KR101147818B1 - The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing - Google Patents
The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing Download PDFInfo
- Publication number
- KR101147818B1 KR101147818B1 KR1020100119603A KR20100119603A KR101147818B1 KR 101147818 B1 KR101147818 B1 KR 101147818B1 KR 1020100119603 A KR1020100119603 A KR 1020100119603A KR 20100119603 A KR20100119603 A KR 20100119603A KR 101147818 B1 KR101147818 B1 KR 101147818B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- thrust bearing
- ceramic
- journal thrust
- cylindrical
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
- F16C32/0618—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/128—Porous bearings, e.g. bushes of sintered alloy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
- F16C33/145—Special methods of manufacture; Running-in of sintered porous bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2206/00—Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
- F16C2206/40—Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Metallurgy (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
본 발명은 다공질 세라믹을 이용한 저널 스러스트 베어링의 제조방법 및 그에 의해 제조된 저널 스러스트 베어링에 관한 것으로, 더욱 상세하게 설명하면, 알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%를 계량한 후 이를 혼합 분쇄하고, 과립 및 성형 후 소결하여 기공률 8 내지 9%의 원통형 세라믹을 제조한 다음, 이를 하우징에 결합하여 저널 스러스트 베어링을 제조함으로써 하나의 공기 베어링이 단차진 축과 결합하여 저널 및 스러스트 베어링의 역할을 동시에 하도록 한 다공질 세라믹을 이용한 저널 스러스트 베어링의 제조방법 및 그에 의해 제조된 저널 스러스트 베어링에 관한 것이다.
The present invention relates to a method for manufacturing a journal thrust bearing using a porous ceramic and a journal thrust bearing manufactured by the present invention. In more detail, 75 to 90% by weight of alumina, 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide and 0.5% by weight of cobalt oxide were weighed, mixed and pulverized, granulated and molded and sintered to produce a cylindrical ceramic with a porosity of 8 to 9%, and then bonded to a housing to produce a journal thrust bearing. A method of manufacturing a journal thrust bearing using porous ceramics in which one air bearing is combined with a stepped shaft to simultaneously serve as a journal and a thrust bearing, and a journal thrust bearing manufactured thereby.
일반적으로 베어링은 하중을 전달하면서 마찰저항을 줄여주는 역할을 하는 기계요소이다. 이러한 베어링의 통상적인 구조는 볼이나 롤러와 같은 전동체의 구름운동을 이용한 구름베어링인데, 이는 회전운동 시 전동체의 구름의 영향으로 소음이 크며, 충격에 약하고, 외경이 크며, 회전속도의 한계가 낮다는 단점이 있다.
In general, the bearing is a mechanical element that serves to reduce the frictional resistance while transmitting the load. The typical structure of these bearings is rolling bearings using rolling motions of rolling elements such as balls and rollers, which are high in noise due to rolling effect of rolling elements, weak in shock, large in outer diameter, and limited in rotational speed. Has the disadvantage of being low.
이러한 단점을 극복하기 위하여 베어링과 축 사이에 얇은 유막을 형성시키고 이 유막에 압력을 발생시켜 그 압력의 합력으로 하중을 지지하는 미끄럼 베어링을 주로 사용한다. 이러한 미끄럼베어링은 사용하는 유체의 종류에 따라 오일베어링과 공기베어링으로 구분된다.
In order to overcome these disadvantages, a sliding bearing is used that forms a thin oil film between the bearing and the shaft and generates pressure in the oil film to support the load by the force of the pressure. Such sliding bearings are classified into oil bearings and air bearings according to the type of fluid used.
오일베어링은 작동유체로 광유와 같은 기름이나 물을 사용하며 압력이 변해도 체적의 변화가 거의 없으므로 비압축성 유체윤활베어링이라 불려진다. 그러나, 이러한 오일베어링은 작동유체로 기름을 주로 사용하기 때문에 청정이 요구되는 장비에는 사용하기 어려운 점이 있다.
Oil bearings are called incompressible fluid lubrication bearings because they use oil or water such as mineral oil as the working fluid and there is almost no change in volume even if the pressure changes. However, since these oil bearings mainly use oil as a working fluid, they are difficult to use in equipment requiring cleanness.
유체베어링의 또 다른 형태인 공기베어링은 작동유체로 공기, 헬륨, 네온가스를 사용하기 때문에 마찰이 거의 없고, 냉각효과가 있어 고속운동 시 발열이 거의 일어나지 않아 고온과 저온에서 사용이 가능하며, 축과 베어링의 가공 시 어쩔 수 없이 발생하는 진원도 오차를 공기의 압축성으로 축의 회전오차를 진원도 오차에 비해 1/10 이하로 줄여주는 평균화 효과도 갖게 되어 회전정밀도가 매우 높아지는 효과가 있다. 또한, 시작과 정지 시에도 축과 베어링 사이의 직접적인 금속접촉을 피할 수 있어 진동과 소음이 거의 발생하지 않고, 거의 마모가 일어나지 않아 수명이 거의 영구적이라는 장점이 있으나, 공기의 사용으로 인해 압력의 한계가 있어 하중지지용량은 볼 베어링이나 오일베어링에 비해 조금 떨어지기 때문에 고하중 에는 잘 적용하지 않는다.
Air bearing, another form of fluid bearing, uses air, helium, and neon gas as its working fluid, so it has little friction, and it has a cooling effect, so it generates little heat during high speed movement, so it can be used at high and low temperatures. In addition, the roundness error inevitably generated during the machining of the bearing is reduced by 1/10 or less compared to the roundness error due to the compressibility of air, resulting in a very high rotational precision. In addition, even when starting and stopping, direct metal contact between the shaft and the bearing can be avoided, so vibration and noise are hardly generated, and abrasion is hardly generated. Because load bearing capacity is slightly lower than ball bearings or oil bearings, it is not applicable to high loads.
위와 같은 재질 및 구조적인 특성을 갖는 베어링 중 용도에 따른 구분으로는 저널베어링이라 함은 원통 모양의 회전축의 형태에 맞추어 회전하기 쉽도록 만든 베어링으로, 회전축에 수직으로 하중을 받을 때 사용되며, 스러스트 베어링은 베어링 하중이 축 방향으로 작용하는 베어링을 뜻하는 것으로, 이를 하나의 베어링으로 제작하기에는 구조적으로 많은 어려움이 있었다.
Among bearings with the above materials and structural characteristics, journal bearings are bearings made to be easy to rotate according to the shape of the cylindrical rotating shaft, and are used when the load is perpendicular to the rotating shaft. The bearing refers to a bearing in which the bearing load acts in the axial direction, and there are many structural difficulties in manufacturing it as a single bearing.
이에 본 발명은 상기와 같은 문제점을 감안하여 발명한 것으로, 알루미나와 실리카, 산화철, 산화망간 및 산화코발트로 구성된 혼합물을 성형?소결하여 원통형 세라믹을 제조한 후, 이를 하우징에 결합하여 저널 스러스트 베어링을 제조함으로써 하나의 세라믹 공기 베어링이 단차진 축과 결합하여 저널 및 스러스트 베어링의 역할을 동시에 하도록 하여 베어링 제작에 소요되는 시간과 비용을 대폭 절감시키도록 함을 목적으로 한다.Accordingly, the present invention has been made in view of the above-mentioned problems, and a cylindrical ceramic is manufactured by molding and sintering a mixture composed of alumina and silica, iron oxide, manganese oxide, and cobalt oxide, and then combining the same with a housing to form a journal thrust bearing. By manufacturing, one ceramic air bearing is combined with the stepped shaft to act as a journal and thrust bearing at the same time, so as to significantly reduce the time and cost of bearing manufacturing.
또한, 기공률 8 내지 9%로 이루어진 세라믹 소재의 미세 기공을 배기공으로 이용하여 베어링 전체 면에 균일한 압력이 가해지도록 하여 베어링의 성능을 일층 향상되도록 함을 또 다른 목적으로 한다.
In addition, by using the fine pores of the ceramic material having a porosity of 8 to 9% as the exhaust hole to uniform pressure is applied to the entire surface of the bearing to further improve the performance of the bearing.
본 발명은 크게 네 단계를 거쳐 제작되는바, 알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%를 계량한 후 이를 혼합 및 분쇄하되, 상기 혼합물 전체 중량에 대하여 세라믹 분산제 1중량%와 유기바인더 1.5중량%를 첨가하여 알루미나 재질의 볼을 장입한 볼밀에서 습식혼합 분쇄하여 알루미나의 평균입경이 3 내지 4㎛가 되도록 분쇄하는 원료계량 및 분쇄공정(S1)과; 상기 혼합?분쇄된 혼합물을 스프레이 드라이어를 통해 평균입경 50 내지 100㎛가 되도록 과립화 한 후, 중심부에 금속재질의 코어가 삽입된 고무재질의 튜브형 몰드에 과립화된 혼합물을 장입하고 물속에서 1000kg/㎠의 압력으로 정수압성형 하는 성형공정(S2)과; 상기 성형된 원통 형태의 성형체를 전기로에 넣어 상온에서 600℃까지는 50℃/h의 승온속도로 승온한 다음, 이후 100℃/h의 승온속도로 1600℃까지 승온한 후 2시간 유지한 후 로냉하여 기공률 8 내지 9%의 원통형 세라믹(1)을 얻은 후 외경을 연삭하는 소결 및 외경연삭공정(S3)과; 상기 제작된 원통형 세라믹(1)을 급기공(2a)이 형성된 원통 형태의 알루미늄 하우징(2)에 에폭시(3)를 이용하여 접합한 후, 내경 및 전면부를 연삭하고, 이를 세척하는 조립 및 후가공공정(S4)으로 이루어지는 대략적인 구성을 갖는다.
The present invention is largely manufactured through four steps, after mixing 75 to 90% by weight of alumina and 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide and 0.5% by weight of cobalt oxide, and then mix and grind them. However, 1% by weight of the ceramic dispersant and 1.5% by weight of the organic binder are added to the total weight of the mixture, followed by wet mixing and grinding in a ball mill loaded with alumina balls to grind the alumina to have an average particle diameter of 3 to 4 μm. And grinding step (S1); After granulating the mixed and ground mixture to an average particle diameter of 50 to 100 μm through a spray dryer, the granulated mixture is charged into a rubber tubular mold in which a metal core is inserted at the center thereof, and 1000 kg / Forming process (S2) for hydrostatic pressure molding at a pressure of
상기와 같이 구성된 본 발명은, 알루미나와 실리카, 산화철, 산화망간 및 산화코발트로 구성된 혼합물을 성형?소결하여 원통형 세라믹을 제조한 후, 이를 하우징에 결합하여 저널 스러스트 베어링을 제조함으로써 하나의 세라믹 공기 베어링이 단차진 축과 결합하여 저널 및 스러스트 베어링의 역할을 동시에 하도록 하여 베어링 제작에 소요되는 시간과 비용을 대폭 절감할 수 있는 효과가 있다.The present invention configured as described above, by molding and sintering a mixture consisting of alumina and silica, iron oxide, manganese oxide and cobalt oxide to produce a cylindrical ceramic, and then bonded to the housing to produce a journal thrust bearing, one ceramic air bearing Combined with this stepped shaft, it acts as a journal and thrust bearing at the same time, greatly reducing the time and cost of bearing manufacturing.
또한, 기공률 8 내지 9%로 이루어진 세라믹 소재의 미세 기공을 배기공으로 이용하여 베어링 전체 면에 균일한 압력이 가해지도록 하여 베어링의 성능을 일층 향상되도록 한 또 다른 효과가 있다.
In addition, by using the fine pores of the ceramic material having a porosity of 8 to 9% as the exhaust hole to have a uniform pressure is applied to the entire surface of the bearing has another effect to further improve the performance of the bearing.
도 1은 본 발명의 공정 순서도
도 2는 본 발명에 의해 제작된 저널 스러스트 베어링의 사시도
도 3은 본 발명에 의해 제작된 저널 스러스트 베어링의 단면도
도 4는 본 발명에 의해 제작된 저널 스러스트 베어링의 사용상태도1 is a process flow chart of the present invention
2 is a perspective view of a journal thrust bearing manufactured by the present invention;
3 is a cross-sectional view of a journal thrust bearing made in accordance with the present invention.
Figure 4 is a state of use of the journal thrust bearing produced by the present invention
본 발명은 다공질 세라믹을 이용한 저널 스러스트 베어링의 제조방법 및 그에 의해 제조된 저널 스러스트 베어링에 관한 것으로, 알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%를 계량한 후 이를 혼합 분쇄하고, 과립 및 성형 후 소결하여 기공률 8 내지 9%의 원통형 세라믹을 제조한 다음, 이를 하우징에 결합하여 저널 스러스트 베어링을 제조함으로써 하나의 공기 베어링이 단차진 축과 결합하여 저널 및 스러스트 베어링의 역할을 동시에 하도록 한 특징이 있다.
The present invention relates to a method for manufacturing a journal thrust bearing using a porous ceramic and a journal thrust bearing manufactured by the present invention, 75 to 90% by weight of alumina, 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide, and 0.5 wt% of cobalt oxide was weighed, mixed and pulverized, granulated and molded and sintered to produce a cylindrical ceramic with a porosity of 8 to 9%, and then bonded to the housing to produce a journal thrust bearing, Combined with the differential shaft, it features the journal and thrust bearings at the same time.
이하 본 발명의 실시 예를 예시도면을 통해 살펴보면 다음과 같다.
An embodiment of the present invention will be described below with reference to the accompanying drawings.
도 1은 본 발명의 공정 순서도를 나타낸 것이고, 도 2는 본 발명에 의해 제작된 저널 스러스트 베어링의 사시도를 나타낸 것이며, 도 3은 본 발명에 의해 제작된 저널 스러스트 베어링의 단면도를 나타낸 것이고, 도 4는 본 발명에 의해 제작된 저널 스러스트 베어링의 사용상태도를 나타낸 것으로, 도시한 바와 같이, 본 발명은 크게 원료를 계량한 후 혼합?분쇄하는 원료계량 및 분쇄공정(S1)을 거친 후, 이를 과립화하여 성형하는 성형공정(S2)을 완료한 다음, 탈지 및 소결한 후 외경 연삭을 하는 소결 및 외경연삭공정(S3)을 거친 후, 하우징과 결합하고 내경연삭 및 세척을 하는 조립 및 후가공공정(S4)으로 구성된다.
Figure 1 shows the process flow chart of the present invention, Figure 2 shows a perspective view of a journal thrust bearing made by the present invention, Figure 3 shows a cross-sectional view of a journal thrust bearing made by the present invention, Figure 4 Figure 2 shows the state of use of the journal thrust bearing produced by the present invention, as shown in the present invention, after the raw material weighing and crushing step (S1) mixed and pulverized after weighing the raw material largely granulated it After completion of the molding process (S2) to form by molding, after degreasing and sintering, after the sintering and outer diameter grinding process (S3) to perform the outer diameter grinding, assembly and post-processing process (S4) to combine with the housing, the inner diameter grinding and cleaning It is composed of
우선, 본 발명의 제 1공정인 원료계량 및 분쇄공정(S1)을 살펴보면, 알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%를 계량한 후 이를 혼합 및 분쇄하되, 상기 혼합물 전체 중량에 대하여 세라믹 분산제 1중량%와 유기바인더 1.5중량%를 첨가하여 혼합 및 분쇄를 완료한다.First, looking at the raw material weighing and grinding process (S1) of the first step of the present invention, 75 to 90% by weight of alumina and 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide and 0.5% by weight of cobalt oxide After weighing and mixing and pulverizing, 1 wt% of a ceramic dispersant and 1.5 wt% of an organic binder are added to the total weight of the mixture to complete mixing and pulverization.
상기 사용되는 원료를 보다 상세히 살펴보면, 알루미나(Al2O3)는 평균 입경 0.5 내지 5㎛인 것을 사용하도록 하는바, 바람직하기로는 입경이 0.5㎛인 알루미나를 5 내지 10중량%를 사용하고, 입경이 5㎛인 알루미나는 70 내지 80 중량% 사용하는 것이 바람직하다.Looking at the raw material used in more detail, the alumina (Al 2 O 3 ) is to use the average particle diameter of 0.5 to 5㎛ bar, preferably 5 to 10% by weight of alumina having a particle diameter of 0.5 ㎛, It is preferable to use 70-80 weight% of this alumina which is 5 micrometers.
한편, 실리카(SiO2)는 평균입경 0.5 내지 2㎛인 것을 사용하도록 하고, 산화망간(Mn3O4)과 산화철(Fe2O3) 및 산화코발트(Co3O4)는 공히 평균입경이 2㎛인 것을 사용하도록 한다.Meanwhile, silica (SiO 2 ) should be used having an average particle diameter of 0.5 to 2 μm, and mean particle diameters of manganese oxide (Mn 3 O 4 ), iron oxide (Fe 2 O 3 ), and cobalt oxide (Co 3 O 4 ) are all different. 2 μm is used.
상기 원료들을 계량한 후 혼합 및 분쇄매체로는 알루미나 재질의 볼을 장입한 볼밀에서 세라믹 분산제 및 유기바인더를 첨가해 습식 혼합 분쇄를 하되, 알루미나의 평균입경이 3 내지 4㎛가 될 때까지 분쇄한다.
After weighing the raw materials, the mixed and pulverized medium is wet mixed and pulverized by adding a ceramic dispersant and an organic binder in a ball mill loaded with alumina balls, and pulverized until the average particle diameter of the alumina becomes 3 to 4 μm. .
그런 다음 행해지는 제 2공정인 성형공정(S2)을 살펴보면, 상기 혼합?분쇄된 혼합물을 과립화 한 후 원통 형태로 성형하여 과립화 및 성형을 완료한다.Then, looking at the molding step (S2) is a second step is performed, the granulated mixture-pulverized mixture is molded in a cylindrical shape to complete the granulation and molding.
상기 혼합 및 분쇄가 완료된 혼합물은 과립화를 먼저 진행하는바, 이 과정은 혼합물 입자를 구형으로 만드는 과정으로, 슬러리 상태의 혼합물을 회전하는 원판 위에 재치한 후 이를 회전시킴과 통시에 스프레이 드라이의 열풍을 이용하여 평균입경이 50 내지 100㎛가 되도록 과립화 한다.After the mixing and grinding is completed, the mixture is granulated first. This process is to make the mixture particles into a spherical shape. The mixture of the slurry is placed on a rotating disk and then rotated, and the hot air of spray drying is generally used. Granulation is carried out so that the average particle diameter is 50 to 100 µm.
상기 과립화가 완료된 혼합물을 중심부에 금속재질의 코어가 삽입된 고무재질의 튜브형 몰드에 장입하고 물속에서 1000kg/㎠의 압력으로 정수압성형 한다.
The granulated mixture is charged into a tubular mold of rubber material in which a metal core is inserted in the center, and hydrostatically molded at 1000 kg /
그 후 행해지는 제3공정인 소결 및 외경연삭공정(S3)을 살펴보면, 상기 성형된 원통 형태의 성형체를 전기로에 넣어 소결한 후 로냉하여 얻은 원통형 세라믹(1)의 외경을 연삭하는 과정을 완료한다.After the third step, sintering and outer diameter grinding step (S3) is carried out, the process of grinding the outer diameter of the cylindrical ceramic (1) obtained by sintering the molded cylindrical shaped body into an electric furnace and sintering. .
상기 소결과정을 상세히 살펴보면, 알루미나 재질의 붕판 위에 용융 알루미나 분말을 이형제로 깔고 수퍼칸탈을 발열체로 하는 전기로에 장입하여 상온에서 600℃까지는 50℃/h의 승온속도로 승온하여 유기물을 제거하도록 하고, 그 이후부터는 100℃/h의 승온속도로 1600℃까지 승온한 다음 2시간 유지한 후 로냉하여 소결한다.Looking at the sintering process in detail, the molten alumina powder is laid on the alumina platen as a release agent and charged into an electric furnace using a supercantal as a heating element, and the organic material is removed by heating at a temperature rising rate of 50 ° C./h from room temperature to 600 ° C., After that, the temperature was raised to 1600 ° C. at a temperature increase rate of 100 ° C./h, held for 2 hours, and then cooled by sintering.
이렇게 소결된 원통형 세라믹(1)은 전체적으로 8 내지 9%의 기공률을 갖는바, 이러한 기공은 원통형 세라믹(1)의 전체에 고르게 분포하여 후술하는 급기공(2a)을 통해 압축공기가 공급되면 원통형 세라믹(1)에 형성된 기공을 통해 표면으로 배출됨으로써 베어링의 역할을 하도록 구성된다.The cylindrical ceramic sintered as described above has a porosity of 8 to 9% as a whole. The pores are uniformly distributed throughout the cylindrical ceramic 1, and when compressed air is supplied through the
상기 소결과정을 거친 원통형 세라믹(1)은 외경을 연삭하는 바, 후술하는 하우징(2)에 에폭시(3)을 이용하여 결합될 수 있는 크기로 외경을 연삭한다.
The cylindrical ceramic 1, which has undergone the sintering process, grinds the outer diameter to a size that can be bonded using the
그런 다음 마지막 공정인 조립 및 후가공공정(S4)을 살펴보면, 상기 제작된 원통형 세라믹(1)을 급기공(2a)이 형성된 하우징(2)에 에폭시(3)를 이용하여 결합한 후, 내경 및 전면부를 연삭하고, 이를 세척한다.Then, looking at the final process of assembly and post-processing (S4), after combining the produced cylindrical ceramic (1) with a housing (2) formed with a supply hole (2a) using an epoxy (3), the inner diameter and the front portion Grind and wash it.
상기 사용되는 하우징(2)은 원통형 세라믹(1)이 내재되도록 원통 형태로 형성된 알루미늄 재질의 하우징(2)으로, 하우징(2)의 일측으로는 급기공(2a)이 형성되어 있어서 공압발생장치(미도시)와 연결된 튜브를 통해 압축공기가 공급되도록 구성된다.The
하우징(2)과 원통형 세라믹(1)의 결합은 에폭시(3)를 이용하는 것이 바람직하며, 에폭시에 준하는 접착성능을 갖는 어떠한 접착성 물질을 사용하여도 무방하다.The bonding of the
상기 원통형 세라믹(1)과 하우징(2)을 결합시킨 후에는 연삭기를 사용하여 원통형 세라믹(1)의 내경과 전면부를 연삭하는 바, 이때 사용되는 연삭기는 #1000 이상 다이아몬드 휠을 사용하도록 하며, 가공연삭 후에는 초음파 세척기를 이용하여 세척함으로써 본 발명을 완료한다.
After the cylindrical ceramic 1 and the
상기와 같이 제조과정을 통해 얻어진 저널 스러스트 베어링의 구성을 살펴보면, 알루미늄 재질의 원통 형태로 구성되되, 일측으로는 급기공(2a)이 설치된 하우징(2)과; 상기 하우징(2)의 내부에 설치되되, 알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%의 비율로 혼합 소결된 원통 형태의 세라믹(1)과; 상기 세라믹(1)의 외주면과 하우징(2)의 내주면을 맞접시키는 에폭시(3)로 구성된다.Looking at the configuration of the journal thrust bearing obtained through the manufacturing process as described above, consisting of a cylindrical shape of aluminum material, on one side housing (2) is provided with air supply hole (2a); It is installed inside the housing (2), a mixture of sintered cylindrical form of a mixture of sintered 75 to 90% by weight of silica and 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide and 0.5% by weight of cobalt oxide Ceramic 1; It consists of the
상기 제조된 저널 스러스트 베어링은 단차진 축(4)과 결합되면, 저널 스러스트 베어링의 내경은 축(4)의 외경과 맞접하여 회전하되, 공급된 압축공기에 의해 마찰을 줄여 저널 베어링의 역할을 함과 동시에, 저널 스러스트 베어링의 일측면이 축(4)의 단차면과 맞접하여 공급된 압축공기에 의해 마찰을 줄여 스러스트 베어링의 역할을 동시에 할 수 있도록 하는 구성을 갖는다.
When the manufactured journal thrust bearing is combined with the
S1: 원료계량 및 분쇄공정 S2: 성형공정
S3: 소결 및 외경연삭공정 S4: 조립 및 후가공공정
1: 세라믹 2: 하우징
2a: 급기공 3: 에폭시
4: 축S1: Raw material weighing and grinding process S2: Forming process
S3: Sintering and External Grinding Process S4: Assembly and Post Processing
1: ceramic 2: housing
2a: supply hole 3: epoxy
4: axis
Claims (4)
알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%를 계량한 후 이를 혼합 및 분쇄하되, 상기 혼합물 전체 중량에 대하여 세라믹 분산제 1중량%와 유기바인더 1.5중량%를 첨가하여 알루미나 재질의 볼을 장입한 볼밀에서 습식혼합 분쇄하여 알루미나의 입경이 3 내지 4㎛가 되도록 분쇄하는 원료계량 및 분쇄공정(S1)과;
상기 혼합?분쇄된 혼합물을 스프레이 드라이어를 통해 입경이 50 내지 100㎛가 되도록 과립화 한 후, 중심부에 금속재질의 코어가 삽입된 고무재질의 튜브형 몰드에 과립화된 혼합물을 장입하고 물속에서 1000kg/㎠의 압력으로 정수압성형 하는 성형공정(S2)과;
상기 성형된 원통 형태의 성형체를 전기로에 넣어 소결하여 기공률 8 내지 9%의 원통형 세라믹(1)을 얻은 후 외경을 연삭하는 소결 및 외경연삭공정(S3)과;
상기 제작된 원통형 세라믹(1)을 급기공(2a)이 형성된 원통 형태의 알루미늄 하우징(2)에 에폭시(3)를 이용하여 접합한 후, 내경 및 전면부를 연삭하고, 이를 세척하는 조립 및 후가공공정(S4)으로 이루어짐을 특징으로 하는 다공질 세라믹을 이용한 저널 스러스트 베어링의 제조방법.
In the method of manufacturing a journal thrust bearing,
75 to 90% by weight of alumina and 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide, and 0.5% by weight of cobalt oxide were weighed and mixed, and ground, and 1% of ceramic dispersant based on the total weight of the mixture. Raw material weighing and pulverizing step (S1) of wet mixing and pulverizing in a ball mill loaded with alumina balls by adding% and an organic binder to 1.5 wt% to pulverize the alumina to have a particle size of 3 to 4 μm;
The mixed and milled mixture is granulated to a particle size of 50 to 100 μm through a spray dryer, and then the granulated mixture is charged into a rubber tubular mold in which a metal core is inserted at the center thereof, and 1000 kg / Forming process (S2) for hydrostatic pressure molding at a pressure of cm 2;
A sintering and outer diameter grinding step (S3) of grinding the outer diameter after obtaining the cylindrical ceramic (1) having a porosity of 8 to 9% by sintering the molded cylindrical shaped body in an electric furnace;
The manufactured cylindrical ceramic 1 is bonded to the cylindrical aluminum housing 2 in which the air supply holes 2a are formed by using an epoxy 3, and then the inner diameter and the front part are ground, and the assembly and post-processing process for washing them. Method for producing a journal thrust bearing using a porous ceramic, characterized in that (S4).
소결 및 외경연삭공정(S3)에서 성형체를 소결하는 조건은 상온에서 600℃까지는 50℃/h의 승온속도로 승온한 다음, 이후 100℃/h의 승온속도로 1600℃까지 승온한 후 2시간 유지하고 이후 로냉하여 소결함을 특징으로 하는 다공질 세라믹을 이용한 저널 스러스트 베어링의 제조방법.
The method of claim 1,
The conditions for sintering the molded body in the sintering and outer diameter grinding process (S3) are raised to a temperature rising rate of 50 ℃ / h from room temperature to 600 ℃, then heated to 1600 ℃ at a temperature rising rate of 100 ℃ / h and then maintained for 2 hours And subsequently cooled by sintering to produce a journal thrust bearing using a porous ceramic.
알루미늄 재질의 원통 형태로 구성되되, 일측으로는 급기공(2a)이 설치된 하우징(2)과;
상기 하우징(2)의 내부에 설치되되, 알루미나 75 내지 90 중량%와 실리카 5 내지 15 중량%, 산화철 2 중량%, 산화망간 1 중량% 및 산화코발트 0.5중량%의 비율로 혼합 소결된 원통 형태의 세라믹(1)과;
상기 세라믹(1)의 외주면과 하우징(2)의 내주면을 맞접시키는 에폭시(3)로 구성됨을 특징으로 하는 다공질 세라믹을 이용한 저널 스러스트 베어링.
In journal thrust bearings,
A housing 2 having a cylindrical shape made of aluminum, and having one side of the air supply hole 2a;
It is installed inside the housing (2), a mixture of sintered cylindrical form of a mixture of sintered 75 to 90% by weight of silica and 5 to 15% by weight of silica, 2% by weight of iron oxide, 1% by weight of manganese oxide and 0.5% by weight of cobalt oxide Ceramic 1;
Journal thrust bearing using a porous ceramic, characterized in that consisting of an epoxy (3) to abut the outer peripheral surface of the ceramic (1) and the inner peripheral surface of the housing (2).
세라믹(1)의 전체면에는 기공률이 8 내지 9%로 고르게 기공이 분포됨을 특징으로 하는 다공질 세라믹을 이용한 저널 스러스트 베어링.The method of claim 3, wherein
Journal thrust bearing using a porous ceramic, characterized in that the pores are evenly distributed in the entire surface of the ceramic (1) with 8 to 9%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100119603A KR101147818B1 (en) | 2010-11-29 | 2010-11-29 | The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100119603A KR101147818B1 (en) | 2010-11-29 | 2010-11-29 | The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101147818B1 true KR101147818B1 (en) | 2012-05-21 |
Family
ID=46272389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100119603A KR101147818B1 (en) | 2010-11-29 | 2010-11-29 | The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101147818B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102144686B1 (en) * | 2020-03-09 | 2020-08-14 | 주식회사 태경정반 | Manufacturing method of ceramic slider applied to air floating ceramic linear stage |
CN115415522A (en) * | 2022-09-30 | 2022-12-02 | 复旦大学 | Multi-shell porous iron-cobalt alloy and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020066025A (en) * | 2001-02-08 | 2002-08-14 | 이부락 | equipment grind and method manufacture bearing of prevention rust |
KR100559790B1 (en) | 2003-06-04 | 2006-03-15 | (주)트리엔 | Air bearing using a porous ceramic |
KR100687520B1 (en) | 2005-12-09 | 2007-02-27 | 주식회사 맥테크 | The manufacturing method of hinge and the hinge, for portable telephone |
JP2008163955A (en) | 2006-12-26 | 2008-07-17 | Toribotex Co Ltd | Sliding bearing structure manufacturing method |
-
2010
- 2010-11-29 KR KR1020100119603A patent/KR101147818B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020066025A (en) * | 2001-02-08 | 2002-08-14 | 이부락 | equipment grind and method manufacture bearing of prevention rust |
KR100559790B1 (en) | 2003-06-04 | 2006-03-15 | (주)트리엔 | Air bearing using a porous ceramic |
KR100687520B1 (en) | 2005-12-09 | 2007-02-27 | 주식회사 맥테크 | The manufacturing method of hinge and the hinge, for portable telephone |
JP2008163955A (en) | 2006-12-26 | 2008-07-17 | Toribotex Co Ltd | Sliding bearing structure manufacturing method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102144686B1 (en) * | 2020-03-09 | 2020-08-14 | 주식회사 태경정반 | Manufacturing method of ceramic slider applied to air floating ceramic linear stage |
CN115415522A (en) * | 2022-09-30 | 2022-12-02 | 复旦大学 | Multi-shell porous iron-cobalt alloy and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lv et al. | Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels | |
CN106891272B (en) | A kind of vitrified bond high-performance CBN grinding wheel and preparation method thereof based on strong electromagnetic | |
KR101147818B1 (en) | The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing | |
CN102765940B (en) | Normal pressure solid phase sintering microporous silicon carbide ceramic and preparation method thereof | |
US11670450B2 (en) | Tapered ferrite core, its production method and apparatus, and inductance device comprising it | |
Mao et al. | Effect of granulated sugar as pore former on the microstructure and mechanical properties of the vitrified bond cubic boron nitride grinding wheels | |
JP6100556B2 (en) | Ceramic ball | |
JP4116333B2 (en) | Super finishing whetstone | |
CN103851083A (en) | Production technology of silicon nitride ceramic ball bearing | |
CN105367077A (en) | Production process of ceramic ball bearing | |
CN103011833B (en) | Production process of silicon nitride ceramic ball bearing rolling element | |
CN104999356A (en) | Ceramic ball workblank finishing device | |
US6464906B1 (en) | Method of manufacturing spherical bodies by rotation, spherical bodies made by the method and a powder composition for use in the method | |
KR101217580B1 (en) | Sliding member, mechanical seal ring, mechanical seal, and faucet valve | |
CN104944956A (en) | Gel reaction-based polycrystalline nanometer diamond grinding tool preparation method | |
CN100475448C (en) | Centrifuge hot press sintering method and device of metal bonding agent extra hard material grinding wheel | |
CN102240946A (en) | Ball grinder | |
JP2009072835A (en) | Superabrasive grain vitrified grinding wheel | |
JPH0261440B2 (en) | ||
CN106438675B (en) | A kind of tilting thrust bearing of resilient disc support | |
KR100559790B1 (en) | Air bearing using a porous ceramic | |
KR101010347B1 (en) | Method For Manufacturing Diamond Grinding Tool, Diamond Grinding Tool By The Same Manufacturing Method | |
JP2023523997A (en) | Sealing member and manufacturing method thereof | |
CN101698599A (en) | Composite ceramic millstone and manufacture method thereof | |
JP2013147362A (en) | Method for manufacturing rolling element made of ceramic, and rolling support device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150508 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160511 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170508 Year of fee payment: 6 |