KR100913172B1 - Ultra high strength carburizing steel with high fatigue resistance - Google Patents

Ultra high strength carburizing steel with high fatigue resistance Download PDF

Info

Publication number
KR100913172B1
KR100913172B1 KR1020080067537A KR20080067537A KR100913172B1 KR 100913172 B1 KR100913172 B1 KR 100913172B1 KR 1020080067537 A KR1020080067537 A KR 1020080067537A KR 20080067537 A KR20080067537 A KR 20080067537A KR 100913172 B1 KR100913172 B1 KR 100913172B1
Authority
KR
South Korea
Prior art keywords
weight
steel
carburizing
high strength
contact fatigue
Prior art date
Application number
KR1020080067537A
Other languages
Korean (ko)
Other versions
KR20080070615A (en
Inventor
왕성도
박철우
김동윤
Original Assignee
주식회사 세아베스틸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세아베스틸 filed Critical 주식회사 세아베스틸
Priority to KR1020080067537A priority Critical patent/KR100913172B1/en
Publication of KR20080070615A publication Critical patent/KR20080070615A/en
Application granted granted Critical
Publication of KR100913172B1 publication Critical patent/KR100913172B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Abstract

본 발명은 접촉피로강도가 우수한 침탄용 초고강도강에 관한 것으로서, 본 발명에 따른 접촉피로강도가 우수한 침탄용 초고강도강은 C: 0.15~0.25중량%, Cr: 1.70~2.30중량%, Si: 0.50~0.70중량%, N: 100~200중량ppm, Al: 0.010~0.040중량%, Nb: 0.015~0.035중량%, Ti: 50중량ppm이하, Ni: 0.05 중량%이하, 잔부로서 Fe 및 불가피한 불순물을 포함하여 이루어지며, 1200 내지 1300℃에서 압연 가열되어 탄질화물을 완전 고용시킨 것을 특징으로 한다. 본 발명에 따른 접촉피로특성이 우수한 침탄용 초고강도강은, 탄질화물을 완전 고용시켜 접촉피로특성 및 뜨임 연화 저항성이 우수하며, 이상립 발생온도가 1000℃ 이상이므로, 침탄 온도의 상승을 기대할 수 있어, 이로 인한 생상성 향상 및 원가 절감이 기대된다. The present invention relates to carburizing ultra high strength steel having excellent contact fatigue strength, and the carburizing ultra high strength steel having excellent contact fatigue strength according to the present invention is C: 0.15 to 0.25 wt%, Cr: 1.70 to 2.30 wt%, and Si: 0.50 to 0.70% by weight, N: 100 to 200% by weight, Al: 0.010 to 0.040% by weight, Nb: 0.015 to 0.035% by weight, Ti: 50% by weight or less, Ni: 0.05% by weight or less, Fe and inevitable impurities as remainder It is made, including, rolling and heating at 1200 to 1300 ℃ characterized in that the carbonitride completely dissolved. The super high strength steel for carburizing having excellent contact fatigue characteristics according to the present invention has excellent contact fatigue characteristics and temper softening resistance by completely solidifying carbonitride, and since an ideal grain occurrence temperature is 1000 ° C. or higher, an increase in carburizing temperature can be expected. As a result, productivity and cost reduction are expected.

고강도, 접촉피로, 이상 결정립, 침탄High strength, contact fatigue, ideal grain, carburizing

Description

접촉피로강도가 우수한 침탄용 초고강도강{Ultra high strength carburizing steel with high fatigue resistance}Ultra high strength carburizing steel with high fatigue resistance

본 발명은 침탄용 고강도강에 관한 것으로서, 상세하게는 접촉피로강도가 우수한 침탄용 초고강도강에 관한 것이다.The present invention relates to high strength steel for carburizing, and more particularly, to carburizing ultra high strength steel having excellent contact fatigue strength.

최근 자동차 엔진의 고성능화(고출력, 저연비, 정숙성) 추세가 계속되고 있으며, 이에 따른 주요 구성 부품(특히 변속기)의 내구성 향상 연구가 업계의 핵심 과제로 대두 되고 있다. 뿐만 아니라 수익성 확보 측면에서도 원가 절감, 즉 저 비용화 공정 연구도 매우 큰 관심 분야이며, 생존을 위해선 필수 과제이다.Recently, the trend of high performance (high power, low fuel consumption, quietness) of automobile engines continues, and accordingly, research on improving durability of main components (particularly, transmission) has emerged as a core task of the industry. In addition, cost reduction, that is, research on low cost processes, is also a major area of concern in terms of profitability, and is essential for survival.

또한, 엔진 동력 전달 부품인 대부분의 변속기 부품들은 고강도, 고내구성 및 충분한 인성을 확보하기 위하여 주로 침탄 열처리를 실시하므로, 침탄 완료품 상태에서의 보다 높은 내구성 확보 목적의 고강도화는 물론 결정립 미세화 및 입계 산화층 저감, 열변형 개선을 위한 이상립 발생이 억제되어야 한다. In addition, most transmission parts, which are engine power transmission parts, are mainly subjected to carburizing heat treatment to secure high strength, high durability, and sufficient toughness, thereby increasing the strength of securing high durability in the carburized finished state, as well as grain refinement and grain boundary oxide layer. The occurrence of abnormal grains for reduction and improvement of thermal deformation should be suppressed.

현재까지 개발된 강재의 경우, 종래 부품의 크기로는 최근 자동차 고성능화에 대응하기에 강도 면에서 많은 부족한 점을 갖고있어 부품의 크기를 늘려야 하는 제약이 있으며, 이러한 부품 크기의 증가는 자동차의 연비를 떨어뜨리는 원인이 되 었다. In the case of steels developed to date, the size of the conventional parts has a limitation in terms of strength in order to cope with the recent increase in automobile performance, and there is a restriction to increase the size of the parts. It caused the drop.

또한 공정비용의 절감을 위해 침탄 온도를 상승시킬 경우에는 이상 결정립 발생이라는 문제점을 안고 있으며, 자동차의 급출발, 급제동시 오일 온도 상승에 의한 부품의 뜨임 연화 저항성의 저하는 부품의 피로 강도를 현격히 떨어뜨려 부품 수명이 단축되는 큰 문제점을 나타내고 있다. In addition, when the carburizing temperature is raised to reduce the process cost, there is a problem of occurrence of abnormal grains.As a result, the reduction in the temper softening resistance of the parts due to the oil temperature rise during rapid starting and sudden braking of the car significantly reduces the fatigue strength of the parts. It shows a big problem of shortening component life.

따라서 부품의 크기를 늘리지 않으면서도 기존 대비 고출력에도 견딜 수 있는 각종 피로성능이 우수하며, 더불어 침탄능이 우수한 초고강도강의 개발이 우선시되고 있다. Therefore, the development of ultra-high strength steel with excellent carburizing ability, which is excellent in various fatigue performances that can withstand higher power than conventional parts without increasing the size of components, is prioritized.

이러한 피로강도 향상과 뜨임 연화 저항성을 높이는데 Cr과 Si가 매우 유효한 원소이지만 이들은 산소와의 친화력이 매우 높아 현재와 같은 침탄 방법으로는 침탄시에 표면 이상층을 발생시켜 피로강도를 떨어뜨린다는 문제점이 있어 Cr이나 Si의 첨가가 제한되고 있으며, 이러한 침탄시 표면 이상층의 발생으로 인한 피로강도의 하락을 막고자 침탄 후 재연마 및 숏 피닝(shot peening)이라는 공정을 추가하여 제조 비용에 많은 부담을 주고 있는 것도 사실이다. Cr and Si are very effective elements to improve the fatigue strength and temper softening resistance, but they have a high affinity with oxygen, which causes the surface abnormality layer to reduce the fatigue strength when carburizing. Due to this, the addition of Cr or Si is limited, and a lot of manufacturing costs are added by adding a process called regrinding and shot peening after carburizing to prevent a drop in fatigue strength due to occurrence of surface abnormalities during carburization. It is also true.

한편 최근 진공 중에서 침탄되는 진공 침탄 공법이 도입됨에 따라 표면 이상층 저감 뿐만 아니라, 소재 측면에서도 Cr이나 Si와 같은 원소 사용이 용이해지고, 고온에서의 침탄으로 인한 생산성 향상 효과가 기대되고 있으나, 이러한 장점을 살릴 수 있는 적합한 소재의 부족으로 실효성이 떨어지고 있다. On the other hand, with the introduction of the vacuum carburizing method which is carburized in vacuum recently, not only the reduction of the surface abnormality layer, but also the use of elements such as Cr and Si in terms of materials, and the productivity improvement effect due to carburization at high temperature, are expected. Due to the lack of suitable materials to save the effectiveness is falling.

따라서 진공 고온에서도 침탄이 가능하고, 기존 고강도 소재 대비 우수한 접촉피로강도 특성 및 뜨임 연화 저항성을 확보할 수 있는 강재의 개발이 절실히 요구되고 있다.Therefore, there is an urgent need for the development of steels that can be carburized even at high temperatures in the vacuum and that can provide excellent contact fatigue strength characteristics and temper softening resistance compared to existing high strength materials.

본 발명은 상기와 같은 과제를 해결하기 위하여, 탄질화물을 100%고용시켜, 각종 피로강도(회전 굽힘 피로강도, 비틀림 피로강도, 접촉 피로강도 등) 및 뜨임 연화 저항성이 향상되어 접촉피로특성이 우수한 침탄용 초고강도강을 제공하는 것을 목적으로 한다.In order to solve the problems described above, the present invention employs 100% of carbonitride, thereby improving various fatigue strengths (rotational bending fatigue strength, torsional fatigue strength, contact fatigue strength, etc.) and tempering softening resistance, thereby providing excellent contact fatigue characteristics. It is an object to provide ultra high strength steel for carburizing.

또한 본 발명의 목적은, 고온 진공 침탄이 가능하여, 침탄 시간을 단축시킬수 있는 접촉피로특성이 우수한 침탄용 초고강도강을 제공하는 것이다.It is also an object of the present invention to provide a carburizing ultra high strength steel having excellent contact fatigue characteristics capable of high temperature vacuum carburizing and shortening the carburizing time.

상기한 목적을 달성하기 위하여 본 발명에 따른 접촉피로특성이 우수한 침탄용 초고강도강은 C: 0.15~0.25중량%, Cr: 1.70~2.30중량%, Si: 0.50~0.70중량%, N: 100~200중량ppm, Al: 0.010~0.040중량%, Nb: 0.015~0.035중량%, Ti: 50중량ppm이하, Ni: 0.05 중량%이하, 잔부로서 Fe 및 불가피한 불순물을 포함하여 이루어지며, 1200 ~ 1300℃에서 압연 가열되어 탄질화물을 완전 고용시킨 것을 특징으로 한다.In order to achieve the above object, carburizing ultra high strength steel having excellent contact fatigue properties according to the present invention is C: 0.15 to 0.25% by weight, Cr: 1.70 to 2.30% by weight, Si: 0.50 to 0.70% by weight, and N: 100 to 200 ppm by weight, Al: 0.010 to 0.040% by weight, Nb: 0.015 to 0.035% by weight, Ti: 50% by weight or less, Ni: 0.05% by weight or less, remainder containing Fe and unavoidable impurities, 1200 to 1300 ° C It is characterized in that the complete heating of the carbonitride by rolling and heating.

바람직하게는, 상기 초고강도강은 Mn: 0.45~0.75중량%, S: 0.030중량%이하, Mo: 0.25~0.50중량%을 더 포함한다.Preferably, the ultra high strength steel further comprises Mn: 0.45 to 0.75% by weight, S: 0.030% by weight or less, and Mo: 0.25 to 0.50% by weight.

또한 바람직하게는, 상기 초강도강은 상기 탄질화물을 완전 고용시켜 이상결정립 발생온도가 1010 ~ 1150℃이고, 접촉피로한도가 3.660 × 106 ~ 6.822 × 106인 것이다.Also preferably, the super-strength steel is a solid solution of the solid carbide, so that the abnormal grain generation temperature is 1010 ~ 1150 ℃, the contact fatigue limit is 3.660 × 10 6 ~ 6.822 × 10 6 .

이상에서 상세히 설명한 바와 같이, 본 발명의 접촉피로특성이 우수한 침탄용 초고강도강에 따르면, 탄질화물을 완전 고용시켜, 기존 고강도 강재에 대비하여 각종 피로강도가 30% 이상 높으며, 뜨임 연화 저항성이 우수하고, 이상립 발생온도가 1000℃ 이상이므로, 1000℃ 이상의 고온 침탄이 가능하다. As described in detail above, according to the carburizing ultra-high strength steel excellent in contact fatigue characteristics of the present invention, by completely solidifying carbonitride, 30% or more of various fatigue strength compared to the existing high strength steel, excellent tempering softening resistance And since abnormal grain generation temperature is 1000 degreeC or more, high temperature carburization of 1000 degreeC or more is possible.

따라서, 본 발명은 종래강 보다 더 높은 이상 결정립 발생온도로 인하여, 침탄 온도의 상승을 기대할 수 있으며, 이에 따라 침탄 시간을 단축시킬 수 있으므로, 생산성 향상 및 원가 절감이 기대되고, 품질에 대비하여 저렴하면서도 강도 수준이 높은 강재에 대한 고객의 요구에 충분히 대응할 수 있으므로, 최종적으로 제강 제조시 수익성은 물론 차량의 품질과 가격 경쟁력을 파격적으로 향상시킬 수 있는 효과가 있다. Therefore, the present invention can be expected to increase the carburizing temperature due to the abnormal grain generation temperature higher than the conventional steel, thereby reducing the carburizing time, it is expected to improve the productivity and cost reduction, inexpensive for quality At the same time, it is possible to sufficiently respond to customer demand for high strength steel, which can dramatically improve the quality and price competitiveness of the steel as well as profitability in steelmaking.

이하, 상기와 같은 함량 범위를 갖는 본 발명의 합금 성분의 설정이유를 설명한다.Hereinafter, the reason for setting the alloy component of the present invention having the above content range will be described.

C: C는 특수강에서 강도, 경도를 결정하는 주 원소 중 하나로 강도를 확보하기 위하여 0.15중량%이상 함유시킬 필요가 있다. 그러나 0.25중량%를 넘으면 인성이 저하된다. 또한 냉간 가공도의 증가에 따라 인장 강도와 항복점은 증가하고 연신율은 감소하게 된다. 따라서, 이러한 특성을 고려하여 C함량 범위를 0.15~0.25중량%로 설정한다.C: C is one of the main elements for determining strength and hardness in special steels and needs to be contained in an amount of 0.15% by weight or more in order to secure strength. However, when it exceeds 0.25 weight%, toughness will fall. In addition, as the cold workability increases, tensile strength and yield point increase and elongation decreases. Therefore, in consideration of these characteristics, the C content range is set to 0.15 to 0.25 wt%.

Cr: Cr은 강의 담금질, 뜨임 저항을 크게 하고, 피로강도를 향상시키며, 안정된 탄화물을 만들기 쉬우므로 침탄을 촉진한다. 안정 탄화물형성 원소로 Si와 함께 강의 내마모성 증가와 뜨임 연화 저항성 향상을 위하여 1.70중량% 이상 첨가하는 것이 필요하다. 하지만, 2.30중량%를 초과하여 첨가할 경우에는 인성을 떨어트리고 동시에 냉간 단조성의 열화를 초래한다. 따라서 Cr의 적정 함량 범위를 1.70~ 2.30중량%로 설정한다.Cr: Cr promotes carburizing because it increases steel hardening and tempering resistance, improves fatigue strength, and makes stable carbide. It is necessary to add more than 1.70% by weight to increase the wear resistance and temper softening resistance of the steel together with Si as a stable carbide forming element. However, when added in excess of 2.30% by weight, the toughness is degraded and at the same time, the cold forging is deteriorated. Therefore, the appropriate content range of Cr is set to 1.70 to 2.30% by weight.

Si: Si는 제강시 유효한(0.10중량% 이상) 탈산제로 사용되며, 기지에 고용되어 피로강도를 증가시키는 원소로, 0.50중량% 이상 첨가하는 것이 바람직하다. 하지만, 그 함유량이 과잉이 되면 인성을 저하시켜 성형성을 떨어뜨려 단조 및 가공을 어렵게 하기 때문에 0.70중량%이하로 첨가한다. 특히 Si는 침탄 과정 중 대기 중의 산소와 결합하여 표면에 입계 산화층을 형성하여 표면에 합금성분 고갈로 인한 고온 변태층 형성의 원인이 되기도 하지만 Cr과 더불어 강의 내마모성을 향상시키고 유온의 상승에 의한 뜨임 연화 저항성을 증가시키는 역할을 하므로 고온 변태층 형성에 의한 피로 강도가 저하되지 않는 범위에서 적정 함량의 첨가가 중요하다. 따라서 Si의 함량을 0.50~0.70중량%로 설정한다.Si: Si is used as an effective deoxidizer in steelmaking (0.10% by weight or more), and it is preferable to add 0.50% by weight or more as an element that is dissolved in a matrix to increase fatigue strength. However, if the content is excessive, the toughness is lowered, the moldability is lowered, and forging and processing are difficult, so it is added at 0.70% by weight or less. In particular, Si forms an intergranular oxide layer on the surface by combining with oxygen in the air during carburization, which may cause high temperature transformation layer due to depletion of alloying components on the surface, but also improves abrasion resistance of steel and temper softening by rising oil temperature. Since it plays a role of increasing the resistance, the addition of an appropriate content is important in the range that the fatigue strength due to the formation of the high temperature transformation layer is not lowered. Therefore, the content of Si is set to 0.50 to 0.70% by weight.

Al: Al은 강력한 탈산제로서 작용하는 것 뿐만 아니라, N와 결합하여 결정립을 미세화시키는 원소이다. 그러나, Al을 0.010중량% 보다 적게 첨가할 경우 탈산이나 결정립 미세화 작용이 작아지기 때문에 바람직하지 않고 0.040중량%를 초과할 경우에는 오히려 Al2O3와 같은 비금속 개재물량의 증가하기 때문에, 오히려 해로운 영향을 미칠 수 있다. 따라서, Al의 적정 함량 범위를 0.010~0.040중량%로 설정한다.Al: Al is an element that not only acts as a powerful deoxidizer, but also binds with N to refine the grains. However, when Al is added less than 0.010% by weight, deoxidation or grain refining action is not preferable, and when it exceeds 0.040% by weight, the amount of non-metallic inclusions such as Al 2 O 3 is rather detrimental. Can have Therefore, the appropriate content range of Al is set to 0.010 to 0.040% by weight.

Nb: Nb은 고온에서 강의 결정립 조대화 온도를 상승시켜 결정립의 조대화를 방지하며, 결정립을 미세화시켜 연성과 인성을 개선하는 원소이므로, 0.015중량% 이상 첨가할 필요가 있다. 그렇지만, 고가의 원소이므로 소량의 첨가로도 최대의 효과를 얻어야 하므로 0.035중량%를 초과하는 것은 바람직하지 않다. 따라서 다른 성분과의 화학량론비를 계산하여 첨가 함량을 0.015~ 0.035중량%으로 설정한다.Nb: Nb is an element that raises the grain coarsening temperature of steel at high temperature to prevent grain coarsening, and refines the grain to improve ductility and toughness. Therefore, Nb needs to be added at least 0.015% by weight. However, since it is an expensive element, maximum effect should be acquired even with a small amount addition, and it is not preferable to exceed 0.035 weight%. Therefore, the stoichiometric ratio with other components is calculated and the addition content is set to 0.015 to 0.035% by weight.

N: N는 적정량의 첨가시 Al과 결합하여 질화물을 형성시켜 오스테나이트 결정립을 미세화하며 마모 특성을 향상시키므로 일정 수준 이상의 함량을 보유하여야 하나 과도한 첨가는 오히려 연신율의 하락과 시효 경화(청열 취성)를 유발한다. 따라서 적정 함량 범위를 100~ 200ppm으로 설정한다.N: When N is added in an appropriate amount, N is combined with Al to form nitrides to refine austenite grains and improve abrasion characteristics. Therefore, N must have a certain level or more, but excessive addition may cause a decrease in elongation and age hardening (clear brittleness). cause. Therefore, the proper content range is set to 100 ~ 200ppm.

Mn: Mn은 강의 담금질성과 강도를 향상시키며, 고온에서는 소성을 증가시켜 주조성을 좋게 한다. 특히 유해 성분인 S와 결합하여 MnS를 형성함으로써 적열 취성을 방지하고 절삭 가공성을 향상시킨다. 이러한 효과를 발휘하기 위하여 적어도 0.45중량%이상 첨가하는 것이 바람직하지만, 과잉으로 첨가하면 인성을 저하하므로 0.75중량%이하로 첨가하는 것이 바람직하다. 따라서, Mn의 함량은 0.45~0.75중량%로 설정한다.Mn: Mn improves the hardenability and strength of steel, and increases the plasticity at high temperatures to improve castability. In particular, MnS is formed by combining with S, which is a harmful component, to prevent red brittleness and improve cutting processability. In order to exert such an effect, it is preferable to add at least 0.45% by weight or more, but it is preferable to add 0.75% by weight or less because excessive toughness lowers toughness. Therefore, the content of Mn is set to 0.45 to 0.75% by weight.

Mo: Mo은 강의 담금질성을 향상시키는데 탁월한 역할을 하며, 강도 및 인성의 향상에 효과가 크지만 노멀라이징과 같은 열처리시 경도를 현저히 상승시키며, 제조원가를 높이고 부품 가공성을 떨어뜨리는 원소이다. 이러한 Mo은 0.25중량% 미만으로 첨가시엔 충분한 담금질성 및 연화 저항성을 확보할 수 없기 때문에 바람직하지 못하고, 0.50중량%를 초과하면 담금질성 향상 효과가 포화한다. 따라서, 0.25~0.50중량%로 제한한다.Mo: Mo is an element that plays an excellent role in improving the hardenability of steel and has a great effect on improving the strength and toughness, but significantly increases the hardness during heat treatment such as normalizing, and increases the manufacturing cost and decreases the workability of parts. Such Mo is not preferable when added to less than 0.25% by weight, it is not preferable because sufficient hardenability and softening resistance cannot be secured, and when it exceeds 0.50% by weight, the hardenability-improving effect is saturated. Therefore, it is limited to 0.25 to 0.50% by weight.

Ni: Ni은 경화능을 증대시키고, 인성을 향상시키나 부품의 제조원가를 높여 제조성을 떨어뜨리는 원소이므로 0.30중량%이하로 제한한다.Ni: Ni is an element that increases the hardenability, improves toughness but decreases the manufacturability by increasing the manufacturing cost of the part, and is limited to 0.30% by weight or less.

P: P은 응고중 결정 입계에 편석하여 강의 인성을 저하시키고 충격 저항을 떨어뜨리며, 열처리 2상 조직(밴드 구조)을 조장하는 원소로 0.020중량%이하로 제한한다.P: P is an element that segregates at grain boundaries during solidification, lowers toughness of steel, reduces impact resistance, and is limited to 0.020% by weight or less.

S: S은 Mn과 결합에 의해 MnS를 형성하여 강의 피삭성을 개선하는 원소이나 일부 거대 개재물 형성에 의해 표면 처리시 결함의 발생 및 경로가 되는 원인으로 0.030중량%이하로 제한한다.S: S is limited to 0.030% by weight or less as a cause of defects and paths during surface treatment by forming elements or some large inclusions which form MnS by bonding with Mn to improve the machinability of steel.

Ti: Ti은 C와 결합에 의해 강 중에 TiC를 미세하게 석출하여 기지를 분산 강화하여 피로 파괴나 피팅(pitting)에 의한 균열의 생성, 전파를 지연시키는 강력한 질화물 형성 원소로 열처리시 강도를 증가시키고 인성을 향상시키나, N와 결합에 의해 석출된 TiN은 피로 크랙의 발생 기점이 되어, 치차의 품질을 저하시키므로 50ppm 이하로 제한한다.Ti: Ti is a strong nitride-forming element that finely precipitates TiC in steel by bonding with C to disperse and strengthen the base and delays the formation and propagation of cracks due to fatigue fracture or pitting. Although the toughness is improved, TiN precipitated by N-bonding is the starting point of fatigue cracking, and the quality of the gear is reduced, so it is limited to 50 ppm or less.

O: O는 강 중의 산화성 원소의 결합에 의한 비금속 개재물을 형성하여 강의 기계적 성질 및 피로 특성을 저해한다. 따라서 그 함량을 25ppm이하로 제한한다.O: O forms non-metallic inclusions by the bonding of oxidative elements in the steel, thereby inhibiting the mechanical and fatigue properties of the steel. Therefore, the content is limited to 25 ppm or less.

이하, 본 발명의 압연 가열 온도에 따른 결정립의 영향을 상세히 설명한다.Hereinafter, the influence of the crystal grains according to the rolling heating temperature of the present invention will be described in detail.

표1은 종래의 저탄소 강재인 SCM920H를 기본으로 하였을 때 압연 가열 온도 차이에 따른 오스테나이트 결정립 크기 및 결정립 조대화 온도(GCT)를 측정한 결과를 나타낸 것이다Table 1 shows the results of measurement of austenite grain size and grain coarsening temperature (GCT) according to the rolling heating temperature difference based on the conventional low carbon steel SCM920H.

SCM920HSCM920H 오스테나이트 결정립 크기(㎛)Austenitic grain size (μm) 결정립 조대화 온도(℃)Grain Coarsening Temperature (℃) No.1No.1 1차 압연 가열온도(℃)1st rolling heating temperature (℃) 11841184 13.213.2 1010 1010 2차 압연 가열온도(℃)Second rolling heating temperature (℃) 11791179 No.2No.2 1차 압연 가열온도(℃)1st rolling heating temperature (℃) 11891189 9.39.3 970970 2차 압연 가열온도(℃)Second rolling heating temperature (℃) 10431043

표1에 의하면, 1100℃ 미만의 2차 압연 가열온도(No.2)로 압연시 오스테나이트 결정립 크기는 미세하나 탄질화물의 100% 고용에는 불충분하여 결정립 조대화 온도가 970℃로 하락했음을 알 수 있다.According to Table 1, it can be seen that when rolling at the secondary rolling heating temperature (No. 2) of less than 1100 ° C, the austenite grain size is minute but insufficient for 100% solid solution of carbonitride, and the grain coarsening temperature has dropped to 970 ° C. have.

압연 가열 온도(압연 균열 온도)는 침탄 입도를 미세하게 하는 탄질화물의 고용 정도를 결정하는 인자(factor)로, 너무 낮은 압연 가열 온도는 미고용 탄질화물의 형성으로 인한 침탄 입도의 미세화 효과를 떨어뜨리거나 결정립 조대화 온도(Grain Coarsening Temperature)를 하락시킨다. 반대로 너무 높은 압연 가열 온도는 탈탄 발생이나, 조대한 오스테나이트 결정립 형성에 따른 침탄 입도 미세화 효과 감소 및 에너지 낭비의 문제 등을 발생시킨다.Rolling heating temperature (rolling crack temperature) is a factor that determines the degree of solid solution of carbonitride which makes carburizing particle fine. Too low rolling heating temperature is less effective in carburizing particle size due to formation of unemployed carbonitride. Drop or decrease the grain coarsening temperature. On the contrary, too high a rolling heating temperature causes decarburization, a reduction in carburizing particle size reduction effect and energy waste due to coarse austenite grain formation.

따라서, 각종 탄질화물을 100% 고용시킬 수 있는 충분한 가열 구간의 설정은 강의 품질 및 경제성 확보 차원에 중요하다. 그래서 본 발명에서는 압연 가열 온도를 1200~1300℃로 설정하여 각종 탄질화물의 충분한 고용이 확보되도록 하였다.Therefore, the establishment of a sufficient heating section capable of solidifying 100% of various carbonitrides is important for securing steel quality and economy. Therefore, in the present invention, the rolling heating temperature is set to 1200 to 1300 ° C. to ensure sufficient solid solution of various carbonitrides.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Through the following examples will be described the present invention in more detail.

표2는 본 실시예에 따른 발명강 및 본 발명의 발명강과의 비교를 위한 종래강의 화학 성분을 나타낸 것으로, 발명강은 A, B, C 및 D로 종래강은 E, F 및 G로 표시하였다. 발명강 A는 합금설계 및 공정설계에 따라 전기로에서 용해한 후 370x480mm의 블름(bloom)으로 연속주조하고 160mm 빌렛(billet)으로 압연 후 재가열하여 Φ60mm의 공시재로 압연하였으며, 발명강 B, C 및 D는 진공유도용해로(VIM)에서 용해한 후 160mm 빌렛으로 단조한 후 재가열하여 Φ40mm의 공시재로 압연하였다. Table 2 shows the chemical composition of the inventive steel according to the present invention and the conventional steel for comparison with the inventive steel of the present invention, the invention steel is represented by A, B, C and D and the conventional steel by E, F and G. . Invented steel A was melted in an electric furnace according to alloy design and process design, continuously cast into a blow of 370x480mm, rolled to 160mm billet, reheated, and then rolled into a test material of Φ60mm. Invented steels B, C and D Was melted in a vacuum induction furnace (VIM), forged to 160 mm billets, reheated and rolled into a Φ40 mm specimen.

또한, 본 발명에 따른 초고강도강 A, B, C 및 D는 기존 고강도강에 대비하여 내 피로강도를 30% 이상 향상시키고 뜨임 연화 저항성을 확보하기 위하여, Cr이나 Si를 적극적으로 첨가하였으며, 고온에서의 이상 결정립 형성을 저지하기 위하여 Al으로 충분하게 탈산 작업한 후 적정 함량의 Nb 및 Ti을 투입하여 압연 균열온도가 1200~1300℃로 되도록 니오븀, 티타늄-탄화물 및 니오븀, 티타늄-질화물을 충분히 형성하였다.In addition, ultra-high strength steels A, B, C and D according to the present invention actively added Cr or Si to improve the fatigue strength more than 30% and secure temper softening resistance, compared to the existing high strength steel, high temperature In order to prevent abnormal grain formation in, sufficient deoxidation was performed with Al, and Nb and Ti in appropriate amounts were added to sufficiently form niobium, titanium-carbide, niobium, and titanium-nitride such that the rolling cracking temperature was 1200 to 1300 ° C. It was.

구분 division C(중량%)C (% by weight) S(중량%)S (% by weight) Mn(중량%)Mn (wt%) P(중량%)P (% by weight) S(중량%)S (% by weight) Ni(중량%)Ni (% by weight) Cr(중량%Cr (% by weight) Mo(중량%)Mo (% by weight) Al(중량%)Al (% by weight) Nb(중량%)Nb (% by weight) Ti(ppm)Ti (ppm) O(ppm)O (ppm) N(ppm)N (ppm) 발명강Invention steel AA 0.210.21 0.600.60 0.600.60 0.0120.012 0.0060.006 0.050.05 2.052.05 0.380.38 0.0320.032 0.0290.029 3131 1414 155155 BB 0.210.21 0.520.52 0.600.60 0.0060.006 0.0110.011 0.020.02 1.821.82 0.400.40 0.0180.018 0.0210.021 2525 2121 151151 CC 0.170.17 0.580.58 0.540.54 0.0070.007 0.0060.006 0.020.02 2.222.22 0.410.41 0.0130.013 0.0200.020 1919 2525 135135 DD 0.180.18 0.580.58 0.540.54 0.0060.006 0.0040.004 0.020.02 1.711.71 0.290.29 0.0150.015 0.0190.019 2121 1414 110110 종래강Conventional Steel EE 0.190.19 0.120.12 0.680.68 0.0100.010 0.0130.013 0.110.11 1.311.31 0.580.58 0.0250.025 0.0230.023 2323 1515 122122 FF 0.180.18 0.070.07 0.520.52 0.0170.017 0.0190.019 1.571.57 0.580.58 0.610.61 0.0280.028 0.0230.023 -- 1313 110110 GG 0.220.22 0.280.28 0.880.88 0.0120.012 0.0080.008 0.200.20 1.231.23 0.070.07 0.0270.027 0.0260.026 3737 1010 123123

발명강 A, B, C 및 D는 저탄소 합금강(SCM920H)을 기초로 하여, 종래강에 비해 Cr 및 Si가 다량 함유되어 있어 전술한 바와 같이 뜨임 연화 저항성의 향상이 기대되며, 종래강과 마찬가지로 일정량의 Nb을 첨가하여 이상립 발생 온도의 상승효과를 기대할 수 있다. 또한, 소정량의 Ti을 더 첨가함으로써, 티타늄-탄질화물을 형성하여, 결정립을 미세화시켜서 이상립 발생 온도의 상승에 더욱 기여하였다. 기존의 침탄 종래강인 E는 SCM계, F는 SNCM계, G는 SCR계를 기초로 한 현재 사용중인 양산 변속기용 강재이다. 발명강과 종래강에 대한 평가 결과를 이하의 표3에 나타내었다.Invented steels A, B, C, and D are based on low carbon alloy steel (SCM920H), and contain much more Cr and Si than conventional steels, and thus, as described above, the tempering softening resistance is expected to be improved. By adding Nb, a synergistic effect of the abnormal grain generation temperature can be expected. Further, by further adding a predetermined amount of Ti, titanium-carbonitride was formed to refine the crystal grains, further contributing to the increase in the abnormal grain generation temperature. The conventional carburizing conventional steel, E is SCM, F is SNCM, and G is SCR based mass production transmission steel. The evaluation results for the inventive steel and the conventional steel are shown in Table 3 below.

발명강Invention steel 종래강Conventional Steel AA BB CC DD EE FF GG 산소 함량Oxygen content ppmppm 14.314.3 20.920.9 24.624.6 13.513.5 15.015.0 13.013.0 9.69.6 질소 함량Nitrogen content ppmppm 155.4155.4 151.2151.2 134.7134.7 110.3110.3 121.9121.9 110.0110.0 123.5123.5 경화능 (HRC)Curability (HRC) J5J5 47.247.2 46.746.7 45.645.6 45.345.3 44.044.0 43.243.2 44.944.9 J11J11 45.245.2 46.746.7 43.443.4 38.338.3 36.936.9 36.036.0 35.135.1 J13J13 44.244.2 44.844.8 42.442.4 34.334.3 35.435.4 33.633.6 33.233.2 J20J20 41.341.3 44.544.5 39.039.0 29.029.0 32.032.0 29.229.2 30.030.0 이상 결정립 조대화 온도Ideal grain coarsening temperature 11501150 10201020 10101010 10101010 10001000 950950 10001000 접촉 피로수명Contact fatigue life x1000x1000 41544154 36603660 66666666 68226822 22002200 -- 10591059 기계적 성질Mechanical properties 항복 강도Yield strength Kgf /㎠Kgf / ㎠ 9595 9898 9898 9292 9090 8181 8686 인장 강도The tensile strength Kgf /㎠Kgf / ㎠ 134134 137137 135135 121121 110110 110110 107107 변형률Strain %% 1212 1717 1919 2222 1414 1717 1717 단면 감축률Section reduction rate %% 3030 5151 5959 5454 4040 5858 4141 QTQT 회전 굽힘Rotary bending Kgf /㎠Kgf / ㎠ 51.451.4 51.151.1 48.848.8 46.346.3 45.645.6 45.045.0 40.940.9 비틀림torsion Kgf /㎠Kgf / ㎠ 45.045.0 46.046.0 42.742.7 33.033.0 35.035.0 35.035.0 33.433.4 침탄 비틀림Carburizing torsion Kgf /㎠Kgf / ㎠ 67.567.5 65.065.0 58.058.0 47.047.0 42.542.5 45.045.0 39.039.0 침탄표면경도Carburized Surface Hardness 180℃180 ℃ HRCHRC 60.960.9 61.261.2 61.061.0 60.560.5 61.261.2 60.760.7 61.061.0 300℃300 ℃ HRCHRC 57.457.4 58.058.0 57.057.0 55.555.5 55.355.3 54.254.2 55.055.0 하락률Decline %% 5.75.7 5.25.2 6.66.6 8.38.3 9.79.7 10.710.7 9.89.8 압연 균열 온도Rolling crack temperature 1200~13001200-1300 1100~11801100-1180

본 발명강은 종래강에 비해 기계적 성질이 우수하고, 굽힘 피로나 비틀림 피로와 같은 피로성능 및 침탄 부품의 우수한 접촉 피로 수명 결과를 나타내었다. 특히 본 발명강 A는 가장 탁월한 이상 결정립 발생 온도를 나타내고 있으며, 종래강 E와의 비교에서도 뜨임 연화 저항성이 뛰어난 것으로 평가되고, 다른 종래강재와 비교시 가장 우수한 피로 성능을 나타내고 있어 접촉피로 성능이 우수한 침탄용 초고강도강에 가장 적합한 강재이다. The steel of the present invention is superior in mechanical properties to conventional steels, and exhibits fatigue performance such as bending fatigue and torsional fatigue and excellent contact fatigue life of carburized parts. In particular, the present invention steel A exhibits the most excellent abnormal grain generation temperature, it is evaluated to be excellent in temper softening resistance in comparison with the conventional steel E, and shows the best fatigue performance in comparison with other conventional steels, thus providing excellent carburizing performance. It is the most suitable steel for ultra high strength steel.

표3에 나타난 바와 같이, 발명강의 접촉 피로수명 특성은 종래강 대비 2~6배 이상 상승하였고, 기계적 성질은 물론 회전 굽힘, 비틀림 피로특성이 종래강 대비 탁월한 우수성을 나타내고 있다. 또한, 발명강은 탈산 및 결정립 미세화 원소인 Al과 적정량의 N 및 이상립 성장 억제 효과가 큰 Nb 및 Ti을 첨가하여 이상립 발생온도를 높였다. 즉, 종래강의 이상립 발생온도는 950~1000℃임에 비하여 발명강의 이상립 발생온도는 1010~1150℃로 크게 향상되었다.As shown in Table 3, the contact fatigue life characteristics of the inventive steel were increased by 2 to 6 times or more compared to the conventional steel, and the mechanical bending properties, as well as the rotational bending and torsional fatigue characteristics, were excellent. In addition, the invention steel increased the temperature of occurrence of abnormal grains by adding Al, which is a deoxidation and grain refining element, and Nb and Ti, each having an appropriate amount of N and abnormal grain growth inhibitory effect. That is, the abnormal grain generation temperature of the conventional steel is significantly improved to 1010 ~ 1150 ℃, while the abnormal grain generation temperature of the invention steel is 950 ~ 1000 ℃.

또한, 본 발명강은 침탄 표면의 강도 하락에 대한 뜨임 연화 저항성이 종래강 대비 매우 탁월하여 자동차 주행중 발생할 수 있는 급출발 및 급제동에 따른 유온의 상승시 침탄 부품 표면 열화로 인한 피팅 발생의 억제력이 종래강 대비 더 크다고 하겠다. In addition, the present invention steel has excellent temper softening resistance against the strength reduction of the carburized surface compared with the conventional steel, and thus suppresses the occurrence of fittings due to deterioration of the surface of the carburized parts when the oil temperature rises due to rapid start and sudden braking that can occur during driving. It's bigger than that.

이러한 결과로부터, 본 발명강은 차세대 고 내구성 및 접촉피로 특성이 요구되는 침탄 치차용강의 적용에 적합함을 알 수 있다. 본 발명강을 이용하여 제조된 자동차 부품인 기어류를, 도 1a 내지 1c에 나타내었다.From these results, it can be seen that the present invention steel is suitable for the application of carburized tooth steel, which requires high durability and next-generation fatigue properties. Gears which are automobile parts manufactured using the present invention steel are shown in Figs. 1A to 1C.

이상에서는 본 발명을 특정의 바람직한 실시예에 의해서 설명하였지만, 본 발명은 상술한 실시예에 의해 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 기술적 사상의 요지를 벗어나지 않고 얼마든지 다양하게 변경 실시할 수 있을 것이다.In the above, the present invention has been described by specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and those skilled in the art to which the present invention pertains should be described in the following claims. Various modifications can be made without departing from the spirit of the invention.

도 1a 내지 1c는 본 발명의 실시예에 따른 접촉피로특성이 우수한 침탄용 초고강도강으로 제조된 기어류를 나타낸 도면이다.1a to 1c is a view showing the gears made of super high strength steel for carburization excellent contact fatigue characteristics according to an embodiment of the present invention.

Claims (3)

C: 0.15~0.25중량%, Cr: 1.70~2.30중량%, Si: 0.50~0.70중량%, N: 100~200중량ppm, Al: 0.010~0.040중량%, Nb: 0.015~0.035중량%, Ti: 50중량ppm이하(0은 미포함), Ni: 0.05 중량%이하(0은 미포함), Mn: 0.45~0.75중량%, S: 0.030중량%이하(0은 미포함) Mo: 0.25~0.50중량%, 잔부로서 Fe 및 불가피한 불순물을 포함하여 이루어지며, C: 0.15 to 0.25 weight%, Cr: 1.70 to 2.30 weight%, Si: 0.50 to 0.70 weight%, N: 100 to 200 weight ppm, Al: 0.010 to 0.040 weight%, Nb: 0.015 to 0.035 weight%, Ti: 50 weight ppm or less (0 is not included), Ni: 0.05% or less (0 is not included), Mn: 0.45 to 0.75% by weight, S: 0.030% or less (0 is not included) Mo: 0.25 to 0.50% by weight, balance As containing Fe and unavoidable impurities, 1200 ~ 1300℃에서 압연 가열되어 탄질화물을 완전 고용시켜 이상결정립 발생온도가 1010 ~ 1150℃이고, 접촉피로한도가 3.660 × 106 ~ 6.822 × 106인 것을 특징으로 하는 접촉피로강도가 우수한 진공침탄용 초고강도강.Vacuum carburizing with excellent contact fatigue strength, characterized in that the ideal grain generation temperature is 1010 ~ 1150 ℃ and the contact fatigue limit is 3.660 × 10 6 ~ 6.822 × 10 6 by rolling and heating at 1200 ~ 1300 ℃ to completely solidify the carbonitride. Ultra high strength steel. 삭제delete 삭제delete
KR1020080067537A 2008-07-11 2008-07-11 Ultra high strength carburizing steel with high fatigue resistance KR100913172B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080067537A KR100913172B1 (en) 2008-07-11 2008-07-11 Ultra high strength carburizing steel with high fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080067537A KR100913172B1 (en) 2008-07-11 2008-07-11 Ultra high strength carburizing steel with high fatigue resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020060130169A Division KR20080056945A (en) 2006-12-19 2006-12-19 Ultra high strength carburizing steel with high fatigue resistance

Publications (2)

Publication Number Publication Date
KR20080070615A KR20080070615A (en) 2008-07-30
KR100913172B1 true KR100913172B1 (en) 2009-08-19

Family

ID=39823252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080067537A KR100913172B1 (en) 2008-07-11 2008-07-11 Ultra high strength carburizing steel with high fatigue resistance

Country Status (1)

Country Link
KR (1) KR100913172B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436779B2 (en) * 2019-08-09 2024-02-22 日本製鉄株式会社 Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279383A (en) * 2000-03-28 2001-10-10 Nippon Steel Corp High temperature carburizing steel excellent in high temperature carburizability, and hot forged member for high temperature carburizing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279383A (en) * 2000-03-28 2001-10-10 Nippon Steel Corp High temperature carburizing steel excellent in high temperature carburizability, and hot forged member for high temperature carburizing

Also Published As

Publication number Publication date
KR20080070615A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US10202677B2 (en) Production method of carburized steel component and carburized steel component
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP5862802B2 (en) Carburizing steel
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
CN112292471B (en) Mechanical component
JP5206271B2 (en) Carbonitriding parts made of steel
JP4464863B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP4847681B2 (en) Ti-containing case-hardened steel
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
KR100913172B1 (en) Ultra high strength carburizing steel with high fatigue resistance
JP2008179848A (en) Steel for gear having superior impact fatigue resistance and contact fatigue strength, and gear using the same
JP5272609B2 (en) Carbonitriding parts made of steel
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
KR20080056945A (en) Ultra high strength carburizing steel with high fatigue resistance
JP6825605B2 (en) Carburizing member
JP2012001765A (en) Bar steel for steering rack bar and method for manufacturing bar steel
JP5077814B2 (en) Shaft and manufacturing method thereof
EP3252182B1 (en) Case hardening steel
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
KR20090037631A (en) High strength carburizing steel with high fatigue resistance

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120607

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150817

Year of fee payment: 9