KR20220109135A - Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate - Google Patents

Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate Download PDF

Info

Publication number
KR20220109135A
KR20220109135A KR1020210012433A KR20210012433A KR20220109135A KR 20220109135 A KR20220109135 A KR 20220109135A KR 1020210012433 A KR1020210012433 A KR 1020210012433A KR 20210012433 A KR20210012433 A KR 20210012433A KR 20220109135 A KR20220109135 A KR 20220109135A
Authority
KR
South Korea
Prior art keywords
waste glass
fine aggregate
aggregate
glass fine
fine
Prior art date
Application number
KR1020210012433A
Other languages
Korean (ko)
Other versions
KR102471109B1 (en
Inventor
김규용
남정수
최경철
이상규
황의철
손민재
서동균
유하민
이예찬
이한승
Original Assignee
충남대학교산학협력단
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단, 한양대학교 에리카산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020210012433A priority Critical patent/KR102471109B1/en
Publication of KR20220109135A publication Critical patent/KR20220109135A/en
Application granted granted Critical
Publication of KR102471109B1 publication Critical patent/KR102471109B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/165Ceramic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to a method for surface modification of fine waste glass aggregate, capable of reducing alkali-silica reaction and slip phenomenon between aggregate and matrix by fine waste glass aggregate, and surface-modified waste glass fine aggregate prepared by the method and coated with C-S-H crystals on the surface thereof. The method includes: a step (a) of converting an amorphous silica component on a surface into an alkali silicate gel by immersing waste glass fine aggregate in an aqueous solution of NaOH; and a step (b) of immersing the waste glass fine aggregate having passed through the step (a) in a supersaturated CaO aqueous solution to modify the alkali silicate gel formed on the surface into a C-S-H crystal. According to the present invention, slipping can be reduced.

Description

폐유리 잔골재 표면 개질 방법 및 표면개질 폐유리 잔골재{Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate}Waste glass fine aggregate surface modification method and surface modification waste glass fine aggregate {Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate}

본 발명은 폐유리 잔골재에 의한 알칼리-실리카 반응 및 골재-매트릭스 간 슬립 현상을 저감시킬 수 있는 폐유리 잔골재 표면 개질 방법 및 그 방법에 의해 제조되어 표면에 C-S-H 결정질이 코팅된 표면개질 폐유리 잔골재에 관한 것이다.The present invention relates to a method for surface modification of waste glass fine aggregate capable of reducing alkali-silica reaction and slip phenomenon between aggregate-matrix due to waste glass fine aggregate, and a surface-modified waste glass fine aggregate prepared by the method and coated with C-S-H crystals on the surface it's about

콘크리트 또는 모르타르 중 알칼리 이온(Na+, K+, Ca2+)이 골재 중의 반응성 실리카 성분(SiO2)과 결합하여 팽창성 알칼리-실리카 겔이 형성되고, 콘크리트 내부에 팽창압을 발생시켜 구조물에 균열을 발생시키는 현상을 알칼리-실리카 반응(Alkali-Silica Reaction, ASR)이라 한다. [도 1]은 알칼리 실리카 반응 메커니즘 모식도([도 1]의 (a) 내지 (c)) 및 피해사례 사진([도 1]의 (d) 내지 (e))이다.Alkali ions (Na + , K + , Ca 2+ ) in concrete or mortar combine with the reactive silica component (SiO 2 ) in the aggregate to form an expandable alkali-silica gel, and cracks in the structure by generating expansion pressure inside the concrete This phenomenon is called Alkali-Silica Reaction (ASR). [FIG. 1] is a schematic diagram of the alkali silica reaction mechanism ((a) to (c) of [FIG. 1]) and damage case photos ((d) to (e) of [FIG. 1]).

특히, 주성분이 SiO2인 폐유리 골재를 콘크리트(또는 모르타르)에 적용할 경우 위와 같은 알칼리-실리카 반응의 저감대책을 마련할 필요가 있다. In particular, when the waste glass aggregate whose main component is SiO 2 is applied to concrete (or mortar), it is necessary to prepare measures for reducing the alkali-silica reaction as described above.

또한, 폐유리 골재는 유리의 매끄러운 표면 특성에 의해 매트릭스와 골재 간의 부착력이 저하될 우려가 있으며, 이에 따라 매트릭스와 골재의 부착력 감소로 인해 폐유리 골재가 적용된 콘크리트(모르타르)의 성능저하 가능성이 있다. [도 2]는 이와 같은 골재-매트릭스 간 슬립(Slip) 현상 발생 모식도이다.In addition, there is a risk that the adhesion between the matrix and the aggregate may be reduced due to the smooth surface properties of the glass, and accordingly, the performance of the concrete (mortar) to which the waste glass aggregate is applied may decrease due to the decrease in the adhesion between the matrix and the aggregate. . [Figure 2] is a schematic diagram of the occurrence of such an aggregate-matrix slip phenomenon.

이에, 폐유리 골재와 매트릭스의 부착력을 높이기 위한 유리 표면 특성 개선 대책을 마련할 필요가 있다.Accordingly, it is necessary to prepare measures for improving the surface properties of the glass to increase the adhesion between the waste glass aggregate and the matrix.

즉, 폐유리 골재 적용 시 상기 알칼리-실리카 반응과 슬립 현상을 함께 방지(또는 저감)할 수 있는 기술 대책이 요구된다.That is, a technical measure capable of preventing (or reducing) the alkali-silica reaction and the slip phenomenon together is required when the waste glass aggregate is applied.

1. 등록특허 10-1131853 "바텀애쉬와 폐유리를 사용한 경량골재 제조 및 코팅방법"1. Registered Patent 10-1131853 "Method for manufacturing and coating lightweight aggregate using bottom ash and waste glass" 2. 등록특허 10-1367506 "알칼리-실리카 반응억제 폐유리 골재 혼입 콘크리트 조성물, 그 조성물의 제조방법, 그 조성물을 포함하는 콘크리트 구조물"2. Registered Patent 10-1367506 "Alkali-Silica Reaction Inhibition Waste Glass Aggregate Concrete Composition, Method for Manufacturing the Composition, and Concrete Structure Containing the Composition" 3. 등록특허 10-1737077 "폐유리를 활용한 콘크리트의 제조 방법"3. Registered Patent 10-1737077 "Method for manufacturing concrete using waste glass"

본 발명은 주성분이 SiO2인 폐유리 골재를 콘크리트(또는 모르타르)에 적용할 경우 발생하는 알칼리-실리카 반응과, 폐유리 골재의 매끄러운 표면 특성에 콘크리트(또는 모르타르) 매트릭스와 골재 간의 부착력이 저하됨으로써 발생하는 슬립(Slip) 현상을 함께 저감시킬 수 있는 기술 대책을 제공함에 그 목적이 있다.The present invention relates to an alkali-silica reaction that occurs when a waste glass aggregate whose main component is SiO 2 is applied to concrete (or mortar), and the smooth surface properties of the waste glass aggregate by reducing the adhesion between the concrete (or mortar) matrix and the aggregate. An object of the present invention is to provide a technical measure that can reduce the slip phenomenon that occurs.

본 발명은 「(a) 폐유리 잔골재를 NaOH 수용액에 침지하여 표면의 비정질 실리카 성분을 알칼리실리케이트 겔로 변환시키는 단계; 및 (b) 상기 (a)단계를 거친 폐유리 잔골재를 과포화 상태의 CaO 수용액에 침지하여 표면에 생성된 알칼리실리케이트 겔을 C-S-H 결정질로 개질시키는 단계; 를 포함하는 폐유리 잔골재 표면 개질 방법」을 제공한다.The present invention is "(a) immersing the waste glass fine aggregate in an aqueous NaOH solution to convert the surface amorphous silica component into an alkali silicate gel; and (b) reforming the alkali silicate gel produced on the surface into C-S-H crystals by immersing the fine waste glass aggregates that have undergone the step (a) in an aqueous CaO solution in a supersaturated state; It provides a method for modifying the surface of a waste glass fine aggregate comprising a.

구체적으로, 상기 (a)단계에서는 폐유리 잔골재를 75~85℃, NaOH 1몰(M) 수용액에 침지시키고, 상기 (b)단계에서는 상기 (a)단계를 거친 폐유리 잔골재를 75~85℃, CaO 22밀리몰(mM) 이상의 수용액에 침지시킬 수 있다. Specifically, in step (a), the fine waste glass aggregate is immersed in an aqueous solution of 1 mol (M) of NaOH at 75 to 85° C. , CaO can be immersed in an aqueous solution of 22 mmol (mM) or more.

또한, 상기 폐유리 잔골재는 Cr2O3, NiO 및 CuO 성분을 함유하여 녹색 또는 갈색으로 착색된 것을 선별 적용할 수 있다. 또한, 상기 폐유리 잔골재는 입경 0.3~5㎜인 것을 선별 적용하는 것이 바람직하다.In addition, the waste glass fine aggregate may be selectively applied to a green or brown colored material containing Cr 2 O 3 , NiO and CuO components. In addition, it is preferable to selectively apply the waste glass fine aggregate having a particle diameter of 0.3 to 5 mm.

또한, 본 발명은 위의 방법에 따라, 표면에 C-S-H 결정질이 코팅된 표면개질 폐유리 잔골재를 함께 제공한다.In addition, according to the above method, the present invention provides a surface-modified waste glass fine aggregate coated with C-S-H crystals on the surface.

전술한 본 발명에 따르면 다음의 효과가 있다.According to the present invention described above, there are the following effects.

1. 폐유리 골재의 표면에 C-S-H 결정질이 코팅되도록 하는 개질 처리를 함으로써, 콘크리트(또는 모르타르)의 내구성을 저하시키는 알칼리-실리카 반응과, 콘크리트(또는 모르타르)의 압축강도 및 휨강도를 저하시키는 슬립 현상 발생을 방지할 수 있다.1. Alkali-silica reaction that lowers the durability of concrete (or mortar) by modifying the surface of the waste glass aggregate so that C-S-H crystals are coated on the surface, and the slip phenomenon that lowers the compressive strength and flexural strength of concrete (or mortar) occurrence can be prevented.

2. 유리 착색을 위한 금속성분( Cr2O3, NiO 및 CuO)이 함유된 폐유리 골재 이용으로 알칼리-실리카 반응에 의한 부피팽창을 최소화시킬 수 있다.2. By using waste glass aggregate containing metal components (Cr 2 O 3 , NiO and CuO) for glass coloring, volume expansion due to alkali-silica reaction can be minimized.

3. 폐기물로 취급되어 온 폐유리를 콘크리트(또는 모르타르)의 골재 자원으로 활용할 수 있다.3. Waste glass, which has been treated as waste, can be used as an aggregate resource for concrete (or mortar).

[도 1]은 알칼리 실리카 반응 메커니즘 모식도 및 피해사례 사진이다.
[도 2]는 골재-매트릭스 간 슬립(Slip) 현상 발생 모식도이다.
[도 3]은 본 발명에 따른 폐유리 잔골재 표면 개질 방법의 개략적 흐름도이다.
[도 4]는 표면개질 전 폐유리 잔골재 표면의 SEM 사진 및 EDS 분석 그래프이다.
[도 5]는 표면개질 후 폐유리 잔골재 표면의 SEM 사진 및 EDS 분석 그래프이다.
[도 6]은 천연 잔골재, 표면개질 전·후 폐유리 잔골재 표면의 SEM 사진이다.
[도 7]은 모르타르 시험체의 휨 강도 시험 방법 모식도 및 휨 강도 측정 시험장치 사진이다.
[도 8]은 모르타르 시험체의 압축 강도 시험 방법 모식도 및 압축 강도 측정 시험장치 사진이다.
[도 9]는 알칼리-실리카 반응 시험을 위한 시험체, 길이 변화 측정기 및 시험 과정의 사진이다.
[도 10] 및 [도 11]은 잔골재 종류에 따른 모르타르 시험체의 역학적 특성을 나타낸 그래프이다.
[도 12]는 천연 잔골재와 폐유리 잔골재(표면개질 전·후)의 파괴 거동이 나타난 SEM 사진이다.
[도 13] 및 [도 14]는 잔골재 종류에 따른 알칼리-실리카 반응에 의한 재령별 팽창률 변화를 나타낸 그래프이다.
[도 15]는 잔골재 조건에 따른 모르타르별 단면 SEM 사진이다.
[Fig. 1] is a schematic diagram of the alkali silica reaction mechanism and a photograph of damage cases.
[Figure 2] is a schematic diagram of the occurrence of a slip phenomenon between the aggregate-matrix.
[Figure 3] is a schematic flowchart of a method for modifying the surface of a waste glass fine aggregate according to the present invention.
[Fig. 4] is an SEM photograph and EDS analysis graph of the surface of the fine aggregate of waste glass before surface modification.
[Fig. 5] is an SEM photograph and EDS analysis graph of the surface of the waste glass fine aggregate after surface modification.
[Fig. 6] is a SEM photograph of the surface of the natural fine aggregate and the waste glass fine aggregate before and after surface modification.
[Fig. 7] is a schematic diagram of a flexural strength test method of a mortar specimen and a photograph of a flexural strength measurement test device.
[Fig. 8] is a schematic diagram of a compressive strength test method of a mortar specimen and a photograph of a compressive strength measuring test device.
[FIG. 9] is a photograph of the test body, the length change measuring device, and the test process for the alkali-silica reaction test.
[Fig. 10] and [Fig. 11] are graphs showing the mechanical properties of the mortar specimen according to the type of fine aggregate.
[Fig. 12] is an SEM photograph showing the fracture behavior of natural fine aggregate and waste glass fine aggregate (before and after surface modification).
[FIG. 13] and [FIG. 14] are graphs showing the change in the expansion rate according to age by the alkali-silica reaction according to the type of fine aggregate.
[Fig. 15] is a cross-sectional SEM photograph of each mortar according to the fine aggregate conditions.

본 발명은 「(a) 폐유리 잔골재를 NaOH 수용액에 침지하여 표면의 비정질 실리카 성분을 알칼리실리케이트 겔로 변환시키는 단계; 및 (b) 상기 (a)단계를 거친 폐유리 잔골재를 과포화 상태의 CaO 수용액에 침지하여 표면에 생성된 알칼리실리케이트 겔을 C-S-H(Calcium Silicate Hydrate) 결정질로 개질시키는 단계; 를 포함하는 폐유리 잔골재 표면 개질 방법」을 제공한다.The present invention is "(a) immersing the waste glass fine aggregate in an aqueous NaOH solution to convert the surface amorphous silica component into an alkali silicate gel; and (b) reforming the alkali silicate gel produced on the surface by immersing the fine waste glass aggregate that has undergone the step (a) in a supersaturated CaO aqueous solution into C-S-H (Calcium Silicate Hydrate) crystals; It provides a method for modifying the surface of a waste glass fine aggregate comprising a.

콘크리트(또는 모르타르) 조성물의 잔골재로 적용되는 폐유리 잔골재는 잔골재 표준 입도 분포 곡선에 따라 입도 분포가 이루어지도록 입경 5㎜ 이하로 파쇄된 것을 적용하는 것이 바람직하다. 다만, 본 발명에 따른 표면 개질 방법은 입경 0.3~5㎜인 폐유리 잔골재를 선별하여 적용하는 것이 바람직하다. 입경 0.3㎜ 미만으로 분말 상태에 가까운 폐유리 잔골재를 NaOH 수용액에 침지시킬 경우, 그 과소한 입경 때문에 폐유리가 모두 융해되어 주변의 입경이 큰 폐유리 잔골재에 달라붙는 덩어리 뭉침 현상이 발생할 수 있기 때문이다. It is preferable to apply the fine aggregate of the waste glass applied as the fine aggregate of the concrete (or mortar) composition, crushed to a particle size of 5 mm or less so that the particle size distribution is made according to the standard particle size distribution curve of the fine aggregate. However, in the surface modification method according to the present invention, it is preferable to select and apply the fine waste glass aggregate having a particle diameter of 0.3 to 5 mm. If the fine aggregate of waste glass with a particle size of less than 0.3 mm is immersed in an aqueous NaOH solution, all of the waste glass is melted due to the small particle size, which may cause agglomeration that sticks to the fine aggregate of waste glass with a large particle size. to be.

[도 3]은 본 발명에 따른 폐유리 잔골재 표면 개질 방법의 개략적 흐름도이다.[Figure 3] is a schematic flowchart of a method for modifying the surface of a waste glass fine aggregate according to the present invention.

상기 (a)단계에서는 폐유리 잔골재를 75~85℃, NaOH 1몰(M) 수용액에 침지시킨다. NaOH 수용액의 농도가 1M 보다 낮을 경우, 폐유리 잔골재의 비정질 실리카 성분이 충분히 융해되지 않을 가능성이 있으며, 1M 보다 높을 경우, 폐유리 잔골재의 실리카 성분이 과도하게 융해될 가능성이 있다.In step (a), the fine waste glass aggregate is immersed in an aqueous solution of 1 mol (M) of NaOH at 75-85°C. When the concentration of the NaOH aqueous solution is lower than 1M, there is a possibility that the amorphous silica component of the fine waste glass aggregate is not sufficiently melted, and when it is higher than 1M, there is a possibility that the silica component of the fine waste glass aggregate is excessively melted.

상기 (b)단계에서는 상기 (a)단계를 거친 폐유리 잔골재를 75~85℃, CaO 22밀리몰(mM) 이상의 수용액에 침지시킬 수 있다. CaO의 물 용해도는 1.19g/L로서, 21mM이다. 상기 NaOH 수용액에 침지된 폐유리 잔골재 표면에 알칼리 실리케이트 겔(비정질 실리카 성분이 융해된 것)에 C-S-H 결정이 형성되려면 Ca2+ 이온이 충분한 과포화 상태가 되어야 한다. 따라서, CaO 수용액은 22mM 이상의 과포화 상태로 설정하는 것이 바람직하다. 폐유리 잔골재를 CaO 수용액에 침지시키는 상기 (b)단계에서는 부수적으로 폐유리 잔골재의 소독 효과를 함께 얻을 수 있다. In the step (b), the fine waste glass aggregate that has undergone the step (a) may be immersed in an aqueous solution of at least 22 mmol (mM) of CaO at 75 to 85°C. The solubility of CaO in water is 1.19 g/L, which is 21 mM. In order to form CSH crystals in an alkali silicate gel (one in which an amorphous silica component is melted) on the surface of the fine aggregate of waste glass immersed in the NaOH aqueous solution, Ca 2+ ions must be sufficiently supersaturated. Therefore, it is preferable to set the CaO aqueous solution to a supersaturation state of 22 mM or more. In the step (b) of immersing the fine waste glass aggregate in the CaO aqueous solution, the disinfection effect of the fine waste glass aggregate can be obtained incidentally.

상기 NaOH 수용액과 CaO 수용액의 온도조건은 폐유리 잔골재의 Si와 Na+ 이온의 알칼리-실리카 반응을 촉진하기 위하여 75~85℃로 설정하는 것이 바람직하다. 상온에서는 알칼리-실리카 반응이 매우 천천히 발생하기 때문에, 표면 개질까지 소요되는 시간이 과다 소요되어 경제성 및 효율성이 저하된다.The temperature conditions of the NaOH aqueous solution and the CaO aqueous solution are preferably set to 75 to 85° C. in order to promote the alkali-silica reaction of Si and Na + ions of the fine waste glass aggregate. At room temperature, since the alkali-silica reaction occurs very slowly, it takes too much time to modify the surface, thereby reducing economic efficiency and efficiency.

또한, 상기 폐유리 잔골재는 Cr2O3, NiO 및 CuO 성분을 함유하여 녹색 또는 갈색으로 착색된 것을 선별 적용할 수 있다. 이에 관한 상세 내용은 후술하기로 한다.In addition, the waste glass fine aggregate may be selectively applied to a green or brown colored material containing Cr 2 O 3 , NiO and CuO components. Details on this will be described later.

또한, 본 발명은 위의 방법에 따라, 표면에 C-S-H 결정질이 코팅된 표면개질 폐유리 잔골재를 함께 제공한다. 이러한 폐유리 잔골재는 모르타르 또는 콘크리트 조성물에 적용되는 천연 잔골재의 전부 또는 일부를 대체하여 압축강도, 휨강도 등의 물성이 더욱 향상되도록 함으로써 폐기물로 취급되어 온 폐유리를 자원화할 수 있다.In addition, according to the above method, the present invention provides a surface-modified waste glass fine aggregate coated with C-S-H crystals on the surface. Such waste glass fine aggregate can be used as a resource by replacing all or part of natural fine aggregate applied to mortar or concrete composition to further improve physical properties such as compressive strength and flexural strength.

이하에서는 구체적인 시험예와 함께 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with specific test examples.

1. 시험 전 분석 내용1. Pre-test analysis

[도 4]는 표면개질 전 폐유리 잔골재 표면의 SEM 사진 및 EDS 분석 그래프이다. [도 4]의 (a) 및 (b)는 폐유리 잔골재 SEM 사진으로서, 폐유리 잔골재의 매끈한 표면을 확인할 수 있다. [도 4]의 (c)는 폐유리 잔골재의 EDS 분석 그래프로서, O 성분이 60wt% 이상인 것이 확인된다.[Fig. 4] is an SEM photograph and EDS analysis graph of the surface of the fine aggregate of waste glass before surface modification. (a) and (b) of [Fig. 4] are SEM photographs of the fine waste glass aggregate, and it can be seen that the smooth surface of the fine waste glass aggregate is confirmed. 4 (c) is an EDS analysis graph of the waste glass fine aggregate, it is confirmed that the O component is 60wt% or more.

[도 5]는 표면개질 후 폐유리 잔골재 표면의 SEM 사진 및 EDS 분석 그래프이다. [도 5]의 (a) 및 (b)는 표면개질 후 폐유리 잔골재 SEM 사진으로서, 거친 표면으로 개질된 상태를 확인할 수 있다. [도 5]의 (c)는 폐유리 잔골재의 EDS 분석 그래프로서, 여전히 0 성분의 함량이 높으나, Si 함량비가 증가하고, Ca 함량비 또한 증가하였음이 확인된다.[Fig. 5] is an SEM photograph and EDS analysis graph of the surface of the waste glass fine aggregate after surface modification. (a) and (b) of [Fig. 5] are SEM photographs of the waste glass fine aggregate after surface modification, and it can be seen that the modified state to a rough surface can be confirmed. (c) of [Fig. 5] is an EDS analysis graph of the waste glass fine aggregate, it is confirmed that the content of the 0 component is still high, but the Si content ratio is increased, and the Ca content ratio is also increased.

[도 6]은 천연 잔골재와 표면개질 전·후 폐유리 잔골재의 SEM 사진을 비교한 것으로서, 폐유리 잔골재의 표면개질 후 표면상태가 천연 잔골재와 유사하게 된 것으로 확인된다. [Fig. 6] is a comparison of SEM photos of natural fine aggregate and waste glass fine aggregate before and after surface modification, and it is confirmed that the surface state of the waste glass fine aggregate after surface modification is similar to that of natural fine aggregate.

아래 [표 1]은 이하 시험에 사용된 천연 잔골재와 폐유리 잔골재(개질 전·후)의 물리적 특성을 나타낸 것이다. [Table 1] below shows the physical properties of the natural fine aggregate and the waste glass fine aggregate (before and after reforming) used in the following tests.

Figure pat00001
Figure pat00001

아래 [표 2]는 폐유리 잔골재의 화학 조성을 나타낸 것이다. 폐유리 골재의 착색 상태(흰색, 녹색, 갈색)에 약간의 차이가 존재하므로, 이러한 차이점이 콘크리트(또는 모르타르) 조성물의 물성 발현에 영향을 미치는지 여부를 여러 가지 시험을 통해 확인해 보았다.[Table 2] below shows the chemical composition of the fine waste glass aggregate. Since there is a slight difference in the coloration state (white, green, brown) of the waste glass aggregate, it was confirmed through various tests whether these differences affect the expression of the properties of the concrete (or mortar) composition.

Figure pat00002
Figure pat00002

2. 시험 방법2. Test method

아래 [표 3]은 천연 잔골재(이하 'NS'), 폐유리 잔골재(이하 'GS') 및 표면 개질 후의 폐유리 잔골재(이하 'CGS')의 특성 파악(모르타르 경화체의 휨강도, 압축강도, 파괴거동 및 알칼리-실리카 반응)을 위한 시험예를 정리한 것이다.[Table 3] below shows the characteristics of natural fine aggregate (hereinafter 'NS'), waste glass fine aggregate (hereinafter 'GS') and waste glass fine aggregate (hereinafter 'CGS') after surface modification (flexural strength, compressive strength, fracture of hardened mortar) behavior and alkali-silica reaction) are summarized.

상기 GS 및 CGS는 착색 상태에 따라 흰색(W), 녹색(G) 및 갈색(B)으로 분류하였고, 흰색, 녹색, 갈색을 동일 비율로 혼합한 시료(Mixed)에 대한 시험도 함께 진행하였다. 다만, 상기 흰색(W)은 착색되지 않은 투명 상태를 의미하며, 이하에서 착색상태 표기가 별도로 되어 있지 않은 GS, CGS는 각각 GS-W, CGS-W를 의미하는 것이다.The GS and CGS were classified into white (W), green (G), and brown (B) according to the coloration state, and a test was also performed on a sample (Mixed) in which white, green, and brown were mixed in the same ratio. However, the white (W) refers to an uncolored, transparent state, and GS and CGS, which are not separately marked for the colored state, refer to GS-W and CGS-W, respectively.

Figure pat00003
Figure pat00003

휨 강도 시험은 [도 7]에 나타난 바와 같이 모르타르 시험체를 횡 배치하고, 50N/s의 재하속도로 하중을 가하였다. 압축 강도 시험은 [도 8]에 나타난 바와 같이 모르타르 시험체를 종 배치하고 2,400N/s의 재하속도로 하중을 가하였다(ISO 679). 잔골재 유형별 모르타르 시험체는 40×40×160㎜ 크기로 제작하였다.For the flexural strength test, as shown in [Fig. 7], a mortar test body was horizontally arranged, and a load was applied at a loading rate of 50 N/s. For the compressive strength test, as shown in [Fig. 8], a mortar test specimen was vertically arranged and a load was applied at a loading rate of 2,400 N/s (ISO 679). The mortar test body for each type of fine aggregate was manufactured in a size of 40×40×160㎜.

시험예별 알칼리-실리카 반응(ASR) 평가는 ASTM C 1260에 따라, 양 단부에 스터드를 삽입한 모르타르 시험체를 25.4×25.4×254㎜ 크기로 제작한 재령 1일 모르타르 시험체를 80℃, 1노르말(N)의 NaOH 용액에 침지시키고 길이 변화 측정기로 24시간 마다 길이 변화값을 측정하는 방식으로 진행하였다. [도 9]는 알칼리-실리카 반응 시험을 위한 시험체, 길이 변화 측정기 및 시험 과정의 사진이다.Alkali-silica reaction (ASR) evaluation for each test example, according to ASTM C 1260, a mortar test specimen with studs inserted at both ends was prepared with a size of 25.4 × 25.4 × 254 mm, and the mortar specimen was prepared at 80 ° C., 1 normal (N ) was immersed in a NaOH solution, and the length change value was measured every 24 hours with a length change meter. [FIG. 9] is a photograph of the test body, the length change measuring device, and the test process for the alkali-silica reaction test.

3. 시험 결과3. Test results

(1) 역학적 특성(1) mechanical properties

[도 10] 및 [도 11]은 잔골재 종류에 따른 모르타르 시험체의 역학적 특성을 나타낸 그래프이다. 이하에서는 각 모르타르 시험체를 잔골재 종류에 따라 명명한다. [Fig. 10] and [Fig. 11] are graphs showing the mechanical properties of the mortar specimen according to the type of fine aggregate. Hereinafter, each mortar specimen is named according to the type of fine aggregate.

[도 10]에서, GS 시험체는 NS 시험체에 비해 압축강도 및 휨강도가 크게 감소하는 것이 확인된다. 이는 GS의 매끄러운 표면으로 인해 잔골재와 매트릭스 간의 접착력이 저하되는 슬립 현상이 발생하기 때문인 것으로 추정된다.In [Fig. 10], it is confirmed that the compressive strength and flexural strength of the GS specimen are significantly reduced compared to the NS specimen. It is presumed that this is because the smooth surface of GS causes a slip phenomenon in which the adhesion between the fine aggregate and the matrix is lowered.

반면, CGS 시험체는 NS 시험체에 비해 압축강도 및 휨강도가 동등 이상(오히려 상승) 발현되므로, 상기 CGS는 표면이 거칠어져 상기 슬립 현상 문제는 완전히 해소된 것으로 사료된다.On the other hand, since the CGS test specimen exhibits equal or greater (rather, higher) compressive strength and flexural strength compared to the NS specimen, the CGS has a rough surface and the problem of the slip phenomenon is considered to be completely resolved.

한편, [도 11]에 나타난 바와 같이, 폐유리 골재의 착색 상태(색상)에 따른 역학적 특성 변화는 그 경향성이 뚜렷하게 나타나지 않았다. 단지 모든 착색 상태에서 CGS 시험체는 NS 시험체에 비해 동등 이상의 압축강도 및 휨강도가 발현되는 점이 다시 확인된다.On the other hand, as shown in [Fig. 11], the change in the mechanical properties according to the colored state (color) of the waste glass aggregate did not show a clear tendency. However, it is confirmed again that the CGS specimen exhibits equivalent or higher compressive strength and flexural strength compared to the NS specimen in all colored states.

(2) 파괴 거동(2) fracture behavior

[도 12]는 천연 잔골재와 폐유리 잔골재(표면개질 전·후)의 파괴 거동이 나타난 SEM 사진이다. GS 시험체는 NS 시험체와 달리 골재가 파괴되지 않고, 슬립 현상 발생하는 것이 확인되는 반면, CGS 시험체는 NS 시험체와 유사하게 골재가 파괴되는 거동이 확인된다. [Fig. 12] is an SEM photograph showing the fracture behavior of natural fine aggregate and waste glass fine aggregate (before and after surface modification). Unlike the NS specimen, the GS specimen does not destroy the aggregate and it is confirmed that the slip phenomenon occurs, whereas the CGS specimen shows the behavior of aggregate destruction similar to the NS specimen.

(3) 알칼리-실리카 반응(3) alkali-silica reaction

[도 13] 및 [도 14]는 잔골재 종류에 따른 알칼리-실리카 반응에 의한 재령별 팽창률 변화를 나타낸 그래프이다.[FIG. 13] and [FIG. 14] are graphs showing the change in the expansion rate according to age by the alkali-silica reaction according to the type of fine aggregate.

[도 13]에서는 GS는 표면에 코팅이 되어 있지 않아, Na 이온에 직접 노출되어 비정질 실리카 성분이 Na 이온과 결합하여 알칼리 실리케이트 겔을 형성하고, 겔이 수분을 흡수하면서 팽창이 진행되는 것이 확인된다.In [Fig. 13], GS is not coated on the surface, so it is directly exposed to Na ions, and the amorphous silica component combines with Na ions to form an alkali silicate gel, and it is confirmed that the gel absorbs moisture and expands. .

반면, CGS 시험체는 폐유리 골재 표면에 C-S-H 결정이 코팅되어 있어, 폐유리가 Na 이온에 직접 노출되지 않기 때문에, 알칼리 실리케이트 겔 형성 및 팽창이 GS 시험체에 비해 크게 감소하는 경향을 확인할 수 있다.On the other hand, since C-S-H crystals are coated on the surface of the waste glass aggregate in the CGS specimen, the waste glass is not directly exposed to Na ions, so it can be seen that the alkali silicate gel formation and expansion are significantly reduced compared to the GS specimen.

다만, [도 14]에 나타난 바와 같이 GS-G, GS-B 시험체의 경우, NS 시험체에 비해 ASR 팽창률이 오히려 낮게 측정되었다. 이는 색 발현을 위해 첨가된 금속 성분(Cr2O3, NiO, CuO)의 영향으로 판단된다. 금속 성분이 첨가되지 않은 GS-W 시험체의 경우 약 1.0%의 높은 ASR 팽창률이 나타나는 것과 대조된다.However, as shown in [Fig. 14], in the case of the GS-G and GS-B specimens, the ASR expansion rate was measured to be lower than that of the NS specimen. This is determined by the influence of the metal component (Cr 2 O 3 , NiO, CuO) added for color expression. This is in contrast to the high ASR expansion rate of about 1.0% in the case of the GS-W specimen without added metal components.

[도 15]는 잔골재 조건에 따른 모르타르별 단면 SEM 사진이다. GS-W 시험체에서는 알칼리-실리카 반응에 의한 모르타르 팽창에 의해 폐유리 골재에 많은 미세균열이 관찰되고, CGS-W 시험체에서는 폐유리 골재 일부 구간에 미세균열이 관찰되며, CGS-B 시험체에서는 폐유리 골재의 미세균열이 관찰되지 않는다. [Fig. 15] is a cross-sectional SEM photograph of each mortar according to the fine aggregate conditions. In the GS-W specimen, many microcracks were observed in the waste glass aggregate due to the expansion of the mortar by alkali-silica reaction, in the CGS-W specimen, microcracks were observed in some sections of the waste glass aggregate, and in the CGS-B specimen, the waste glass No microcracks in the aggregate were observed.

이상의 시험 결과를 정리하면 다음과 같다.The above test results are summarized as follows.

첫째, GS 시험체는 NS 시험체에 비해 압축강도와 휨강도가 크게 저하되었다. 이는 GS의 매끄러운 표면으로 인해 슬립 현상이 발생하기 때문이다. 반면, 표면 개질이 이루어진 CGS는 표면이 C-S-H 결정으로 코팅되어 슬립 현상이 발생하지 않아 NS 시험체와 동등 이상의 압축강도 및 휨강도가 발현된다.First, the compressive strength and flexural strength of the GS specimen were significantly lower than that of the NS specimen. This is because the slip phenomenon occurs due to the smooth surface of GS. On the other hand, the surface of CGS with surface modification is coated with C-S-H crystals, and slip phenomenon does not occur, so the compressive strength and flexural strength equal to or higher than that of the NS specimen are expressed.

둘째, GS-G, GS-B는 색 발현으로 인해 첨가된 금속성분(Cr2O3, NiO, CuO)으로 인해 NS 시험체에 비해 낮은 ASR 팽창률이 나타났다. GS-W 시험체는 ASR 팽창률이 가장 높게 나타났으며, 모르타르의 단면 SEM 사진에서도 폐유리 골재에 많은 미세균열이 확인된다. 반면, CGS 시험체는 표면에 존재하는 C-S-H 결정 코팅에 의해 GS 시험체에 비해 ASR 팽창률이 크게 감소한다.Second, GS-G and GS-B showed a lower ASR expansion rate compared to the NS specimen due to the added metal components (Cr 2 O 3 , NiO, CuO) due to color expression. The GS-W specimen showed the highest ASR expansion rate, and many microcracks were confirmed in the waste glass aggregate in the cross-sectional SEM photograph of the mortar. On the other hand, the ASR expansion rate of the CGS specimen is greatly reduced compared to the GS specimen due to the CSH crystal coating present on the surface.

이상에서 시험예들을 통해 본 발명의 물성 및 효과를 검토하였으나, 본 발명은 상기의 시험예들에만 한정되는 것은 아니라 할 것이며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다소간의 변형 및 변경이 가능하다고 할 것이다.Although the physical properties and effects of the present invention have been reviewed through the above test examples, the present invention is not limited to the above test examples, and some modifications and changes are possible within the scope without departing from the technical spirit of the present invention. will say that

해당 없음Not applicable

Claims (6)

(a) 폐유리 잔골재를 NaOH 수용액에 침지하여 표면의 비정질 실리카 성분을 알칼리실리케이트 겔로 변환시키는 단계; 및
(b) 상기 (a)단계를 거친 폐유리 잔골재를 과포화 상태의 CaO 수용액에 침지하여 표면에 생성된 알칼리실리케이트 겔을 C-S-H 결정질로 개질시키는 단계; 를 포함하는 폐유리 잔골재 표면 개질 방법.
(a) converting the amorphous silica component on the surface into an alkali silicate gel by immersing the waste glass fine aggregate in an aqueous NaOH solution; and
(b) reforming the alkali silicate gel produced on the surface into CSH crystals by immersing the fine waste glass aggregate that has undergone the step (a) in an aqueous CaO solution in a supersaturated state; Waste glass fine aggregate surface modification method comprising a.
제1항에서,
상기 (a)단계는 폐유리 잔골재를 75~85℃, NaOH 1몰(M) 수용액에 침지하는 것을 특징으로 하는 폐유리 잔골재 표면 개질 방법.
In claim 1,
The step (a) is a waste glass fine aggregate surface modification method, characterized in that immersing the waste glass fine aggregate in 75 ~ 85 ℃, NaOH 1 mol (M) aqueous solution.
제1항에서,
상기 (b)단계는 상기 (a)단계를 거친 폐유리 잔골재를 75~85℃, CaO 22밀리몰(mM) 이상의 수용액에 침지하는 것을 특징으로 하는 폐유리 잔골재 표면 개질 방법.
In claim 1,
In the step (b), the waste glass fine aggregate surface reforming method, characterized in that immersing the waste glass fine aggregate that has undergone the step (a) in an aqueous solution of at least 22 mmol (mM) of CaO at 75 ~ 85 ℃.
제1항에서,
상기 폐유리 잔골재는 Cr2O3, NiO 및 CuO 성분을 함유한 것을 특징으로 하는 폐유리 잔골재 표면 개질 방법.
In claim 1,
The waste glass fine aggregate is Cr 2 O 3 , NiO and CuO components, characterized in that the waste glass fine aggregate surface reforming method.
제1항에서,
상기 폐유리 잔골재는 입경 0.3~5㎜인 것을 특징으로 하는 폐유리 잔골재 표면 개질 방법.
In claim 1,
The waste glass fine aggregate surface modification method, characterized in that the particle diameter of 0.3 ~ 5mm.
제1항 내지 제5항 중 어느 한 항의 방법에 의해 표면에 C-S-H 결정질이 코팅된 표면개질 폐유리 잔골재.A surface-modified waste glass fine aggregate coated with C-S-H crystals on the surface by the method of any one of claims 1 to 5.
KR1020210012433A 2021-01-28 2021-01-28 Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate KR102471109B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210012433A KR102471109B1 (en) 2021-01-28 2021-01-28 Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210012433A KR102471109B1 (en) 2021-01-28 2021-01-28 Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate

Publications (2)

Publication Number Publication Date
KR20220109135A true KR20220109135A (en) 2022-08-04
KR102471109B1 KR102471109B1 (en) 2022-11-25

Family

ID=82836908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210012433A KR102471109B1 (en) 2021-01-28 2021-01-28 Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate

Country Status (1)

Country Link
KR (1) KR102471109B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131853B1 (en) 2009-11-26 2012-03-30 선일공업 (주) Preparation and coating method of lightweight aggregates using bottom ash and waste glass
KR20130138567A (en) * 2012-06-11 2013-12-19 한국도로공사 Admixture composition for concrete comprising glass abrasive sludge and method for manufacturing the concrete
KR101691299B1 (en) * 2015-07-27 2017-01-10 고려대학교 산학협력단 Admixture composition for law alkali cement concrete comprising LCD and method for manufacturing the concrete
KR101737077B1 (en) 2016-11-25 2017-05-18 노혜지 The manufacturing method of construction material using waste from glass
KR20170079051A (en) * 2015-12-30 2017-07-10 주식회사 뉴텍 Concrete composition using lcd waste glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131853B1 (en) 2009-11-26 2012-03-30 선일공업 (주) Preparation and coating method of lightweight aggregates using bottom ash and waste glass
KR20130138567A (en) * 2012-06-11 2013-12-19 한국도로공사 Admixture composition for concrete comprising glass abrasive sludge and method for manufacturing the concrete
KR101367506B1 (en) 2012-06-11 2014-02-28 한국도로공사 Admixture composition for concrete comprising glass abrasive sludge and method for manufacturing the concrete
KR101691299B1 (en) * 2015-07-27 2017-01-10 고려대학교 산학협력단 Admixture composition for law alkali cement concrete comprising LCD and method for manufacturing the concrete
KR20170079051A (en) * 2015-12-30 2017-07-10 주식회사 뉴텍 Concrete composition using lcd waste glass
KR101737077B1 (en) 2016-11-25 2017-05-18 노혜지 The manufacturing method of construction material using waste from glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
손민재 외 5인., 한국건축시공학회지., 제20권 제2호, pp. 23-24 (2020. 11. 공지) 1부.* *

Also Published As

Publication number Publication date
KR102471109B1 (en) 2022-11-25

Similar Documents

Publication Publication Date Title
Saha et al. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review
Ramlochan et al. The effect of metakaolin on alkali–silica reaction in concrete
Shi et al. Acceleration of strength gain of lime-pozzolan cements by thermal activation
Hooton et al. Portland-limestone cement: state-of-the-art report and gap analysis for CSA A 3000
Snelson et al. Heat of hydration of Portland Cement–Metakaolin–Fly ash (PC–MK–PFA) blends
Dabai et al. Studies on the effect of rice husk ash as cement admixture
Garcia-Diaz et al. ASR pessimum behaviour of siliceous limestone aggregates
Nourredine Influence of curing conditions on durability of alkali-resistant glass fibres in cement matrix
Liu et al. Improve the long-term property of heat-cured mortars blended with fly ash by internal curing
KR102471109B1 (en) Waste glass fine aggregate surface modification method & Surface modified waste glass fine aggregate
CA3002529C (en) Fly ash-containing construction material with improved strength and water resistance and methods of forming the same
Kolářová et al. Thermal behaviour of glazed ceramic bodies
Van Aardt et al. Influence of alkali on the sulphate resistance of ordinary Portland cement mortars
CN115772022A (en) Modified magnesium cement and preparation method thereof
KR0160943B1 (en) Cement matrix
De Jesus et al. Effect of sugarcane bagasse ash on alkali silica reaction of concrete with soda lime glass as aggregates
Manjeeth et al. An Experimental Investigation on the behaviour of Portland Cement Concrete and Geopolymer Concrete in acidic environment
Mohr et al. Factors influencing mitigation strategies for autogenous shrinkage
Latifee Influence of Pore Solution and Cement Alkalinity on ASR-Expansino Behavior
El Moustapha et al. Effect of metakaolin addition on the mechanical performance and durability of granulated blast furnace slag based geopolymer mortar with micro-encapsulated phase change materials
Merida et al. Measure of the Chloride Permeability of the Pozzolana concrete in Sulphate Middle
Hruby et al. Décalcification resistance of various alkali-activated materials
Shon et al. Application of modified ASTM C1260 test for fly ash-cement mixtures
KR20210009946A (en) Non-cement Mortar with Reduction of Autogenous Shrinkage And Carbonation
Lane et al. Evaluation of the potential for internal sulfate attack through adaptation of ASTM C 342 and the Duggan test

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant