KR20020066025A - equipment grind and method manufacture bearing of prevention rust - Google Patents

equipment grind and method manufacture bearing of prevention rust Download PDF

Info

Publication number
KR20020066025A
KR20020066025A KR1020010006198A KR20010006198A KR20020066025A KR 20020066025 A KR20020066025 A KR 20020066025A KR 1020010006198 A KR1020010006198 A KR 1020010006198A KR 20010006198 A KR20010006198 A KR 20010006198A KR 20020066025 A KR20020066025 A KR 20020066025A
Authority
KR
South Korea
Prior art keywords
ball
bearing
percent
corrosion
zirconia ceramic
Prior art date
Application number
KR1020010006198A
Other languages
Korean (ko)
Other versions
KR100428075B1 (en
Inventor
이부락
Original Assignee
이부락
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이부락 filed Critical 이부락
Priority to KR10-2001-0006198A priority Critical patent/KR100428075B1/en
Publication of KR20020066025A publication Critical patent/KR20020066025A/en
Application granted granted Critical
Publication of KR100428075B1 publication Critical patent/KR100428075B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/42Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic oxides
    • F16C2206/48Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic oxides based on zirconia (ZrO2)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE: A method for manufacturing corrosion-proof bearing and grinding apparatus for corrosion-proof bearing ball is provided to allow rotating shaft of bearing to be driven in a stable manner, while preventing bearing from being easily worn out. CONSTITUTION: A method comprises a first step of mixing compound zirconia ceramic powder consisting of 92.66 to 96.4 percent ZrO2, 4.95 to 5.35 percent Y2O3, 0.15 to 0.35 percent Al2O3, 0.02 percent SiO2, 0.01 percent Fe2O3, and 0.04 percent Na2O; a second step of pressing the compound zirconia ceramic powder into a ball shape; a third step of sintering the compound zirconia ceramic powder being pressed into the ball shape, at a pressure of 1 ton/cm¬2 to 2 ton/cm¬2 and temperature of 1200 Deg.C to 1400 Deg.C; a fourth step of mixing a ball(2) passed through the sintering process, with diamond powder, injecting the mixture into V-shaped grooves(8') formed at a rotating plate(8) through an injection port(7) formed at an upper press plate(6) of a grinder, and grinding the injected ball; a fifth step of washing off the ball; and a sixth step of assembling the ball to an inner wheel and an outer wheel of a bearing.

Description

부식방지용 베어링 제조 방법 및 그 연마 장치{equipment grind and method manufacture bearing of prevention rust}Equation grind and method manufacture bearing of prevention rust

본 발명은 베어링에 관한 것으로서, 베어링의 내륜과 외륜 및 리테이너, 볼 등을 세라믹으로 형성하여 고속용, 진공용, 청정(Clean room), 내식용, 내열성, 비자성체, 방사선용, 내화학성, 저온, 고온, 전도성, 절연성 등의 특수 환경에서도사용이 가능하도록 된 부식방지용 베어링 제조 방법에 관한 것이다.The present invention relates to a bearing, wherein the inner ring, outer ring, retainer, ball, and the like of the bearing are formed of a ceramic, such as high speed, vacuum, clean room, corrosion resistance, heat resistance, nonmagnetic material, radiation, chemical resistance, and low temperature. The present invention relates to a method for manufacturing a bearing for preventing corrosion, which can be used even in a special environment such as high temperature, conductivity, and insulation.

종래에는 스틸 베어링의 소재(STB 2, STS 440C등)를 열처리하여 마르텐사이트(martensite)화 하여 마찰계수와 피로현상을 줄여 사용하여 왔다. 따라서 이러한 금속 베어링은 부식성에 매우 약하므로 부식이 발생되는 원인을 제거하기 위해 스테인레스 스틸(stainless steel)를 열처리하지 않은 Austenite화에서 사용하여 보았지만 DI-water, 산, 알카리, 유독가스(Fume), 수증기(steam), 가스에서 화학적 (chemical)으로는 가능하나 물성(리)적으로는 경도를 갖지 못해 베어링의 내륜, 외륜, 볼간의 많은 마찰 계수를 갖게 되므로 쉽게 마모되고 불규칙한 마모로 인한 원하는 구름운동을 얻을 수가 없다.Conventionally, materials of steel bearings (STB 2, STS 440C, etc.) have been heat-treated to martensite to reduce friction coefficient and fatigue phenomenon. Therefore, these metal bearings are very susceptible to corrosion, so in order to eliminate the cause of corrosion, stainless steel (stainless steel) has been used in unsintered Austenite, but DI-water, acid, alkali, fume, water vapor (steam), but chemically in gas, but not physically (hard) in hardness, it has many friction coefficients between inner ring, outer ring, and ball of bearings, so it can be easily worn and the desired rolling motion due to irregular wear I can't get it.

즉, 마르텐사이트(martensite)화의 경우에는 martensite DI-water, 산, 알카리, 유독가스(Fume), 수증기(steam), 가스의 접촉을 막고 오일을 보호하기 위해 베어링 하우징의 양쪽에 씰(Seal)을 한겹 또는 두겹으로 씰링 처리하고 있지만 베어링의 설치구성상 많은 어려운 문제점이 있으며, 또한 씰의 내구성 한계로 수명이 매우 짧아 베어링 주변부품을 전부 교체해야 하므로 많은 시간과 비용이 소요되는 단점이 있으며, 파이프 상태의 non-ion성의 플라스틱 및 금속으로 사용되어 왔다. 따라서 이는 선 또는 면 접촉 구동방식이기 때문에 소재 물성상 심한 마찰계수가 생길 수밖에 없으며, 점차적으로 면 접촉되면서 베어링에 받는 하중과 속도에 따라서 많은 마찰계수를 갖게 된다. 또한 여기서 발생하는 많은 분진(particle)들은 LCD, 반도체 칩을 생산하는 정밀제품과 제약회사의 약품제조라인에 유입될 경우 치명적인 불량제품이 발생될 뿐만 아니라 베어링이 회전운동을 하면서 마찰계수의 정도에 따라서 회전축의 흔들림 현상이 발생하여 제품의 불량률이 증가되는 문제점이 있었다.In other words, in the case of martensite, seals are provided on both sides of the bearing housing to prevent the contact of martensite DI-water, acid, alkali, fumes, steam, and gas and to protect the oil. Is sealed in one or two layers, but there are many difficult problems in the installation configuration of the bearing, and also because the durability of the seal is very short, it requires a lot of time and cost because all parts of the bearing must be replaced. It has been used as a state non-ionized plastic and metal. Therefore, since this is a line or surface contact driving method, a severe friction coefficient is inevitably generated due to material properties, and the surface frictional force gradually increases the friction coefficient depending on the load and speed of the bearing. In addition, many of the particles generated in the LCD and semiconductor chip and the pharmaceutical production line of the pharmaceutical company will not only cause fatal defects, but also the bearing's rotational motion depending on the degree of friction coefficient. There was a problem that the defect rate of the product is increased by the shaking of the rotating shaft occurs.

본 발명은 이와 같은 문제점을 해결하기 위한 것으로서, 베어링의 내륜, 외륜, 리테이너, 볼 등의 소재를 세라믹(Seramics)으로 원료처리→성형→소결→연마, 가공→완제품→세척→조립의 공정으로 베어링을 성형하여 고속용, 진공용, 청정용(Glean room), 내식용, 내열성, 비자성체, 방사선용, 내화학성, 저온, 고온, 전도성, 전열성 등을 갖도록 한 것으로서, DI-water, 산, 알카리, 유독가스(Fume), 수증기(steam), 가스등에 화학적으로 부식이 이루어지지 않도록 하여 제품의 불량 율을 최대한 줄일 수 있도록 한 것이다.The present invention is to solve such a problem, the bearing material of the inner ring, outer ring, retainer, ball, etc. of the bearing in the process of raw material treatment → molding → sintering → polishing, processing → finished product → washing → assembly Molded to have high speed, vacuum, clean room, corrosion resistance, heat resistance, nonmagnetic material, radiation, chemical resistance, low temperature, high temperature, conductivity, heat resistance, etc., DI-water, acid, It prevents chemical corrosion from alkali, fume, steam, and gas, so as to reduce the defective rate of the product as much as possible.

도1은 본 발명에 따른 베어링 볼의 제조공정도.1 is a manufacturing process of the bearing ball according to the present invention.

도2는 본 발명에 따른 베어링 볼의 연마장치 구성도.Figure 2 is a block diagram of the polishing apparatus of the bearing ball according to the present invention.

도3은 본 발명에 따른 베어링 조립 구성도Figure 3 is a bearing assembly configuration according to the present invention

<도면중 주요 부분에 대한 부호 설명><Description of Signs of Main Parts in Drawings>

1:베어링 2:베어링 볼1: bearing 2: bearing ball

3:내륜 4:외륜3: inner ring 4: outer ring

5:리테이너 6:가압판5: retainer 6: pressure plate

7:투입구 8:회전판7: entrance 8: turntable

8':요홈8 ': home

이하 첨부 도면에 의거하여 본 고안을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

지르코니아(ZrO2) 92.66∼96.4%, 이투륨(Y2O3) 4.95∼5.35%, 알루미나(Al2O3) 0.15∼0.35%, 산화규소(SiO2) 0.02%, 산화철(Fe2O3) 0.01%, 산화나트륨(Na2O) 0.04%의 조성물로 이루어진 복합 지르코니아 세라믹 분말을 혼합하는 공정과, 상기 복합 지르코니아 세라믹 분말을 볼 형태로 프레스하는 성형공정과, 상기 프레스 성형공정에서 압력1ton/㎠∼2ton/㎠, 소성온도 1200℃∼1400℃에서 소결하는 공정과, 상기 소결된 볼(2)은 다이아몬드분말과 혼합되어 연마기의 상부 가압판(6) 일측에 구비된 투입구(7)를 통하여 회전판(8)에 다수 형성된 ∨형의 요홈(8')에 인입되어 가공 연마되는 공정과, 상기 연마공정에서 완전한 구형으로 가공연마 된 볼을 세척하는 공정과, 상기 세척된 볼을 내륜(3)과 외륜(4)에 조립하는 공정으로 이루어진 것이다.Zirconia (ZrO 2 ) 92.66 to 96.4%, Iturium (Y 2 O 3 ) 4.95 to 5.35%, Alumina (Al 2 O 3 ) 0.15 to 0.35%, Silicon oxide (SiO 2 ) 0.02%, Iron oxide (Fe 2 O 3 ) 0.01 %, A composite zirconia ceramic powder comprising a composition of 0.04% sodium oxide (Na 2 O), a molding step of pressing the composite zirconia ceramic powder in the form of a ball, and a pressure of 1 ton / cm 2 to the press molding step Sintering at 2 ton / cm 2, firing temperature of 1200 ° C. to 1400 ° C., and the sintered ball 2 is mixed with diamond powder, through the inlet 7 provided on one side of the upper press plate 6 of the polishing machine. And a process of drawing into the groove (8 ') of a plurality of grooves formed in a plurality of processes, and washing the ball that has been completely polished in the polishing process, and washing the ball into the inner ring (3) and the outer ring ( 4) is made of the process of assembling.

이와 같은 제조 공정으로 이루어지는 본 발명은 먼저 베어링(1)의 내륜(3), 외륜(4), 리테이너(5), 볼(2)등의 소재를 세라믹(Seramics)으로 하고 각각의 금형을 설계하여 준비한다. 이때 제품을 양산화 하기 위해 금형이 갖추어야 할 조건은 기본적으로 내구성이 길어야 하고, 금형의 크랙 발생이 없어야 제품의 표면이 매끄럽고 우수한 제품을 생산 할 수 있게 된다.According to the present invention made of such a manufacturing process, first, materials such as the inner ring 3, the outer ring 4, the retainer 5, the ball 2 of the bearing 1 are ceramics, and the respective molds are designed. Prepare. At this time, the condition that the mold has to be in order to mass-produce the product should be basically durable, and the surface of the product should be smooth and excellent products can be produced without the crack of the mold.

따라서 본 발명은 원활한 구륜을 위해 가장 중요한 베어링의 볼을 제조하기 위한 것으로 이의 원료를 지르코니아(ZrO2), 이투륨(Y2O3), 알루미나(Al2O3), 산화규소(SiO2), 산화철(Fe2O3), 산화나트륨(Na2O)의 조성물로 이루어진 복합 지르코니아 세라믹 분말을 혼합하여 베어링 볼을 성형할 수 있는 원료를 준비한다.Thus, the present invention is a raw material thereof to be for the production of balls of the relevant bearing to facilitate Wheeled zirconia (ZrO 2), yitu volume (Y2O 3), alumina (Al 2 O 3), silicon oxide (SiO 2), iron oxide A raw material capable of forming a bearing ball is prepared by mixing a composite zirconia ceramic powder composed of a composition of (Fe 2 O 3 ) and sodium oxide (Na 2 O).

상기와 같이 준비된 조성물을 지르코니아(ZrO2) 92.66∼96.4%, 이투륨(Y2O3) 4.95∼5.35%, 알루미나(Al2O3) 0.15∼0.35%, 산화규소(SiO2) 0.02%, 산화철(Fe2O3) 0.01%, 산화나트륨(Na2O) 0.04%을 혼합하여 금형에 넣어 성형한다.Zirconia (ZrO 2) 92.66~96.4% the prepared composition as above, yitu volume (Y2O 3) 4.95~5.35%, alumina (Al 2 O 3) 0.15~0.35% , silicon oxide (SiO 2) 0.02%, iron oxide ( Fe 2 O 3 ) 0.01%, sodium oxide (Na 2 O) 0.04% is mixed into a mold and molded.

상기 금형은 성형하고자 하는 베어링의 크기에 따라서 여러가지 종류로 설계제작한다. 본 발명에서 추구하는 복합 베어링의 규격은 아래의 표1과 같다.The mold is designed and manufactured in various types according to the size of the bearing to be molded. The specification of the composite bearing pursued in the present invention is shown in Table 1 below.

상기 표1에서와 같이 성형하고자 하는 베어링의 규격에 해당하는 금형을 준비Prepare a mold corresponding to the standard of the bearing to be molded as shown in Table 1 above

하여 준비된 복합 지르코지아 세라믹의 원료를 넣고 프레스로 압축 성형한다.The raw material of the prepared composite zirconia ceramics is added and compression molded by a press.

상기 압축되는 원료는 프레스 성형공정에서 압력1ton/㎠∼2ton/㎠, 소성온도 1200℃∼1400℃에서 소결한다. 이때 일축성형시 발생되는 밀도의 불균일성을 개선하고 차후 고품질의 베어링을 성형하기 위한 목적으로 성형방식을 정수압 성형을 동시에 실시하였다. 본 발명에서 사용되는 지르코니아 소결은 대개 1200℃ 이상에서 이루어지므로 소성온도를 1,250℃에서 1,400℃까지 변화시켜 밀도와 수축율 등의 특성변화를 조사하여 최적의 제조공정조건을 도출시키도록 하였다.The compressed raw material is sintered at a pressure of 1 ton / cm 2 to 2 ton / cm 2 and a firing temperature of 1200 ° C. to 1400 ° C. in the press molding process. At this time, hydrostatic pressure molding was simultaneously performed for the purpose of improving the nonuniformity of density generated during uniaxial molding and for forming a high quality bearing in the future. Zirconia sintering used in the present invention is usually made at more than 1200 ℃ to change the firing temperature from 1,250 ℃ to 1,400 ℃ to investigate the characteristic changes such as density and shrinkage to derive the optimum manufacturing process conditions.

또한 베어링의 내경과 외경의 수축율이 크게 다르므로 링 모양의 베어링의 구조에서 오는 밀도의 미세한 차이나 구조물의 역학적 관계로 인하여 수축율 변화가 수반된 것으로 판단되었다. 따라서 이들의 편차를 최종치수에 반영하기 위하여 소성전후의 외경과 내경의 수축율 변화 측정하였다.In addition, since the shrinkage ratio between the inner and outer diameters of the bearings differs greatly, it was judged that the shrinkage rate was accompanied by a slight difference in density from the ring-shaped bearing structure or a mechanical relationship between the structures. Therefore, in order to reflect these deviations in the final dimension, the shrinkage rate of the outer and inner diameters before and after firing was measured.

아래의 표2는 소성온도와 성형압에 따른 외경 수축율을 측정한 것이며, 표3은 소성온도와 성형압에 따른 내경 수축율이며, 표4는 소성온도와 성형압에 따른 두께 수축율이며, 표5는 소결온도와 일축성형압에 따른 밀도의 특성을 나타낸 것이며, 표6은 소결온도와 정수압(CIP)에 따른 밀도의 특성을 나타낸 것이다.Table 2 below shows the outer diameter shrinkage according to the firing temperature and molding pressure, Table 3 shows the inner diameter shrinkage according to the firing temperature and molding pressure, Table 4 shows the thickness shrinkage according to the firing temperature and molding pressure, and Table 5 The density characteristics according to the sintering temperature and uniaxial molding pressure are shown. Table 6 shows the density characteristics according to the sintering temperature and hydrostatic pressure (CIP).

상기의 표에서 알 수 있듯이 소결 온도가 높을 수록 지르코니아 베어링의 소결 밀도는 증가하였는데 소성온도는 1,250∼1,300℃ 였으며, 일축성형 때의 밀도는 5.92∼6.12g/㎤로 폭넓은 값이 얻어졌다.As can be seen from the above table, as the sintering temperature was increased, the sintering density of the zirconia bearing was increased. The firing temperature was 1,250 to 1,300 ° C, and the density at the time of uniaxial molding was 5.92 to 6.12 g / cm 3.

상기 성형압은 저온에서 수축율에 영향을 많이 주었으며 1,250℃에서는 소성온도가 중요한 인자로 작용하였다.The molding pressure greatly affected the shrinkage rate at low temperatures, and the firing temperature was an important factor at 1,250 ° C.

상기 표5와 표6에서 살펴보면, 일축성형과 정수압성형간의 차이는 1,250℃의 저온 소결 영역에서만 압력의 영향을 받았다. 이때 정수압성형에서는 밀도가 5.91∼6.07g/㎤의 값으로 일축성형시 보다 변화 폭이 적게 얻어졌다.Referring to Tables 5 and 6, the difference between uniaxial molding and hydrostatic pressure molding was influenced only by the pressure in the low temperature sintering region of 1,250 ° C. In hydrostatic molding, the density was 5.91 to 6.07 g / cm 3, and the variation was smaller than that in uniaxial molding.

상기 성형압력이 증가하면서 베어링의 수축율이 증가하였는데 성형의 영향을 크게 받았고 그 값은 21∼24% 범위에 있어 편차가 컸다. 이때 수축율은 소성온도에 따라서 차이가 발생되는데 소성온도가 높으면 수축율이 증가하다가 1,400℃근방의 고온에 이르면 수축율이 둔화 하였고 성형압이 작은 베어링에서는 오히려 수축율이 감소하는 경향을 보였다.As the molding pressure was increased, the shrinkage of the bearing was increased, but the molding was greatly influenced, and the value was varied in the range of 21 to 24%. At this time, the shrinkage rate is different depending on the firing temperature. When the firing temperature is high, the shrinkage rate increases, but when the temperature reaches 1,400 ℃, the shrinkage rate is slowed down.

한편 정수압 성형에 의한 수축율은 일축성형에 의한 것보다 수축율 변화범위가좁아 22∼23.5%의 변화를 나타내었다. 정수압성형으로 제조된 베어링 역시 소성온도가 높을 수록 수축율이 증가하였으나 일축성형보다 큰 폭의 변화는 보이지 않았다.On the other hand, the shrinkage rate by hydrostatic molding showed a 22 to 23.5% change due to a narrower range of shrinkage change than that by uniaxial molding. Bearings made by hydrostatic molding also had shrinkage as the firing temperature increased, but no significant change was observed than uniaxial molding.

상기와 같이 성형 및 소결이 끝난 후 베어링 볼(2)은 다이아몬드 분말과 혼합되어 연마기의 상부 가압판(6) 일측에 구비된 투입구(7)를 통하여 인입된 다음 회전판(8)을 회전시키면 외면에 연마제 분말이 도포된 베어링 볼이 회전판에 원형으로 다수 형성된 ∨형의 요홈(8')에 각각 인입되어 가공연마된다. 이때 볼의 연마시 중요한 것은 연마공차를 최대한 0.05mm정도로 적게 하는 것이 연마시간을 단축할 수 있게되는 것이며, 베어링의 구름운동을 원할하게 하기 위해서는 볼의 진구도가 매우 월등해야 하며 볼 성형시 균일한 밀도를 얻어야 한다.After forming and sintering as described above, the bearing ball 2 is mixed with diamond powder and introduced through the inlet 7 provided on one side of the upper press plate 6 of the polishing machine, and then the rotating plate 8 is rotated, thereby polishing the abrasive on the outer surface. The powder-bearing bearing balls are drawn into the groove-shaped grooves 8 'which are formed in a large number in a circle on the rotating plate, and are processed and polished. At this time, it is important to reduce the grinding tolerance to 0.05mm as much as possible to reduce the grinding time.To make the rolling motion of the bearing smooth, the spherical degree of the ball must be very excellent. Density must be obtained.

상기 연마기의 회전판 구동은 저부에 설치된 구동모터 또는 제3의 구동력에 의하여 선택적으로 행할 수 있게 된다.The rotary plate driving of the polishing machine can be selectively performed by a driving motor or a third driving force provided at the bottom.

상기 회전판에 원형으로 다수 형성된 ∨형의 요홈(8')에 각각 인입 된 볼은 회전판(8)이 회전함에 따라서 볼(2)이 자체적으로 회전함과 동시에 상부의 가압판(6)에 의하여 공정상태가 이루어지므로 볼은 회전판(8)과 가압판(6)사이에서 자전과 공전을 이루면서 연마되어 진구도가 매우 월등하게 된다.The balls drawn into the groove-shaped grooves 8 'formed in a plurality of circular shapes on the rotating plate are rotated by the rotating plate 8, and the ball 2 rotates by itself and at the same time by the upper platen. Since the ball is made while rotating and rotating between the rotating plate (8) and the pressure plate (6) is very excellent sphericity.

상기 연마과정을 마친 후에는 세척, 조립과정을 마치면 베어링이 완성된다.After finishing the polishing process, the bearing is completed when the cleaning and assembly process is completed.

상기와 같이 이루어지는 본 발명의 베에링 제조공정을 간단히 요약하여 살펴보면, 소재를 복합 지르코니아 세라믹(Seramics)분말로 원료준비→성형→소결→연마,가공→완제품→세척→조립의 공정으로 베어링을 성형하는 것이다.Briefly summarizing the manufacturing process of the bearing of the present invention as described above, the material is formed into a composite zirconia ceramic (Seramics) powder raw material preparation → molding → sintering → polishing, processing → finished products → washing → assembly It is.

본 발명에 있어서 베어링의 사용용도에 따라서 내륜과 볼, 리테이너를 복합 지르코지아 세라믹로 성형하고 외륜은 금속 또는 플라스틱으로 할 수 있으며, 외륜과 볼, 리테이너를 복합 지르코지아 세라믹로 성형하고 내륜을 금속 또는 플라스틱으로 할 수 있으며, 외륜, 내륜, 볼, 리테이너를 모두 복합 지르코지아 세라믹으로 성형하여 베어링을 성형할 수 있게 된다.In the present invention, the inner ring, the ball, and the retainer may be formed of a composite zirconia ceramic and the outer ring may be made of metal or plastic, and the outer ring, the ball, and the retainer may be formed of the composite zirconia ceramic, and the inner ring may be formed. It can be made of metal or plastic, and the outer ring, the inner ring, the ball, and the retainer can all be molded from composite zirconia ceramic to form a bearing.

이렇게된 본 발명은 고속용, 진공용, 청정용(Clean room), 내식용, 내열성, 비자성체, 방사선용, 내화학성, 저온, 고온, 전도성, 전열성 등에 잘 견딜 수 있도록 함으로써, 반도체 칩을 생산하기 위한 작업공정으로 웨이퍼 엣칭시 엣칭액에 의한 베어링의 부식방지, 해변가에 설치되는 기계설비의 회전축에 사용되는 베어링의 염에 의한 부식방지, 얼음분쇄기 및 인공설에 사용되는 회전축 베어링의 습기, 냉동에 의한 부식방지, 제약회사 작업현장의 작업설비에 사용되는 축 베어링 등 DI-water, 산, 알카리, 유독가스(Fume), 수증기(steam), 가스등과 접촉되는 현장의 설비장치의 베어링이 화학적으로 부식되는 것을 방지할 수 있게 된다.Thus, the present invention makes it possible to withstand high speed, vacuum, clean room, corrosion resistance, heat resistance, nonmagnetic material, radiation, chemical resistance, low temperature, high temperature, conductivity, heat resistance, and the like. Work process for production to prevent corrosion of bearings by etching liquid during etching of wafers, to prevent corrosion by bearing salts used in rotating shafts of machinery equipment installed on the beach, moisture of rotating shaft bearings used in ice grinders and artificial snow To prevent corrosion and chemical resistance of bearings on site that come into contact with DI-water, acids, alkalis, fumes, steam, gas, etc. Corrosion can be prevented.

이와 같이 이루어진 본 발명은 부식을 막기위하여 외륜, 내륜, 볼, 리테이너를 복합 지르코지아 세라믹으로 성형하여 베어링의 회전축이 안정적으로 구륜되도록하고, DI-water, 산, 알카리, 유독가스(Fume), 수증기(steam), 가스에서 화학적으로 가능토록 하는 동시에 물성적인 경도를 갖도록 하여 많은 마찰에도 쉽게 마모되지 않도록 하고, 산, 알카리, 가스의 접촉을 막기 위해 별도의 씰링 장치를 하지 않아도 부식이 생기지 않고 장기간 사용할 수 있도록 한 것이다.In order to prevent corrosion, the present invention is made by molding the outer ring, inner ring, ball, and retainer with a composite zirconia ceramic so that the rotating shaft of the bearing is stably wheeled, DI-water, acid, alkali, toxic gas (Fume), It is chemically possible in steam and gas and at the same time has a physical hardness so that it is not easily worn under a lot of friction, and corrosion does not occur for a long time without a separate sealing device to prevent contact with acid, alkali and gas. It is intended to be used.

또한 본 발명은 최근 신기술의 진보와 더불어 반도체 장치, LCD & 브라운관, 모니터 제조설비, 항공/우주, 해양설비, 공작기계, 제강설비, 진공/고온/초저온설비, 생명공학/이화학 기기, 화학제조장치, 식품/섬유제조설비, 절연성 설비, 비자성용도, 각종 실험용기기 등에 적합한 복합 볼베어링과 볼 그리고, 특수부품 등을 적용하여 특수환경분야 및 첨단 기술분야 등 산업전반에 걸쳐 신개념의 설비기술을 지원할 수 있게 된 효과를 갖게 되었다.In addition, the present invention, with the recent advances in new technology, semiconductor devices, LCD & CRT, monitor manufacturing equipment, aviation / aerospace, marine equipment, machine tools, steelmaking equipment, vacuum / high temperature / cryogenic equipment, biotechnology / physicochemical equipment, chemical manufacturing equipment By applying complex ball bearings and balls suitable for food / textile manufacturing facilities, insulating equipment, nonmagnetic applications, and various laboratory equipment, and special parts, new concept equipment technology can be supported throughout the industry including special environment and high technology fields. It became effective.

Claims (3)

합성수지 또는 금속으로 이루어진 베어링에 있어서, 지르코니아(ZrO2) 92.66∼96.4%, 이투륨(Y2O3) 4.95∼5.35%, 알루미나(Al2O3) 0.15∼0.35%, 산화규소(SiO2) 0.02%, 산화철(Fe2O3) 0.01%, 산화나트륨(Na2O) 0.04%의 조성물로 이루어진 복합 지르코니아 세라믹 분말을 혼합하는 공정과,In the bearing made of a synthetic resin or metal, zirconia (ZrO 2) 92.66~96.4%, yitu volume (Y2O 3) 4.95~5.35%, alumina (Al 2 O 3) 0.15~0.35% , silicon oxide (SiO 2) 0.02% A process of mixing a composite zirconia ceramic powder comprising a composition of 0.01% iron oxide (Fe 2 O 3 ) and 0.04% sodium oxide (Na 2 O), 상기 복합 지르코니아 세라믹 분말을 볼 형태로 프레스하는 성형공정과,A molding process of pressing the composite zirconia ceramic powder into a ball shape; 상기 프레스 성형공정에서 압력1ton/㎠∼2ton/㎠, 소성온도 1200℃∼1400℃에서 소결하는 공정과,Sintering at a pressure of 1 ton / cm 2 to 2 ton / cm 2 and a firing temperature of 1200 ° C. to 1400 ° C. in the press molding step; 상기 소결된 볼(2)은 다이아몬드분말과 혼합되어 연마기의 상부 가압판(6) 일측에 구비된 투입구(7)를 통하여 회전판(8)에 다수 형성된 ∨형의 요홈(8')에 인입되어 가공 연마되는 공정과,The sintered ball 2 is mixed with the diamond powder and introduced into the groove-shaped groove 8 'formed in the rotary plate 8 through the inlet 7 provided on one side of the upper press plate 6 of the polishing machine to be processed and polished. Process and 상기 연마공정에서 완전한 구형으로 가공연마 된 볼을 세척하는 공정과,The process of washing the ball polished to a complete spherical shape in the polishing process, 상기 세척된 볼을 내륜(3)과 외륜(4)에 조립하는 공정으로 이루어진 것을 특징으로 하는 부식방지 베어링 제조방법.Corrosion preventing bearing manufacturing method comprising the step of assembling the washed ball to the inner ring (3) and the outer ring (4). 제1항에 있어서, 베어링의 외륜, 내륜, 볼, 리테이너가 지르코니아(ZrO2) 92.66∼96.4%, 이투륨(Y2O3) 4.95∼5.35%, 알루미나(Al2O3) 0.15∼0.35%,산화규소(SiO2) 0.02%, 산화철(Fe2O3) 0.01%, 산화나트륨(Na2O) 0.04%의 조성물로 베어링이 제조되도록 된 것을 특징으로 하는 부식방지 베어링 제조 방법.The method of claim 1, wherein the outer ring of the bearing, an inner ring, ball, retainer is zirconia (ZrO 2) 92.66~96.4%, yitu volume (Y2O 3) 4.95~5.35%, alumina (Al 2 O 3) 0.15~0.35% , oxidation Method for producing a corrosion-resistant bearing, characterized in that the bearing is made of a composition of silicon (SiO 2 ) 0.02%, iron oxide (Fe 2 O 3 ) 0.01%, sodium oxide (Na 2 O) 0.04%. 복합 지르코니아 세라믹으로 성형된 볼(2)을 다이아몬드분말과 혼합한 후 상부 가압판(6) 일측에 구비된 투입구(7)를 통하여 회전판(8)에 다수 형성된 ∨형의 요홈(8')에 인입시켜 회전판을 회전시키면 볼이 공전과 자전을 병행하면서 가공 연마되는 것을 특징으로 하는 부식방지 베어링 볼의 연마 장치.The ball 2 formed of the composite zirconia ceramic is mixed with the diamond powder and then introduced into the concave groove 8 'formed on the rotating plate 8 through the inlet 7 provided on one side of the upper press plate 6. The rotating device of the anti-corrosion bearing ball, characterized in that the ball is processed and polished while rotating and rotating in parallel.
KR10-2001-0006198A 2001-02-08 2001-02-08 method manufacture bearing of prevention rust KR100428075B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0006198A KR100428075B1 (en) 2001-02-08 2001-02-08 method manufacture bearing of prevention rust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0006198A KR100428075B1 (en) 2001-02-08 2001-02-08 method manufacture bearing of prevention rust

Publications (2)

Publication Number Publication Date
KR20020066025A true KR20020066025A (en) 2002-08-14
KR100428075B1 KR100428075B1 (en) 2004-04-27

Family

ID=27693747

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0006198A KR100428075B1 (en) 2001-02-08 2001-02-08 method manufacture bearing of prevention rust

Country Status (1)

Country Link
KR (1) KR100428075B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033676A (en) * 2002-10-15 2004-04-28 김병영 Ceramic ball manufacture Method and Apparatus
KR100695618B1 (en) * 2006-02-27 2007-03-16 창원대학교 산학협력단 Processing in Nano Hybrid Ceramic Ball-bearing Fabrication
CN102211312A (en) * 2010-05-19 2011-10-12 江苏通用钢球滚子有限公司 Large-cycle water-aqua grinding process for precision steel ball
KR101147818B1 (en) * 2010-11-29 2012-05-21 주식회사 맥테크 The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing
CN104117902A (en) * 2014-08-04 2014-10-29 宁国市南方耐磨材料有限公司 Abrasion-resistant steel ball grinding machine
CN107116459A (en) * 2017-06-22 2017-09-01 合肥力和机械有限公司 A kind of primary grinding technics of bearing steel ball
CN108883420A (en) * 2016-03-29 2018-11-23 Posco公司 Deironing apparatus and regenerative system including the deironing apparatus
CN115325035A (en) * 2022-08-09 2022-11-11 海宁市耐特陶塑轴承股份有限公司 Precise zirconia ceramic bearing and processing technology thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719091B2 (en) * 1974-06-26 1982-04-20
JPS60104647A (en) * 1983-11-09 1985-06-10 Toshiba Corp Sphere machining device
JPS6018620A (en) * 1984-04-27 1985-01-30 Toray Ind Inc Ball for bearing use
JPH06280880A (en) * 1993-12-11 1994-10-07 Touken Sangyo:Kk Manufacture of hollow ball for bearing
US5730928A (en) * 1996-08-23 1998-03-24 Eastman Kodak Company Method of making air lubricated hydrodynamic ceramic bearings

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033676A (en) * 2002-10-15 2004-04-28 김병영 Ceramic ball manufacture Method and Apparatus
KR100695618B1 (en) * 2006-02-27 2007-03-16 창원대학교 산학협력단 Processing in Nano Hybrid Ceramic Ball-bearing Fabrication
CN102211312A (en) * 2010-05-19 2011-10-12 江苏通用钢球滚子有限公司 Large-cycle water-aqua grinding process for precision steel ball
KR101147818B1 (en) * 2010-11-29 2012-05-21 주식회사 맥테크 The manufacturing method of the journal thrust bearing using a porous ceramic, and the journal thrust bearing
CN104117902A (en) * 2014-08-04 2014-10-29 宁国市南方耐磨材料有限公司 Abrasion-resistant steel ball grinding machine
CN108883420A (en) * 2016-03-29 2018-11-23 Posco公司 Deironing apparatus and regenerative system including the deironing apparatus
CN107116459A (en) * 2017-06-22 2017-09-01 合肥力和机械有限公司 A kind of primary grinding technics of bearing steel ball
CN115325035A (en) * 2022-08-09 2022-11-11 海宁市耐特陶塑轴承股份有限公司 Precise zirconia ceramic bearing and processing technology thereof
CN115325035B (en) * 2022-08-09 2024-04-19 海宁市耐特陶塑轴承股份有限公司 Precise zirconia ceramic bearing and processing technology thereof

Also Published As

Publication number Publication date
KR100428075B1 (en) 2004-04-27

Similar Documents

Publication Publication Date Title
KR100428075B1 (en) method manufacture bearing of prevention rust
CN106365661B (en) A kind of multilayered structure alumina composite ceramic and preparation method thereof
US9316599B2 (en) Device for inspecting ceramic sphere
EP2703669B1 (en) Method of producing a rolling contact member
CN109777013B (en) Graphene modified polytetrafluoroethylene oil seal lip piece material and preparation method thereof
CN101508570A (en) Reactively sintered silicon carbide ceramic and production process
JP2004009195A (en) Super-finishing grinding wheel
CN103387394A (en) Preparation method of high-precision ceramic ball
US5879078A (en) Device for producing ceramic sintered body
CN112923694A (en) Quartz sand powder energy-saving drying device
CN115975318A (en) Low-wear self-lubricating material and preparation method thereof
JPH0246538B2 (en)
JP3654861B2 (en) Rotary joint for CMP equipment
CN109369179A (en) A kind of research of graphene enhancing zirconia ceramics preparation process
JP2000337386A (en) Ceramic rolling element raw material, its manufacture and rolling element using it
KR100432164B1 (en) a method processing and supersonic method adult form of nut and bolt ceramic
KR100400662B1 (en) The equipment adult form ball plastic
JP2013148127A (en) Method of manufacturing ceramic rolling element and rolling support device
AU2021100556A4 (en) High-purity alumina ceramic shaft and preparation method thereof
CN102627459A (en) Production technology of high-precision high-speed ceramic roller
KR101652397B1 (en) zirconia-alumina composite and method for manufacturing the same
KR101626335B1 (en) Manufacturing method for Self-lubricated SiC ceramic disk
JP2013160367A (en) Method for manufacturing ceramic rolling element, and rolling support device
KR100400659B1 (en) the method adultform ball bearing plastic
KR101569974B1 (en) Composite oxide, its preparation method and mechanical seal comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140408

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160407

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170407

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200304

Year of fee payment: 17