate is coated with the waste glass. The blowing agent of the present invention is preferably calcium carbonate, graphite and iron trioxide (Fe 2 O 3 or hematite).

본 발명의 성형체 제조단계는 상기 혼합단계의 혼합된 원료 100 중량부에 점결제 1 내지 40 중량부, 바람직하게는 20 ~ 35 중량부 첨가한다. 점결제로는 물유리 수용액을 사용하는 것이 바람직하다. 물유리 수용액은 물유리가 20 ~ 90 중량%, 바람직하게는 40 ~ 80 중량% 사용된 것을 사용한다.The molded article manufacturing step of the present invention is added 1 to 40 parts by weight of the binder, preferably 20 to 35 parts by weight to 100 parts by weight of the mixed raw material of the mixing step. It is preferable to use water glass aqueous solution as a caking additive. Water glass aqueous solution is used that 20 to 90% by weight, preferably 40 to 80% by weight of water glass.

본 발명의 성형체 제조단계는 펠렛타이저의 교반날개와 바닥면 사이 간격을 소정의 성형체의 입자크기에 따라 조정하고 상기 교반날개를 50 ~ 1000 rpm, 바람직하게는 200 ~ 500 rpm에서 1 ~ 100 분, 바람직하게는 5 ~ 20 분 회전시켜 제조할 수 있다. In the manufacturing method of the molded body of the present invention, the interval between the stirring blades and the bottom surface of the pelletizer is adjusted according to the particle size of the predetermined molded body, and the stirring blade is 1 to 100 minutes at 50 to 1000 rpm, preferably 200 to 500 rpm, Preferably it can be produced by rotating for 5 to 20 minutes.

본 발명의 코팅단계는 성형체 100 중량부에 폐유리분말 1 내지 60 중량부, 바람직하게는 10 ~ 50 중량부, 더욱 바람직하게는 25 ~ 45 중량부 포함한다. 코팅용 폐유리분말이 상기 하한치 미만이면 비중은 낮지만 수분흡수율이 높아지고, 상기 상한치를 초과하면 수분흡수율은 낮지만 비중이 높아진다.The coating step of the present invention includes 1 to 60 parts by weight of waste glass powder, preferably 10 to 50 parts by weight, more preferably 25 to 45 parts by weight, in 100 parts by weight of the molded body. If the waste glass powder for coating is less than the lower limit, the specific gravity is low, but the water absorption rate is high. If the waste glass powder for coating is above the upper limit value, the moisture absorption rate is low, but the specific gravity is high.

본 발명의 소성단계는 로터리킬른에서 600 ~ 1200 ℃, 바람직하게는 800 ~ 1000 ℃에서 0.1 ~ 60분, 바람직하게는 1 ~ 30분 소성한다.The firing step of the present invention is baked in a rotary kiln at 0.1 to 60 minutes, preferably 1 to 30 minutes at 600 to 1200 ° C, preferably at 800 to 1000 ° C.

상기 방법으로 제조된 본 발명의 경량골재는 비중 0.6 ~ 1.2이거나 또는 수분흡수율 5% 이하이고, 바람직하게는 상기 비중 및 수분흡수율 조건을 모두 충족하는 것이다. 본 발명의 경량골재는 평균 입자 크기가 0.1 ~ 30 mm이다.The light weight aggregate of the present invention prepared by the above method has a specific gravity of 0.6 to 1.2 or less than 5% of a water absorption rate, and preferably satisfies both the specific gravity and water absorption rate conditions. Light weight aggregate of the present invention has an average particle size of 0.1 ~ 30 mm.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the present invention, but the content of the present invention is not limited thereto.

[실시예][Example]

본 실험에서 사용한 바텀애쉬는 당진 화력발전소에서 발생되는 것을 사용하였고, 판유리 가공시 발생하는 폐유리을 사용하였으며, 화학성분은 아래 표 2에 나타난 바와 같이 바텀애쉬는 SiO2 43.5 중량%, Al2O3 22.4 중량%, Fe2O3 5.15 중량%, 폐유리는 SiO2 71.1 중량%, Na2O 13.1 중량%, CaO 8.79 중량% 등으로 구성된 것을 확인하였다. The bottom ash used in this experiment was generated from Dangjin Coal Fired Power Plant, and used waste glass generated from sheet glass processing.The chemical composition of bottom ash was SiO 2 as shown in Table 2 below. 43.5 wt%, Al 2 O 3 22.4 wt%, Fe 2 O 3 5.15% by weight, the waste glass was confirmed to be composed of 71.1% by weight of SiO 2 , 13.1% by weight of Na 2 O, 8.79% by weight of CaO.

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 CaOCaO MgOMgO Fe2O3 Fe 2 O 3 K2OK 2 O Na2ONa 2 O SO3 SO 3 ClCl Ig-LossIg-loss 바텀애쉬Bottom ash 43.543.5 22.422.4 0.990.99 0.420.42 5.155.15 0.620.62 0.430.43 0.420.42 0.010.01 24.424.4 폐유리Waste glass 71.171.1 1.241.24 8.798.79 3.653.65 0.650.65 0.350.35 13.113.1 0.300.30 4.764.76 0.660.66

주원료인 바텀애쉬와 폐유리 100 중량부에 각각 발포제로 탄산칼슘 및 흑연 1 중량부를 첨가하여 볼밀에서 6시간 혼합한 후 3± 0.2g으로 성구를 제조하였다. 성구 제조시 혼합된 원료에 30%인 0.9g을 증류수를 사용하였다. 제조된 성구는 100℃ 건조기에서 24시간 건조한 후 분당 5 ℃씩 900℃까지 승온한 후 10분 유지 후 전기로 내에서 냉각시켜 경량골재를 제조하였다. 이와 같은 방법으로 제조한 경량골재의 물성을 표 3에 나타내었다. To 100 parts by weight of bottom ash, which is the main raw material, and 1 part by weight of calcium carbonate and graphite were added as blowing agents, respectively, and the mixture was mixed in a ball mill for 6 hours. In preparing the script, 0.9 g (30%) of 30% of the mixed raw material was used. The prepared globules were dried for 24 hours in a 100 ℃ dryer and then heated up to 900 ℃ by 5 ℃ per minute and then maintained for 10 minutes to produce a lightweight aggregate by cooling in an electric furnace. Table 3 shows the physical properties of the lightweight aggregate prepared in this way.

구분division 바텀애쉬Bottom ash 폐유리Waste glass CaCO3 CaCO 3 GraphiteGraphite 비중importance 흡수율(%)Absorption rate (%) 파괴강도(㎏f)Fracture Strength (㎏f) 제조예1Preparation Example 1 1010 9090 1One -- 0.670.67 7.487.48 125125 제조예2Preparation Example 2 2020 8080 1One -- 0.890.89 6.246.24 155155 제조예3Preparation Example 3 3030 7070 1One -- 1.141.14 4.714.71 315315 제조예4Production Example 4 4040 6060 1One -- 1.531.53 4.584.58 335335 제조예5Production Example 5 1010 9090 -- 1One 1.131.13 6.326.32 240240 제조예6Production Example 6 2020 8080 -- 1One 1.261.26 6.216.21 295295 제조예7Preparation Example 7 3030 7070 -- 1One 1.681.68 4.884.88 370370 제조예8Preparation Example 8 4040 6060 -- 1One 1.751.75 3.743.74 385385

실험 예1~4와 같이 발포제인 탄산칼슘을 1 중량부 첨가한 경량골재의 경우 바텀애쉬와 폐유리의 합 100 중량부에서 바텀애쉬의 함량이 10 중량부에서 40 중량부까지 증가할수록 비중은 증가하였으며, 수분흡수율은 감소하는 것을 확인하였다. 또한 파괴강도값은 증가하는 것을 확인할 수 있었다. As in Experimental Examples 1 to 4, in the case of lightweight aggregate added with 1 part by weight of calcium carbonate as a foaming agent, the specific gravity increased as the content of bottom ash increased from 10 parts by weight to 40 parts by weight based on 100 parts by weight of bottom ash and waste glass. And, the water absorption was confirmed to decrease. It was also confirmed that the fracture strength value increased.

표 3에서 확인한 바와 같이 바텀애쉬와 폐유리의 합 100 중량부에서 바텀애쉬를 30 중량부이상 첨가하였을 경우 연화점이 높은 바텀애쉬의 함량이 증가하면서 발포 여력이 적어짐에 따라 비중은 1이상으로 증가하는 것을 확인할 수 있었다. As shown in Table 3, if more than 30 parts by weight of bottom ash is added to the total amount of bottom ash and waste glass, the specific gravity increases to 1 or more as the content of bottom ash having a high softening point increases and the foaming capacity decreases. I could confirm that.

제조예 5~8는 발포제로 탄산칼슘 대신 Graphite를 사용한 것으로 비중은 바텀애쉬의 함량이 증가할수록 증가하며 흡수율은 감소하였다. 또한 파괴강도는 증가하였다. In Preparation Examples 5 to 8, graphite was used instead of calcium carbonate as the blowing agent. The specific gravity increased with increasing the content of the bottom ash, and the absorption rate decreased. In addition, the failure strength increased.

상기 제조예1~8에서 발포제인 CaCO3, graphite를 각각 TG-DTA로 측정한 결과(DTG-60H, SHIMADZU)를 각각 도 1 및 도 2에 나타내었다. 제조예1에서 탄산칼슘의 경우 연화점이 이상인 760~800℃에서 반응식 1과 같이 이산화탄소 가스가 발생하면서 40% 이상의 중량이 감소하면서 발포되는 것을 확인하였다. In Examples 1 to 8, CaCO 3 and graphite, which are blowing agents, were measured by TG-DTA (DTG-60H and SHIMADZU), respectively, as shown in FIGS. 1 and 2. In Preparation Example 1, it was confirmed that the calcium carbonate was foamed while reducing the weight of 40% or more while generating carbon dioxide gas as in Scheme 1 at a softening point of 760 to 800 ° C. or higher.

CaCO3 - CaO + CO2 CaCO 3 - CaO + CO 2

graphite의 경우에는 연화점은 비슷하지만 1200℃까지 20% 정도 중량이 감소하면서 서서히 발포가 진행한다. graphite의 반응식은 반응식 2에 나타내었다.In the case of graphite, the softening point is similar, but foaming proceeds slowly with a 20% weight loss up to 1200 ° C. The reaction scheme of graphite is shown in Scheme 2.

C → CO2 C → CO 2

표 4에서와 같은 배합으로 각각 혼합된 원료 100 중량부에 대하여 펠렛타이저에서 교반날개 회전속도를 300 rpm에서 10분간 점결제로 물유리 수용액(물유리:증류수=70:30, 중량비)을 30 중량부를 첨가하여 25 mm의 구형 성형체를 제조하였다. 제조된 성형체는 로터리킬른에서 900 ℃, 10 분 소성하여 경량골재를 제조하 였다.30 parts by weight of an aqueous glass solution of water (water glass: distilled water = 70: 30, weight ratio) was added as a binder for 10 minutes at 300 rpm for the stirring blade rotation speed in a pelletizer based on 100 parts by weight of the raw materials mixed in the same formulation as in Table 4. 25 mm spherical shaped bodies were made by addition. The molded article was baked at 900 ℃ for 10 minutes in a rotary kiln to produce a lightweight aggregate.

구분division 바텀애쉬Bottom ash 폐유리Waste glass CaCO3 CaCO 3 GraphiteGraphite 비중importance 흡수율(%)Absorption rate (%) 제조예9Production Example 9 1010 9090 1One -- 0.570.57 7.217.21 제조예10Preparation Example 10 2020 8080 1One -- 0.810.81 6.096.09 제조예11Preparation Example 11 3030 7070 1One -- 0.980.98 4.714.71 제조예12Preparation Example 12 4040 6060 1One -- 1.311.31 4.604.60 제조예13Preparation Example 13 1010 9090 -- 1One 0.870.87 7.897.89 제조예14Preparation Example 14 2020 8080 -- 1One 1.211.21 5.725.72 제조예15Preparation Example 15 3030 7070 -- 1One 1.521.52 4.244.24 제조예16Preparation Example 16 4040 6060 -- 1One 2.032.03 4.014.01

제조예9~12는 바텀애쉬와 폐유리를 각 함량별로 치환하여 발포제로 탄산칼슘을 첨가한 것으로, 제조예11과 같이 바텀애쉬와 폐유리의 합 100 중량부에서 바텀애쉬를 30 중량부 첨가한 경량골재가 비중이 1이하인 것을 확인하였고 수분흡수율은 7.21%에서 점점 감소하는 것을 확인하였다.Preparation Examples 9 to 12 were used to replace the bottom ash and waste glass by each content to add calcium carbonate as a blowing agent. As in Preparation Example 11, 30 parts by weight of the bottom ash was added to 100 parts by weight of the bottom ash and the waste glass. It was confirmed that the light weight aggregate was less than 1, and the water absorption gradually decreased from 7.21%.

제조예13~16은 발포제로 흑연을 첨가한 것으로 제조예13고 같이 graphite를 1중량% 외할 첨가한 것으로 실험 예 13에서 같이 바텀애쉬와 폐유리의 합 100 중량부에서 바텀애쉬를 10 중량부 첨가하였을 때 비중이 1이하인 값을 확인하였고, 수분흡수율은 7.89 %에서 점점 감소하였다.In Examples 13 to 16, graphite was added as a foaming agent, and 1 wt% of graphite was added as in Preparation Example 13. As in Example 13, 10 parts by weight of bottom ash was added to 100 parts by weight of the bottom ash and waste glass in total. When the specific gravity was less than 1, the water absorption was gradually decreased from 7.89%.

제조예9~16의 로터리킬른에서 제조된 경량골재는 제조예1~8의 전기로에서 제조된 경량골재보다 비중은 낮고 흡수율은 좀 높은 것을 확인할 수 있었다. 이는 전기로가 천천히 승온함에 따라 유리연화온도이하에서 부터 발포가 진행되어 유리연화온도이상에서의 발포량은 적어지고, 따라서 로터리 킬른에서 소성할 경우 승온속도가 짧아짐에 따라 CO2가스가 순간적으로 발생하고 이때 발생하는 팽창압력은 승온 속도가 낮을 때 보다 높기 때문에 경량골재의 기공 형성에 더욱 효과적인 것으로 판단된다.The light weight aggregate manufactured in the rotary kilns of Preparation Examples 9 to 16 was found to have a lower specific gravity and a higher absorption rate than the light weight aggregate manufactured in the electric furnaces of Preparation Examples 1 to 8. This is the foam from below the glass softening point proceeds as the electric furnace is slowly elevated temperature is reduced is the foam volume of at least the glass softening temperature, and therefore if the firing in the rotary kiln CO 2 gas in accordance with the heating rate shortening is to momentarily generate The expansion pressure generated at this time is higher than when the temperature increase rate is determined to be more effective in forming pores of lightweight aggregate.

표 5는 바텀애쉬와 폐유리를 각각 20 중량부 및 80 중량부 혼합하고, 펠렛타이저에서 교반날개 회전속도를 300 rpm에서 10분간 점결제로 물유리 수용액(물유리:증류수=70:30, 중량비)을 30 중량부를 첨가하여 25 mm의 구형 성형체를 제조한 후, 상기 성형체 100 중량부에 대하여 폐유리분말을 1 내지 50 중량부 첨가하여 코팅하면서 각각 로터리킬른에서 900 ℃, 10 분 소성하여 제조한 경량골재의 물성을 나타낸 것이다.Table 5 shows 20 parts by weight and 80 parts by weight of bottom ash and waste glass, respectively, and a water glass aqueous solution (water glass: distilled water = 70: 30, weight ratio) as a caking agent for 10 minutes at 300 rpm in a pelletizer. Was prepared by adding 30 parts by weight of a 25 mm spherical molded body, and then coated by adding 1 to 50 parts by weight of waste glass powder with respect to 100 parts by weight of the molded body, respectively. It shows the physical properties of the aggregate.

폐유리 첨가량Waste Glass Addition 코팅두께(㎛)Coating thickness (㎛) 파괴강도(㎏f)Fracture Strength (㎏f) 비중importance 수분흡수율(%)Water absorption rate (%) 1One 1515 155155 0.630.63 6.026.02 1010 130130 180180 0.710.71 5.545.54 2020 320320 195195 0.880.88 3.213.21 3030 580580 205205 0.950.95 2.092.09 4040 740740 210210 1.021.02 1.241.24 5050 980980 220220 1.051.05 1.171.17

폐유리분말을 성형체 중량 100 중량부에 대하여 40 중량부까지 코팅했을 때 비중과 수분흡수율이 현저히 저감되었고, 50 중량부이상에서는 40 중량부와 유사한 결과를 나타내었다. When the waste glass powder was coated up to 40 parts by weight with respect to 100 parts by weight of the molded body, the specific gravity and water absorption were significantly reduced, and the result was similar to 40 parts by weight over 50 parts by weight.

도 1은 CaCO3을 TG-DTA로 측정한 그래프이다.1 is a graph measuring CaCO3 by TG-DTA.

도 2는 graphite를 TG-DTA로 측정한 그래프이다.2 is a graph measuring graphite by TG-DTA.

Claims (10)

바텀애쉬와 폐유리 및 발포제를 혼합함에 있어, 상기 바텀애쉬와 폐유리는 0.1 : 99.9 내지 30 : 70 중량비이고, 바텀애쉬와 폐유리의 합 100 중량부에 대하여 발포제 0.1 ~ 10 중량부 혼합하는 혼합단계;In mixing the bottom ash, waste glass and foaming agent, the bottom ash and waste glass is 0.1: 99.9 to 30: 70 by weight, the mixing of 0.1 to 10 parts by weight of the blowing agent with respect to 100 parts by weight of the bottom ash and waste glass step; 상기 혼합된 원료 100 중량부에 점결제 1 내지 40 중량부 첨가하면서 펠렛화시키는 성형체 제조단계; A molded article manufacturing step of pelletizing while adding 1 to 40 parts by weight of a binder to 100 parts by weight of the mixed raw material; 상기 성형체 표면을 성형체 100 중량부에 폐유리분말 1 내지 60 중량부 코팅하는 코팅단계; 및A coating step of coating 1 to 60 parts by weight of the waste glass powder on 100 parts by weight of the molded body; And 상기 코팅된 성형체를 로터리 킬른에서 소성시키는 소성단계;를 포함하여 이루어지는 경량골재의 제조방법.And a firing step of firing the coated molded body in a rotary kiln. 삭제delete 제 1 항에 있어서, 상기 발포제는 탄산칼슘, 흑연 및 삼이산화철 중에서 선택된 어느 하나인 것을 특징으로 하는 경량골재의 제조방법.The method of claim 1, wherein the blowing agent is any one selected from calcium carbonate, graphite and iron trioxide. 삭제delete 제 1 항에 있어서, 상기 점결제는 물유리 수용액인 것을 특징으로 하는 경량골재의 제조방법.According to claim 1, wherein the binder is a method for producing a lightweight aggregate, characterized in that the water glass aqueous solution. 제 1 항에 있어서, 상기 성형체 제조단계는 펠렛타이저의 교반날개와 바닥면 사이 간격을 소정의 성형체의 입자크기에 따라 조정하고 상기 교반날개를 50 ~ 1000 rpm에서 1 ~ 100 분 회전시키는 것을 특징으로 하는 경량골재의 제조방법.According to claim 1, wherein the molded article manufacturing step is characterized in that the spacing between the stirring blade and the bottom surface of the pelletizer according to the particle size of the predetermined molded body and rotating the stirring blade for 1 to 100 minutes at 50 ~ 1000 rpm Method of manufacturing lightweight aggregate. 삭제delete 제 1 항에 있어서, 상기 소성단계는 로터리킬른에서 600 ~ 1200 ℃로 0.1 ~ 60분 소성하는 것을 특징으로 하는 경량골재의 제조방법.The method of claim 1, wherein the firing step is a method for producing a lightweight aggregate, characterized in that the firing in a rotary kiln 0.1 ~ 60 minutes at 600 ~ 1200 ℃. 삭제delete 삭제delete
KR20090115381A 2009-11-26 2009-11-26 Preparation and coating method of lightweight aggregates using bottom ash and waste glass KR101131853B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090115381A KR101131853B1 (en) 2009-11-26 2009-11-26 Preparation and coating method of lightweight aggregates using bottom ash and waste glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090115381A KR101131853B1 (en) 2009-11-26 2009-11-26 Preparation and coating method of lightweight aggregates using bottom ash and waste glass

Publications (2)

Publication Number Publication Date
KR20110058550A KR20110058550A (en) 2011-06-01
KR101131853B1 true KR101131853B1 (en) 2012-03-30

Family

ID=44394025

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090115381A KR101131853B1 (en) 2009-11-26 2009-11-26 Preparation and coating method of lightweight aggregates using bottom ash and waste glass

Country Status (1)

Country Link
KR (1) KR101131853B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184882A1 (en) * 2019-03-14 2020-09-17 권병현 Porous body for improving water quality and method for manufacturing same
KR20220109135A (en) 2021-01-28 2022-08-04 충남대학교산학협력단 Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate
KR102585106B1 (en) 2022-10-04 2023-10-10 한국건설기술연구원 Artificial Aggregate Manufactured by Recycled Material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438661B1 (en) * 2012-12-05 2014-09-12 주식회사 원진 Molded body for manufacturing foamed glass, method for manufacturing the same and method for manufacturing foamed glass
WO2016133463A1 (en) * 2015-02-17 2016-08-25 Nanyang Technological University Method of manufacturing a lightweight material
KR20190074696A (en) 2017-12-20 2019-06-28 주식회사경도 Method for manufacturing artificial pumice using feldspar and artificial pumice produced therefrom
KR20200015235A (en) 2018-08-03 2020-02-12 주식회사경도 Method for manufacturing artificial pumice using liquid sodium silicate and artificial pumice produced therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143336A (en) 1997-07-24 1999-02-16 Kamaike Yutaka Production of raw materials for foamed glass
JPH11335146A (en) * 1998-03-23 1999-12-07 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2005306707A (en) 2004-03-25 2005-11-04 Taiheiyo Cement Corp Method for manufacturing sintered body and sintered body
JP2006160570A (en) * 2004-12-08 2006-06-22 Takasago Ind Co Ltd Method for manufacturing vitreous bulk foamed body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143336A (en) 1997-07-24 1999-02-16 Kamaike Yutaka Production of raw materials for foamed glass
JPH11335146A (en) * 1998-03-23 1999-12-07 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2005306707A (en) 2004-03-25 2005-11-04 Taiheiyo Cement Corp Method for manufacturing sintered body and sintered body
JP2006160570A (en) * 2004-12-08 2006-06-22 Takasago Ind Co Ltd Method for manufacturing vitreous bulk foamed body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184882A1 (en) * 2019-03-14 2020-09-17 권병현 Porous body for improving water quality and method for manufacturing same
KR20220109135A (en) 2021-01-28 2022-08-04 충남대학교산학협력단 Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate
KR102585106B1 (en) 2022-10-04 2023-10-10 한국건설기술연구원 Artificial Aggregate Manufactured by Recycled Material

Also Published As

Publication number Publication date
KR20110058550A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
KR101131853B1 (en) Preparation and coating method of lightweight aggregates using bottom ash and waste glass
KR101067371B1 (en) Bubble ceramic material with low weight and method for preparing thereof
CN102838283B (en) Method for producing foam microcrystal glass by utilizing composite industrial residue and product
CN101434475B (en) Light floamed ceramic building board and preparation thereof
CN105418149A (en) Stone material surface bee-hole double-layer regeneration material
KR101948042B1 (en) Composition for foam glass and method of manufacturing the same
KR101892391B1 (en) Method for manufacturing bottom ash molded foam article
KR101646155B1 (en) Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR100653311B1 (en) Cement composition for autoclaved lightwiht concrete production comprising heavy oil ash and manufacturing method of alc using the same
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
KR100591060B1 (en) composition of lightweight aggregate and menufacturing method of lightweight aggregate thereby
KR102034611B1 (en) Manufacturing Method of Waterproof Foamed Concrete Block
KR100997136B1 (en) Lightweight aggregate composite using industrial waste & lightweight aggregate manufacturing method
KR100873872B1 (en) Method for producing lightweight aggregates of aggregate with crushed aggregate by-products and bottom ash mixture
KR100608287B1 (en) Fired brick with high content of reclaimed anthracite coal ash and preparation method thereof
KR101946830B1 (en) Preparation method for board for building interior materials having a vermiculite mixed with a bottom ash produced from coal power plant
KR101438661B1 (en) Molded body for manufacturing foamed glass, method for manufacturing the same and method for manufacturing foamed glass
KR102351167B1 (en) Continuous porous architectural ceramic panel for recycling purified water sludge and its manufacturing method
KR20140106215A (en) Composition of artificial aggregate and making method using inorganic sludge particle
KR101165395B1 (en) Method for Manufacturing Lightweight Aggregate Using Hot Rolling Mill Sludge and Cold Rolling Mill Sludge
KR101123278B1 (en) Method of producing lightweight aggregate material with sludge and glass powder
CN110835259A (en) Uniformly foamed light heat-insulating ceramic and preparation method thereof
KR100889635B1 (en) Method of forming ceramic foam and ceramic foam using the same
WO2020070670A1 (en) Method to manufacture a recycled-glass-based flooring element
KR100928446B1 (en) Method for manufacturing non-combustible insulation using waste lime

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160420

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200220

Year of fee payment: 9