KR20090037631A - High strength carburizing steel with high fatigue resistance - Google Patents

High strength carburizing steel with high fatigue resistance Download PDF

Info

Publication number
KR20090037631A
KR20090037631A KR1020070103051A KR20070103051A KR20090037631A KR 20090037631 A KR20090037631 A KR 20090037631A KR 1020070103051 A KR1020070103051 A KR 1020070103051A KR 20070103051 A KR20070103051 A KR 20070103051A KR 20090037631 A KR20090037631 A KR 20090037631A
Authority
KR
South Korea
Prior art keywords
weight
steel
carburizing
strength
temperature
Prior art date
Application number
KR1020070103051A
Other languages
Korean (ko)
Inventor
왕성도
박철우
김동윤
Original Assignee
주식회사 세아베스틸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세아베스틸 filed Critical 주식회사 세아베스틸
Priority to KR1020070103051A priority Critical patent/KR20090037631A/en
Publication of KR20090037631A publication Critical patent/KR20090037631A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

A high strength steel for high temperature vacuum carburizing is provided to shorten carburizing time by adding carbon material for preventing the growth of austenite crystal. A high strength steel for high temperature vacuum carburizing consists of carbon 0.17~0.27 weight%, chrome 0.85~1.55 weight%, silicon 0.15~0.90 weight%, nickel 0.25 weight%, manganese 0.45~0.90 weight%, sulfur 0.030 weight%, nitrogen 50~170 weight ppm, molybdenum 0.03 weight%, aluminium 0.010~0.040 weight%, niobium 0.015~0.12 weight%, vanadium 0.04~0.06 weight% and the rest of iron and impurity.

Description

내피로특성이 우수한 고온 진공 침탄용 고강도강{High strength carburizing steel with high fatigue resistance}High strength carburizing steel with high fatigue resistance

본 발명은 고온 진공 침탄용 고강도강에 관한 것으로서, 상세하게는 내피로특성이 우수한 고온 진공 침탄용 고강도강에 관한 것이다.The present invention relates to high-strength steel for high temperature vacuum carburizing, and more particularly, to high-temperature vacuum carburizing high strength steel having excellent fatigue resistance.

최근 자동차 엔진의 고성능화(고출력, 저연비, 정숙성) 추세가 계속되고 있으며, 이에 따른 주요 구성 부품(특히 변속기)의 내구성 향상 연구가 업계의 핵심 과제로 대두 되고 있다. 뿐만 아니라 수익성 확보 측면에서도 원가 절감, 즉 저 비용화 공정 연구도 매우 큰 관심 분야이며, 생존을 위해선 필수 과제이다.Recently, the trend of high performance (high power, low fuel consumption, quietness) of automobile engines continues, and accordingly, research on improving durability of main components (particularly, transmission) has emerged as a core task of the industry. In addition, cost reduction, that is, research on low cost processes, is also a major area of concern in terms of profitability, and is essential for survival.

엔진 동력 전달 부품인 대부분의 변속기 부품들은 고강도, 고내구성 및 충분한 인성을 확보하기 위하여 표면에 침탄 열처리를 실시하게 되므로, 침탄 시간을 단축하는 것이 최종 제품의 단가를 낮추는 방법이다. 종래에는 주로 가스 침탄을 이용하였으나, 가스 침탄 대신 고온 진공 침탄을 이용시 침탄 시간을 종래의 가스 침탄에 대비하여 1/4 정도로 단축할 수 있다.Most transmission parts, which are engine power transmission parts, are subjected to carburizing heat treatment on the surface in order to secure high strength, high durability, and sufficient toughness. Therefore, shortening the carburizing time reduces the cost of the final product. Conventionally, gas carburizing is mainly used, but when using high-temperature vacuum carburizing instead of gas carburizing, the carburizing time may be shortened to about 1/4 of the conventional gas carburizing.

그러나 현재까지 사용되고 있는 가스 침탄용 강재는 고온 진공에서 침탄시 입계가 성장하여 침탄품의 열변형, 파손 등을 야기하기 때문에 사용되지 못하였고, 공정 비용의 절감을 위한 침탄 온도를 상승시킬 경우에는 이상 결정립 발생이라는 문제점을 안고 있었다. However, gas carburizing steels that have been used up to now have not been used because the grain boundary grows when carburizing in high temperature vacuum, causing thermal deformation and breakage of the carburized products. Increasing the carburizing temperature to reduce the process cost had a problem of abnormal grain generation.

또한, 종래 부품의 크기로는 최근 자동차 고성능화에 대응하기에 강도면에서 많은 부족한 점을 갖고 있어 부품의 크기를 늘려야 하는 제약이 있으며, 자동차의 급출발, 급제동시 오일 온도 상승에 의한 부품의 뜨임 연화 저항성의 저하는 부품의 피로 강도를 현격히 떨어뜨려 부품 수명이 단축되는 큰 문제점을 나타내고 있다. 따라서 부품의 크기를 늘리지 않으면서도 기존 대비 고출력에도 견딜 수 있는 각종 피로 성능이 우수하며, 더불어 침탄능이 우수한 침탄용 고강도강의 개발이 우선시되고 있다.In addition, the size of a conventional component has a lot of shortcomings in terms of strength in order to cope with the recent increase in automobile performance, and there is a restriction to increase the size of the component. Deterioration has a major problem that the fatigue life of the component is greatly reduced and the component life is shortened. Therefore, the development of high strength steel for carburizing, which is excellent in various fatigue performances that can withstand high outputs without increasing the size of components and excellent carburizing ability, is prioritized.

이러한 피로 강도 향상과 뜨임 연화 저항성을 높이는데 Cr과 Si가 매우 유효한 원소이지만 이들은 산소와의 친화력이 매우 높아 현재와 같은 침탄 방법으로는 침탄시에 SiO2, Cr2O3 등의 표면 이상층을 발생시켜 부품의 피로 강도를 떨어뜨린다는 문제점이 있어 Cr이나 Si의 첨가가 제한되고 있으며, 이러한 침탄시 표면 이상층의 발생으로 인한 피로 강도의 하락을 막고자 침탄 후 재연마 및 숏 피닝(shot peening) 등의 치형 가공 공정을 추가하여 제조 비용에 많은 부담을 주고 있는 것도 사실이다. Although this improves the fatigue strength and temper softening resistance is high Cr and Si is very effective element I to which the carburizing method and the like are very high affinity with oxygen is SiO 2, Cr 2 O 3 at the time of carburizing Since there is a problem of lowering the fatigue strength of the component by generating a surface abnormality layer, etc., the addition of Cr or Si is restricted. It is also true that addition of tooth processing such as shot peening imposes a heavy burden on manufacturing costs.

한편 최근 진공 중에서 침탄되는 진공 침탄 공법이 도입됨에 따라 표면 이상층 저감 뿐만 아니라, 소재 측면에서도 Cr이나 Si와 같은 원소 사용이 용이해지고, 고온에서의 침탄으로 인한 생산성 향상 효과가 기대되고 있으나, 이러한 장점을 살 릴 수 있는 적합한 소재의 부족으로 실효성이 떨어지고 있다. On the other hand, with the introduction of the vacuum carburizing method which is carburized in vacuum recently, not only the reduction of the surface abnormality layer, but also the use of elements such as Cr and Si in terms of materials, and the productivity improvement effect due to carburization at high temperature, are expected. Due to the lack of suitable materials to save the effectiveness is falling.

따라서, 진공의 고온에서도 침탄이 가능하며, 종래의 고강도 소재 대비 우수한 각종 피로 강도 특성을 확보할 수 있는 강재의 개발이 절실히 요구되고 있다.Therefore, carburization is possible even at a high temperature in a vacuum, and there is an urgent need for development of steel materials capable of securing various fatigue strength characteristics superior to conventional high-strength materials.

본 발명은 상기와 같은 과제를 해결하기 위하여, Al, Ti, Nb, V을 첨가하여 오스테나이트 입계의 성장을 막는 탄질화물을 형성하여 고온에서도 일정한 입계를 유지하도록 함으로써, 고온 진공 침탄이 가능하며, 접촉 피로 강도가 높은 내피로특성이 우수한 고온 진공 침탄용 고강도강을 제공하는 것을 목적으로 한다.The present invention to solve the above problems, by adding Al, Ti, Nb, V to form a carbonitride to prevent the growth of austenite grain boundary to maintain a constant grain boundary even at high temperature, high temperature vacuum carburizing is possible, An object of the present invention is to provide a high-strength steel for high temperature vacuum carburization with excellent fatigue resistance with high contact fatigue strength.

상기한 목적을 달성하기 위하여, 본 발명에 따른 내피로특성이 우수한 고온 진공 침탄용 고강도강은 C: 0.17중량% ~ 0.27중량%, Cr: 0.85중량% ~ 1.55중량%, Si: 0.15중량% ~ 0.90중량%, Ni: 0.25중량% 이하, Mn: 0.45중량% ~ 0.90중량%, S: 0.030중량%이하, N: 50중량ppm ~ 170중량ppm, Mo: 0.03중량% 이하, Al: 0.010중량% ~ 0.040중량%, Nb: 0.015량% ~ 0.12중량% 및 V: 0.04중량% ~ 0.06중량% 포함하며, 잔부로서 Fe 및 불가피한 불순물로 이루어진다.In order to achieve the above object, the high-strength steel for high-temperature vacuum carburizing excellent fatigue properties according to the present invention is C: 0.17% to 0.27% by weight, Cr: 0.85% to 1.55% by weight, Si: 0.15% by weight to 0.90% by weight, Ni: 0.25% by weight or less, Mn: 0.45% by weight to 0.90% by weight, S: 0.030% by weight or less, N: 50% by weight to 170% by weight, Mo: 0.03% by weight or less, Al: 0.010% by weight ~ 0.040% by weight, Nb: 0.015% by weight-0.12% by weight and V: 0.04% by weight to 0.06% by weight, the balance consists of Fe and inevitable impurities.

또한, 고온 결정립 미세화 원소로서, Ti: 50중량ppm ~ 150중량ppm 더 포함하는 것이 바람직하다.Moreover, it is preferable to further contain 50 weight ppm-150 weight ppm Ti: as a high temperature crystal grain refinement element.

또한, 상기 불가피한 불순물은 P: 0.030중량% 이하, O: 25중량ppm 이하를 포함하는 것이 바람직하다.In addition, the inevitable impurities preferably include P: 0.030% by weight or less and O: 25% by weight or less.

상기와 같은 본 발명에 따르면, 본 발명의 내피로특성이 우수한 침탄용 고강도강은 종래 고강도 강재에 대비하여 각종 피로 강도가 2배 이상 높으면서도, 뜨임 연화 저항성이 우수하고, 이상 결정립 발생 온도가 1000℃ 이상이므로, 1000℃ 이상의 고온 진공 침탄이 가능한 효과가 있다.According to the present invention as described above, the carburized high strength steel having excellent fatigue resistance of the present invention is excellent in tempering softening resistance and has an ideal grain generation temperature of 1000, while having various fatigue strengths higher than two times higher than conventional high strength steels. Since it is more than degreeC, the high temperature vacuum carburization of 1000 degreeC or more is possible.

또한, 본 발명은 Al, Ti, Nb, V을 첨가하여 오스테나이트 입계의 성장을 막는 탄질화물을 형성하여 고온에서도 일정한 입계를 유지하도록 함으로써, 고온 침탄이 가능하여 침탄 시간을 단축할 수 있는 효과가 있다.In addition, the present invention forms a carbonitride that prevents the growth of austenite grain boundaries by adding Al, Ti, Nb, V to maintain a constant grain boundary even at high temperatures, thereby enabling high temperature carburizing and shortening the carburizing time. have.

따라서, 본 발명은 종래강 보다 더 높은 이상 결정립 발생 온도로 인하여, 침탄 온도의 상승을 기대할 수 있으며, 이로 인한 생산성 향상 및 원가 절감이 기대되고, 품질에 대비하여 저렴하면서도 강도 수준이 높은 강재에 대한 고객의 요구에 충분히 대응할 수 있으므로, 최종적으로 제강 제조시 수익성은 물론 차량의 품질과 가격 경쟁력을 파격적으로 향상시킬 수 있는 효과가 있다. Therefore, the present invention can be expected to increase the carburization temperature due to the abnormal grain generation temperature higher than the conventional steel, thereby improving productivity and cost reduction is expected, and is cheap for the quality but high strength Since it can fully respond to customer demand, it is possible to dramatically improve the quality and price competitiveness of the vehicle as well as profitability in steelmaking.

이하, 본 발명의 합금 성분 첨가 및 성분 범위의 한정 이유를 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the reason for addition of the alloy component of this invention and the limitation of a component range is demonstrated.

C: 0.17중량% ~ 0.27중량%C: 0.17% to 0.27% by weight

C는 특수강에서 강도, 경도를 결정하는 주 원소 중 하나로 강도를 확보하기 위하여 0.17중량% 이상 함유시킬 필요가 있다. 또한 비침탄층의 강도를 올리기 위해 필요하다. 그러나 0.27중량%를 넘으면 담금질시 변형 가능성을 증가시킨다. 또한 단조 가공성, 피삭성이 저하된다. 따라서, 이러한 특성을 고려하여 C의 적정 함량 범위를 0.17중량% ~ 0.27중량%로 설정한다.C is one of the main elements determining strength and hardness in special steels, and it is necessary to contain C at least 0.17% by weight in order to secure strength. It is also necessary to increase the strength of the non-carburized layer. However, exceeding 0.27% by weight increases the possibility of deformation during quenching. Moreover, forging workability and machinability fall. Therefore, in consideration of these characteristics, the appropriate content range of C is set to 0.17% by weight to 0.27% by weight.

CrCr : 0.85중량% ~ 1.55중량%: 0.85 wt% ~ 1.55 wt%

Cr은 강의 담금질, 뜨임 저항을 크게 하고, 피로 강도를 향상시키며, 탄화물 촉진을 통해 Si와 함께 강의 내마모성 증가와 뜨임 연화 저항성 향상을 통해 내피팅성(pitting)을 향상시키기 위해 0.85중량% 이상 첨가하는 것이 필요하다. 하지만, 1.55중량%를 초과하여 첨가시에는 인성이 저하되고 동시에 가공성이나 피삭성이 떨어진다. 따라서 Cr의 적정 함량 범위를 0.85중량% ~ 1.55중량%로 설정한다.Cr is added more than 0.85% by weight to increase hardening and tempering resistance of steel, to improve fatigue strength, and to improve pitting resistance by increasing carbide wear resistance and tempering softening resistance with Si through promoting carbide. It is necessary. However, when added in excess of 1.55% by weight, toughness is lowered and workability and machinability are inferior. Therefore, the appropriate content range of Cr is set to 0.85% by weight to 1.55% by weight.

SiSi : 0.15중량% ~ 0.90중량%: 0.15 wt% ~ 0.90 wt%

Si는 제강시 유효한(0.10중량% 이상) 탈산제로 사용되며, 기지에 고용되어 입계 강화를 통해 피로 강도를 증가시키는 원소로, 0.15중량% 이상 첨가하는 것이 바람직하다. 하지만, 그 함유량이 과잉이 되면 인성을 저하시켜 성형성을 떨어뜨려 단조 및 가공을 어렵게 하기 때문에 0.90중량% 이하로 첨가한다. 특히 Si는 침탄 과정 중 산소와 결합하여 침탄품 표면에 SiO2 입계 산화층을 형성하여 부품 파손의 원인이 되기도 하지만 진공 침탄시에는 입계 산화층이 형성되지 않으므로 Cr과 더불어 강의 내마모성을 향상시키고 유온의 상승에 의한 뜨임 연화 저항성을 증가시키는 역할을 하므로 적정 함량을 첨가하는 것이 중요하다. 따라서 Si의 함량을 0.15중량% ~ 0.90중량%로 설정한다.Si is used as an effective deoxidizer (0.10% by weight or more) in steelmaking, and is an element that is dissolved in a matrix and increases fatigue strength through grain boundary strengthening, and it is preferable to add 0.15% by weight or more. However, when the content is excessive, it is added at 0.90% by weight or less because the toughness is lowered, the moldability is reduced, and forging and processing are difficult. In particular, Si combines with oxygen during carburization to form SiO 2 grain boundary oxide layer on the carburized product, which can cause component breakage.However, since the grain boundary oxide layer is not formed during vacuum carburization, the steel wear resistance is improved along with Cr and the oil temperature rises. It is important to add the proper content because it serves to increase the temper softening resistance. Therefore, the content of Si is set to 0.15% by weight to 0.90% by weight.

NiNi : 0.25중량% 이하: 0.25 wt% or less

Ni은 경화능을 증대시키고, 인성을 향상시키나 부품의 제조원가를 높이며 제조성을 떨어뜨리는 원소이므로, Ni의 적정 함량 범위를 0.25중량% 이하로 제한한다.Ni is an element that increases the hardenability, improves toughness but increases the manufacturing cost of parts and decreases the manufacturability, so that the appropriate content range of Ni is limited to 0.25% by weight or less.

MnMn : 0.45중량% ~ 0.90중량%: 0.45 wt% ~ 0.90 wt%

Mn은 펄라이트(Pearlite)를 미세하게 하고 페라이트(Ferrite)를 고용강화시킴으로써 항복강도를 향상시킨다. 또한 강의 담금질성과 강도를 향상시키며, 고온에서는 소성을 증가시켜 주조성을 좋게 한다. 특히 유해 성분인 S와 결합하여 MnS를 형성함으로써 적열 취성을 방지하고 절삭 가공성을 향상시킬 수 있도록 0.45중량% ~ 0.90중량%를 첨가한다. 이러한 효과를 발휘하기 위하여 적어도 0.45중량% 이상 첨가하는 것이 바람직하지만, 과잉으로 첨가하면 인성을 저하하므로 0.90중량% 이하로 첨가하는 것이 바람직하다. 따라서, 다른 성분과의 화학량론비를 계산하여 Mn의 적정 함량 범위를 0.45중량% ~ 0.90중량%로 설정한다.Mn improves yield strength by making pearlite fine and solidifying ferrite. It also improves the hardenability and strength of the steel, and increases the plasticity at high temperatures to improve castability. In particular, 0.45% by weight to 0.90% by weight is added to form MnS in combination with the harmful component S to prevent redness brittleness and improve cutting processability. In order to exert such an effect, it is preferable to add at least 0.45% by weight or more, but it is preferable to add it in 0.90% by weight or less because excessive toughness lowers toughness. Therefore, the stoichiometric ratio with other components is calculated and the appropriate content range of Mn is set to 0.45% by weight to 0.90% by weight.

S: 0.030중량% 이하S: 0.030 wt% or less

S은 Mn과 결합에 의해 MnS를 형성하여 강의 피삭성을 개선하는 원소이나 일부 거대 개재물 형성에 의해 표면 처리시 결함의 발생 및 경로가 되는 원인으로 0.030중량% 이하로 제한한다. S is limited to 0.030% by weight or less as a cause of defects and paths during surface treatment by forming elements or some large inclusions which form MnS by bonding with Mn to improve the machinability of the steel.

N: 50중량N: 50 weight ppmppm ~ 170중량 ~ 170 weight ppmppm

N는 적정량의 첨가시 Al, Ti, Nb와 결합하여 질화물을 형성시켜 오스테나이트 결정 립을 미세화하며 마모 특성을 향상시키므로 일정 수준 이상의 함량을 보유하여야 하나 과도한 첨가는 오히려 강의 각종 취성이나 시효 경화를 유발한다. 담금질 시효, 냉간 가공에 의한 변형시효, 200 ~ 300℃에서의 청열 취성에 의해 인장강도, 항복강도는 증가하고 충격치는 저하하여 강의 취성을 일으킨다. 따라서 N의 적정 함량 범위를 50중량ppm~ 170중량ppm으로 설정한다.When N is added in an appropriate amount, N is combined with Al, Ti, and Nb to form nitrides to refine austenite grains and improve wear characteristics. Therefore, N must have a certain level or more, but excessive addition causes various brittleness and age hardening of steel. do. Tensile strength and yield strength increase due to quenching aging, strain aging by cold working, and clear brittleness at 200 to 300 ° C, and the impact value decreases to cause brittleness of steel. Therefore, the appropriate content range of N is set to 50 ppm by weight to 170 ppm by weight.

MoMo : 0.03중량% 이하: 0.03% by weight or less

Mo은 강의 담금질성을 향상시키는데 탁월한 역할을 하며, 강도 및 인성의 향상에 효과가 크지만 노멀라이징과 같은 열처리시 경도를 현저히 상승시키며, 제조원가를 높이고 부품 가공성을 떨어뜨리는 원소이다. 따라서, Mo의 적정 함량 범위를 0.03중량% 이하로 제한한다.Mo is an element that plays an excellent role in improving the hardenability of steel, and has a great effect on improving the strength and toughness, but significantly increases the hardness during heat treatment such as normalizing, increases manufacturing costs, and decreases the workability of parts. Therefore, the appropriate content range of Mo is limited to 0.03% by weight or less.

AlAl : 0.010중량% ~ 0.040중량%: 0.010 wt% ~ 0.040 wt%

Al은 강력한 탈산제로서 작용하는 것과 동시에 N와 결합하여 AlN를 형성하여 결정립을 미세화시키나, 0.01중량% 미만에서는 탈산이나 결정립 미세화 작용이 작아지기 때문에 바람직하지 않고 0.04중량% 초과시에는 Al2O3와 같은 비금속 개재물량의 증가로 오히려 해로운 영향을 미칠 수 있다. 또한 AlN이 다량 존재시 고온 인성이 저하되며, 특히 단조 공정시 오스테나이트 입계에 AlN이 석출되어 입계 취성을 일으키고 고온 크리프 강도를 저하시킨다. 따라서, Al의 적정 함량 범위를 0.010중량% ~ 0.040중량%로 설정한다.Al is sikina refine the crystal grains to form the AlN in combination with that at the same time N which acts as a strong deoxidizer, 0.01 less than% by weight is not preferred since the smaller the deoxidation and grain refinement effect is in excess of 0.04% by weight as Al 2 O 3 Increasing nonmetallic inclusions may have a detrimental effect. In addition, when a large amount of AlN is present, the high temperature toughness is lowered, and in particular, AlN is precipitated at the austenite grain boundary during the forging process, causing grain boundary brittleness and lowering the high temperature creep strength. Therefore, the appropriate content range of Al is set to 0.010% to 0.040% by weight.

NbNb : 0.015중량% ~ 0.12중량%: 0.015 wt% ~ 0.12 wt%

Nb은 N 또는 C와 결합하여 각각 NbN 또는 NbC를 형성하여 고온에서 강의 결정립 조대화 온도를 상승시켜 결정립의 조대화를 방지하며, 결정립을 미세화시켜 연성과 인성을 개선하는 원소이므로, 0.015중량% 이상 첨가할 필요가 있다. 그렇지만, 고가의 원소이므로 소량의 첨가로도 최대의 효과를 얻어야 하므로 0.12중량% 이상은 바람직하지 않다. 따라서, 다른 성분과의 화학량론비를 계산하여 첨가 함량 범위를 0.015중량% ~ 0.12중량%를 첨가한다.Nb is an element that combines with N or C to form NbN or NbC, respectively, to increase the grain coarsening temperature of steel at high temperature to prevent grain coarsening, and to refine the grain to improve ductility and toughness. It is necessary to add. However, since it is an expensive element, even a small amount of addition must obtain the maximum effect, so 0.12 weight% or more is not preferable. Accordingly, the stoichiometric ratio with other components is calculated to add 0.015% by weight to 0.12% by weight.

V: 0.04중량% ~ 0.06중량%V: 0.04% to 0.06% by weight

V은 강력한 질화물 형성 원소로, 0.04중량% 이상 첨가시 N과 결합하여 강 중에 VN를 석출하여 강도를 증가시키고 고온에서 입계가 조대화하는 것을 효과적으로 막는다. 그러나, V을 0.06중량% 초과하여 첨가시 제조 비용이 상승하므로 V의 함량은 0.04중량% ~ 0.06중량%로 설정한다.V is a strong nitride forming element, and when added in an amount of 0.04% by weight or more, V is precipitated in the steel to increase the strength and effectively prevent coarsening of grain boundaries at high temperatures. However, since the manufacturing cost increases when V is added in excess of 0.06% by weight, the content of V is set to 0.04% by weight to 0.06% by weight.

TiTi : 50중량: 50 weight ppmppm ~ 150중량 ~ 150 weight ppmppm

Ti은 C와 결합에 의해 강 중에 TiC를 미세하게 석출하여 기지를 분산 강화하여 피로 파괴나 피팅(pitting)에 의한 균열의 생성, 전파를 지연시키는 강력한 질화물 형성 원소로 열처리시 강도를 증가시키고 인성을 향상시키나 N와 결합에 의해 석출된 TiN은 피로 크랙의 발생 기점으로 치차의 품질을 저하시키므로, Ti의 적정 함량 범위를 50중량ppm~150중량ppm으로 제한한다.Ti is a strong nitride-forming element that finely precipitates TiC in steel by bonding with C to disperse and strengthen the base and delays the formation and propagation of cracks due to fatigue fracture or pitting. TiN precipitated by bonding with N deteriorates the quality of the tooth at the origin of fatigue cracking, and thus limits the Ti content range to 50 ppm by weight to 150 ppm by weight.

이하, 본 발명에서 압연 가열 온도에 따른 결정립의 영향을 상세히 설명한다.Hereinafter, the influence of the grains according to the rolling heating temperature in the present invention will be described in detail.

표 1은 종래의 저탄소 강재인 SCM920H를 기본으로 하였을 때 압연 가열 온도 차이에 따른 오스테나이트 결정립 크기 및 결정립 조대화 온도(GCT:Grain Coarsening Temperature)를 측정한 결과를 나타낸 것이다.Table 1 shows the results of measuring the austenitic grain size and grain coarsening temperature (GCT) according to the difference in rolling heating temperature when SCM920H, which is a conventional low carbon steel, is based.

SCM920HSCM920H 오스테나이트 결정립 크기(㎛)Austenitic grain size (μm) 결정립 조대화 온도(℃)Grain Coarsening Temperature (℃) 시료 1Sample 1 1차 압연 가열온도(℃)1st rolling heating temperature (℃) 11841184 13.213.2 1010 1010 2차 압연 가열온도(℃)Second rolling heating temperature (℃) 11791179 시료 2Sample 2 1차 압연 가열온도(℃)1st rolling heating temperature (℃) 11891189 9.39.3 970970 2차 압연 가열온도(℃)Second rolling heating temperature (℃) 10431043

표 1에 의하면, 1100℃ 미만의 2차 압연 가열온도(시료 2)로 압연시 오스테나이트 결정립 크기는 미세하나 탄질화물의 100% 고용에는 불충분하여 결정립 조대화 온도가 970℃로 하락했음을 알 수 있다.According to Table 1, it can be seen that when rolling at the secondary rolling heating temperature (Sample 2) of less than 1100 ° C, the austenite grain size is fine but insufficient for 100% solid solution of carbonitride, and the grain coarsening temperature has dropped to 970 ° C. .

압연 가열 온도(압연 균열 온도)는 침탄 입도를 미세하게 하는 탄질화물의 고용 정도를 결정하는 인자(factor)로, 너무 낮은 압연 가열 온도는 미고용 탄질화물의 형성으로 인한 침탄 입도의 미세화 효과를 떨어뜨리거나 결정립 조대화 온도를 하락시킨다. 반대로 너무 높은 압연 가열 온도는 탈탄 발생이나, 조대한 오스테나이트 결정립 형성에 따른 침탄 입도 미세화 효과 감소 및 에너지 낭비의 문제 등을 발생시킨다.Rolling heating temperature (rolling crack temperature) is a factor that determines the degree of solid solution of carbonitride which makes carburizing particle fine. Too low rolling heating temperature is less effective in carburizing particle size due to formation of unemployed carbonitride. Drop or lower the grain coarsening temperature. On the contrary, too high a rolling heating temperature causes decarburization, a reduction in carburizing particle size reduction effect and energy waste due to coarse austenite grain formation.

따라서, 각종 탄질화물을 100% 고용시킬 수 있는 충분한 가열 구간의 설정은 강의 품질 및 경제성 확보 차원에 중요하다. 그래서 본 발명에서는 압연 가열 온도를 1200 ~ 1300℃로 설정하여 각종 탄질화물의 충분한 고용이 확보되도록 하였다.Therefore, the establishment of a sufficient heating section capable of solidifying 100% of various carbonitrides is important for securing steel quality and economy. Therefore, in the present invention, the rolling heating temperature is set to 1200 to 1300 ° C. to ensure sufficient solid solution of various carbonitrides.

(실시예)(Example)

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

표 2는 본 실시예에 따른 발명강 및 본 발명의 발명강과의 비교를 위한 종래강의 화학 성분을 비교하여 나타낸 것이다. Table 2 compares the chemical composition of the inventive steel according to the present embodiment and the conventional steel for comparison with the inventive steel of the present invention.

구분 division C(중량%)C (% by weight) Si(중량%)Si (% by weight) Mn(중량%)Mn (wt%) P(중량%)P (% by weight) S(중량%)S (% by weight) Ni(중량%Ni (wt% Cr(중량%)Cr (% by weight) Mo(중량%)Mo (% by weight) V(중량%)V (% by weight) Al(중량%)Al (% by weight) Ti(ppm)Ti (ppm) Nb(중량%)Nb (% by weight) N(ppm)N (ppm) O(ppm)O (ppm) 기타Etc 발명강Invention steel AA 0.220.22 0.240.24 0.860.86 0.0100.010 0.0130.013 0.150.15 1.211.21 0.020.02 0.000.00 0.0250.025 100100 0.0050.005 9292 99 -- BB 0.240.24 0.810.81 0.580.58 0.0110.011 0.0050.005 0.090.09 1.381.38 0.020.02 0.000.00 0.0150.015 145145 0.0270.027 9393 1515 -- CC 0.240.24 0.800.80 0.620.62 0.0120.012 0.0050.005 0.070.07 1.051.05 0.030.03 0.050.05 0.0270.027 5555 0.0870.087 8383 1515 -- 종 래 강 Zhonglai River DD 0.220.22 0.270.27 0.880.88 0.0100.010 0.0020.002 0.050.05 1.231.23 0.010.01 0.000.00 0.0260.026 3737 0.0050.005 120120 77 Cu(0.09중량%)Cu (0.09% by weight) EE 0.180.18 0.100.10 0.700.70 0.0090.009 0.0050.005 0.250.25 1.301.30 0.590.59 0.000.00 0.0210.021 1616 0.0190.019 112112 1313 Cu(0.13중량%)Cu (0.13% by weight) FF 0.15 ~0.300.15 to 0.30 0.25 ~1.100.25 to 1.10 0.30 ~1.200.30 to 1.20 -- 0.005 ~0.1000.005 ~ 0.100 -- -- -- -- -- 0.02 ~0.060.02 to 0.06 0.020 ~0.1200.020-0.120 -- -- Pb,Ca,Bi 첨가Pb, Ca, Bi addition GG 0.10 ~0.300.10 to 0.30 0.40 ~1.500.40 to 1.50 0.30 ~2.000.30 to 2.00 -- Max. 0.030Max. 0.030 0.03 ~0.350.03 to 0.35 0.50 ~3.000.50 to 3.00 0.03 ~1.500.03 to 1.50 0.02 0.150.02 0.15 -- 0.02 ~0.300.02 to 0.30 0.02 ~0.1500.02 to 0.150 -- -- B첨가 (10~50ppm)B addition (10 ~ 50ppm)

표 2에서, 발명강은 A, B, C이고 종래강은 D, E, F, G로 표시하였다. 발명강 A는 상기한 합금 설계 및 공정 설계에 따라 전기로에서 용해한 후 160x160mm의 빌렛(billet)으로 연속 주조하고 재가열하여 Φ40mm의 공시재로 압연하였으며, 발명강 B, C는 390x510mm의 블룸(bloom)으로 연속 주조하고 재가열하여 Φ120mm의 공시재로 압연하였다. In Table 2, the inventive steel is A, B, C and the conventional steel is denoted by D, E, F, G. Invented steel A was melted in an electric furnace according to the alloy design and process design described above, continuously cast into 160x160mm billet, reheated and rolled into a Φ40mm specimen, and the invented steels B and C were 390x510mm bloom. Continuous casting and reheating were rolled to a test piece of Φ 120 mm.

또한, 기존 고강도강에 대비하여 내피로 강도를 30%이상 향상시키고, 뜨임 연화 저항성을 확보하기 위하여, 본 발명에 따른 발명강 A, B, C는 Cr이나 Si를 적극적으로 첨가하였으며, 고온에서의 이상 결정립 형성을 저지하기 위하여 Al으로 충분하게 탈산 작업한 후, Ti, Nb, V의 양을 각각 다르게 설정하여 투입하였고, 압연 균열 온도가 1200 ~ 1300℃로 되도록 Ti, Nb, V-탄화물 및 Ti, Nb, V-질화물을 충분히 형성하였다.In addition, in order to improve the fatigue strength more than 30% compared to the existing high strength steel, and in order to secure the temper softening resistance, the inventive steels A, B, and C according to the present invention actively added Cr or Si, and After sufficiently deoxidizing with Al to prevent abnormal grain formation, Ti, Nb, and V were set in different amounts, and Ti, Nb, V-carbide, and Ti were set so that the rolling crack temperature was 1200 to 1300 ° C. , Nb, V-nitride were sufficiently formed.

발명강 A, B는 저탄소 합금강(SCR420H)을 기초로 하여, 종래강에 비해 Ti이 다량 함유되어 있어 전술한 바와 같이 TiN에 의한 고온에서의 이상 결정립 발생 온도 향상이 기대되며, 발명강 C는 저탄소 합금강(SCR420H)을 기초로 하였으며, 기존의 침탄 종래강인 D는 SCR계, E는 SCM계를 기초로 한 현재 사용중인 양산 변속기용 강재이다. 종래강 F와 G는 일본 특수강사의 발명강으로서, 종래강 F(일본발명특허 제2003-77356호)는 고농도 진공 침탄 방식에 의한 표면 탄화물 석출에 따른 표면 경도 및 강도 향상을 위한 침탄용 강으로 탄화물 형성 촉진을 위한 Cr의 증량 및 침탄 후 5~15% 수준의 Cr 탄화물을 형성하여 강도의 향상을 꾀하였고, 종래강 G(일본발명특허 제2003-96908호)는 Ni과 B 첨가에 의한 충격 인성 향상 및 TiC분산과 Si첨가에 의한 연화 저항성 향상을 목적으로 하였다. TiC 탄화물 형성 촉진을 위한 Ti의 증량 및 침탄후 TiC 탄화물 분산 유도를 통한 강도의 향상을 꾀하였다.Invented steels A and B are based on low carbon alloy steel (SCR420H), and contain a large amount of Ti as compared to conventional steels. As described above, abnormal grain formation temperature at high temperature due to TiN is expected to be improved. Invented steel C is low carbon. Based on the alloy steel (SCR420H), the conventional carburizing conventional steel D is SCR-based, E is SCM-based mass production transmission steel currently in use. Conventional steels F and G are invention steels of Japanese special instructors, and conventional steel F (Japanese Invention Patent No. 2003-77356) is a carburizing steel for improving surface hardness and strength due to precipitation of surface carbides by a high concentration vacuum carburizing method. Increasing Cr to promote carbide formation and forming Cr carbide of 5-15% level after carburizing to improve strength, and conventional steel G (Japan Invention Patent No. 2003-96908) was impacted by the addition of Ni and B. The purpose of the present invention was to improve toughness and to improve softening resistance by TiC dispersion and Si addition. The strength of TiC carbide was increased by increasing Ti and inducing TiC carbide dispersion after carburization.

이하, 표 3은 발명강과 종래강에 대한 평가 결과를 요약하여 나타낸 것이다.Hereinafter, Table 3 summarizes the evaluation results for the inventive steel and the conventional steel.

발명강Invention steel 종래강Conventional Steel AA BB CC DD EE 산소 함량Oxygen content ppmppm 99 1515 1515 1515 1515 질소 함량Nitrogen content ppmppm 9292 9393 8383 120120 112112 경화능 (HRC)Curability (HRC) J5J5 4343 4646 4545 4242 4545 J11J11 3232 3535 3434 3131 3939 이상 결정립 조대화 온도Ideal grain coarsening temperature 1,0701,070 1,0201,020 1,0601,060 940940 1,0001,000 접촉 피로 수명Contact fatigue life x1000x1000 1,2061,206 3,2393,239 2,4072,407 578578 1,9241,924 기계적 성질Mechanical properties 항복 강도Yield strength Kgf /㎠Kgf / ㎠ 7474 109109 9494 7474 9797 인장 강도The tensile strength Kgf /㎠Kgf / ㎠ 103103 136136 114114 102102 114114 변형률Strain %% 1717 1212 1515 1919 1515 단면 감축률Section reduction rate %% 3030 3434 3232 4343 4545 압연 균열 온도Rolling crack temperature 1200~13001200-1300 1100~11801100-1180

표 3에 나타낸 바와 같이, 본 발명강(A, B, C)은 종래강(D, E)에 비해 기계적 성질이 우수하고, 침탄 부품의 우수한 접촉 피로 수명 결과를 나타내었으며, 종래강의 이상 결정립 발생 온도는 940 ~ 1000℃임에 비하여, 본 발명강의 이상 결정립 발생 온도는 1020 ~ 1070℃로 크게 향상되었다.As shown in Table 3, the inventive steels (A, B, C) had better mechanical properties than the conventional steels (D, E), showed excellent contact fatigue life results of carburized parts, and abnormal grain generation of conventional steels. While the temperature is 940 to 1000 ° C, the abnormal grain generation temperature of the inventive steel is greatly improved to 1020 to 1070 ° C.

여기에서, 본 발명강 B, C는 종래강 대비 접촉 피로 수명 특성이 2~3배 이상 상승한 결과를 보여주고 있으며, 또한 발명강 A에 대비하여서도, Nb의 증량에 의해 Nb-탄화물 및 Nb-질화물을 충분히 형성하여 내피로강도를 향상시키고 뜨임 연화저항성을 확보할 수 있었던 것으로 평가된다.Herein, the inventive steels B and C show a result of an increase in the contact fatigue life characteristics of 2 to 3 times or more compared with the conventional steel, and also in comparison with the inventive steel A, Nb-carbide and Nb- are increased by the increase of Nb. Nitride was sufficiently formed to improve fatigue strength and to secure tempering softening resistance.

이 중에서도 본 발명강 C는 가장 탁월한 이상결정립 조대화 온도와 접촉 피로수명 결과를 나타내고 있으며, 종래강 D, E와의 비교에서도 뜨임 연화 저항성이 뛰어난 것으로 평가되고, 다른 종래 강재와 비교시 가장 우수한 피로 수명 성능을 나타내고 있어 내피로 성능이 우수한 고온 진공 침탄용 고강도강에 가장 적합한 강재이다. Among them, the present invention steel C shows the most excellent abnormal grain coarsening temperature and contact fatigue life, and it is evaluated to be excellent in temper softening resistance in comparison with conventional steels D and E, and has the best fatigue life in comparison with other conventional steels. It shows the performance and is the most suitable for high strength steel for high temperature vacuum carburizing with excellent fatigue resistance.

이는 본 발명에 따른 발명강 C가 Cr이나 Si를 적극적으로 첨가하였음은 물론, 고온에서의 이상 결정립 형성을 저지하기 위하여 탈산 및 결정립 미세화 원소인 Al으로 탈산 작업을 한 후 적정량의 N 및 Ti, Nb, V을 첨가하여 Ti, Nb, V-탄화물 및 Ti, Nb, V-질화물을 충분히 형성하였고, 압연 가열 온도를 1200 ~ 1300℃로 설정하여 각종 탄질화물을 100% 고용시켰기 때문에 이상 결정립 발생 온도를 높일 수 있었다. 이에 의해 기존 고강도강에 대비하여 내피로강도를 30% 이상 향상시키고 뜨임 연화 저항성을 충분히 확보할 수 있었다.This is because the inventive steel C according to the present invention actively added Cr or Si, and deoxidized with Al, which is a deoxidation and grain refining element, in order to prevent abnormal grain formation at a high temperature. , V was added to form Ti, Nb, V-carbide, and Ti, Nb, V-nitride sufficiently, and the rolling grain temperature was set to 1200 to 1300 ° C, so that various carbonitrides were dissolved 100%. Could increase. As a result, fatigue strength was improved by more than 30% compared to the existing high strength steel, and sufficient tempering softening resistance was obtained.

따라서, 본 발명강은 침탄 표면의 강도 하락에 대한 뜨임 연화 저항성이 종래강 대비 매우 탁월하여, 자동차 주행중 발생할 수 있는 급출발 및 급제동에 따른 유온의 상승시 침탄 부품 표면의 열화로 인한 표면층이 박리되는 피팅 발생의 억제력이 종래강 대비 더 크다고 하겠다. Therefore, the inventive steel has a very good temper softening resistance against the strength reduction of the carburized surface compared with the conventional steel, and the fitting of the surface layer due to the deterioration of the surface of the carburized parts during the rise of the oil temperature due to rapid start and sudden braking which may occur while driving a car Suppression of generation is greater than conventional steel.

상기와 같은 본 발명강을 이용하여, 도 1a 내지 1e에 나타낸 바와 같이, 자동차 부품 중 기어들을 제조하였다. 본 발명강은 종래의 고강도 강재에 대비하여 접촉 피로 수명 및 각종 피로 강도가 2배 이상 높으면서도, 뜨임 연화 저항성이 우수한 차세대 고 내구성 및 내피로특성이 요구되는 침탄 치차용강의 적용에 적합함을 알 수 있다. Using the steel of the present invention as described above, as shown in Figures 1a to 1e, gears of automobile parts were manufactured. Compared to the conventional high-strength steel, the present invention is found to be suitable for the application of carburized tooth steel which requires the next generation high durability and fatigue resistance which is excellent in temper softening resistance while having at least two times higher contact fatigue life and various fatigue strengths. Can be.

이상에서는 본 발명을 특정의 바람직한 실시예에 의해서 설명하였지만, 본 발명은 상술한 실시예에 의해 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 기술적 사상의 요지를 벗어나지 않고 얼마든지 다양하게 변경 실시할 수 있을 것이다.In the above, the present invention has been described by specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and those skilled in the art to which the present invention pertains should be described in the following claims. Various modifications can be made without departing from the spirit of the invention.

도 1a 내지 도 1e는 본 발명의 일실시예에 따른 내피로특성이 우수한 고온 진공 침탄용 고강도강으로 제조된 기어류를 나타낸 도면이다.1a to 1e is a view showing the gears made of high-strength steel for high temperature vacuum carburizing excellent fatigue resistance according to an embodiment of the present invention.

Claims (2)

내피로특성이 우수한 고온 진공 침탄용 고강도강으로서,High strength steel for high temperature vacuum carburizing with excellent fatigue resistance, C: 0.17중량% ~ 0.27중량%, Cr: 0.85중량% ~ 1.55중량%, Si: 0.15중량% ~ 0.90중량%, Ni: 0.25중량% 이하, Mn: 0.45중량% ~ 0.90중량%, S: 0.030중량%이하, N: 50중량ppm ~ 170중량ppm, Mo: 0.03중량% 이하, Al: 0.010중량% ~ 0.040중량%, Nb: 0.015량% ~ 0.12중량% 및 V: 0.04중량% ~ 0.06중량% 포함하며, 잔부로서 Fe 및 불가피한 불순물로 이루어지는 내피로특성이 우수한 고온 진공 침탄용 고강도강.C: 0.17 wt%-0.27 wt%, Cr: 0.85 wt%-1.55 wt%, Si: 0.15 wt%-0.90 wt%, Ni: 0.25 wt% or less, Mn: 0.45 wt%-0.90 wt%, S: 0.030 Less than or equal to%, N: 50 ppm to 170 ppm, Mo: 0.03 wt% or less, Al: 0.010 wt% to 0.040 wt%, Nb: 0.015 wt% to 0.12 wt%, and V: 0.04 wt% to 0.06 wt% A high-strength steel for high temperature vacuum carburizing, comprising, and having excellent fatigue resistance, comprising Fe and unavoidable impurities as the remainder. 제1항에 있어서, The method of claim 1, 고온 결정립 미세화 원소로서, Ti: 50중량ppm ~ 150중량ppm을 더 포함하는 것을 특징으로 하는 내피로특성이 우수한 고온 진공 침탄용 고강도강.A high temperature grain refining element, the high strength steel for high temperature vacuum carburizing excellent in fatigue resistance, characterized in that it further comprises Ti: 50 ppm by weight to 150 ppm by weight.
KR1020070103051A 2007-10-12 2007-10-12 High strength carburizing steel with high fatigue resistance KR20090037631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070103051A KR20090037631A (en) 2007-10-12 2007-10-12 High strength carburizing steel with high fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070103051A KR20090037631A (en) 2007-10-12 2007-10-12 High strength carburizing steel with high fatigue resistance

Publications (1)

Publication Number Publication Date
KR20090037631A true KR20090037631A (en) 2009-04-16

Family

ID=40762199

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070103051A KR20090037631A (en) 2007-10-12 2007-10-12 High strength carburizing steel with high fatigue resistance

Country Status (1)

Country Link
KR (1) KR20090037631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144516B1 (en) * 2009-12-01 2012-05-11 기아자동차주식회사 Alloy Steel for Low Temperature Vacuum Carburizing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144516B1 (en) * 2009-12-01 2012-05-11 기아자동차주식회사 Alloy Steel for Low Temperature Vacuum Carburizing

Similar Documents

Publication Publication Date Title
KR101830017B1 (en) Carburized-steel-component production method, and carburized steel component
CN100443614C (en) Steel with excellent delayed fracture resistance and tensile strength of 1600 mpa class or more, its shaped articles, and methods of production of the same
KR101464712B1 (en) Steel component having excellent temper softening resistance
JP5862802B2 (en) Carburizing steel
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP4581966B2 (en) Induction hardening steel
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
JPH05117804A (en) Bearing steel having excellent workability and rolling fatigue property
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP4464863B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JPH0953149A (en) Case hardening steel with high strength and high toughness
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
US6270596B1 (en) Process for producing high strength shaft
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
KR100999676B1 (en) Wire for valve spring having excellent tensile strength and fatigue strength and manufacturing method thereeof
KR20080056945A (en) Ultra high strength carburizing steel with high fatigue resistance
JP2630670B2 (en) Steel with high fatigue strength for carburized gears
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
KR100913172B1 (en) Ultra high strength carburizing steel with high fatigue resistance
KR20090037631A (en) High strength carburizing steel with high fatigue resistance
JP6825605B2 (en) Carburizing member
JPH08311615A (en) Steel for induction-hardened bearing having long service life
JPH07216497A (en) Steel sheet or steel sheet parts with high fatigue strength and their production
CN1478916A (en) Mn-Re series high malleability air-cooled bainitic steel and its manufacturing process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application