JP2008163955A - Sliding bearing structure manufacturing method - Google Patents

Sliding bearing structure manufacturing method Download PDF

Info

Publication number
JP2008163955A
JP2008163955A JP2006350510A JP2006350510A JP2008163955A JP 2008163955 A JP2008163955 A JP 2008163955A JP 2006350510 A JP2006350510 A JP 2006350510A JP 2006350510 A JP2006350510 A JP 2006350510A JP 2008163955 A JP2008163955 A JP 2008163955A
Authority
JP
Japan
Prior art keywords
sliding
bearing structure
sliding members
manufacturing
sliding bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006350510A
Other languages
Japanese (ja)
Other versions
JP4913582B2 (en
Inventor
Masahiko Kawabata
雅彦 川畑
Yoshinori Sasaki
義憲 佐々木
Toru Kamiya
徹 神谷
Kazuya Fukuyama
和也 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORIBOTEX CO Ltd
Electric Power Development Co Ltd
Original Assignee
TORIBOTEX CO Ltd
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORIBOTEX CO Ltd, Electric Power Development Co Ltd filed Critical TORIBOTEX CO Ltd
Priority to JP2006350510A priority Critical patent/JP4913582B2/en
Publication of JP2008163955A publication Critical patent/JP2008163955A/en
Application granted granted Critical
Publication of JP4913582B2 publication Critical patent/JP4913582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding bearing structure manufacturing method for easily manufacturing a large sliding bearing structure which has improved wear resistance, a smaller friction coefficient and sufficient toughness. <P>SOLUTION: The manufacturing method is provided for the sliding bearing structure 1 which has a plurality of ring-shaped sliding members 3, 3 mounted on a back metal 2 formed of metal. It comprises a step of injection molding a mixture of RB ceramics powder and phenol resin to obtain the plurality of sliding members, a step of adhering the plurality of obtained sliding members to the back metal in axial contact therewith with epoxy resin adhesive, and a step of machine cutting cut allowances previously provided on the inner peripheral face sides of the plurality of sliding members adhered thereto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、すべり軸受構造体の製造方法に関し、さらに詳しくは、耐摩耗性に優れ且つ摩擦係数が小さく更に十分な靭性を発揮し得る大型のすべり軸受構造体を簡易に製造できるすべり軸受構造体の製造方法に関する。   The present invention relates to a method for manufacturing a sliding bearing structure, and more specifically, a sliding bearing structure that can easily manufacture a large sliding bearing structure that has excellent wear resistance, a small friction coefficient, and can exhibit sufficient toughness. It relates to the manufacturing method.

近年、水力発電機等の大容量化及び高速化に伴って、その発電機で用いられる金属製のすべり軸受の面圧が増大している。そのため、上記金属製のすべり軸受では、その面圧の使用限界に達して、凝着や焼付損傷を起こす恐れがある。また、潤滑油等の管理が煩雑となる。
そこで、上記問題を解決する従来のすべり軸受として、耐摩耗性に優れ且つ摩擦係数が小さなRBセラミックス製のスリーブ軸受が知られている(例えば、特許文献1参照)。
In recent years, with an increase in capacity and speed of a hydroelectric generator or the like, the surface pressure of a metal plain bearing used in the generator has increased. For this reason, in the above-described metal sliding bearing, the use limit of the surface pressure may be reached, and adhesion or seizure damage may occur. Moreover, management of lubricating oil etc. becomes complicated.
Therefore, as a conventional plain bearing that solves the above problem, a sleeve bearing made of RB ceramics that is excellent in wear resistance and has a small friction coefficient is known (for example, see Patent Document 1).

上記特許文献1には、脱脂ぬかと熱硬化性樹脂との混合物を不活性ガス中で1次焼成した後、その焼成物を粉砕して炭化粉末(RBセラミックス粉末)とし、当該炭化粉末と熱硬化性樹脂との混合物を加圧成形した後、その成形体を不活性ガス中で2次焼成して得られる多孔質材料(RBセラミックス成形体)をスリーブ軸受2とすることが開示されている。また、上記特許文献1には、内径3mm、外径5mm、長さ5mmである比較的小型のスリーブ軸受2が開示されている。
しかし、上記特許文献1では、スリーブ軸受が加圧成形(射出成形)を経て形成されているため、上述のように比較的小型なスリーブ軸受しか製作することができず、その従来のスリーブ軸受を、発電機等で使用される大型のすべり軸受として適用することが困難であった。特に、高荷重で且つ低速の条件で用いられる大型のすべり軸受として必要十分な靭性を発揮できるものの出現が望まれている。
In Patent Document 1, a mixture of degreased bran and a thermosetting resin is first fired in an inert gas, and then the fired product is pulverized to obtain carbonized powder (RB ceramic powder). It is disclosed that the sleeve bearing 2 is a porous material (RB ceramic molded body) obtained by pressure-molding a mixture with a curable resin and then subjecting the molded body to secondary firing in an inert gas. . Patent Document 1 discloses a relatively small sleeve bearing 2 having an inner diameter of 3 mm, an outer diameter of 5 mm, and a length of 5 mm.
However, in Patent Document 1, since the sleeve bearing is formed through pressure molding (injection molding), only a relatively small sleeve bearing can be manufactured as described above. It has been difficult to apply as a large slide bearing used in a generator or the like. In particular, the emergence of a large-sized slide bearing that can exhibit necessary and sufficient toughness under high load and low speed conditions is desired.

特開2002−181049号公報JP 2002-181049 A

本発明は、上記現状に鑑みてなされたものであり、耐摩耗性に優れ且つ摩擦係数が小さく更に十分な靭性を発揮し得る大型のすべり軸受構造体を簡易に製造できるすべり軸受構造体の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described situation, and is capable of easily producing a large-sized plain bearing structure that has excellent wear resistance, a small friction coefficient, and can exhibit sufficient toughness. It aims to provide a method.

本発明者は、射出成形で得られる複数の摺動部材(分割体)を軸方向に密着させて摺動面を構成すれば、摺動面の内径及び軸方向長さを比較的大きな値に設定できること、及び射出成形で得られる2次焼成前のRBセラミックス成形体を摺動部材として採用すれば、耐摩耗性に優れ且つ摩擦係数が小さく更に十分な靭性を発揮し得ることを知見して、本発明を完成するに到った。
本発明は、以下の通りである。
1.金属製のバックメタルにリング状の複数の摺動部材を装着してなるすべり軸受構造体の製造方法であって、
RBセラミックス粉末とフェノール樹脂とを混合し射出成形して複数の前記摺動部材を得る工程と、
その得られた複数の前記摺動部材を、軸方向に接触するように前記バックメタルにエポキシ樹脂系接着剤で接着する工程と、
その接着された複数の前記摺動部材の内周面側に予め設けられた削り代を機械切削する工程と、を備えることを特徴とするすべり軸受構造体の製造方法。
2.前記エポキシ樹脂系接着剤は、二液硬化型である上記1.記載のすべり軸受構造体の製造方法。
The present inventor can make the inner surface and the axial length of the sliding surface relatively large by forming a sliding surface by closely contacting a plurality of sliding members (divided bodies) obtained by injection molding in the axial direction. Knowing that it can be set, and if the RB ceramic molded body before secondary firing obtained by injection molding is adopted as a sliding member, it has excellent wear resistance and a small friction coefficient, and can exhibit sufficient toughness. The present invention has been completed.
The present invention is as follows.
1. A method of manufacturing a sliding bearing structure in which a plurality of ring-shaped sliding members are mounted on a metal back metal,
A step of mixing RB ceramic powder and phenolic resin and injection molding to obtain a plurality of the sliding members;
Bonding the obtained plurality of sliding members to the back metal with an epoxy resin adhesive so as to contact in the axial direction;
And a step of mechanically cutting a machining allowance provided in advance on the inner peripheral surface side of the plurality of bonded sliding members. A method for manufacturing a sliding bearing structure, comprising:
2. The epoxy resin adhesive is a two-component curable type. The manufacturing method of the sliding bearing structure of description.

本発明のすべり軸受構造体の製造方法によると、1次焼成を経て得られたRBセラッミクス粉末とフェノール樹脂とを混合し射出成形して複数の摺動部材が得られ、その得られた2次焼成前の複数の摺動部材が、軸方向に接触するようにバックメタルにエポキシ樹脂系接着剤で接着され、その接着された複数の摺動部材の内周面側に予め設けられた削り代が機械切削される。
このように、射出成形で得られた複数の摺動部材を軸方向に密着させてバックメタルに接着するようにしたので、複数の摺動部材によって摺動面の内径及び軸方向長さを比較的大きな値に設定できる。また、バックメタルに対する接着後に複数の摺動部材の内周面側の削り代を機械切削するようにしたので、フェノール樹脂被膜層を除去して良摩擦特性を発揮し得ると共に、複数の摺動部材の寸法精度を必要十分なものとすることができる。また、複数の摺動部材とバックメタルとをエポキシ樹脂系接着剤で接着するようにしたので、両者の接着強度を必要十分なものとすることができる。さらに、2次焼成前のRBセラミックス成形体を摺動部材として採用しているので、耐摩耗性に優れ且つ摩擦係数が小さく更に十分な靭性を発揮させることができる。特に、従来のように2次焼成後のRBセラミックス成形体を摺動部材として採用するものに比べて、優れた靭性を発揮させることができる。その結果、発電機等で使用される、高荷重で且つ低速で用いられる大型のすべり軸受構造体を簡易に製作することができる。
また、前記エポキシ樹脂系接着剤が二液硬化型である場合は、複数の摺動部材とバックメタルとの接着強度を更に高めることができる。
According to the method for manufacturing a sliding bearing structure of the present invention, a plurality of sliding members are obtained by mixing RB ceramics powder obtained through primary firing and phenol resin and injection molding them, and the obtained secondary member. A plurality of sliding members before firing are bonded to the back metal with an epoxy resin adhesive so as to contact in the axial direction, and a cutting allowance provided in advance on the inner peripheral surface side of the bonded plurality of sliding members. Is machined.
As described above, since the plurality of sliding members obtained by injection molding are closely adhered to the back metal in the axial direction, the inner diameter and the axial length of the sliding surface are compared by the plurality of sliding members. A large value can be set. In addition, since the machining allowance on the inner peripheral surface side of the plurality of sliding members is mechanically cut after bonding to the back metal, the phenol resin coating layer can be removed to exhibit good friction characteristics and a plurality of sliding The dimensional accuracy of the member can be made necessary and sufficient. Further, since the plurality of sliding members and the back metal are bonded with the epoxy resin adhesive, the adhesive strength between them can be made necessary and sufficient. Furthermore, since the RB ceramic molded body before the secondary firing is employed as the sliding member, the wear resistance is excellent, the friction coefficient is small, and sufficient toughness can be exhibited. In particular, superior toughness can be exhibited as compared with a conventional case in which the RB ceramic molded body after secondary firing is employed as a sliding member. As a result, it is possible to easily manufacture a large-sized plain bearing structure that is used in a generator or the like and is used at a high load and at a low speed.
Moreover, when the said epoxy resin-type adhesive is a two-component curable type, the adhesive strength of a some sliding member and a back metal can further be improved.

本実施形態に係るすべり軸受構造体の製造方法は、金属製のバックメタルにリング状の複数の摺動部材を装着してなるすべり軸受構造体の製造方法であって、以下に述べる取得工程、接着工程及び切削工程を備えている。
上記摺動部材は、例えば、その内径が80〜120mmであり、その軸方向長さが20〜60mmであることができる。
上記摺動部材の曲げ弾性率は、例えば、15000MPa以下(好ましくは、12000MPa以下)であることができる。
上記摺動部材の曲げ強さは、例えば、60MPa以上(好ましくは、80MPa以上)であることができる。
なお、上記摺動部材の曲げ弾性率及び曲げ強さは、例えば、常温でJIS K7171に準じて計測されることができる。
The manufacturing method of a sliding bearing structure according to the present embodiment is a manufacturing method of a sliding bearing structure in which a plurality of ring-shaped sliding members are mounted on a metal back metal, and an acquisition step described below, It has a bonding process and a cutting process.
For example, the sliding member may have an inner diameter of 80 to 120 mm and an axial length of 20 to 60 mm.
The bending elastic modulus of the sliding member can be, for example, 15000 MPa or less (preferably 12000 MPa or less).
The bending strength of the sliding member can be, for example, 60 MPa or more (preferably 80 MPa or more).
In addition, the bending elastic modulus and bending strength of the said sliding member can be measured according to JISK7171 at normal temperature, for example.

上記「取得工程」は、RBセラミックス粉末とフェノール樹脂とを混合し射出成形して複数の摺動部材を得る工程である限り、その成形形態、手順等は特に問わない。
上記「RBセラミックス粉末」とは、米糠や麩などの麩糠類を脱脂したものとフェノール樹脂などの熱硬化性樹脂とを混合して不活性ガス中で1次焼成した後、その焼成物を粉砕して得られる粉末である。なお、上記「RBセラミックス」とは、RBセラミックスの改良材であり、RBセラミックスに比べて成形収縮比率が小さなCRBセラミックスも含むものとする。
上記RBセラミックス粉末とフェノール樹脂との混合割合は、重量比で70〜80:30〜20であることが好ましい。また、上記RBセラミックス粉末とフェノール樹脂との射出成形圧力は、20〜30MPaであることが好ましい。また、射出成形時の金型の温度は、130〜170℃であることが好ましい。
As long as the “acquisition step” is a step in which RB ceramic powder and a phenol resin are mixed and injection molded to obtain a plurality of sliding members, the molding form, procedure, and the like are not particularly limited.
The above “RB ceramic powder” refers to a mixture of degreased rice bran and rice bran and a thermosetting resin such as phenol resin, followed by primary firing in an inert gas, It is a powder obtained by pulverization. The “RB ceramics” is an improvement material for RB ceramics, and includes CRB ceramics having a smaller molding shrinkage ratio than RB ceramics.
The mixing ratio of the RB ceramic powder and the phenol resin is preferably 70 to 80:30 to 20 by weight. Moreover, it is preferable that the injection molding pressure of the said RB ceramic powder and a phenol resin is 20-30 Mpa. Moreover, it is preferable that the temperature of the metal mold | die at the time of injection molding is 130-170 degreeC.

上記「接着工程」は、上記取得工程で得られた複数の摺動部材を、軸方向に接触するようにバックメタルにエポキシ樹脂系接着剤で接着する工程である限り、その接着形態、手順等は特に問わない。
上記エポキシ樹脂系接着剤は、二液硬化型であることが好ましい。この接着剤は、硬化剤とエポキシ樹脂が反応することにより、熱や水分,溶剤などに対しても不溶・不融の3次元不融ポリマー(ネットワークポリマー)を生成し、常安定性樹脂として取り扱い得るためである。
なお、上記接着剤は、円筒状の上記バックメタルの内周面及び/又は上記摺動部材の外周面に塗布される。
As long as the “adhesion step” is a step of adhering the plurality of sliding members obtained in the acquisition step to the back metal with an epoxy resin adhesive so as to contact in the axial direction, the bonding form, procedure, etc. Is not particularly limited.
The epoxy resin adhesive is preferably a two-component curable type. This adhesive reacts with a curing agent and an epoxy resin to produce a three-dimensional infusible polymer (network polymer) that is insoluble and infusible to heat, moisture, and solvents, and is handled as a normally stable resin. To get.
The adhesive is applied to the inner peripheral surface of the cylindrical back metal and / or the outer peripheral surface of the sliding member.

上記「切削工程」は、上記接着工程で接着された複数の摺動部材の内周面側に予め設けられた削り代を機械切削する工程である限り、その切削形態、手順等は特に問わない。
上記取得工程において、射出成形の際に、被射出流動物と金型との温度差により、金型の表面にはフェノール樹脂が先に流れ込み固まることとなる。従って、複数の摺動部材の表面側に主にフェノール樹脂のみからなる被膜層3a(図4参照)ができており、機械切削によって被膜層が除去されて良摩擦特性を望むことができる。
上記削り代は、1〜5mmであることが好ましい。
As long as the “cutting step” is a step of mechanically cutting a machining allowance provided in advance on the inner peripheral surface side of the plurality of sliding members bonded in the bonding step, the cutting form, procedure, etc. are not particularly limited. .
In the acquisition process, during injection molding, the phenol resin flows into the mold surface first and hardens due to the temperature difference between the fluid to be injected and the mold. Therefore, the coating layer 3a (see FIG. 4) mainly made of only a phenol resin is formed on the surface side of the plurality of sliding members, and the coating layer is removed by mechanical cutting, and good friction characteristics can be desired.
The shaving allowance is preferably 1 to 5 mm.

以下、図面を用いて実施例により本発明を具体的に説明する。なお、本実施例では、本発明に係る「すべり軸受構造体」として、発電機のガイドベーン用のすべり軸受構造体を例示する。   Hereinafter, the present invention will be specifically described with reference to the drawings. In this embodiment, as a “slide bearing structure” according to the present invention, a slide bearing structure for a guide vane of a generator is illustrated.

(1)すべり軸受構造体の構成
本実施例に係るすべり軸受構造体1は、図1に示すように、金属製(CAC304)でリング状のバックメタル2の内周面に、リング状の一対の摺動部材3,3を軸方向に密着させた状態で接着されて構成されている。各摺動部材3,3は、その内径D1が100mmとされ、その外径D2が110mmとされ、その軸方向長さLが37.5mmとされている。
なお、一対の上記すべり軸受構造体1,1を、軸方向に所定間隔をもって離間させて軸受本体5に装着してすべり軸受6が構成される(図2参照)。
(1) Configuration of Slide Bearing Structure As shown in FIG. 1, the slide bearing structure 1 according to the present embodiment is made of a pair of ring-shaped metal (CAC304) on the inner peripheral surface of a ring-shaped back metal 2. The sliding members 3 and 3 are bonded together in the axial direction. Each sliding member 3, 3 has an inner diameter D1 of 100 mm, an outer diameter D2 of 110 mm, and an axial length L of 37.5 mm.
A pair of the slide bearing structures 1 and 1 are mounted on the bearing body 5 at a predetermined interval in the axial direction to constitute a slide bearing 6 (see FIG. 2).

(2)すべり軸受構造体の製造方法
次に、上記すべり軸受構造体1の製造方法について説明する。
先ず、CRBセラミックス粉末75重量%とフェノール樹脂25重量%とを混合した混合物を射出成形機(図示せず)に入れて、金型温度が150℃、射出成形圧力が25MPaの条件で成形して、一対の摺動部材3,3(図3参照)を得る。各摺動部材3は、その内径D1’が95mmとされ、その内周面側に2.5mmの削り代Sが予め設定さている。この削り代Sは、主にフェノール樹脂からなる被膜層3aを含んでいる(図4参照)。
(2) Manufacturing method of sliding bearing structure Next, the manufacturing method of the said sliding bearing structure 1 is demonstrated.
First, a mixture obtained by mixing 75% by weight of CRB ceramic powder and 25% by weight of phenol resin is put into an injection molding machine (not shown), and molded under conditions of a mold temperature of 150 ° C. and an injection molding pressure of 25 MPa. A pair of sliding members 3 and 3 (see FIG. 3) is obtained. Each sliding member 3 has an inner diameter D1 ′ of 95 mm, and a cutting allowance S of 2.5 mm is set in advance on the inner peripheral surface side. The cutting allowance S includes a coating layer 3a mainly made of a phenol resin (see FIG. 4).

次に、上記射出成形で得られた一対の摺動部材3,3を、それらの各軸端面を接触させてバックメタル2に二液硬化型エポキシ樹脂系接着剤で接着する(図5参照)。次いで、その接着された一対の摺動部材3,3の削り代Sを機械切削(例えば、旋盤加工等)して、上記すべり軸受構造体1(図1参照)が得られる。   Next, the pair of sliding members 3 and 3 obtained by the above injection molding are bonded to the back metal 2 with a two-component curable epoxy resin adhesive with their respective shaft end faces in contact (see FIG. 5). . Next, the machining allowance S of the paired sliding members 3 and 3 is mechanically cut (for example, lathe processing or the like) to obtain the sliding bearing structure 1 (see FIG. 1).

(3)実施例の効果
本実施例のすべり軸受構造体の製造方法によると、射出成形で得られた一対の摺動部材3,3を軸方向に密着させてバックメタル2に接着するようにしたので、一対の摺動部材3,3によって摺動面の内径及び軸方向長さを比較的大きな値に設定できる。また、バックメタル2に対する接着後に一対の摺動部材3,3の内周面側の削り代Sを機械切削するようにしたので、フェノール樹脂被膜層3aを除去して良摩擦特性を発揮し得ると共に、一対の摺動部材3,3の寸法精度を必要十分なものとすることができる。また、一対の摺動部材3,3とバックメタル2とを二液硬化型エポキシ樹脂系接着剤で接着するようにしたので、両者の接着強度を必要十分なものとすることができる。さらに、射出成形で得られる2次焼成前のRBセラミックス成形体を摺動部材3として採用しているので、耐摩耗性に優れ且つ摩擦係数が小さく更に十分な靭性を発揮させることができる。特に、従来のように2次焼成後のRBセラミックス成形体を摺動部材として採用するものに比べて、優れた靭性を発揮させることができる。その結果、発電機等で使用される、高荷重で且つ低速で用いられる大型のRBセラミック製のすべり軸受構造体1を簡易に製作することができる。
(3) Effect of Example According to the manufacturing method of the sliding bearing structure of this example, the pair of sliding members 3, 3 obtained by injection molding are brought into close contact in the axial direction so as to adhere to the back metal 2. Therefore, the inner diameter and the axial length of the sliding surface can be set to relatively large values by the pair of sliding members 3 and 3. Further, since the machining margin S on the inner peripheral surface side of the pair of sliding members 3 and 3 is mechanically cut after bonding to the back metal 2, the phenol resin coating layer 3a can be removed to exhibit good friction characteristics. In addition, the dimensional accuracy of the pair of sliding members 3 and 3 can be made necessary and sufficient. Further, since the pair of sliding members 3 and 3 and the back metal 2 are bonded with the two-component curable epoxy resin adhesive, the adhesive strength between them can be made necessary and sufficient. Furthermore, since the RB ceramic molded body before secondary firing obtained by injection molding is adopted as the sliding member 3, it is excellent in wear resistance, has a small friction coefficient, and can exhibit sufficient toughness. In particular, superior toughness can be exhibited as compared with a conventional case in which the RB ceramic molded body after secondary firing is employed as a sliding member. As a result, a large RB ceramic plain bearing structure 1 used in a generator or the like and used at a high load and a low speed can be easily manufactured.

次に、図6を用いて、2次焼成前及び2次焼成後のCRBセラミックス成形体の各試験結果について説明する。
先ず、すべり摩擦試験において、2次焼成前の成形体の摩擦係数は0.14〜0.25である。また、2次焼成後の成形体の摩擦係数は0.09〜0.14である。従って、2次焼成前及び2次焼成後の成形体は摩擦係数が小さなことがわかる。なお、上記すべり摩擦試験は、上記成形体と相手材(S45Cリング)とを、常温無潤滑状態において圧力が0.98MPaで且つすべり速度が0.5m/sで行ったものである。
Next, each test result of the CRB ceramic molded body before and after the secondary firing will be described with reference to FIG.
First, in the sliding friction test, the coefficient of friction of the compact before secondary firing is 0.14 to 0.25. Moreover, the coefficient of friction of the molded body after the secondary firing is 0.09 to 0.14. Therefore, it can be seen that the compact before and after the secondary firing has a small friction coefficient. Note that the sliding friction test was performed by using the molded body and the counterpart material (S45C ring) at a normal temperature and no lubrication state at a pressure of 0.98 MPa and a sliding speed of 0.5 m / s.

また、一般特性において、2次焼成前の成形体では、成形収縮率が0.33%であり、曲げ強さが88MPaであり、曲げ弾性率が10000MPaであり、引張強さが42MPaであり、シャルピー衝撃強さが1.7kJ/mであり、ロックウェル硬さが113であり、比重が1.54である。これに対して、2次焼成後の成形体では、曲げ強さが74MPaであり、曲げ弾性率が16800MPaであり、引張強さが23MPaであり、シャルピー衝撃強さが0.9kJ/mであり、ロックウェル硬さが108であり、比重が1.21である。従って、2次焼成前の成形体は、2次焼成後の成形体に比べて、各機械的強さが高いにもかかわらず弾性変形し易く靭性に優れることがわかる。
なお、上記曲げ強度及び曲げ弾性率は、JIS K7171に準じて、島津製作所社製「AG5000」を用いて、常温の雰囲気下で試験片(幅10mm、長さ90mm、厚さ4mm)に曲げ試験を施して計測された。
Further, in the general characteristics, the molded body before secondary firing has a molding shrinkage of 0.33%, a bending strength of 88 MPa, a bending elastic modulus of 10,000 MPa, and a tensile strength of 42 MPa, The Charpy impact strength is 1.7 kJ / m 2 , the Rockwell hardness is 113, and the specific gravity is 1.54. On the other hand, the molded body after the secondary firing has a bending strength of 74 MPa, a flexural modulus of 16800 MPa, a tensile strength of 23 MPa, and a Charpy impact strength of 0.9 kJ / m 2 . Yes, the Rockwell hardness is 108 and the specific gravity is 1.21. Therefore, it can be seen that the molded body before the secondary firing is easily elastically deformed and excellent in toughness, although the mechanical strength is higher than the molded body after the secondary firing.
The bending strength and the flexural modulus are in accordance with JIS K7171, using “AG5000” manufactured by Shimadzu Corporation, in a test piece (width 10 mm, length 90 mm, thickness 4 mm) in a normal temperature atmosphere. And measured.

尚、本発明においては、上記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。   In the present invention, the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention depending on the purpose and application.

RBセラミックス製のすべり軸受構造体を製作する技術として広く利用される。   It is widely used as a technique for manufacturing a sliding bearing structure made of RB ceramics.

本実施例に係るすべり軸受構造体の縦断面図である。It is a longitudinal cross-sectional view of the sliding bearing structure which concerns on a present Example. 本実施例に係るすべり軸受の縦断面図である。It is a longitudinal cross-sectional view of the slide bearing which concerns on a present Example. 射出成形で得られた摺動部材の縦断面図である。It is a longitudinal cross-sectional view of the sliding member obtained by injection molding. 図3の要部拡大模式図である。It is a principal part enlarged schematic diagram of FIG. 機械切削前のすべり軸受構造体の縦断面図である。It is a longitudinal cross-sectional view of the plain bearing structure before machine cutting. 2次焼成前及び2次焼成後のCRBセラミックス成形体の各試験結果を説明するための説明図である。It is explanatory drawing for demonstrating each test result of the CRB ceramic molded object before secondary baking and after secondary baking.

符号の説明Explanation of symbols

1;すべり軸受構造体、2;バックメタル、3;摺動部材。   1; sliding bearing structure, 2; back metal, 3; sliding member.

Claims (2)

金属製のバックメタルにリング状の複数の摺動部材を装着してなるすべり軸受構造体の製造方法であって、
RBセラミックス粉末とフェノール樹脂とを混合し射出成形して複数の前記摺動部材を得る工程と、
その得られた複数の前記摺動部材を、軸方向に接触するように前記バックメタルにエポキシ樹脂系接着剤で接着する工程と、
その接着された複数の前記摺動部材の内周面側に予め設けられた削り代を機械切削する工程と、を備えることを特徴とするすべり軸受構造体の製造方法。
A method of manufacturing a sliding bearing structure in which a plurality of ring-shaped sliding members are mounted on a metal back metal,
A step of mixing RB ceramic powder and phenolic resin and injection molding to obtain a plurality of the sliding members;
Bonding the obtained plurality of sliding members to the back metal with an epoxy resin adhesive so as to contact in the axial direction;
And a step of mechanically cutting a machining allowance provided in advance on the inner peripheral surface side of the plurality of bonded sliding members. A method for manufacturing a sliding bearing structure, comprising:
前記エポキシ樹脂系接着剤は、二液硬化型である請求項1記載のすべり軸受構造体の製造方法。   The method for manufacturing a sliding bearing structure according to claim 1, wherein the epoxy resin adhesive is a two-component curing type.
JP2006350510A 2006-12-26 2006-12-26 Manufacturing method of sliding bearing structure Active JP4913582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350510A JP4913582B2 (en) 2006-12-26 2006-12-26 Manufacturing method of sliding bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350510A JP4913582B2 (en) 2006-12-26 2006-12-26 Manufacturing method of sliding bearing structure

Publications (2)

Publication Number Publication Date
JP2008163955A true JP2008163955A (en) 2008-07-17
JP4913582B2 JP4913582B2 (en) 2012-04-11

Family

ID=39693714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350510A Active JP4913582B2 (en) 2006-12-26 2006-12-26 Manufacturing method of sliding bearing structure

Country Status (1)

Country Link
JP (1) JP4913582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147818B1 (en) 2010-11-29 2012-05-21 주식회사 맥테크 The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing
JP2013007343A (en) * 2011-06-24 2013-01-10 Shikoku Electric Power Co Inc Bearing for water-wheel generator
JP2013044417A (en) * 2011-08-25 2013-03-04 Toribotex Co Ltd Sliding bearing structure and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269621A (en) * 1985-09-24 1987-03-30 Anelva Corp Plasma processor
JP2003336592A (en) * 2002-03-13 2003-11-28 Minebea Co Ltd Motor-driven submergible pump
WO2005017045A1 (en) * 2003-08-13 2005-02-24 Sunstar Giken Kabushiki Kaisha Two-part curable composition
JP2005155655A (en) * 2003-11-12 2005-06-16 Hitachi Powdered Metals Co Ltd Sliding bearing manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269621A (en) * 1985-09-24 1987-03-30 Anelva Corp Plasma processor
JP2003336592A (en) * 2002-03-13 2003-11-28 Minebea Co Ltd Motor-driven submergible pump
WO2005017045A1 (en) * 2003-08-13 2005-02-24 Sunstar Giken Kabushiki Kaisha Two-part curable composition
JP2005155655A (en) * 2003-11-12 2005-06-16 Hitachi Powdered Metals Co Ltd Sliding bearing manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147818B1 (en) 2010-11-29 2012-05-21 주식회사 맥테크 The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing
JP2013007343A (en) * 2011-06-24 2013-01-10 Shikoku Electric Power Co Inc Bearing for water-wheel generator
JP2013044417A (en) * 2011-08-25 2013-03-04 Toribotex Co Ltd Sliding bearing structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP4913582B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP6209229B2 (en) UV curable resin composition
JP4803294B2 (en) Synchronizer ring
JP6185947B2 (en) Ultraviolet curable resin composition, sliding member, and manufacturing method of sliding member
WO2007058351A1 (en) Resin retainer and rolling bearing
CN101178102A (en) Wet-type copper based powder metallurgy friction wafer and manufacturing method
CN101671536B (en) Carbon fiber friction material and application thereof for manufacturing friction layer of vehicle steel synchronizer tooth ring
CN101555906B (en) Light and thin type self-lubricating bearing and manufacturing method thereof
JP4913582B2 (en) Manufacturing method of sliding bearing structure
KR102375656B1 (en) Method for manufacturing sintered component and sintered component
JP3682065B2 (en) Friction resistant synchronous ring
JP5765490B2 (en) Sliding member and manufacturing method of sliding member
CN102588460A (en) Synchronous ring for synchronizer and method for manufacturing synchronous ring
JP6093737B2 (en) Constant velocity joint and manufacturing method thereof
KR100502219B1 (en) Method of forming by cold worked powdered metal forged parts
JP2754769B2 (en) Manufacturing method of bearing with dynamic pressure groove
JP2856861B2 (en) Method of manufacturing sliding member embedded with solid lubricant
JP2007309369A (en) Shaft for cvt, and its manufacturing method
JP2014001427A (en) Method of manufacturing sintered component
US11378125B2 (en) Valve and a manufacturing method of a bearing surface for a valve
KR100789994B1 (en) Bush type sliding bearing comprising of sintered segments with sloped joining surface
CN205745867U (en) A kind of plastic coated composite steel pipe
CN104791382A (en) Integrated metal-based macromolecular composite self-lubrication bearing and manufacturing method thereof
CN106392078A (en) Method for producing a synchronizing ring and the synchronizing ring
JP2017180737A (en) Cage for rolling bearing and rolling bearing
JP2006057138A (en) Composite material and sliding member obtained by using the composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250