JP6601359B2 - Carburized parts with excellent wear resistance and manufacturing method thereof - Google Patents

Carburized parts with excellent wear resistance and manufacturing method thereof Download PDF

Info

Publication number
JP6601359B2
JP6601359B2 JP2016193320A JP2016193320A JP6601359B2 JP 6601359 B2 JP6601359 B2 JP 6601359B2 JP 2016193320 A JP2016193320 A JP 2016193320A JP 2016193320 A JP2016193320 A JP 2016193320A JP 6601359 B2 JP6601359 B2 JP 6601359B2
Authority
JP
Japan
Prior art keywords
mass
carburized
less
wear resistance
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016193320A
Other languages
Japanese (ja)
Other versions
JP2018053338A (en
Inventor
和明 福岡
邦和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016193320A priority Critical patent/JP6601359B2/en
Publication of JP2018053338A publication Critical patent/JP2018053338A/en
Application granted granted Critical
Publication of JP6601359B2 publication Critical patent/JP6601359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は自動車および各種産業機器に用いる高い耐摩耗性を有する浸炭部品およびその製造方法に関する。     The present invention relates to a carburized part having high wear resistance used for automobiles and various industrial equipment and a method for manufacturing the same.

自動車等に用いられている軸類、歯車類は、近年、省エネルギーのための車体軽量化に伴って小型化が要求される。一方で、エンジンの高出力化により負荷が増大していることから、耐久性の向上が求められている。   In recent years, shafts and gears used in automobiles and the like are required to be reduced in size with a reduction in weight of the vehicle body for energy saving. On the other hand, since the load is increased due to the higher output of the engine, improvement in durability is required.

従来は、JIS SCM420H、SNCM420H等の肌焼鋼を用いて部品を成形し、浸炭等の表面処理を行い自動車等に使用されてきた。しかし、高応力下での使用には耐えられないため、鋼材の変更、熱処理方法の変更、表面の加工硬化処理により耐摩耗性および疲労強度を向上させる研究開発が進められてきた。   Conventionally, parts have been formed using case-hardened steel such as JIS SCM420H, SNCM420H, etc., and surface treatment such as carburization has been performed and used for automobiles and the like. However, since it cannot withstand use under high stress, research and development has been advanced to improve wear resistance and fatigue strength by changing the steel material, changing the heat treatment method, and working hardening the surface.

たとえば、特許文献1には、特定の成分を有する鋼材で部品形状とした後に浸炭若しくは浸炭窒化処理および焼入れ・焼戻し処理を施し、表層部に平均粒径が5μm以下の炭化物または炭窒化物を析出させるいわゆる高濃度浸炭処理を用いることで耐摩耗性を向上させている。
また、特許文献2では耐摩耗性部品を表面硬さ、粗さで規定して、さらに素材としてはJIS G4053に規定されたクロム鋼またはクロムモリブデン鋼かさらにMn、Moなどの合金を添加することが規定されている。
For example, in Patent Document 1, carburization or carbonitriding treatment and quenching / tempering treatment are performed after forming a part shape with a steel material having a specific component, and carbide or carbonitride having an average particle size of 5 μm or less is deposited on the surface layer portion. Wear resistance is improved by using so-called high-concentration carburizing treatment.
In Patent Document 2, wear-resistant parts are defined by surface hardness and roughness, and as a material, chrome steel or chrome molybdenum steel specified in JIS G4053 or an alloy such as Mn or Mo is added. Is stipulated.

特開2007−246941号公報JP 2007-246941 A 特開2010−222673号公報JP 2010-222673 A

特許文献1では、成分としてCrが2〜8重量%含まれていて高合金であるために合金コストが高く、またこの熱処理は高温長時間での処理となる為に熱処理コストも嵩む。   In Patent Document 1, the alloy cost is high because Cr is contained as a component and is a high alloy, and this heat treatment is a treatment at a high temperature for a long time, so that the heat treatment cost is also increased.

特許文献2では表面硬さを高めることや粗さを規定することで摩耗性の向上を図るのは従来鋼でも可能な手法であるが、あまり効果は大きくない。さらにMn、Moを高めるとコスト増となってしまう。   In Patent Document 2, it is possible to improve the wearability by increasing the surface hardness or regulating the roughness, but it is possible with conventional steel, but the effect is not so great. If Mn and Mo are further increased, the cost will increase.

本発明は、上述した問題を解決して、耐摩耗性に優れた浸炭部品およびその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and to provide a carburized component having excellent wear resistance and a method for manufacturing the same.

本発明では、上記課題を解決するために、鋭意研究を行い、以下のことを見出した。
1.耐摩耗性に対して表面硬度を高める手段は一般的に使用されており、そのために表面硬化処理の一つである浸炭焼入れ焼戻しを行なっている。浸炭焼入れ焼戻しをして使用する場合には表面粗さを抑えて摩擦を抑えると共にその摩擦発熱による軟化の抑制が最も効果がある。
2.浸炭材の表面粗さをミクロ的に見ると浸炭時の表面の粒界酸化状況が表面粗さに影響を及ぼす。そのため、表面を研磨して使用する場合は必要ないが、浸炭焼入れ焼戻しままでの表面で使用する場合は、コストが嵩む為、粒界酸化を抑制する必要がある。
3.摩擦発熱による焼戻し軟化抑制については焼戻し軟化抵抗を有する合金添加が有効であり、その中で安価で代表的なものはSiである。
4.鋼材のSi増量添加では表面酸化は多くなる。しかし、表面の粒界・粒内の全域で酸化が進行するために深さ方向への進展が遅れる。結果、粒界優先で酸化した場合の表面の粗さよりも表面の粗さは小さくなる。よって表面粗さを抑えるための粒界酸化コントロールにはSi添加鋼が必須であるが、表面の酸化の状態をコントロールするにはさらに浸炭条件もコントロールしたうえで表層の粒界酸化密度をコントロールすることが重要である。
5.Siを添加すると鋼の変態点が上昇する。この点を利用して内部組織をコントロールし熱処理による歪みをコントロールする事で、歪み取り矯正の簡略化・簡素化を図れる。同時に、研磨の必要もなくなり、安価に表面硬度を高めに維持可能となる。
In the present invention, in order to solve the above-mentioned problems, intensive research has been conducted and the following has been found.
1. A means for increasing the surface hardness with respect to the wear resistance is generally used, and therefore, carburizing, quenching and tempering, which is one of the surface hardening treatments, is performed. When carburizing, quenching and tempering are used, it is most effective to suppress the surface roughness to suppress friction and to suppress softening due to frictional heat generation.
2. When the surface roughness of the carburized material is viewed microscopically, the state of grain boundary oxidation at the time of carburizing affects the surface roughness. For this reason, it is not necessary when the surface is polished and used, but when used on the surface as it is carburized, quenched and tempered, the cost increases, so it is necessary to suppress grain boundary oxidation.
3. Addition of an alloy having temper softening resistance is effective for suppressing temper softening due to frictional heat generation. Among these, Si is a cheap and typical one.
4). Surface oxidation increases when Si is added to steel. However, the progress in the depth direction is delayed due to the progress of oxidation at the grain boundaries on the surface and the entire area within the grains. As a result, the surface roughness is smaller than the surface roughness when oxidation is performed with priority given to grain boundaries. Therefore, Si-added steel is indispensable for grain boundary oxidation control to suppress the surface roughness, but to control the surface oxidation state, control the carburizing conditions and control the grain boundary oxidation density of the surface layer. This is very important.
5). When Si is added, the transformation point of steel increases. By taking advantage of this point to control the internal structure and to control distortion due to heat treatment, it is possible to simplify and simplify distortion correction. At the same time, there is no need for polishing, and the surface hardness can be maintained at a low cost.

本発明は以上の知見に基づいてなされたものであり、特徴は以下の通りである。
[1]成分組成が、C:0.15〜0.35mass%、Si:1.00〜2.50mass%、Mn:0.40〜0.70mass%、Cr:1.00〜2.00mass%、Mo:0.3mass%以下(0mass%を含む)、Al:0.010〜0.080mass%、N:0.0040〜0.0200mass%、Cu:0.50mass%以下(0mass%を含む)、Ni:2.0mass%以下(0mass%を含む)、残部Feおよび不可避的不純物であり、かつ、下記(1)式を満足する非浸炭部と、該非浸炭部より表面側にあって、該非浸炭部に対してC含有量またはさらにN含有量が高い成分組成である浸炭部を有し、該浸炭部は、表面から5μm深さ位置までの酸化密度が60%以上であり、前記非浸炭部の鋼組織はフェライト量が面積率で40%以下であることを特徴とする耐摩耗性に優れた浸炭部品。
[Si]+3[Cr]−[Mn]≧4.0 ・・・(1)
但し、[M]はM元素の含有量(mass%)を示す。
[2]成分組成として、更に、Nb:0.060mass%以下、V:0.20mass%以下、Ti:0.200mass%以下の1種以上を含有することを特徴とする上記[1]に記載の耐摩耗性に優れた浸炭部品。
[3]成分組成として、更に、B:0.0050mass%以下を含有することを特徴とする上記[1]または[2]のいずれかに記載の耐摩耗性に優れた浸炭部品。
[4]上記[1]乃至[3]のいずれか一つに記載の成分組成の鋼材を用いて機械加工、熱間鍛造、冷間鍛造、温間鍛造のいずれか一つ以上を行って部品形状とした後、浸炭焼入れあるいは浸炭浸窒焼入れの後、焼戻し処理を行うことを特徴とする耐摩耗性に優れた浸炭部品の製造方法。
This invention is made | formed based on the above knowledge, and the characteristic is as follows.
[1] Component composition is C: 0.15-0.35 mass%, Si: 1.00-2.50 mass%, Mn: 0.40-0.70 mass%, Cr: 1.00-2.00 mass% , Mo: 0.3 mass% or less (including 0 mass%), Al: 0.010 to 0.080 mass%, N: 0.0040 to 0.0200 mass%, Cu: 0.50 mass% or less (including 0 mass%) Ni: 2.0 mass% or less (including 0 mass%), the remaining Fe and inevitable impurities, and a non-carburized portion satisfying the following formula (1), on the surface side from the non-carburized portion, The carburized part has a carburized part having a component composition with a high C content or even N content relative to the carburized part, and the carburized part has an oxidation density of 60% or more from the surface to a depth of 5 μm. Steel assembly Carburized parts having excellent wear resistance, wherein the 40% or less amount ferrite area ratio.
[Si] +3 [Cr] − [Mn] ≧ 4.0 (1)
However, [M] indicates the content (mass%) of the M element.
[2] As described in [1] above, the composition further contains one or more of Nb: 0.060 mass% or less, V: 0.20 mass% or less, and Ti: 0.200 mass% or less. Carburized parts with excellent wear resistance.
[3] The carburized part having excellent wear resistance according to any one of the above [1] or [2], further comprising B: 0.0050 mass% or less as a component composition.
[4] A component obtained by performing any one or more of machining, hot forging, cold forging, and warm forging using the steel material having the composition described in any one of [1] to [3] above. A method for producing a carburized part having excellent wear resistance, characterized by performing tempering after carburizing and quenching or carburizing and nitriding and quenching.

本発明によれば、耐摩耗性に優れた浸炭部品が得られる。本発明の浸炭部品は、自動車、産業機械の歯車等に好適に使用できる。また、本発明の製造方法によれば、本発明の浸炭部品を安価に量産可能に製造することができる。以上より、産業上極めて有用である。   According to the present invention, a carburized part having excellent wear resistance can be obtained. The carburized parts of the present invention can be suitably used for automobiles, industrial machinery gears, and the like. Moreover, according to the manufacturing method of the present invention, the carburized component of the present invention can be manufactured at low cost so as to be mass-produced. From the above, it is extremely useful industrially.

実施例に用いた浸炭焼入焼戻し処理条件を説明する図である。It is a figure explaining the carburizing quenching tempering process conditions used for the Example.

本発明では素材となる鋼材の成分組成、部品の表層のミクロ組織と、非浸炭部の鋼組織を規定する。以下に各限定理由について述べる。
なお、以下の説明において、成分組成の各元素の含有量の単位はいずれも「mass%」であり、特に断らない限り単に「%」で示す。
成分組成
In this invention, the component composition of the steel material used as a raw material, the microstructure of the surface layer of a part, and the steel structure of a non-carburized part are prescribed | regulated. Each limitation reason is described below.
In the following description, the unit of the content of each element of the component composition is “mass%”, and is simply “%” unless otherwise specified.
Ingredient composition

C:0.15〜0.35mass%
Cは強度確保のために必要で、浸炭焼入れ焼戻しあるいは浸炭浸窒焼入れ焼戻し後の内部硬度を決定する。0.15mass%未満では内部硬度が低下し、耐曲げ応力が低下して強度を確保できない。一方、0.35mass%より多いと表層の残留オーステナイトが過多となり、表面硬度が低下するとともに、内部靭性が劣化し、疲労特性が悪くなる。よって、0.15〜0.35mass%とする。
C: 0.15-0.35 mass%
C is necessary for ensuring the strength, and determines the internal hardness after carburizing, quenching, and tempering. If it is less than 0.15 mass%, the internal hardness decreases, the bending stress decreases, and the strength cannot be ensured. On the other hand, when it exceeds 0.35 mass%, the retained austenite of the surface layer becomes excessive, the surface hardness is lowered, the internal toughness is deteriorated, and the fatigue characteristics are deteriorated. Therefore, it is set to 0.15 to 0.35 mass%.

Si:1.00〜2.50mass%
Siは焼戻し軟化抵抗を高めるのに有効な元素である。軟化抵抗が低いと、摩擦熱による軟化が発生してしまい摩耗を早めてしまう。その抑制効果は1.00mass%以上で有効である。また、Siは変態点を上げる作用がある。浸炭焼入れ焼戻しあるいは浸炭浸窒焼入れ焼戻し後に、非浸炭部にフェライトを好適に15%以上存在させるためにはSiは1.00mass%以上必要である。一方、2.50mass%以上含有した場合は、フェライトが40%を超えてしまい、内部硬度が低下して疲労強度が下がる。よって1.50〜2.50mass%とする。
Si: 1.00-2.50 mass%
Si is an element effective for increasing the temper softening resistance. When the softening resistance is low, softening due to frictional heat occurs and wear is accelerated. The suppression effect is effective at 1.00 mass% or more. Si also has the effect of raising the transformation point. After carburizing and tempering or carburizing and nitriding and quenching and tempering, Si needs to be 1.00 mass% or more so that ferrite is preferably present in an amount of 15% or more in the non-carburized part. On the other hand, when it contains 2.50 mass% or more, a ferrite exceeds 40%, internal hardness falls and fatigue strength falls. Therefore, it is set to 1.50 to 2.50 mass%.

Mn:0.40〜0.70mass%
Mnは焼入れ性を高める元素である。焼入れ性を確保するため0.40mass%以上とする。一方、0.70mass%を超えて含有すると変態点が下がりすぎて熱処理変形が大きくなり疲労強度が低下してしまう。よって、0.40〜0.70mass%とする。
Mn: 0.40 to 0.70 mass%
Mn is an element that enhances hardenability. In order to ensure hardenability, the content is set to 0.40 mass% or more. On the other hand, if the content exceeds 0.70 mass%, the transformation point is excessively lowered, the heat treatment deformation is increased, and the fatigue strength is lowered. Therefore, it is set to 0.40 to 0.70 mass%.

Cr:1.00〜2.00mass%
Crは焼入れ性向上元素であるとともに、焼戻し軟化抵抗を高める元素である。両方の性能を発揮させるには1.00mass%以上の含有が必要である。一方、2.00mass%を超えると軟化抵抗を高める効果は飽和する。また、焼入れ性が高くなりすぎるため歯車内部の靭性が劣化し、疲労亀裂の進展が早くなって曲げ疲労強度が低下するようになる。よって、1.00〜2.00mass%とする。
Cr: 1.00 to 2.00 mass%
Cr is an element improving the temper softening resistance as well as a hardenability improving element. In order to exhibit both performances, it is necessary to contain 1.00 mass% or more. On the other hand, if it exceeds 2.00 mass%, the effect of increasing the softening resistance is saturated. Further, since the hardenability becomes too high, the toughness inside the gear is deteriorated, the fatigue crack progresses quickly, and the bending fatigue strength decreases. Therefore, it is set to 1.00 to 2.00 mass%.

Mo:0.3mass%以下(0mass%を含む)
Mo添加は必須ではないが、焼入れ性向上元素であるため、0.3mass%を上限として含有することができる。0.3mass%を超えると焼入れ性が高すぎて焼割れが起こりやすくなり、また高価なため経済性も悪くなるので、0.3mass%以下とする。
Mo: 0.3 mass% or less (including 0 mass%)
Although addition of Mo is not essential, since it is a hardenability improving element, it can be contained up to 0.3 mass%. If it exceeds 0.3 mass%, the hardenability is too high and cracking easily occurs, and since it is expensive, the economic efficiency is also deteriorated.

Al:0.010〜0.080mass%
Alは脱酸に有効な元素であり、その効果は0.010mass%以上の添加で発揮される。また、0.080mass%までの添加でNと結合してAlNを生成し、結晶粒の粗大化を抑える働きがある。0.080mass%を超えると粗大粒が発生して疲労亀裂が進展し易くなって曲げ疲労強度が低下する。よって、0.010〜0.080mass%とする。
Al: 0.010-0.080 mass%
Al is an element effective for deoxidation, and the effect is exhibited by addition of 0.010 mass% or more. Further, when added up to 0.080 mass%, it combines with N to produce AlN, and has the function of suppressing the coarsening of crystal grains. If it exceeds 0.080 mass%, coarse grains are generated and fatigue cracks are easily developed, and the bending fatigue strength is lowered. Therefore, it is set to 0.010 to 0.080 mass%.

N:0.0040〜0.0200mass%
NはAlと結合してAlNを生成し、結晶粒の粗大化を抑えて疲労強度を向上させる。その効果を得るには0.0040mass%以上必要である。一方、0.0200mass%を超えるとその効果は飽和するだけでなく、内部にブローホール等の欠陥を発生させ、曲げ疲労強度の低下を招く。よって、0.0040〜0.0200mass%とする。
N: 0.0040-0.0200 mass%
N combines with Al to produce AlN, which suppresses coarsening of crystal grains and improves fatigue strength. To obtain the effect, 0.0040 mass% or more is necessary. On the other hand, if it exceeds 0.0200 mass%, the effect is not only saturated, but also defects such as blow holes are generated inside, leading to a decrease in bending fatigue strength. Therefore, it is set as 0.0040-0.0200 mass%.

Cu:0.50mass%以下(0mass%を含む)
Cuは必ずしもその含有を必須とするものではないが、鋼中に固溶して、鋼材の強度を高める元素であるため0.50mass%を上限として含有してもよい。しかし、0.50mass%を超えると鋼材製造時に表面疵が発生して部品製造の際に表面欠陥が発生しやすくなり、また表面研削等を行なった後に部品製造をするとコスト増となる等、不利益となる。よって、Cuは0.50mass%以下で使用する。なお、Cuによる固溶強化を有効に発現させるためには、0.02mass%以上で含有させることが好ましい。さらにCuを含有する場合は表面疵の発生を抑制する効果の高いNiを同時に含有することが好ましい。
Cu: 0.50 mass% or less (including 0 mass%)
The content of Cu is not necessarily essential, but may be contained up to 0.50 mass% because it is an element that dissolves in steel and increases the strength of the steel material. However, if it exceeds 0.50 mass%, surface flaws occur during steel production, and surface defects are likely to occur during parts production. If parts are produced after surface grinding, etc., the cost increases. Profit. Therefore, Cu is used at 0.50 mass% or less. In order to effectively develop the solid solution strengthening by Cu, it is preferable to contain 0.02 mass% or more. Furthermore, when it contains Cu, it is preferable to contain Ni with the high effect which suppresses generation | occurrence | production of surface flaws simultaneously.

Ni:2.0mass%以下(0mass%を含む)
Niは必ずしもその含有を必須とするものではない。しかし、鋼中に固溶して強度を高めると共に、焼入れ性を高くして表面の硬化層深さを深くする働きがあるため含有することができる。含有する場合は、Niは合金としては高価であるため2.0mass%を上限とする。なお、Niによる固溶強化や焼入れ性を高める効果を有効に発現させるためには、0.02mass%以上含有されることが好ましい。
Ni: 2.0 mass% or less (including 0 mass%)
Ni is not necessarily required to contain Ni. However, it can be contained because it has a function of increasing the strength by solid solution in steel and increasing the hardenability of the surface by increasing the hardenability. When Ni is contained, the upper limit is set to 2.0 mass% because Ni is expensive as an alloy. In addition, in order to effectively express the effect of enhancing solid solution strengthening and hardenability by Ni, it is preferable to contain 0.02 mass% or more.

以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Nb、V、Ti、Bの一種または二種以上を含有することができる。   The above is the basic component composition of the present invention, but in the case of further improving the characteristics, one or more of Nb, V, Ti and B can be contained.

Nb:0.060mass%以下
Nbは炭窒化物形成により結晶粒を微細化し、疲労特性を向上させる。結晶粒の微細化効果は0.010mass%以上で増大するので、0.010mass%以上含有させることが好ましい。一方、0.060mass%を超えて含有してもその効果は飽和するようになるので、0.060mass%を上限とする。
Nb: 0.060 mass% or less Nb refines crystal grains by forming carbonitride and improves fatigue characteristics. Since the effect of refining crystal grains increases at 0.010 mass% or more, it is preferable to contain 0.010 mass% or more. On the other hand, even if the content exceeds 0.060 mass%, the effect is saturated, so 0.060 mass% is made the upper limit.

V:0.20mass%以下
Vは焼入性を向上させるとともにSi、Crと同じく焼戻し軟化抵抗を高める。また、炭窒化物を形成して結晶粒の粗大化を抑制する。このような効果を発揮させるためには、0.030mass%以上の含有が好ましい。一方、0.20mass%を超えて含有しても飽和してしまい、十分な効果は得られず、製造コストが上がるだけとなるので、含有する場合は0.20mass%を上限とする。
V: 0.20 mass% or less V improves the hardenability and increases the temper softening resistance like Si and Cr. In addition, carbonitride is formed to suppress coarsening of crystal grains. In order to exert such an effect, the content is preferably 0.030 mass% or more. On the other hand, even if it contains exceeding 0.20 mass%, it will saturate and sufficient effect will not be acquired, but only a manufacturing cost will rise, Therefore When it contains, 0.20 mass% is made an upper limit.

Ti:0.200mass%以下
Tiは微細Ti化合物を生成して鍛造後の結晶粒を小さくして強度を高める。その効果は0.005mass%以上で増大するので、0.005mass%以上含有させることが好ましい。一方、0.200mass%を超えて含有するとTi析出物が粗大化し、疲労破壊の起点となって寿命が低下するようになるので、含有する場合は、0.200mass%を上限とする。
Ti: 0.200 mass% or less Ti generates a fine Ti compound to reduce crystal grains after forging and increase the strength. Since the effect increases at 0.005 mass% or more, it is preferable to contain 0.005 mass% or more. On the other hand, if the content exceeds 0.200 mass%, the Ti precipitate becomes coarse, and the life becomes a starting point of fatigue fracture, so that the life is reduced. Therefore, if contained, the upper limit is 0.200 mass%.

B:0.0050mass%以下
Bは焼入れ性を上げるのに有効である。その効果は0.0005mass%以上で得られるため、0.0005mass%以上で含有させることが好ましい。一方、0.0050mass%を超えると上記の効果が飽和するようになるので、含有する場合は0.0050mass%を上限とする。
B: 0.0050 mass% or less B is effective in increasing the hardenability. Since the effect is obtained at 0.0005 mass% or more, it is preferably contained at 0.0005 mass% or more. On the other hand, if it exceeds 0.0050 mass%, the above-mentioned effect becomes saturated. Therefore, when it is contained, the upper limit is set to 0.0050 mass%.

以上に説明した元素以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、P、Sが挙げられ、Pについては0.030mass%まで、Sについては0.030mass%までは含有を許容できる。   The balance other than the elements described above is Fe and inevitable impurities. Inevitable impurities include P and S. P can be contained up to 0.030 mass%, and S can be contained up to 0.030 mass%.

さらに、耐摩耗性を向上させるパラメータとして以下の(1)式を満足させる必要がある。
[Si]+3[Cr]−[Mn]≧4.0・・・(1)
但し、[M]はM元素の含有量(mass%)を示す。
上記(1)式は焼戻し軟化抑制および粒界酸化状況改善、さらに非浸炭部フェライト量確保の3つの要素をコントロールするのに必要である、この値が4.0よりも小さい場合、焼戻し軟化抵抗、表層酸化状況、非浸炭部フェライト量不足による変形量のいずれかが満たされなくなり耐摩耗性が改善されない。
Furthermore, it is necessary to satisfy the following expression (1) as a parameter for improving wear resistance.
[Si] +3 [Cr] − [Mn] ≧ 4.0 (1)
However, [M] indicates the content (mass%) of the M element.
The above equation (1) is necessary to control the three factors of suppressing temper softening, improving the grain boundary oxidation state, and ensuring the amount of ferrite in the non-carburized part. When this value is smaller than 4.0, temper softening resistance Either the surface oxidation state or the deformation amount due to the insufficient amount of ferrite in the non-carburized part is not satisfied, and the wear resistance is not improved.

浸炭部表層酸化密度
本発明は、浸炭処理が施されて表面から所定深さまでに浸炭部を有する浸炭部品に関するものである。浸炭処理は、上述した成分組成からなる鋼を部品形状としたものに対して行うが、浸炭領域(浸炭部)は表層に形成し、それよりも深い部分は上述した成分組成からなる非浸炭部となる。つまり浸炭部が非浸炭部の表面側に形成される。当然、浸炭部のC含有量は非浸炭部のC含有量に対して高くなる。また、浸炭処理と同時あるいは浸炭処理の後に、浸窒処理が施されていてもよく、この場合、浸炭部のN含有量が非浸炭部のN含有量よりも高くなる。このような、浸炭あるいは浸炭浸窒した場合、表層付近は酸化されるが、本発明ではその酸化密度が重要な要件となる。表面から5μm深さ位置までの表層酸化密度が60%未満の場合は表面の酸化が粒界を主体に内部へ伸展しており、部品として使用し、摩擦が発生した場合に表面が荒れ易く、局部摩耗が伸展しやすくなり疲労特性が落ちる。よって、60%以上必要である。尚、表層酸化密度については、表面から5μm深さ位置までについてEPMAを使用して酸素親和力の高いSiのマッピングを行い、非浸炭部の各合金含有量と比較して濃度が4倍以上の部分の面積の和を観察面積全体で除して求めた。観察面積は3000倍で200視野を観察した。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carburized part that is carburized and has a carburized portion from a surface to a predetermined depth. Carburizing treatment is performed on steel having the above component composition in the shape of a part, but the carburized region (carburized portion) is formed on the surface layer, and the deeper part is the non-carburized portion consisting of the above-described component composition. It becomes. That is, the carburized portion is formed on the surface side of the non-carburized portion. Naturally, the C content of the carburized portion is higher than the C content of the non-carburized portion. Further, a nitriding treatment may be performed simultaneously with the carburizing treatment or after the carburizing treatment. In this case, the N content of the carburized portion is higher than the N content of the non-carburized portion. When carburizing or carburizing and nitriding is performed, the vicinity of the surface layer is oxidized, but the oxidation density is an important requirement in the present invention. When the surface layer oxidation density from the surface to a depth of 5 μm is less than 60%, the surface oxidation extends mainly inside the grain boundary, and it is used as a part. Local wear tends to extend and fatigue characteristics are degraded. Therefore, 60% or more is necessary. As for the surface layer oxidation density, a part having a concentration of 4 times or more compared with the alloy content of the non-carburized part is obtained by mapping Si with high oxygen affinity using EPMA from the surface to a depth of 5 μm. The sum of the areas was divided by the entire observation area. The observation area was 3000 times and 200 fields were observed.

非浸炭部のフェライト量
浸炭焼入れ焼戻しあるいは浸炭浸窒焼入れ焼戻し後の非浸炭部の組織中にフェライトを一定量存在させると部品の変形を少なくする事が可能である。そのため、フェライト量は面積率で15%以上が好ましい。一方、40%を超えて存在させると、内部の硬度が下がりすぎて疲労強度が低下してしまう。よって、非浸炭部のフェライト量は面積率で40%以下に限定する。なお、フェライト量の測定にはナイタールでエッチングした浸炭部品の切断・研磨品を光学顕微鏡で400倍の倍率で100視野観察し、それらを画像処理にて二値化処理を行って白い部分の面積を求め、全体の面積に対する割合とする。
The amount of ferrite in the non-carburized part When a certain amount of ferrite is present in the structure of the non-carburized part after carburizing and quenching tempering or carburizing and nitriding quenching and tempering, it is possible to reduce deformation of parts. Therefore, the ferrite content is preferably 15% or more in terms of area ratio. On the other hand, if it is present in excess of 40%, the internal hardness is too low and the fatigue strength is reduced. Therefore, the amount of ferrite in the non-carburized portion is limited to 40% or less in terms of area ratio. In addition, for the measurement of the ferrite content, cut and polished carburized parts etched with nital are observed in 100 visual fields with an optical microscope at a magnification of 400 times, and binarized by image processing to obtain an area of a white portion. Is determined as a percentage of the total area.

浸炭部品の製造方法
本発明に係る浸炭部品は以下のように製造する。上記成分組成の鋼材を機械加工、熱間鍛造、温間鍛造、冷間鍛造のいずれか一つ以上の加工により、歯車等の所望の部品形状とする。または、熱間鍛造、冷間鍛造または温間鍛造のいずれかの後に機械加工で歯車等の所望の部品形状としてもよい。また、これらの加工を如何様に組み合わせてもよい。熱間鍛造や温間鍛造の温度条件は従来実施されている方法で良く、例えば、熱間鍛造は1000〜1300℃で行い、温間鍛造は400〜950℃で行う。
Manufacturing method of carburized part The carburized part which concerns on this invention is manufactured as follows. The steel material having the above component composition is formed into a desired part shape such as a gear by one or more of machining, hot forging, warm forging, and cold forging. Alternatively, a desired part shape such as a gear may be formed by machining after hot forging, cold forging, or warm forging. These processes may be combined in any way. The temperature conditions for hot forging and warm forging may be the conventional methods. For example, hot forging is performed at 1000 to 1300 ° C, and warm forging is performed at 400 to 950 ° C.

歯車等の部品形状に加工された部材に対して、浸炭焼入れあるいは浸炭浸窒焼入れを行い、その後、焼戻し処理を行う。浸炭焼入れ、浸炭浸窒焼入れ、焼戻し処理については、従来法に従えばよく、特に条件は設けないが、例えば、900〜1050℃で、浸炭処理を行い、その後、780〜880℃まで炉冷した後、0〜3時間保持し、その後60〜130℃の油へ投入、または、窒素ガスあるいはヘリウムガス等の不活性ガスを用いて冷却して焼入れ後、150〜220℃に再加熱して焼戻しを行う処理を行えばよい。なお、浸炭処理には拡散処理を伴う場合も含まれる。また、上記の浸炭処理、拡散処理、炉冷および保持のいずれか一つ以上と同時に浸窒処理を行ってもよい。
浸炭処理時の雰囲気制御についてはカーボンポテンシャル制御を行うが、その鋼の成分組成により平衡炭素濃度ならびに酸化状態が異なるため、事前に同一鋼材にてある条件で浸炭して、その結果により適宜調整する必要がある。また、この雰囲気制御の調整により最終的な鋼材表層の酸化状態が決定するが、必要な浸炭硬化層深さを得ると同時に規定する鋼材表層の酸化状態のコントロールには、成分組成の限定並びに雰囲気制御の両方が必要となる。
Carburizing quenching or carburizing and nitriding quenching is performed on a member processed into a part shape such as a gear, and then tempering is performed. About carburizing quenching, carburizing nitrocarburizing quenching, and tempering treatment, what is necessary is just to follow a conventional method, and there is no particular condition. After that, hold for 0 to 3 hours, then put into oil at 60 to 130 ° C, or cool and quench with inert gas such as nitrogen gas or helium gas, then reheat to 150 to 220 ° C and temper The process of performing The carburizing process includes a case involving a diffusion process. Further, the nitriding treatment may be performed simultaneously with any one or more of the above carburizing treatment, diffusion treatment, furnace cooling and holding.
The carbon potential is controlled for the atmosphere control during the carburizing treatment, but the equilibrium carbon concentration and oxidation state differ depending on the component composition of the steel, so carburize under the same steel material in advance, and adjust accordingly depending on the result There is a need. In addition, the final oxidation state of the steel surface layer is determined by adjusting the atmosphere control. In order to control the oxidation state of the steel surface layer as well as obtaining the required carburized hardened layer depth, the component composition is limited and the atmosphere is controlled. Both controls are required.

なお、このような浸炭処理あるいは浸炭浸窒処理、焼き入れ、焼戻しの処理を施すことにより、上述した本発明の成分組成の範囲であれば、非浸炭部のフェライト量は40%以下となる。また、表面から5μm深さ位置までの表層酸化密度が60%以上となる。   In addition, by performing such carburizing treatment or carburizing and nitriding treatment, quenching, and tempering treatment, the ferrite content in the non-carburized portion is 40% or less within the range of the component composition of the present invention described above. In addition, the surface layer oxidation density from the surface to a depth of 5 μm is 60% or more.

表1に示す化学成分を有する鋼を溶解した。表中に示す鋼No.1〜26は、本発明の成分組成を満足する適合鋼であり、鋼No.40〜57は本発明の成分範囲外である比較鋼である。鋼No.56、57は従来鋼で、鋼No.56はJIS SCM420H、鋼No.57はSCM822H規格材であり、本発明範囲外である。なお、表1中、P、Sについては不可避的不純物として混入した含有量である。また、Cu、iについては、0.02mass%未満の場合は、積極的に添加は行っていないが不可避的に混入しているCu、iの含有量として記載したものである。   Steels having chemical components shown in Table 1 were melted. Steel No. shown in the table. Nos. 1-26 are compatible steels that satisfy the composition of the present invention. Reference numerals 40 to 57 are comparative steels that are outside the component range of the present invention. Steel No. Nos. 56 and 57 are conventional steels. 56 is JIS SCM420H, Steel No. 57 is an SCM822H standard material and is outside the scope of the present invention. In Table 1, P and S are contents mixed as inevitable impurities. Moreover, about Cu and i, when it is less than 0.02 mass%, it is described as content of Cu and i which are not added positively but are inevitably mixed.

溶製された上記、適合鋼、比較鋼、従来鋼のインゴットを熱間圧延により直径70mmの丸棒鋼に調製し、得られた丸棒鋼に対し焼準処理を実施した。   The ingots of the above-described compatible steel, comparative steel, and conventional steel were prepared into a round bar steel having a diameter of 70 mm by hot rolling, and the obtained round bar steel was subjected to normalization treatment.

それらの丸棒鋼よりローラーピッチング疲労試験片を作製した。ローラーピッチング試験片は、図1に示すように、950℃に加熱して浸炭・拡散処理をした後、炉内で冷却し、850℃で30分均熱を行なった後、70℃の油にて焼入れを実施した。その後180℃に再加熱し2時間均熱したのち空冷した。また、鋼No26およびNo55(表2中No27およびNo56)については浸炭処理後の冷却過程でアンモニアガスを炉内に導入することにより浸炭浸窒焼入れ、焼戻し処理を行い試験片を作成した。   Roller pitting fatigue test pieces were produced from these round steel bars. As shown in FIG. 1, the roller pitching test piece is heated to 950 ° C., carburized and diffused, cooled in the furnace, soaked at 850 ° C. for 30 minutes, and then heated to 70 ° C. oil. And quenching. Thereafter, it was reheated to 180 ° C., soaked for 2 hours, and then air-cooled. For steel No. 26 and No. 55 (No. 27 and No. 56 in Table 2), ammonia gas was introduced into the furnace during the cooling process after carburizing treatment, and carburizing nitrocarburizing and tempering treatments were performed to prepare test pieces.

[有効硬化層深さ、組織観察、表層硬度、内部硬度]
浸炭焼入焼戻しを実施したローラーピッチング試験片の試験前材について転送面を切断し、断面の硬度分布を測定して有効硬化層深さを求めた。
また内部の非浸炭部において硬度測定と組織観察を行ない、組織についてはフェライトの面積率も測定した。フェライトの面積率の測定は、試験片の芯部(径方向中心)よりサンプルを採取し、研磨後にナイタールでエッチングした面を光学顕微鏡を用いて400倍の倍率で100視野観察し、それらを画像処理にて二値化し、白い部分の面積を求め、全体の面積に対する割合求めることで行った。
内部硬度については、試験片の芯部(径方向中心)よりサンプルを採取しビッカース硬さ(マイクロビッカース2.94N)を5点測定し、これらの平均値を求めた。
また、浸炭焼入焼戻しを実施したローラーピッチング試験片の試験前材について、表層硬度、浸炭部の旧オーステナイト粒度(旧γ粒度)についても調査した。表層硬度は、表面より深さ0.03mmの位置について、ビッカース硬さ(マイクロビッカース2.94N)を5点測定し、これらの平均値を求めた。旧オーステナイト粒度は、表層硬度を測定したものと同一箇所について、光学顕微鏡で100倍で観察してオーステナイト結晶粒度番号を求めた。
[Effective hardened layer depth, structure observation, surface hardness, internal hardness]
For the pre-test material of the roller pitching specimen subjected to carburizing, quenching and tempering, the transfer surface was cut, and the hardness distribution of the cross section was measured to determine the effective hardened layer depth.
Moreover, hardness measurement and structure observation were performed in the internal non-carburized part, and the area ratio of ferrite was also measured for the structure. The area ratio of ferrite is measured by taking a sample from the core (diameter center) of the test piece, observing 100 views of the surface etched with nital after polishing with an optical microscope at a magnification of 400 times, and imaging them. It binarized by processing, and the area of the white portion was obtained, and the ratio to the total area was obtained.
Regarding the internal hardness, a sample was taken from the core part (diameter center) of the test piece, and the Vickers hardness (micro Vickers 2.94N) was measured at five points, and the average value thereof was obtained.
Further, the surface hardness and the prior austenite grain size (old γ grain size) of the carburized portion were also investigated for the pre-test material of the roller pitching test piece that had been carburized and quenched and tempered. For the surface hardness, five points of Vickers hardness (micro Vickers 2.94N) were measured at a position 0.03 mm deep from the surface, and the average value thereof was determined. The prior austenite grain size was obtained by observing the same spot with the surface hardness measured at 100 times with an optical microscope to obtain the austenite grain size number.

[残留オーステナイト量]
浸炭焼入焼戻しを実施したローラーピッチング試験片の試験前材について、X線回折により表層部の残留オーステナイト量を調査した。
[Amount of retained austenite]
About the material before the test of the roller pitching test piece which implemented carburizing quenching tempering, the amount of retained austenite of the surface layer part was investigated by X-ray diffraction.

[表層酸化密度、粒界酸化層深さ]
上記の浸炭焼入焼戻しを実施したローラーピッチング試験片について表面下5μm位置までのSiの濃化をEPMAにより調査した。非浸炭部(浸炭焼入焼戻しを実施したローラーピッチング試験片の断面中心位置)の濃度に対して4倍以上濃化した部分について全体の面積との比である面積率を測定した。尚、分析前には表層の粒界酸化状況をすべての視野で観察してもっとも深くまで酸化が進行していた部分を粒界酸化層深さとした。
[Surface layer oxidation density, grain boundary oxide layer depth]
Regarding the roller pitching test piece subjected to the above carburizing quenching and tempering, the concentration of Si up to a position of 5 μm below the surface was investigated by EPMA. The area ratio which is a ratio with the whole area was measured about the part concentrated 4 times or more with respect to the density | concentration of the non-carburizing part (cross-sectional center position of the roller pitching test piece which performed carburizing quenching tempering). Before the analysis, the state of grain boundary oxidation on the surface layer was observed in all fields of view, and the portion where oxidation proceeded to the deepest was defined as the grain boundary oxide layer depth.

[摩耗量測定]
摩耗量はローラーピッチング試験により調査した。大ローラー側のクラウニング量を150mmRとし、面圧3200MPaで10万回まで回転させ、その試験片の接触面の横断面の摩耗曲線を採取して、試験前表面に対する摩耗最大深さを求めた。
[Abrasion measurement]
The amount of wear was investigated by a roller pitching test. The crowning amount on the large roller side was set to 150 mmR, and the surface pressure was rotated to 100,000 times at a surface pressure of 3200 MPa, and the wear curve of the cross section of the contact surface of the test piece was collected to determine the maximum wear depth with respect to the pre-test surface.

[歯車疲労試験]
さらに溶製された上記、適合鋼、比較鋼、従来鋼のインゴットより熱間圧延により直径100mmの丸棒鋼に調製し、得られた丸棒鋼に対し焼準処理を実施した。 歯幅10mm、モジュール2.5、ピッチ円100mmの歯車にて回転数3000rpm、潤滑油はトランスミッション用オイルを80℃として、トルクを変化させて破損までの繰り返し数を調べ、繰り返し数1000万回で破損しない最大トルクを疲労強度として評価した。
[Gear fatigue test]
Further, a round bar steel having a diameter of 100 mm was prepared by hot rolling from the ingots of the above-described compatible steel, comparative steel, and conventional steel, and the obtained round bar steel was subjected to normalization treatment. Gears with tooth width 10mm, module 2.5, pitch circle 100mm, rotating speed 3000rpm, lubricating oil with transmission oil at 80 ° C, changing torque and examining the number of repetition until breakage, with 10 million repetitions The maximum torque that did not break was evaluated as fatigue strength.

表2に上記試験結果を示す。

Figure 0006601359
Figure 0006601359
表2中の鋼No.は表1中の鋼No.と同じものを指す。表2から下記事項が明らかである。 Table 2 shows the test results.
Figure 0006601359
Figure 0006601359
Steel No. in Table 2 refers to the same steel No. in Table 1. From Table 2, the following matters are clear.

発明鋼であるNo.1〜27については、耐摩耗性が良好であり、高い疲労強度が得られた。   Invented steel No. About 1-27, abrasion resistance was favorable and high fatigue strength was obtained.

それに対して、No.40はC%が発明範囲より低い。そのため浸炭焼入れ焼戻し後の内部硬度が低く、さらに表層硬度も本発明範囲より低くなった。その結果対摩耗性が低くなり、歯元の折損および歯面でのピッチングが起こりやすくなり、歯車疲労強度が低下した。
No.41はC量が発明範囲より高い。そのため、浸炭後の残留γ量が多くなりすぎており、高い表面硬度が得られていない、そのため対摩耗性が低下した。また、内部の靭性が足りず歯元部での破壊も起こりやすくなった。よって歯車疲労強度が低下した。
In contrast, no. For 40, C% is lower than the scope of the invention. Therefore, the internal hardness after carburizing, quenching and tempering was low, and the surface layer hardness was also lower than the range of the present invention. As a result, wear resistance was reduced, tooth root breakage and tooth surface pitching were likely to occur, and the gear fatigue strength was reduced.
No. No. 41 has a higher C content than the scope of the invention. For this reason, the amount of residual γ after carburizing is too large, and a high surface hardness is not obtained, so that the wear resistance is reduced. In addition, the internal toughness was insufficient, and the destruction at the root portion was likely to occur. Therefore, the gear fatigue strength decreased.

No.42はSi量が本発明範囲よりも少なく、そのために粒界酸化層が深めになっていた。また焼戻し軟化抵抗が低くなりすぎたために、耐摩耗性が低下し、ピッチングが起こりやすくなり、歯車疲労強度も低下した。   No. No. 42 had a Si amount less than the range of the present invention, and therefore the grain boundary oxide layer was deepened. Moreover, since the temper softening resistance was too low, the wear resistance was lowered, pitching was likely to occur, and the gear fatigue strength was also lowered.

No.43はSi量が本発明範囲よりも多い。その結果、内部に軟質なフェライトが発生しすぎて、歯元での曲げ疲労破壊が起こりやすくなり、歯車疲労強度が低下した。   No. No. 43 has more Si than the scope of the present invention. As a result, too much soft ferrite was generated inside, and bending fatigue failure at the tooth root was likely to occur, and the gear fatigue strength was reduced.

No.44はMn量が本発明範囲よりも低い。そのため、焼入れ性が低下しすぎており、有効硬化層深さが浅すぎるために、歯元での曲げ疲労破壊が起こりやすくなり歯車疲労強度が低下した。   No. No. 44 has a Mn content lower than the range of the present invention. For this reason, the hardenability is too low, and the effective hardened layer depth is too shallow, so that bending fatigue failure at the root tends to occur, and the gear fatigue strength is reduced.

No.45はMn量が本発明範囲より高い。そのために内部靭性が低くなり、歯車疲労にて曲げ折損が多く発生した。また、内部のフェライト量が少なくなりすぎ、式(1)も満足できず、摩耗量が増加して、ピッチングが起こりやすくなり歯車疲労強度が低下した。   No. No. 45 has a Mn content higher than the range of the present invention. For this reason, internal toughness was lowered, and many bending breaks occurred due to gear fatigue. In addition, the amount of ferrite inside was too small, the expression (1) was not satisfied, the amount of wear increased, pitching was likely to occur, and the gear fatigue strength was reduced.

No.46はCr量が少なく、焼入れ性が低下しすぎている。そのため、硬化層深さが浅くなりすぎて歯元での折損が起こりやすくなり、またピッチングも起こりやすくなって、歯車疲労強度が低下した。   No. No. 46 has a small amount of Cr, and the hardenability is too low. For this reason, the hardened layer depth becomes too shallow and breakage at the tooth base is likely to occur, and pitching is also likely to occur, resulting in a reduction in gear fatigue strength.

No.47はCr量が高すぎるために、内部硬度が高くなりすぎている。そのため、歯元の靭性が劣化して曲げ折損しやすくなり、疲労強度が低下した。   No. 47 has an excessively high internal hardness because the amount of Cr is too high. As a result, the toughness of the tooth root deteriorates and the bending breakage easily occurs, and the fatigue strength decreases.

No.48はMo量が高い。そのため焼入れ性が高すぎて、浸炭焼入れ時に割れを生じてしまい、疲労試験が出来なかった。   No. 48 has a high Mo content. Therefore, the hardenability was too high, and cracking occurred during carburizing and quenching, so that a fatigue test could not be performed.

No.49はAl量が低くすぎるために介在物起点による歯元および歯面での破壊が起こりやすくなり、歯車疲労強度が低下した。   No. In No. 49, since the Al amount was too low, destruction at the root and tooth surface due to inclusion starting points was likely to occur, and the gear fatigue strength was reduced.

No.50はAl量が高すぎるため、浸炭部のオーステナイト粒が粗大化してしまい、歯元および歯面での破壊が起こりやすくなり、歯車疲労強度が低下した。   No. In No. 50, since the amount of Al was too high, the austenite grains in the carburized portion were coarsened, and the fracture at the tooth root and the tooth surface was likely to occur, and the gear fatigue strength was reduced.

No.51はTi量が多すぎる。そのためTi系介在物起点での破壊が多発した。そのために歯元での曲げ折損および歯面でのピッチングが起こりやすくなり、歯車疲労強度が低下した。   No. 51 has too much Ti amount. Therefore, destruction at the Ti-based inclusion starting point occurred frequently. For this reason, bending breakage at the tooth root and pitching at the tooth surface are likely to occur, and the gear fatigue strength is reduced.

No.52はN量が低すぎる。そのために結晶粒の粗大化が起こり、歯元での曲げ折損が起こりやすくなり、歯車疲労強度が低下した。   No. 52 is too low in N content. As a result, coarsening of the crystal grains occurred, bending breakage at the tooth roots easily occurred, and the gear fatigue strength decreased.

No.53はN量が高すぎる。そのため、内部割れ起点での破壊が多く発生し、歯車疲労強度が低下した。   No. 53 has too much N content. Therefore, many fractures occurred at the starting point of internal cracks, and the gear fatigue strength decreased.

No.54、55、56は式(1)の値が低すぎるそのため摩耗量が大きく、疲労強度も低下した。   No. 54, 55, and 56 were too low in the value of the formula (1), so the wear amount was large and the fatigue strength was also reduced.

No.57、58はSi量、式(1)の値が本発明範囲よりも低いために、摩耗量が大きい。また表層軟化によりピッチングが発生しやすくなった。また、表面酸化が粒界に沿って深く進行したため、歯元曲げ応力による折損がしやすくなり、歯車疲労強度が低下した。   No. Since 57 and 58 are Si amounts and the value of Formula (1) is lower than the range of the present invention, the wear amount is large. Also, pitting was likely to occur due to the softening of the surface layer. Further, since the surface oxidation proceeded deeply along the grain boundary, it was easy to break due to the root bending stress, and the gear fatigue strength decreased.

本発明によれば、耐摩耗性並びに耐久性に優れた浸炭部品、および、量産可能なその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the carburized component excellent in abrasion resistance and durability, and its manufacturing method which can be mass-produced can be provided.

Claims (5)

成分組成が、C:0.15〜0.35mass%、Si:1.00〜2.50mass%、Mn:0.40〜0.70mass%、Cr:1.00〜2.00mass%、Mo:0.3mass%以下(0mass%を含む)、Al:0.010〜0.080mass%、N:0.0040〜0.0200mass%、残部Feおよび不可避的不純物であり、
かつ、下記(1)式を満足する非浸炭部と、該非浸炭部より表面側にあって、該非浸炭部に対してC含有量またはさらにN含有量が高い成分組成である浸炭部を有し、
該浸炭部は、表面から5μm深さ位置までの酸化密度が60%以上であり、
前記非浸炭部の鋼組織はフェライト量が面積率で15%以上40%以下であることを特徴とする耐摩耗性に優れた浸炭部品。
[Si]+3[Cr]−[Mn]≧4.0 ・・・(1)
但し、[M]はM元素の含有量(mass%)を示す。
Component composition is C: 0.15-0.35 mass%, Si: 1.00-2.50 mass%, Mn: 0.40-0.70 mass%, Cr: 1.00-2.00 mass%, Mo: less not more than 0.3 mass% (including 0mass%), Al: 0.010~0.080mass% , N: 0.0040~0.0200mass%, a residual portion Fe and unavoidable impurities,
And a non-carburized portion that satisfies the following formula (1), and a carburized portion that is on the surface side of the non-carburized portion and has a component composition having a higher C content or higher N content than the non-carburized portion. ,
The carburized portion has an oxidation density of 60% or more from the surface to a depth of 5 μm,
A carburized part having excellent wear resistance, wherein the steel structure of the non-carburized part has a ferrite content in an area ratio of 15% to 40%.
[Si] +3 [Cr] − [Mn] ≧ 4.0 (1)
However, [M] indicates the content (mass%) of the M element.
成分組成として、更に、Nb:0.060mass%以下、V:0.20mass%以下、Ti:0.200mass%以下の1種以上を含有することを特徴とする請求項1に記載の耐摩耗性に優れた浸炭部品。   The wear resistance according to claim 1, further comprising at least one of Nb: 0.060 mass% or less, V: 0.20 mass% or less, and Ti: 0.200 mass% or less as a component composition. Excellent carburized parts. 成分組成として、更に、B:0.0050mass%以下を含有することを特徴とする請求項1または2のいずれかに記載の耐摩耗性に優れた浸炭部品。   The carburized part having excellent wear resistance according to claim 1, further comprising B: 0.0050 mass% or less as a component composition. 成分組成として、更に、Cu:0.50mass%以下、Ni:2.0mass%以下の1種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の耐摩耗性に優れた浸炭部品。The component composition further includes at least one of Cu: 0.50 mass% or less and Ni: 2.0 mass% or less, in wear resistance according to any one of claims 1 to 3. Excellent carburized parts. 請求項1乃至4のいずれか一つに記載の浸炭部品の製造方法であって、請求項1乃至のいずれか一つに記載の成分組成の鋼材を用いて機械加工、熱間鍛造、冷間鍛造、温間鍛造のいずれか一つ以上を行って部品形状とした後、浸炭焼入れあるいは浸炭浸窒焼入れの後、焼戻し処理を行うことを特徴とする耐摩耗性に優れた浸炭部品の製造方法。 A method for manufacturing a carburized part according to any one of claims 1 to 4 , wherein the steel material having the component composition according to any one of claims 1 to 4 is used for machining, hot forging, and cooling. Manufacture of carburized parts with excellent wear resistance, characterized by performing one or more of hot forging and warm forging to form parts, followed by tempering after carburizing quenching or carburizing and nitriding quenching Method.
JP2016193320A 2016-09-30 2016-09-30 Carburized parts with excellent wear resistance and manufacturing method thereof Active JP6601359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193320A JP6601359B2 (en) 2016-09-30 2016-09-30 Carburized parts with excellent wear resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193320A JP6601359B2 (en) 2016-09-30 2016-09-30 Carburized parts with excellent wear resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018053338A JP2018053338A (en) 2018-04-05
JP6601359B2 true JP6601359B2 (en) 2019-11-06

Family

ID=61835413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193320A Active JP6601359B2 (en) 2016-09-30 2016-09-30 Carburized parts with excellent wear resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6601359B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375221B2 (en) * 1994-02-03 2003-02-10 三菱製鋼株式会社 Steel for carburized gear
JP4066903B2 (en) * 2003-07-18 2008-03-26 日産自動車株式会社 Case-hardened steel and carburized parts that can be carburized in a short time
JP5338370B2 (en) * 2009-02-24 2013-11-13 愛知製鋼株式会社 Carburizing steel
KR101144516B1 (en) * 2009-12-01 2012-05-11 기아자동차주식회사 Alloy Steel for Low Temperature Vacuum Carburizing
JP5872863B2 (en) * 2011-11-25 2016-03-01 Jfe条鋼株式会社 Gear having excellent pitting resistance and method for producing the same
EP3088550B1 (en) * 2013-12-27 2019-10-30 Nippon Steel Corporation Production method of carburized steel component and carburized steel component
JP6078007B2 (en) * 2014-01-17 2017-02-08 Jfe条鋼株式会社 Case-hardening steel and method for manufacturing machine structural parts

Also Published As

Publication number Publication date
JP2018053338A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
KR101830017B1 (en) Carburized-steel-component production method, and carburized steel component
JP5635316B2 (en) Gear having excellent fatigue strength and method for manufacturing the same
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JPWO2006118243A1 (en) Carburized induction hardening parts
US9039962B2 (en) Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP5258458B2 (en) Gears with excellent surface pressure resistance
WO2016152167A1 (en) Steel for soft nitriding, components, and method for manufacturing same
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP6939670B2 (en) Steel parts with excellent rolling fatigue characteristics
TWI630278B (en) Surface hardened steel
JP2016188421A (en) Carburized component
JP2018199838A (en) Carburized part
JP2019104972A (en) Carburized component
JP6447064B2 (en) Steel parts
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
JP6601359B2 (en) Carburized parts with excellent wear resistance and manufacturing method thereof
JP4821582B2 (en) Steel for vacuum carburized gear
JP2019183211A (en) Carburization component
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2013112826A (en) Induction hardening gear excellent in wear resistance and surface fatigue characteristic, and manufacturing method therefor
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing
WO2020138432A1 (en) Steel material
JP2023163969A (en) Bar steel and carburized component
JP2023163968A (en) Bar steel and carburized component

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R150 Certificate of patent or registration of utility model

Ref document number: 6601359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250