KR101144516B1 - Alloy Steel for Low Temperature Vacuum Carburizing - Google Patents

Alloy Steel for Low Temperature Vacuum Carburizing Download PDF

Info

Publication number
KR101144516B1
KR101144516B1 KR1020090117993A KR20090117993A KR101144516B1 KR 101144516 B1 KR101144516 B1 KR 101144516B1 KR 1020090117993 A KR1020090117993 A KR 1020090117993A KR 20090117993 A KR20090117993 A KR 20090117993A KR 101144516 B1 KR101144516 B1 KR 101144516B1
Authority
KR
South Korea
Prior art keywords
carburizing
temperature
alloy steel
vacuum carburizing
present
Prior art date
Application number
KR1020090117993A
Other languages
Korean (ko)
Other versions
KR20110061370A (en
Inventor
조봉래
강창원
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020090117993A priority Critical patent/KR101144516B1/en
Priority to US12/753,974 priority patent/US20110129382A1/en
Priority to DE102010003902A priority patent/DE102010003902A1/en
Publication of KR20110061370A publication Critical patent/KR20110061370A/en
Application granted granted Critical
Publication of KR101144516B1 publication Critical patent/KR101144516B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 저온 진공침탄 전용 합금강에 관한 것으로, 보다 상세하게는 종래의 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서도 침탄소입할 경우 충분한 페라이트상(α)이 확보되어 애뉼러스 기어의 열처리에 따른 열변형의 개선효과가 크며, 제조하고자 하는 애뉼러스 기어의 진원도, 원통도 등의 형상 규제를 만족할 수 있는 저온 진공침탄 전용 합금강에 관한 것이다,The present invention relates to a low-temperature vacuum carburizing alloy steel, more specifically, a sufficient ferrite phase (α) is secured when the carburizing in about 810 ℃, the minimum available carburizing temperature of the conventional vacuum carburizing furnace to ensure that the heat treatment of the annular gear According to the present invention, the present invention relates to an alloy steel for low-temperature vacuum carburizing, which has a large effect of improving heat deformation and can satisfy the shape regulation of roundness, cylinder degree, etc. of the annular gear to be manufactured.

본 발명의 저온 진공침탄 전용 합금강은 Fe를 주성분으로 하고, 여기에 C 0.17~0.24 중량%, Cr 0.8~1.2 중량%, Mn 0.4~0.8 중량%, Si 0.80~1.20 중량%, P 0.020 중량% 이하, S 0.020 중량% 이하, V 0.015~0.045 중량%, Fe 나머지 중량%을 포함하는 합금계 성분에 용존 산소량이 10ppm 이하가 되도록 구성한 것을 특징으로 한다.The low-temperature vacuum carburizing alloy steel of the present invention contains Fe as a main component, C 0.17 to 0.24 wt%, Cr 0.8 to 1.2 wt%, Mn 0.4 to 0.8 wt%, Si 0.80 to 1.20 wt%, and P 0.020 wt% or less. , S 0.020% by weight or less, V 0.015 to 0.045% by weight, the balance of dissolved oxygen in the alloy component comprising the remaining weight% of Fe characterized in that it is configured to be 10ppm or less.

Description

저온 진공침탄 전용 합금강{Alloy Steel for Low Temperature Vacuum Carburizing}Alloy Steel for Low Temperature Vacuum Carburizing {Alloy Steel for Low Temperature Vacuum Carburizing}

본 발명은 저온 진공침탄 전용 합금강에 관한 것으로, 보다 상세하게는 종래의 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서도 충분한 페라이트상(α)이 확보되어 애뉼러스 기어의 열처리에 따른 열변형의 개선효과가 크며, 제조하고자 하는 애뉼러스 기어의 진원도, 원통도 등의 형상 규제를 만족할 수 있는 저온 진공침탄 전용 합금강에 관한 것이다,The present invention relates to a low-temperature vacuum carburizing alloy steel, more specifically, a sufficient ferrite phase (α) is secured even at about 810 ° C., which is the lowest available carburizing temperature of a conventional vacuum carburizing furnace, to provide thermal deformation due to heat treatment of the annular gear. It relates to an alloy steel for low temperature vacuum carburizing, which has a significant improvement effect and can satisfy the shape regulation of roundness, cylinder degree, etc. of the annular gear to be manufactured.

자동차 변속기 기어류는 통상 침탄소입 열처리를 실시한다. 침탄소입 열처리시 부품의 변형이 수반되는데, 그 변형량이 과다한 경우 부품간 조립성 저하문제, 이상 소음이 발생하게 되는 등의 예기치 않는 문제가 발생한다. Automobile transmission gears are usually subjected to carburization. Deformation of parts is involved in the heat treatment of carburization, and when the amount of deformation is excessive, unexpected problems such as deterioration of assemblability between parts and abnormal noise are generated.

도 1은 일반적인 애뉼러스 기어의 일 예를 도시한 도면이다.1 is a diagram illustrating an example of a general annular gear.

도시된 바와 같이, 자동변속기의 중요 동력전달장치인 유성기어장치의 주요 부품인 애뉼러스 기어는 원통형 부품이며, 내접기어로서 브로칭 가공을 통해 치형가공을 한다. 따라서, 경이 크고 두께가 얇아 특히 열변형에 민감할 뿐 만 아니라, 그라인딩 등 열처리 후 치면 가공이 용이한 일반 외접 기어와 달리 열처리 후 가공 이 매우 어려운 부품 중의 하나이다. As shown, the annular gear which is the main part of the planetary gear device, which is an important power transmission device of the automatic transmission, is a cylindrical part and is toothed through broaching as an internal gear. Therefore, it is one of the parts that is difficult to process after heat treatment, unlike general external gear, which is not only sensitive to thermal deformation, but also easy to process after grinding such as grinding because of its large diameter and thin thickness.

열변형을 감안한 애뉼러스 기어의 열처리 방법에는 여러가지가 있다. There are various methods of heat treatment of the annular gear in consideration of thermal deformation.

예컨대, 종래에는 애뉼러스 기어의 열변형을 최소화하기 위해 주로 가스침탄 로냉 고주파 가열 지그 소입으로 이어지는 공법을 적용했다. 최종 지그 소입공정 즉, 고주파 가열후 지그를 결합하고 소입을 적용함으로써 진원도, 원통도 등의 형상 규제를 만족할 수 있었다. For example, in order to minimize the thermal deformation of the annular gear, a method that mainly involves gas carburizing, quenching, high frequency heating jig quenching is applied. The final jig quenching process, that is, by combining the jig after high frequency heating and applying quenching, the shape regulation such as roundness, cylinder degree, etc. could be satisfied.

그러나, 상기한 공법은 공정이 길고 복잡할 뿐만 아니라, 부품별로 하나씩 처리해야하므로 작업효율이 감소하는 등의 문제가 있었으며, 또한 지그 냉각시 국부적인 불균일 냉각에 의해 기어치의 형상이 불균일하게 변형되어 이상소음이 유발되는 문제도 있었다.However, the above-described method has a problem that the process is not only long and complicated, but also has to be processed one by one for each part, thereby reducing work efficiency. Also, the shape of the gear teeth is unevenly deformed by local uneven cooling during jig cooling. There was also a problem that caused noise.

한편, 최근 들어서는 생산성이 우수하며, 균일냉각이 가능한 진공침탄 및 가스소입이 적용됨으로써 불균일 변형에 의한 소음 유발 문제 개선에 큰 기여를 하였으나, 진원도, 원통도 등의 형상 측면에서 기존의 지그 소입법에 비해서는 불리하여 개선의 여지가 있다.On the other hand, in recent years, productivity has been improved, and vacuum carburization and gas quenching, which can be uniformly cooled, have contributed greatly to the improvement of noise-induced problems caused by non-uniform deformation, but in terms of roundness, cylinder degree, etc. It is disadvantageous compared with the room for improvement.

따라서, 진공 침탄공법을 적용하면서 진원도, 원통도 등의 형상 측면에서도 기존의 지그 소입법에 버금가는 저온 진공침탄 공법을 적용하기 위한 연구가 많이 이루어지고 있다. 첨부된 도 2는 저온 진공침탄 공법을 설명하는 개념도로서, 철-탄소의 상태도이다.Therefore, many studies have been made to apply the low temperature vacuum carburizing method comparable to the existing jig quenching method in terms of roundness, cylinder degree, etc. while applying the vacuum carburizing method. 2 is a conceptual diagram illustrating a low temperature vacuum carburizing method, which is a state diagram of iron-carbon.

상기 도면을 참조하면, 저온 침탄공법은 오스테나이트상(γ)과 페라이트상(α)이 공존하는 이상(dual phase)영역인 A1~A3 사이의 온도영역에서 침탄을 함으 로써 처리품의 승온 및 침탄공정에서 일정량의 페라이트상(α)이 상변화 없이 유지되고, 소입시에도 유지됨으로써 열변형 개선효과가 매우 큰 공법이다. 그러나, 현재 양산되는 진공침탄로의 경우 설비특성상 800~810℃ 이상에서 침탄 양산성이 있기 때문에 기존에 상용되는 침탄용 소재를 침탄 가용 온도인 810℃에서 침탄소입할 경우 충분한 페라이트상(α)이 확보되지 않아 열변형 개선효과가 미비한 단점이 있다.Referring to the drawings, the low-temperature carburization method is a temperature raising and carburizing process of the treated product by carburizing in the temperature range between A1 and A3, which is a dual phase in which the austenitic phase (γ) and the ferrite phase (α) coexist. The ferrite phase (α) is maintained without phase change at, and is maintained at the time of quenching, so the thermal deformation improvement effect is very large. However, in the case of vacuum carburizing furnaces that are mass-produced at present, due to the characteristics of carburizing and mass production at 800 ~ 810 ° C or more, sufficient ferrite phase (α) is obtained when carburizing is carried out at the carburizing temperature of 810 ° C. As it is not secured, there is a disadvantage that the effect of improving thermal deformation is insufficient.

본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로, 본 발명이 해결하고자 하는 기술적 과제는 종래의 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서도 충분한 페라이트상(α)을 확보할 수 있는 저온 진공침탄 전용 합금강을 제공하는 데에 있다.The present invention is to solve the above-mentioned conventional problems, the technical problem to be solved by the present invention is a low temperature that can ensure a sufficient ferrite phase (α) even at about 810 ℃, the lowest available carburizing temperature of the conventional vacuum carburizing furnace An alloy steel for vacuum carburizing is provided.

상기 목적을 달성하기 위한 본 발명의 저온 진공침탄 전용 합금강은 Fe를 주성분으로 하고, 여기에 C 0.17~0.24 중량%, Cr 0.8~1.2 중량%, Mn 0.4~0.8 중량%, Si 0.80~1.20 중량%, P 0.020 중량% 이하, S 0.020 중량% 이하, V 0.015~0.045 중량%, Fe 나머지 중량%을 포함하는 합금계 성분에 용존 산소량이 10ppm 이하로 구성된 것을 특징으로 한다.Low-temperature vacuum carburizing alloy steel of the present invention for achieving the above object is based on Fe, the C 0.17 ~ 0.24 wt%, Cr 0.8 ~ 1.2 wt%, Mn 0.4 ~ 0.8 wt%, Si 0.80 ~ 1.20 wt% It is characterized in that the amount of dissolved oxygen is 10ppm or less in the alloy component, including P 0.020% by weight or less, S 0.020% by weight or less, V 0.015 to 0.045% by weight, and Fe remaining weight%.

본 발명에 따른 저온 진공침탄 전용 합금강에 의하면, 종래의 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서도 침탄소입할 경우 충분한 페라이트상(α)이 확보되어 애뉼러스 기어의 열처리에 따른 열변형의 개선효과가 크며, 제조하고자 하는 애뉼러스 기어의 진원도, 원통도 등의 형상 규제를 만족할 수 있는 효과를 발휘한다.According to the low-temperature vacuum carburizing alloy steel according to the present invention, a sufficient ferrite phase (α) is secured when the carburizing is carried out even at about 810 ° C., which is the lowest available carburizing temperature of a conventional vacuum carburizing furnace. The improvement effect is great and the effect which can satisfy shape regulation of roundness, cylinder degree, etc. of the annular gear to manufacture is exhibited.

이하 본 발명에 따른 저온 진공침탄 전용 합금강의 적합한 실시예에 대해 상 세히 설명한다.Hereinafter, a suitable embodiment of the low-temperature vacuum carburizing alloy steel according to the present invention will be described in detail.

본 발명의 저온 진공침탄 전용 합금강은 아래 <표 1>과 같이 Fe를 주성분으로 하고, 여기에 C 0.17~0.24 중량%, Cr 0.8~1.2 중량%, Mn 0.4~0.8 중량%, Si 0.80~1.20 중량%, P 0.020 중량% 이하, S 0.020 중량% 이하, V 0.015~0.045 중량%, Fe 나머지 중량%을 포함하는 합금계 성분에 합금의 청정도를 위해(불순물 함량을 줄이기 위해) 용존산소량을 10ppm 이하로 구성되는 것을 특징으로 하고 있다. The low-temperature vacuum carburizing alloy steel of the present invention contains Fe as a main component, as shown in Table 1 below, and C 0.17 to 0.24 wt%, Cr 0.8 to 1.2 wt%, Mn 0.4 to 0.8 wt%, and Si 0.80 to 1.20 wt%. To the purity of the alloy (to reduce the impurity content) in the alloying components including%, P 0.020 wt% or less, S 0.020 wt% or less, V 0.015 to 0.045 wt%, and the rest of Fe by weight, the amount of dissolved oxygen is 10 ppm or less. It is characterized by being configured.

<표 1> 발명강 및 비교강 합금조성 (함유량 단위 : 중량%)<Table 1> Alloy composition of invention steel and comparative steel (content unit: weight%)

구분division CC CrCr MnMn SiSi PP SS VV O
(ppm)
O
(ppm)
FeFe
발명강Invention steel 0.17
~0.24
0.17
~ 0.24
0.8
~1.2
0.8
~ 1.2
0.4
~0.8
0.4
~ 0.8
0.8
~1.2
0.8
~ 1.2
0.02
이하
0.02
Below
0.02
이하
0.02
Below
0.015
~0.045
0.015
~ 0.045
10
이하
10
Below
나머지Remainder
비교강
(SCr420H)
Comparative steel
(SCr420H)
0.17
~0.23
0.17
~ 0.23
0.85
~1.25
0.85
~ 1.25
0.55
~0.9
0.55
~ 0.9
0.15
~0.35
0.15
~ 0.35
0.03
이하
0.03
Below
0.03
이하
0.03
Below
-- 25
이하
25
Below
나머지Remainder

본 발명에 따른 상기 저온 진공침탄 전용 합금강의 설계 핵심은 다음과 같다Design core of the low-temperature vacuum carburizing alloy steel according to the present invention is as follows.

본 발명의 상기 합금강은 기존의 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서 충분한 페라이트상(α)을 확보할 수 있도록 합금 설계되어 있다. 즉, 본 발명의 합금강의 A3 온도가 850℃ 이상 확보할 수 있도록 합금 설계되어 있어 810~830℃ 침탄 및 소입공정을 통해서도 페라이트상(α)이 심부에 30~50%가 존재할 수 있게 되어 있다.The alloy steel of the present invention is designed to ensure a sufficient ferrite phase (α) within about 810 ℃, the lowest available carburizing temperature of the existing vacuum carburizing furnace. That is, the alloy is designed to ensure that the A3 temperature of the alloy steel of the present invention to 850 ℃ or more, 30-30% of the ferrite phase (α) can be present in the core portion through the carburizing and quenching process 810 ~ 830 ℃.

본 발명의 합금강의 설계를 보다 상세히 설명하면 다음과 같다.Referring to the design of the alloy steel of the present invention in more detail as follows.

탄소(C)는 고주파 침탄후 적정한 심부경도를 가질 수 있도록 0.17~0.24중량%를 함유한다. 이때 이 함량이 규정량 미만일 경우 페라이트상(α)이 너무 많아 심 부 경도가 너무 떨어져 강도가 작아지고, 그 이상일 경우에는 페라이트상(α)의 양이 너무 작아 변형개선 효과가 미비한 문제가 있다.Carbon (C) contains 0.17 to 0.24% by weight to have a proper core hardness after high frequency carburization. In this case, when the content is less than the prescribed amount, the ferrite phase (α) is too large and the hardness of the core is too low to decrease the strength.

기어강의 피로강도를 높이는 중요한 원소인 크롬(Cr)은 0.8~1.2 중량% 첨가했다. 크롬(Cr)은 A1 온도를 낮출 뿐만 아니라, A3온도 또한 낮추기 때문에 그 량을 제한했다. A1 온도를 일정 낮추고, 피로강도를 확보하기 위해 0.8% 이상 첨가했으며, 1.2% 이하로 제한시킨 것은 A3 온도 저하로 충분한 페라이트상(α)의 양 확보가 힘들다. Chromium (Cr), an important element to increase the fatigue strength of gear steels, was added in an amount of 0.8 to 1.2% by weight. Chromium (Cr) not only lowers the A1 temperature, but also lowers the A3 temperature, limiting the amount. In order to lower the temperature of A1 constantly and add 0.8% or more to secure the fatigue strength, limiting it to 1.2% or less is difficult to secure sufficient amount of ferrite phase (α) due to the A3 temperature decrease.

망간(Mn)은 0.4~0.8 중량%로 기존 침탄강 대비 저감시켰다.Manganese (Mn) was reduced from 0.4 to 0.8% by weight compared to the existing carburized steel.

이는 망간이 강도를 높이는 장점은 있으나, 제강시 편석을 유발해 불균일 열변형의 원인이 되는 원소이기 때문이다. A1 온도를 낮추기 위해 0.4% 이상 첨가했으며, 0.8% 이하로 제한시킨 것은 편석을 줄이기 위해서이다. This is because manganese has an advantage of increasing strength, but it is an element that causes segregation during steelmaking and causes non-uniform thermal deformation. More than 0.4% was added to lower the A1 temperature and less than 0.8% was used to reduce segregation.

A3 온도를 높여 충분한 페라이트상(α)의 양을 확보하기 위해 규소(Si) 함량을 증대시키고, V 를 충분한 양으로 첨가했다. The silicon (Si) content was increased in order to raise the A3 temperature to secure a sufficient amount of ferrite phase (α), and V was added in a sufficient amount.

규소(Si)는 0.80~1.20 중량%로 하여 A3 온도를 높일 뿐만 아니라, 접촉 피로특성(내피팅성)도 현저히 높이게 된다. 이때 함유량이 규정량 미만일 경우 A3 온도 상승효과가 크지 않아 침탄 온도에서 충분한 페라이트상(α)의 양 확보가 어렵고, 1.2 중량%를 넘어서는 경우 기지의 고용 강화효과가 너무 커 성형성을 극히 떨어뜨려 단조 및 가공을 어렵게 한다. 규소량이 기존강 대비 매우 높기 때문에 본 발명의 합금강은 진공침탄에서 적합하다. 왜냐하면 기존의 가스 침탄로에서 침탄하는 경우 산화성 분위기에 의해 표면 산화층이 많이 생겨 내구성을 떨어드릴 위험이 있 이 때문이다. Silicon (Si) is 0.80 to 1.20 wt%, which not only increases the temperature of A3 but also significantly increases the contact fatigue property (fitting resistance). At this time, if the content is less than the specified amount, it is difficult to secure sufficient amount of ferrite phase (α) at the carburizing temperature because the temperature increase effect of A3 is not large. If the content exceeds 1.2% by weight, the solid solution strengthening effect is so large that the formability is extremely forged and forged. And make processing difficult. Since the amount of silicon is very high compared to the existing steel, the alloy steel of the present invention is suitable for vacuum carburizing. This is because, when carburizing in the existing gas carburizing furnace, there is a risk that the surface oxide layer is formed by the oxidizing atmosphere, thereby reducing the durability.

바나듐(V)는 0.015~0.045 중량%로 하여 A3 온도 상승효과를 주었을 뿐만 아니라 결정립 미세화 효과도 극대화시켰다. V는 미세한 석출강화를 시켜주는 원소이므로, 그 량을 0.015 이상으로 제한한 것은 미세 석출강화에 의한 심부 강도 향상 효과 뿐만 아니라 A3 상승 효과를 위한 것이고, 0.045 이하로 제한 한 것은 그 가격이 매우 비싸기 때문이다. Vanadium (V) was 0.015 to 0.045 wt%, which not only gave the A3 temperature increase effect but also maximized the grain refinement effect. Since V is an element that enhances fine precipitation strengthening, the amount thereof is limited to 0.015 or more for not only the core strength enhancement effect due to the fine precipitation strengthening but also the A3 synergistic effect, and the limit to 0.045 or less is very expensive. to be.

용존 산소는 10ppm 이하로 하였다. 본 발명의 합금강은 기존 침탄용 합금강 대비 심부 경도가 비교적 낮기 때문에 표면층(침탄층)의 요구 특성이 더욱 중요시되기 때문에 용존 산소량을 10ppm 이하로 제한했다. 이상의 용존 산소가 있는 경우 거대 산화물에 의한 표면부 접촉피로 성능 저하 문제가 발생하는 문제가 있기 때문이다. Dissolved oxygen was 10 ppm or less. Since the alloy steel of the present invention has a relatively lower core hardness than the existing carburizing alloy steel, the required characteristics of the surface layer (carburizing layer) are more important, so the amount of dissolved oxygen is limited to 10 ppm or less. This is because when the dissolved oxygen is present, there is a problem that a performance degradation problem occurs due to surface contact contact caused by the large oxide.

<실시예 및 비교예>&Lt; Examples and Comparative Examples &

아래의 <표 2>에 본 발명의 합금강 및 비교강의 화학성분 및 중요한 상변태 온도를 나타내었다.Table 2 below shows the chemical composition and the important phase transformation temperature of the alloy steel and comparative steel of the present invention.

<표 2>TABLE 2

구분division 화학성분(중량%)Chemical composition (% by weight) 상변태온도(℃)Phase transformation temperature (℃) 저온침탄
가능온도
(℃)
Low temperature carburizing
Temperature
(℃)
CC CrCr MnMn SiSi PP SS VV O
(ppm)
O
(ppm)
FeFe AlAl A3A3
발명강
Invention steel
0.220.22 1.01.0 0.60.6 1.11.1 0.0150.015 0.010.01 0.040.04 88 나머지Remainder 761761 852852 770-840770-840
비교강
(SCr42OH)
Comparative steel
(SCr42OH)
0.20.2 1.11.1 0.80.8 0.20.2 0.0150.015 0.0150.015 -- 1717 나머지Remainder 743743 803803 755-790755-790

기존강인 상기 비교강의 경우, 기존 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서 침탄시, A3 온도 이상의 γ 단상영역에서 침탄되기 때문에 심부에 α 량이 없을 것으로 예측되며, 반면 본 발명강은 충분한 α량이 확보되어 열변형 개선 효과가 클 것으로 예측된다. In the case of the comparative steel, which is an existing steel, when the carburizing is performed at about 810 ° C, which is the lowest available carburizing temperature of the existing vacuum carburizing furnace, it is predicted that there is no amount of α in the core because it is carburized in the γ single phase region above the A3 temperature. It is expected that the amount of thermal deformation will be greatly improved.

실제 810℃에서 침탄하여 비교한 예를 아래의 <표 3>에 나타내었다.Actually carburized at 810 ℃ compared example is shown in Table 3 below.

<표 3>TABLE 3

구분division 열처리 조건Heat treatment condition 열처리 물성Heat treatment properties 열처리 후
평균치수(㎛)
After heat treatment
Average dimension (㎛)
비고Remarks
경도(Hv)
(표면/심부)
Hardness (Hv)
(Surface / deep)
심부 α량(%)Core α amount (%) 진원도Roundness 원통도Cylinder
실시예
(발명강)
Example
Inventive Lecture
진공침탄(810℃)→ 고압가스냉각
(130bar, 헬륨)
Vacuum carburization (810 ℃) → high pressure gas cooling
(130 bar, helium)
750/340750/340 약 35Approximately 35 3838 4242 발명강
저온침탄
Invention steel
Low temperature carburizing
비교예
(기존강)
Comparative example
(Existing steel)
비교1
Comparison 1
760/390760/390 약 2About 2 5353 7272 기존강
저온침탄
Existing Steel
Low temperature carburizing
비교2Comparison 2 가스침탄(920℃)→노냉→고주파 가열→지그퀀칭(유냉)Gas carburizing (920 ° C) → furnace cooling → high frequency heating → jig quenching (oil cooling) 750/400750/400 00 3636 4040 지그 소입Jig Hardening * 사용 시험 부품 : 6속 자동변속기용 리어(Rear) 애뉼러스 기어(기어 내경 IBD : 122.45mm (도 1의 기어)
* 열처리 후 평균치수는 제품 20개를 시험하여 평균한 값임
* Test part used: Rear annular gear for 6-speed automatic transmission (gear inner diameter IBD: 122.45mm (gear of Figure 1))
* The average dimension after heat treatment is the average of 20 products tested

상기 본 발명강을 810℃에서 저온 진공침탄 한 경우, 동일한 열처리를 한 기존강 대비 월등한 열처리 후 변형개선을 보였다. 이는 기존 침탄재의 경우, 이 온도에서의 침탄에서는 심부에 충분량의 페라이트상(α)이 확보되지 않은 반면, 본 발명강의 경우 충분한 페라이트상(α)의 양이 확보되었기 때문이다.When the present invention steel was vacuum carburized at 810 ° C., deformation was improved after heat treatment superior to that of conventional steels subjected to the same heat treatment. This is because, in the case of the existing carburizing material, sufficient ferrite phase α is not secured in the core at the carburization at this temperature, whereas sufficient ferrite phase α is secured in the case of the inventive steel.

또한, 기존의 지그소입법과 대비해도 동등한 수준의 결과를 나타낼 정도로 우수한 결과를 나타내었다In addition, compared with the existing jig annealing method, the results were excellent enough to show the same level of results.

이상에서 설명한 바와 같이, 본 발명에 따른 저온 진공침탄 전용 합금강은 종래의 진공침탄로의 가용 최저 침탄온도인 810℃ 내외에서도 침탄소입시 충분한 페라이트상(α)이 확보되어 애뉼러스 기어의 열처리에 따른 열변형효과를 개선시킬 수 있으며, 나아가 제조하고자 하는 애뉼러스 기어의 진원도, 원통도 등의 형상 규제를 만족시킬 수 있게 된다.As described above, the low temperature vacuum carburizing-only alloy steel according to the present invention ensures sufficient ferrite phase (α) upon carburizing even in the vicinity of 810 ° C., which is the lowest available carburizing temperature of the conventional vacuum carburizing furnace, resulting in heat treatment of the annular gear. The heat deformation effect can be improved, and the shape regulation of roundness, cylinder degree, etc. of the annular gear to be manufactured can be satisfied.

도 1 은 종래의 일반적인 애뉼러스 기어의 구조를 도시한 사시도,1 is a perspective view showing the structure of a conventional general annular gear,

도 2는 저온 진공침탄을 설명할 수 있는 개념도로서, 철-탄소의 상태도임.Figure 2 is a conceptual diagram that can explain low-temperature vacuum carburizing, it is a state diagram of iron-carbon.

Claims (1)

Fe를 주성분으로 하고, 여기에 C 0.17~0.24 중량%, Cr 0.8~1.2 중량%, Mn 0.4~0.8 중량%, Si 0.80~1.20 중량%, P 0.020 중량% 이하, S 0.020 중량% 이하, V 0.015~0.045 중량%, 나머지 Fe 및 기타 불가피한 불순물 성분에 합금의 청정도 또는 불순물 함량을 줄이기 위해 용존산소량이 10ppm 이하가 되도록 구성한 저온 진공침탄 전용 합금강.Fe is the main component, and C 0.17 to 0.24 wt%, Cr 0.8 to 1.2 wt%, Mn 0.4 to 0.8 wt%, Si 0.80 to 1.20 wt%, P 0.020 wt% or less, S 0.020 wt% or less, V 0.015 Low-temperature vacuum carburizing alloy steel, which is composed of dissolved oxygen less than 10ppm to reduce the purity or impurity content of the alloy to ˜0.045% by weight, remaining Fe and other unavoidable impurities.
KR1020090117993A 2009-12-01 2009-12-01 Alloy Steel for Low Temperature Vacuum Carburizing KR101144516B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090117993A KR101144516B1 (en) 2009-12-01 2009-12-01 Alloy Steel for Low Temperature Vacuum Carburizing
US12/753,974 US20110129382A1 (en) 2009-12-01 2010-04-05 Alloy steel for low temperature vacuum carburizing
DE102010003902A DE102010003902A1 (en) 2009-12-01 2010-04-13 Alloy steel for vacuum carburizing at low temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090117993A KR101144516B1 (en) 2009-12-01 2009-12-01 Alloy Steel for Low Temperature Vacuum Carburizing

Publications (2)

Publication Number Publication Date
KR20110061370A KR20110061370A (en) 2011-06-09
KR101144516B1 true KR101144516B1 (en) 2012-05-11

Family

ID=43972461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090117993A KR101144516B1 (en) 2009-12-01 2009-12-01 Alloy Steel for Low Temperature Vacuum Carburizing

Country Status (3)

Country Link
US (1) US20110129382A1 (en)
KR (1) KR101144516B1 (en)
DE (1) DE102010003902A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) * 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
JP5872863B2 (en) * 2011-11-25 2016-03-01 Jfe条鋼株式会社 Gear having excellent pitting resistance and method for producing the same
EP2804965B1 (en) 2012-01-20 2020-09-16 Swagelok Company Concurrent flow of activating gas in low temperature carburization
JP6601359B2 (en) * 2016-09-30 2019-11-06 Jfeスチール株式会社 Carburized parts with excellent wear resistance and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054069A (en) 1998-07-30 2000-02-22 Nippon Steel Corp Carburized material excellent in rolling fatigue characteristic
JP2001192765A (en) 1999-10-27 2001-07-17 Mitsubishi Seiko Muroran Tokushuko Kk Steel for carburizing and carbo-nitriding
KR20070108569A (en) * 2005-04-28 2007-11-12 아이신에이더블류 가부시키가이샤 Carburized induction-hardened component
KR20090037631A (en) * 2007-10-12 2009-04-16 주식회사 세아베스틸 High strength carburizing steel with high fatigue resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085733A (en) * 1989-08-24 1992-02-04 Nippon Seiko Kabushiki Kaisha Rolling steel bearing
JP3238031B2 (en) * 1995-01-18 2001-12-10 新日本製鐵株式会社 Long life carburized bearing steel
US5961748A (en) * 1995-08-09 1999-10-05 Nkk Corporation Laser-welded steel pipe
JP5446243B2 (en) 2008-05-12 2014-03-19 セイコーエプソン株式会社 Electro-optical device, driving method, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054069A (en) 1998-07-30 2000-02-22 Nippon Steel Corp Carburized material excellent in rolling fatigue characteristic
JP2001192765A (en) 1999-10-27 2001-07-17 Mitsubishi Seiko Muroran Tokushuko Kk Steel for carburizing and carbo-nitriding
KR20070108569A (en) * 2005-04-28 2007-11-12 아이신에이더블류 가부시키가이샤 Carburized induction-hardened component
KR20090037631A (en) * 2007-10-12 2009-04-16 주식회사 세아베스틸 High strength carburizing steel with high fatigue resistance

Also Published As

Publication number Publication date
US20110129382A1 (en) 2011-06-02
KR20110061370A (en) 2011-06-09
DE102010003902A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5129564B2 (en) Carburized induction hardening parts
US9506137B2 (en) Gas-carburized steel part excellent in surface fatigue strength, steel product for gas carburizing, and manufacturing method of gas-carburized steel part
JP2012214900A (en) Method for manufacturing machine components
JP4229609B2 (en) Carburized and hardened gear and manufacturing method thereof
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JP4354277B2 (en) Method for manufacturing carburized and quenched members
KR101144516B1 (en) Alloy Steel for Low Temperature Vacuum Carburizing
CN102791890B (en) Spring steel and surface treatment method for steel material
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JPH0971841A (en) Steel for soft-nitriding
EP3020841B1 (en) Coil spring, and method for manufacturing same
KR101795401B1 (en) Carburizing steel and mrthod for manufacturing the same
JP2020041186A (en) Case hardened steel for gas carburization, and gas carburization
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
WO2012128222A1 (en) Steel material for machine structural use reduced in thermal deformation
KR100961040B1 (en) Nitrided Steels having High Strength
KR101449040B1 (en) Method for manufacturing transmission gear of automobile
JPWO2002044435A1 (en) Carburizing steel and carburizing gear
JP5641991B2 (en) Machine structural steel with low heat treatment deformation
KR101054775B1 (en) Alloy Steel and Carburizing Heat Treatment Method for Vehicle Transmission Gears
JPH0568526B2 (en)
JP2002194492A (en) High hardness parts
KR20120043546A (en) Cr-mo alloy steel for annulus gear of transmission and annulus gear of transmission manufactured by using the same
JPH0820820A (en) Production of cas hardened steel tube excellent in grain coarsening resistance
JPH0499846A (en) High strength steel for gear

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 8