JP3375221B2 - Steel for carburized gear - Google Patents

Steel for carburized gear

Info

Publication number
JP3375221B2
JP3375221B2 JP32984494A JP32984494A JP3375221B2 JP 3375221 B2 JP3375221 B2 JP 3375221B2 JP 32984494 A JP32984494 A JP 32984494A JP 32984494 A JP32984494 A JP 32984494A JP 3375221 B2 JP3375221 B2 JP 3375221B2
Authority
JP
Japan
Prior art keywords
steel
hardness
carburized
ferrite
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32984494A
Other languages
Japanese (ja)
Other versions
JPH07258793A (en
Inventor
和夫 坂本
達夫 福住
英生 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP32984494A priority Critical patent/JP3375221B2/en
Publication of JPH07258793A publication Critical patent/JPH07258793A/en
Application granted granted Critical
Publication of JP3375221B2 publication Critical patent/JP3375221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

【0001】本発明は、通常のガス浸炭焼入れ−焼戻し
工程による熱処理で、高い疲労強度や耐久寿命を実現す
るための浸炭歯車用鋼に関するものであり、その産業上
の利用分野は、歯車類を使用する自動車、建設車両及び
産業機械業界に広範に及ぶものである。
[0001] The present invention relates to a steel for carburized gears for realizing high fatigue strength and durable life by heat treatment by a normal gas carburizing quenching-tempering process, and its industrial application field is gears. It is widely used in the automobile, construction vehicle and industrial machinery industries used.

【0002】[0002]

【従来の技術】従来、ガス浸炭焼入れ−焼戻し処理され
る歯車類の疲労強度や耐久寿命の向上技術には、例えば
公開特許公報平4−83848に示されているように疲
労亀裂の原因となる粒界酸化や不完全焼入層を低減する
目的で、Feより酸化され易い元素であるSi,Mnお
よびCr等を低減させ、Feより酸化されにくい元素で
あるNi,Mo等で焼入性、機械的性質を調整する技術
や、高濃度浸炭、プラズマ浸炭あるいは過剰浸炭と呼ば
れているように浸炭時のカーボンポテンシャルを高める
ことによって表面に微細な球状炭化物を析出させ、表面
硬さを向上させる技術やショットピーニングにより表面
圧縮残留応力を付与し、疲労亀裂の進展を遅らせる技術
等がある。
2. Description of the Related Art Conventionally, a technique for improving fatigue strength and durability life of gears carburized and tempered by gas carburization causes fatigue cracks as disclosed in, for example, Japanese Unexamined Patent Publication No. 4-83848. For the purpose of reducing the grain boundary oxidation and the incompletely hardened layer, the elements such as Si, Mn, and Cr that are more easily oxidized than Fe are reduced, and the hardenability is reduced by the elements such as Ni and Mo that are less easily oxidized than Fe. Techniques for adjusting mechanical properties, or by increasing the carbon potential during carburization, such as high-concentration carburization, plasma carburization or excess carburization, to deposit fine spherical carbides on the surface and improve surface hardness There are techniques and techniques for imparting surface compressive residual stress by shot peening and delaying the development of fatigue cracks.

【0003】しかしながら、これらの改善技術はいずれ
も歯車が使用される前の特性に関するものであり、歯車
が実際に使用され、噛み合っている状態を考慮したもの
ではない。とりわけ、歯車の駆動面と被駆動面が高面圧
にて接している状態では使用前の特性のみでは対応でき
ない面疲労現象が生じてくる。特に最近の歯車における
損傷形態ではエンジンの高出力、歯車の小型化に対する
要望と相俟って面疲労がより支配的となっている。すな
わち、歯車が使用され、噛み合っている状態では、すべ
りを含む接触圧による摩擦によって、歯の接触面の温度
は200〜300℃に上昇していることが推定されてい
る。そのような高温に晒された場合、浸炭層の硬さは使
用前より低下することが認められている。浸炭層の硬さ
の維持は面疲労に対する因子のなかで最も重要なもので
あるが、前述した改善技術によって使用前の浸炭層の硬
さを向上させても、使用中における摩擦熱によって生ず
る浸炭層の硬さ低下が原因となって、面疲労が発生して
しまうといった問題があった。
However, these improved techniques are all related to the characteristics before the gear is used, and do not consider the state in which the gear is actually used and meshed. In particular, when the driving surface and the driven surface of the gear are in contact with each other at a high surface pressure, a surface fatigue phenomenon which cannot be dealt with only by the characteristics before use occurs. Particularly in the recent damage modes of gears, surface fatigue becomes more dominant in combination with the demand for high engine output and downsizing of gears. That is, it is estimated that when gears are used and meshed with each other, the temperature of the tooth contact surface rises to 200 to 300 ° C. due to friction due to contact pressure including slippage. It has been observed that when exposed to such high temperatures, the hardness of the carburized layer is lower than before use. Maintaining the hardness of the carburized layer is the most important factor for surface fatigue, but even if the hardness of the carburized layer before use is improved by the above-mentioned improvement technology, carburization caused by friction heat during use There is a problem that surface fatigue occurs due to the decrease in layer hardness.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上の問題点
を安価でかつ容易に解決するために、浸炭素材の鋼の化
学成分を調整することによって、特殊な熱処理工程によ
らず通常のガス浸炭焼入−焼戻工程で、歯車材に焼戻軟
化抵抗を付与できる浸炭歯車用鋼を開発するものであ
る。その主な内容は、焼戻軟化抵抗に有効な元素である
Siを活用するものである。SiはCとの化学的な反斥
力の関係でその炭素の拡散を遅らせる作用を有し、軟化
の一因である炭化物の凝集・形成を妨げるためと考えら
れている。しかし、Siは強力なフェライト安定化元素
であり、鋼の相変態開始温度を上昇することによって、
浸炭後通常の焼入温度において炭素含有量の低い心部組
織にフェライトが発生するという問題がある。フェライ
トの発生はミクロ組織を強度的に不均一とし、亀裂を優
先的に進展させるので極めて望ましくない。また、Si
は浸炭時の粒界酸化を発生しやすい元素であるといった
問題点もある。本発明はこのようなSiに関する問題点
を解決し、かつ、その軟化抵抗に寄与する効果を著しく
発揮する鋼を提供しようとするものである。
SUMMARY OF THE INVENTION In order to solve the above problems inexpensively and easily, the present invention adjusts the chemical composition of the steel of the carbonized material so that a normal gas can be used regardless of a special heat treatment process. The purpose is to develop steel for carburized gears that can give temper softening resistance to gear materials in the carburizing and quenching-tempering process. The main content is to utilize Si, which is an element effective for temper softening resistance. It is considered that Si has a function of delaying the diffusion of carbon due to a chemical repulsive force relationship with C, and prevents aggregation / formation of carbide which is one of the causes of softening. However, Si is a strong ferrite stabilizing element, and by increasing the phase transformation start temperature of steel,
After carburizing, there is a problem that ferrite is generated in the core structure having a low carbon content at a normal quenching temperature. The generation of ferrite makes the microstructure non-uniform in strength and promotes crack development preferentially, which is extremely undesirable. Also, Si
Has a problem in that it is an element that easily causes grain boundary oxidation during carburization. The present invention intends to solve the above problems associated with Si and to provide steel that remarkably exerts the effect of contributing to its softening resistance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、重量%でC=0.18〜0.25
%,Si=0.45〜1.00%,Mn=0.40〜
0.70%,Ni=0.30〜0.70%,Cr=1.
00〜1.50%,Mo=0.30〜0.70%,Cu
=0.50%以下,Al=0.015〜0.030%,
V=0.03〜0.30%,Nb=0.010〜0.0
30%,O=0.0015%以下,N=0.0100〜
0.0200%を含有し、残部Fe並びに不可避的不純
物元素からなり、浸炭後820℃以上の温度で焼入を行
った後も、心部の焼入組織中にフェライトを発生させる
ことなく、かつ、通常この焼入後160〜180℃の温
度で焼戻を行うか、この温度を含み300℃までのいず
れかの温度で再加熱された場合においても、浸炭層の硬
さが浸炭焼入焼戻後の硬さに比べてHV50以上低下し
ないことを特徴とする軟化抵抗を有する浸炭歯車用鋼で
ある。
The constitution of the present invention for solving the above-mentioned problems is C = 0.18 to 0.25 in% by weight.
%, Si = 0.45 to 1.00%, Mn = 0.40
0.70%, Ni = 0.30 to 0.70%, Cr = 1.
00 to 1.50%, Mo = 0.30 to 0.70%, Cu
= 0.50% or less, Al = 0.015 to 0.030%,
V = 0.03 to 0.30%, Nb = 0.10 to 0.0
30%, O = 0.0015% or less, N = 0.0100-
It contains 0.0200% and consists of balance Fe and unavoidable impurity elements, and does not generate ferrite in the quenched structure of the core even after quenching at a temperature of 820 ° C. or higher after carburization, and Generally, after the quenching, tempering is performed at a temperature of 160 to 180 ° C., or even when reheated at any temperature up to 300 ° C. including this temperature, the hardness of the carburized layer is carburized and quenched. It is a steel for carburized gears having a softening resistance, which is characterized by not lowering by HV50 or more as compared with the hardness after returning.

【0006】更に、上記成分に加え素材中に被削性を向
上する元素で、かつ疲労特性を著しく阻害しない元素と
して重量%で、S=0.00〜0.020%,Pb=
0.03〜0.09%,Te=0.003〜0.030
%のうちから1種又は2種以上を含有している浸炭歯車
用鋼である。そもそも本発明の出発点は、浸炭歯車用鋼
の疲労強度向上技術の開発であり、そのひとつの成果が
前記公開特許公報平4−83848であった。ところ
が、近年歯車にかかる面圧が大きくなっており、面疲労
による損傷が目立ってきた。そこで、同発明に加えて、
特に面疲労強度向上を目的として、歯車の接触による発
熱現象があっても浸炭層の硬さ低下に対する抵抗、即
ち、軟化抵抗に対する合金元素の影響についての研究を
行ってきた。
Furthermore, an element improving the machinability in the material in addition to the above components, and in weight% fatigue properties as significantly inhibit not elements, S = 0.00 6 ~0.020%, Pb =
0.03-0.09%, Te = 0.003-0.030
% Of the steel for carburized gears. In the first place, the starting point of the present invention is the development of a technology for improving the fatigue strength of steel for carburized gears, and one of the achievements was the above-mentioned Japanese Patent Laid-Open No. 4-83848. However, in recent years, the surface pressure applied to gears has increased, and damage due to surface fatigue has become noticeable. Therefore, in addition to the same invention,
In particular, for the purpose of improving surface fatigue strength, research has been conducted on the effect of alloying elements on the resistance to the decrease in the hardness of the carburized layer, that is, the softening resistance, even if there is a heat generation phenomenon due to the contact of gears.

【0007】供試材として表1,表2に示した化学成分
の試験鋼塊を高周波溶解炉で製造し、30mmφに熱間
鍛造後、920℃で1時間焼準した。これらの鋼材を、
25mmφに機械加工して試験片を作製し、図1に示す
条件で浸炭焼入−焼戻した。これらの浸炭後試験片につ
いて、図2に示す条件で再加熱実験を実施し、表面から
50μmの深さの浸炭層の硬さを測定した。この硬さを
再加熱後の硬さと称す。表3には浸炭焼入後一般的に焼
戻しされる温度である180℃における焼戻硬さと22
0〜300℃における再加熱後の硬さの差、即ち軟化の
度合いを再加熱後の硬さ低下として示す。この軟化の度
合いの大小で軟化抵抗を評価し、再加熱後の硬さ低下が
小さいほど軟化抵抗が大きいとした。図3はこれらの再
加熱後硬さ低下とSi含有量の関係を示したものである
が、Si含有量が低い領域では再加熱温度が高くなるほ
ど硬さの低下が大きくなることが判る。すなわち、再加
熱温度が220℃では硬さ低下は最大でもHv50であ
り、Si含有量との相関はほとんど認められないが、2
60℃になるとSi含有量0.25wt以下の領域では
Hv50を越え、さらに300℃の場合にはこの低下が
一層顕著となってくる。ここで、再加熱後の硬さ低下が
HV50以下を軟化抵抗を有するとした場合、Si含有
量が0.45wt%以上では焼戻温度が300℃でも軟
化抵抗を有する領域が存在することがわかった。
As test materials, test steel ingots having the chemical compositions shown in Tables 1 and 2 were manufactured in a high frequency melting furnace, hot forged to 30 mmφ, and normalized at 920 ° C. for 1 hour. These steel materials,
A test piece was prepared by machining to 25 mmφ, and was carburized and tempered under the conditions shown in FIG. For these post-carburizing test pieces, a reheating experiment was carried out under the conditions shown in FIG. 2, and the hardness of the carburized layer having a depth of 50 μm from the surface was measured. This hardness is called hardness after reheating. Table 3 shows the tempering hardness and 22 at 180 ° C, which is the temperature generally tempered after carburizing and quenching.
The difference in hardness after reheating at 0 to 300 ° C, that is, the degree of softening is shown as the decrease in hardness after reheating. The softening resistance was evaluated based on the degree of this softening, and the smaller the decrease in hardness after reheating, the larger the softening resistance. FIG. 3 shows the relationship between the decrease in hardness after reheating and the Si content. It can be seen that in the region where the Si content is low, the hardness decreases more as the reheating temperature increases. That is, when the reheating temperature is 220 ° C., the decrease in hardness is Hv50 at the maximum, and there is almost no correlation with the Si content.
At 60 ° C., Hv50 is exceeded in the region where the Si content is 0.25 wt or less, and at 300 ° C., this decrease becomes more remarkable. Here, assuming that the decrease in hardness after reheating is HV50 or less to have softening resistance, it is found that there is a region having softening resistance even if the tempering temperature is 300 ° C. when the Si content is 0.45 wt% or more. It was

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 一方、前記のようにSiの添加は鋼材の相変態開始温度
を上昇せしめ、浸炭後の焼入においてフェライト相が発
生する問題点がある。これに対処するための方法とし
て、本発明ではオーステナイト安定化元素の添加により
相変態開始温度が低下することを利用した。特に合金元
素のNiについてはフェライト発生を抑制すると共に歯
車用鋼として重要な靭性の向上も期待できることに注目
し、その適用を試みた。先ず、前述の表1及び表2に示
した供試材から作製した試験片を図4に示す条件で浸炭
焼入−焼戻した。これらの浸炭後試験片について、充分
に炭素濃度が低下していると思われる表面から3mmの
位置の焼入後のミクロ組織を光学顕微鏡にて観察し、フ
ェライトの発生状況を判定した。それらの結果の1例を
図10〜12に示す。これよりNi含有量が約0.10
wt%と低い場合、Si含有量を約1.00wt%に増
加させると、浸炭ミクロ組織にフェライトが発生するこ
とがわかる(鋼種No.dと鋼種No.fの比較)。そし
て、その程度は焼入温度が低い820℃においてより顕
著である。一方、Si含有量が約1.00wt%であっ
ても、Ni含有量を約1.00wt%と増加させた場合
には、フェライトの発生が認められないことがわかる
(鋼種No.fと鋼種No.gの比較)。次により詳細にN
iのフェライト抑制効果を確認するために、Si含有量
とNi含有量を変動させた実験を行った。供試材の化学
成分および試験片の加工要領は前述のとおりであるが、
試験片の熱処理条件は図5に示すとおりである。これら
の熱処理後の試験片について、ミクロ組織を光学顕微鏡
で観察し、フェライトの発生状況を判定した。その結果
を表3に示す。ここで、○印は全くフェライトが認めら
れないものを、△印はわずかにフェライトが認められる
ものを、そして×印は顕著にフェライトが認められるも
のを示す。これから、比較鋼のa〜b、e〜fおよびh
〜lのようにNi含有量を調整せず、単にSi含有量を
高めた鋼は、確かに300℃までの再加熱後の硬さ低下
がHV50以下で軟化抵抗を有するが、いずれも820
〜840℃の焼入温度の条件でフェライトが発生するこ
とがわかった。ところが、比較鋼gや本発明鋼m〜
ようにNi含有量を調整し、Si含有量を高めた鋼は、
軟化抵抗を有し、かつ、いずれの焼入温度においてもフ
ェライトが発生しないことがわかった。一方、比較鋼c
〜dや現用鋼x〜zのようにSi含有量が低い鋼はいず
れの焼入温度においてもフェライトが発生しないが、3
00℃における再加熱後の硬さ低下がHV50を越え、
軟化抵抗はないことがわかった。これらの結果から、N
i含有量を調整することによって、820℃以上の焼入
温度においてもフェライトを発生させずに、Siによる
軟化抵抗の向上が可能な成分範囲が存在することがわか
った。
[Table 2] On the other hand, as described above, the addition of Si raises the phase transformation start temperature of the steel material, and there is a problem that a ferrite phase is generated during quenching after carburization. As a method for coping with this, in the present invention, the fact that the phase transformation start temperature is lowered by the addition of the austenite stabilizing element was used. In particular, with regard to Ni, which is an alloying element, attention has been paid to the fact that ferrite generation can be suppressed and toughness, which is important as a steel for gears, can be expected, and its application was tried. First, the test pieces prepared from the test materials shown in Tables 1 and 2 were carburized and tempered under the conditions shown in FIG. For these post-carburizing test pieces, the microstructure after quenching at a position of 3 mm from the surface where the carbon concentration is considered to be sufficiently lowered was observed with an optical microscope to determine the occurrence of ferrite. An example of those results is shown in FIGS. From this, the Ni content is about 0.10.
When it is as low as wt%, it is found that when the Si content is increased to about 1.00 wt%, ferrite is generated in the carburized microstructure (comparison between steel types No.d and No.f). And, the degree is more remarkable at 820 ° C. where the quenching temperature is low. On the other hand, even if the Si content is about 1.00 wt%, when the Ni content is increased to about 1.00 wt%, the generation of ferrite is not recognized (steel type No.f and steel type No.g comparison). More in detail N
In order to confirm the ferrite suppressing effect of i, an experiment was performed in which the Si content and the Ni content were varied. The chemical composition of the test material and the processing procedure of the test piece are as described above,
The heat treatment conditions of the test piece are as shown in FIG. The microstructure of these test pieces after heat treatment was observed with an optical microscope to determine the occurrence of ferrite. The results are shown in Table 3. Here, ◯ indicates that no ferrite was observed at all, Δ indicates that ferrite was slightly observed, and x indicates that ferrite was remarkably observed. From this, the comparative steels ab, ef and h
Steels whose Ni content is not adjusted as in the case of ˜1 and whose Si content is simply increased certainly have a softening resistance at a hardness decrease of HV50 or less after reheating up to 300 ° C.
It was found that ferrite was generated under the condition of the quenching temperature of ˜840 ° C. However, the steels whose Ni content is increased and Si content is increased like Comparative Steel g and Steels m to t of the present invention are:
It was found that it has softening resistance and that ferrite is not generated at any quenching temperature. On the other hand, comparative steel c
Steels with low Si content, such as ~ d and current steels x ~ z, do not generate ferrite at any quenching temperature.
The hardness decrease after reheating at 00 ° C exceeds HV50,
It was found that there was no softening resistance. From these results, N
It has been found that by adjusting the i content, there is a component range in which the softening resistance of Si can be improved without generating ferrite even at a quenching temperature of 820 ° C. or higher.

【0010】[0010]

【表3】 [Table 3]

【0011】[0011]

【表4】 最後にSi添加による粒界酸化発生について検討した。
前述のようにSiは粒界酸化を増長するといわれている
が、ここでは従来調査されているよりも広い範囲でその
挙動を調査した結果、その発生が抑えられる成分範囲を
見出した。表4には調査に供した試験片の化学成分を示
す。これらの試験片の加工要領は前述のとおりであり、
作製された試験片を図1に示す浸炭焼入条件で処理し
た。これらの浸炭試験片について、表面の浸炭組織を光
学顕微鏡で観察し、粒界酸化層深さを測定した。
[Table 4] Finally, the generation of grain boundary oxidation due to the addition of Si was examined.
As described above, Si is said to enhance the grain boundary oxidation. Here, as a result of investigating its behavior in a wider range than conventionally investigated, a range of components in which the generation thereof is suppressed was found. Table 4 shows the chemical components of the test pieces used for the investigation. The processing procedure of these test pieces is as described above,
The produced test piece was processed under the carburizing and quenching conditions shown in FIG. For these carburized test pieces, the carburized structure on the surface was observed with an optical microscope to measure the depth of the grain boundary oxide layer.

【0012】[0012]

【表5】 図6にはこれらの粒界酸化層深さとSi含有量の関係を
示す。これより、Si含有量が0.25wt%までは確
かに従来から指摘されているように、粒界酸化層深さは
一様に深くなるが、それ以上のSi含有量では逆に浅く
なり、0.45wt%以上ではほぼ10μmに抑えられ
ることがわかる。従って軟化抵抗が発揮されるSi含有
量0.45wt%以上の領域では、粒界酸化層は問題と
ならないことがわかった。
[Table 5] FIG. 6 shows the relationship between the grain boundary oxide layer depth and the Si content. As a result, as has been pointed out in the past, up to a Si content of 0.25 wt%, the depth of the grain boundary oxide layer becomes uniformly deep, but when the Si content is higher than that, it becomes shallower. It can be seen that when it is 0.45 wt% or more, it can be suppressed to about 10 μm. Therefore, it was found that the grain boundary oxide layer is not a problem in the region where the Si content is 0.45 wt% or more where the softening resistance is exhibited.

【0013】以上の基礎研究からSiによるフェライト
発生や粒界酸化の増長といった問題点を解決しながらも
軟化抵抗を向上し、ひいては疲労寿命や耐久寿命を向上
する具体的な手法が発明された。すなわち、本発明は重
量%で、C=0.18〜0.25%、Si=0.45〜
1.00%、Mn=0.40〜0.70%、Ni=0.
30〜0.70%、Cr=1.00〜1.50%、Mo
=0.30〜0.70%、Cu=0.50%以下、Al
=0.015〜0.030%、V=0.03〜0.30
%、Nb=0.010〜0.030%、O=0.001
5%以下、N=0.0100〜0.0200%を含有
し、残部Fe並びに不可避的不純物元素からなることを
特徴とし、浸炭後820℃以上の温度で焼入を行った後
も、心部の焼入組織中にフェライトを発生させること
なく、更に、160〜180℃で焼戻を行った後、使
用中にこの温度を超えて300℃以下の温度にさらされ
ても浸炭層の硬さが浸炭焼入焼戻後の硬さに比較して
V50以上低下しない軟化抵抗を有する浸炭歯車用鋼で
あり、必要に応じて被削性向上元素として重量%で、S
=0.006〜0.020%、Pb=0.03〜0.0
9%、Te=0.003〜0.030%のから1種ま
たは2種以上を含有していることを特徴とするものであ
る。
From the above basic researches, a specific method has been invented for improving the softening resistance and, in turn, improving the fatigue life and the durable life while solving the problems such as the generation of ferrite by Si and the increase in grain boundary oxidation. That is, the present invention is, by weight%, C = 0.18 to 0.25%, Si = 0.45.
1.00%, Mn = 0.40 to 0.70%, Ni = 0.
30 to 0.70%, Cr = 1.00 to 1.50%, Mo
= 0.30 to 0.70%, Cu = 0.50% or less, Al
= 0.015 to 0.030%, V = 0.03 to 0.30
%, Nb = 0.10 to 0.030%, O = 0.001
5% or less, N = 0.0100 to 0.0200% is contained, and the balance is Fe and inevitable impurity elements. Even after quenching at a temperature of 820 ° C. or more after carburizing, the core To generate a ferrite phase in the quenched structure of
There is no further, after the tempering was Tsu line at 160~180 ℃, used
During use it is exposed to temperatures above this temperature and below 300 ° C.
H be the hardness of the carburized layer in comparison to the hardness of the carburized quenching and Modonochi
A steel for carburized gears having a softening resistance that does not decrease by V50 or more.
= 0.006 to 0.020%, Pb = 0.03 to 0.0
9%, and is characterized in that it contains one or more from among Te = 0.003 to .030%.

【0014】次に本発明の上記組成についてその限定理
由を説明する。 C:0.18〜0.25% Cは歯車に要求される心部硬さHRC35〜45を得る
ために、少なくとも0.18%以上の添加が必要であ
る。また、Cが低いと相変態開始温度が上昇し過ぎ、オ
ーステナイト安定化元素添加によるその制御が難しくな
ってくる。しかし、その過剰な添加は、心部の硬さが上
昇しすぎ、焼入後において表面での圧縮の残留応力を十
分に導入できず、かつ心部の靭性を劣化させる。これを
回避するためには上限を0.25%に限定する必要があ
る。従って、Cの添加量は0.18〜0.25%の範囲
とした。 Si:0.45〜1.00%
Next, the reasons for limiting the composition of the present invention will be described. C: 0.18 to 0.25% C needs to be added at least 0.18% or more in order to obtain the core hardness HRC35 to 45 required for the gear. Further, when C is low, the phase transformation start temperature rises too much, and it becomes difficult to control it by adding an austenite stabilizing element. However, the excessive addition thereof causes the hardness of the core to be excessively increased, the residual compressive stress on the surface cannot be sufficiently introduced after quenching, and the toughness of the core is deteriorated. In order to avoid this, it is necessary to limit the upper limit to 0.25%. Therefore, the addition amount of C is set to the range of 0.18 to 0.25%. Si: 0.45-1.00%

【0015】Siは本発明鋼において最も重要な元素で
ある。すなわち、Siは歯車等が転動中に到達すると思
われる200〜300℃の温度域における軟化抵抗を最
も高める元素であり、その結果を発揮するためには少な
くとも0.45%以上の添加が必要である。しかし、S
iは承知のようにフェライト安定化元素であり、その過
剰な添加はAc3変態点を上昇し、通常の焼入温度の範
囲(820〜860℃)で炭素含有量の低い心部でフェ
ライトの出現が顕著となり強度の低下を招く。さらに浸
炭性を阻害したり、浸炭前の鋼材が硬くなり過ぎること
により、冷鍛性や切削性を劣化させる。これを回避する
ためには上限を1.00%に限定する必要がある。
Si is the most important element in the steel of the present invention. That is, Si is an element that most enhances the softening resistance in the temperature range of 200 to 300 ° C., which is considered to reach during the rolling of gears, etc., and at least 0.45% or more must be added to exert the result. Is. But S
As is well known, i is a ferrite stabilizing element, and its excessive addition raises the Ac3 transformation point, and ferrite appears in the core with a low carbon content in the normal quenching temperature range (820 to 860 ° C). Becomes remarkable, resulting in a decrease in strength. Further, the carburizing property is hindered and the steel material before carburizing becomes too hard, which deteriorates the cold forgeability and the machinability. In order to avoid this, it is necessary to limit the upper limit to 1.00%.

【0016】従って、Siの添加量は0.45〜1.0
0%の範囲とした。 Mn:0.40〜0.70% Mnは焼入性を確保するために少なくとも0.40%以
上の添加が必要である。しかし、Mnは浸炭異常層を形
成しやすい。これを低減をするためには上限を0.70
%に限定する必要がある。従って、Mnの添加量は0.
40〜0.70%の範囲とした。 Ni:0.30〜0.70% Niは本発明鋼においてSiとあわせて重要な元素であ
る。すなわち、NiはSiと逆にオーステナイト安定化
元素であるので、Siを添加したことにより上昇した相
変態開始温度を低下させる。また、同時にNiは焼入性
を向上し、浸炭層および心部の靭性をも向上させる元素
でもある。これらの効果を発揮するためには少なくとも
0.30%以上の添加が必要である。しかし、Niは高
価な元素であるからその過剰な添加は経済的な観点から
望ましくないばかりではなく、かえって残留オーステナ
イトの形成を促進することにより表面硬さの低下を招
く。これを回避するためには上限を0.70%に限定す
る必要がある。
Therefore, the addition amount of Si is 0.45 to 1.0.
The range was 0%. Mn: 0.40 to 0.70% Mn needs to be added at least 0.40% or more in order to secure hardenability. However, Mn easily forms an abnormal carburizing layer. To reduce this, the upper limit is 0.70
Must be limited to%. Therefore, the addition amount of Mn is 0.
The range was 40 to 0.70%. Ni: 0.30 to 0.70% Ni is an important element together with Si in the steel of the present invention. That is, since Ni is an austenite stabilizing element contrary to Si, it lowers the phase transformation start temperature increased by adding Si. At the same time, Ni is an element that improves the hardenability and also the toughness of the carburized layer and the core. In order to exert these effects, it is necessary to add at least 0.30%. However, since Ni is an expensive element, excessive addition of Ni is not desirable from an economical point of view, but rather promotes the formation of retained austenite, resulting in a decrease in surface hardness. In order to avoid this, it is necessary to limit the upper limit to 0.70%.

【0017】従って、Niの添加量は0.30〜0.7
0%の範囲とした。 Cr:1.00〜1.50% Crは焼入性を確保するために必要な元素である。また
微細な炭化物の析出を期待できる元素でもある。そのた
めには少なくとも1.00%以上の添加が必要である。
しかし、CrはMnと同様に浸炭異常層を形成し易い元
素であり、その過剰な添加は、心部が硬くなり過ぎるこ
とにより、靭性を劣化させる。これを回避するためには
上限を1.50%に限定する必要がある。従って、Cr
の添加量は1.00〜1.50%の範囲とした。 Mo:0.30〜0.70% MoはNiと同様に焼入性を向上し、浸炭層及び心部の
靭性を向上させる元素である。そのためには少なくとも
0.30%以上の添加が必要である。しかし、その過剰
な添加は浸炭前の鋼材の軟化処理が難しくなることから
切削性を阻害し、また心部が硬くなり過ぎ、靭性を劣化
させる。これを回避するためには上限を0.70%に限
定する必要がある。
Therefore, the addition amount of Ni is 0.30 to 0.7.
The range was 0%. Cr: 1.00 to 1.50% Cr is an element necessary for ensuring hardenability. It is also an element that can be expected to precipitate fine carbides. For that purpose, it is necessary to add at least 1.00% or more.
However, like Mn, Cr is an element that tends to form an abnormal carburizing layer, and excessive addition of Cr causes the core to become too hard, which deteriorates toughness. In order to avoid this, it is necessary to limit the upper limit to 1.50%. Therefore, Cr
Was added in the range of 1.00 to 1.50%. Mo: 0.30 to 0.70% Mo is an element that improves hardenability like Ni and improves toughness of the carburized layer and the core. For that purpose, it is necessary to add at least 0.30%. However, the excessive addition thereof makes it difficult to soften the steel material before carburizing, so that the machinability is impaired, and the core becomes too hard and the toughness deteriorates. In order to avoid this, it is necessary to limit the upper limit to 0.70%.

【0018】従って、Moの添加量は0.30〜0.7
0%の範囲とした。 Cu:0.50%以下 Cuは400〜600℃といった比較的高い温度域にお
いて析出硬化が期待できる元素である。従って、歯面あ
るいは転動面の温度が著しく上昇する過酷な使用状況が
想定される場合や、航空機材料のようにジェット推進機
やタービン近傍の高温環境で使用される場合に添加する
ことが望ましい。しかし、その過剰な添加は熱間脆性を
増長し、かつ、浸炭性を阻害する。これを回避するため
には上限を0.50%に限定する必要がある。従って、
Cuの添加量は0.50%以下とした。 Al:0.015〜0.030%
Therefore, the addition amount of Mo is 0.30 to 0.7.
The range was 0%. Cu: 0.50% or less Cu is an element for which precipitation hardening can be expected in a relatively high temperature range of 400 to 600 ° C. Therefore, it is desirable to add it when a severe usage situation in which the temperature of the tooth surface or rolling surface rises significantly, or when it is used in a high temperature environment near a jet propulsion machine or turbine like aircraft materials. . However, its excessive addition increases hot brittleness and impairs carburization. In order to avoid this, it is necessary to limit the upper limit to 0.50%. Therefore,
The amount of Cu added was 0.50% or less. Al: 0.015 to 0.030%

【0019】AlはNと結合してAlNを形成し、オー
ステナイト結晶粒度を微細化する作用を有する元素であ
り、この細粒化を介して浸炭層及び心部の靭性向上に寄
与する。そのためには少なくとも0.015%以上の添
加が必要である。しかし、その過剰な添加は疲労強度に
対し有害なAl23介在物の生成を助長する。これを回
避するためには上限を0.030%に限定する必要があ
る。従って、Alの添加量は0.015〜0.030%
の範囲とした。 V:0.03〜0.30% Vは浸炭温度近傍の比較的低い温度においても炭化物を
形成し、それらによる硬さの向上が期待できる。そのた
めには少なくとも0.03%以上の添加が必要である。
しかし、その過剰な添加は浸炭層の靭性を劣化させる。
これを回避するためには上限を0.30%に限定する必
要がある。
Al is an element having a function of forming AlN by combining with N and refining the austenite crystal grain size, and contributes to the improvement of the toughness of the carburized layer and the core through the grain refinement. For that purpose, it is necessary to add at least 0.015% or more. However, its excessive addition promotes the formation of Al 2 O 3 inclusions which are harmful to fatigue strength. In order to avoid this, it is necessary to limit the upper limit to 0.030%. Therefore, the added amount of Al is 0.015-0.030%
And the range. V: 0.03 to 0.30% V forms a carbide even at a relatively low temperature near the carburizing temperature, and improvement in hardness due to them can be expected. For that purpose, it is necessary to add at least 0.03% or more.
However, its excessive addition deteriorates the toughness of the carburized layer.
In order to avoid this, it is necessary to limit the upper limit to 0.30%.

【0020】従って、Vの添加量は0.03〜0.30
%の範囲とした。 Nb:0.010〜0.030% Nbは鋼中のC,Nと結合して炭窒化物を形成し、Al
Nと同様にオーステナイト結晶粒度の微細化に効果のあ
る元素であり、この細粒化を介して浸炭層及び心部の靭
性向上に寄与する。従って、添加量は共存するAlとN
との量的バランスで決まるが、少ないと効果が発揮でき
ないので、少なくとも0.010%以上の添加が必要で
ある。しかし、その過剰な添加は粗大な炭窒化物を形
成、析出し、浸炭層の靭性を損なう。これを回避するた
めには上限を0.030%に限定する必要がある。従っ
て、Nbの添加量は0.010〜0.030%の範囲と
した。 O:0.0015%以下 Oは鋼中において、酸化物系介在物として存在し、疲労
強度を損なう元素である。
Therefore, the addition amount of V is 0.03 to 0.30.
The range is%. Nb: 0.010 to 0.030% Nb combines with C and N in steel to form carbonitride, and Al
Similar to N, it is an element effective in reducing the grain size of austenite, and contributes to the improvement of the toughness of the carburized layer and the core through the grain refinement. Therefore, the addition amounts are Al and N which coexist.
However, if the amount is small, the effect cannot be exhibited. Therefore, it is necessary to add at least 0.010%. However, its excessive addition forms and precipitates coarse carbonitrides, impairing the toughness of the carburized layer. In order to avoid this, it is necessary to limit the upper limit to 0.030%. Therefore, the amount of Nb added is in the range of 0.010 to 0.030%. O: 0.0015% or less O is an element existing in the steel as an oxide inclusion and impairing fatigue strength.

【0021】従って、Oの上限を0.0015%以下と
規定した。 N:0.0100〜0.0200% NはAl,Nbと結合してAlN,NbCNを形成し、
オーステナイト結晶粒度の微細化に効果のある元素であ
り、この微細化を介して浸炭層及び心部の靭性向上に寄
与する。従って、添加量は共存するAlとNbとの量的
バランスで決まるが、少ないと効果が発揮できないの
で、少なくとも0.0100%以上の添加が必要であ
る。しかし、その過剰な添加は凝固時の鋼塊表面での気
泡の発生や鋼材の鍛造性の劣化を招く。これを回避する
ためには上限を0.0200%に限定する必要がある。
従って、Nの添加量は0.0100〜0.0200%の
範囲とした。 S:0.00〜0.020%
Therefore, the upper limit of O is defined as 0.0015% or less. N: 0.0100 to 0.0200% N combines with Al and Nb to form AlN and NbCN,
It is an element effective in reducing the grain size of austenite, and contributes to the improvement of the toughness of the carburized layer and the core through the reduction of grain size. Therefore, the addition amount is determined by the quantitative balance of coexisting Al and Nb, but if the addition amount is small, the effect cannot be exhibited, so at least 0.0100% or more is required to be added. However, its excessive addition causes the generation of bubbles on the surface of the steel ingot during solidification and the deterioration of the forgeability of the steel material. In order to avoid this, it is necessary to limit the upper limit to 0.0200%.
Therefore, the amount of N added is in the range of 0.0100 to 0.0200%. S: 0.00 6 ~0.020%

【0022】Sは大部分は硫化物系介在物として鋼中に
存在し、歯車のように切削加工により成形される部品で
は、被削性の向上に有効な元素である。そのために従来
技術を避けても少なくとも0.006%以上の添加が必
要である。しかし、その過剰な添加は、疲労強度低下を
招く要因となる。これを回避するためには上限を0.0
20%に限定する必要がある。従って、Sの添加量は
0.006〜0.020%の範囲とした。 Pb:0.03〜0.09% PbはSと同様に歯車のように切削加工により成形され
る部品では、被削性の向上に有効な元素である。そのた
めには少なくとも0.03%以上の添加が必要である。
しかし、その過剰な添加は疲労強度低下を招く要因とな
る元素である。また、0.10%以上ではPbの取扱
上、集塵装置、方法等の法的な規制を受ける。これを回
避するためには上限を0.09%に限定する必要があ
る。
Most of S is present in steel as sulfide inclusions, and is an element effective for improving machinability in parts such as gears formed by cutting. Prior to the
Even if the technology is avoided, it is necessary to add at least 0.006 % or more. However, its excessive addition causes a decrease in fatigue strength. To avoid this, the upper limit is 0.0
It needs to be limited to 20%. Therefore, the addition amount of S is set to the range of 0.006 to 0.020%. Pb: 0.03 to 0.09% Similar to S, Pb is an element effective for improving machinability in a component formed by cutting like a gear. For that purpose, it is necessary to add at least 0.03% or more.
However, its excessive addition is an element that causes a decrease in fatigue strength. Further, if it is 0.10% or more, the handling of Pb is subject to legal restrictions such as dust collectors and methods. In order to avoid this, it is necessary to limit the upper limit to 0.09%.

【0023】従って、Pbの添加量は0.03〜0.0
9%の範囲とした。 Te:0.003〜0.030 Teは硫化物系酸化物と母相であるFeの界面エネルギ
ーを増加させ、その形状を紡錘形とし被削性を向上させ
る元素である。その効果を達成するためには少なくとも
0.003%以上の添加が必要である。しかし、その過
剰な添加は熱間脆性を生ずる。これを回避するためには
上限を0.030%に限定する必要がある。従って、T
eの添加量は0.003〜0.030とした。以下、実
施例によって、本発明を更に具体的に説明する。
Therefore, the amount of Pb added is 0.03 to 0.0.
The range was 9%. Te: 0.003 to 0.030 Te is an element that increases the interface energy between the sulfide-based oxide and Fe that is the parent phase, and makes the shape spindle-shaped to improve machinability. In order to achieve that effect, it is necessary to add at least 0.003%. However, its excessive addition causes hot brittleness. In order to avoid this, it is necessary to limit the upper limit to 0.030%. Therefore, T
The amount of e added was 0.003 to 0.030. Hereinafter, the present invention will be described in more detail with reference to examples.

【0024】[0024]

【実施例】次にこれらの結果をもとに本来の目的である
ピッチング疲労強度向上が達成されることを確認するた
めに本発明鋼として表5に示す化学成分を有する試験鋼
塊を高周波真空溶解炉で製造し、ローラー・ピッチング
疲労試験でそのピッチング疲労寿命を評価した。
EXAMPLES Next, based on these results, in order to confirm that the original purpose of improving the pitching fatigue strength was achieved, test steel ingots having the chemical composition shown in Table 5 as the steel of the present invention were subjected to high-frequency vacuum. It was manufactured in a melting furnace, and its pitching fatigue life was evaluated by a roller pitching fatigue test.

【0025】[0025]

【表6】 図7(a)にはローラー・ピッチング疲労試験機の概要
を示す。ここで1は試験片、2は負荷ローラー、3,4
は噛み合い歯車、5は軸受け、6はカップリング、7は
伝達ベルト、8はモーターである。図7(b)は試験片
の形状、図7(c)は負荷ローラーの形状を示す。試験
条件は最大ヘルツ面圧は3430MPa、すべり率は4
0%である。試験鋼塊は熱間鍛造−焼準後試験片に機械
加工され、図1に示す条件で浸炭焼入−焼戻を実施し
た。これらの試験片の一部を切断し、浸炭層の硬さ分布
とミクロ組織観察を実施した。その結果を図13、表6
に示す。
[Table 6] FIG. 7A shows an outline of the roller / pitting fatigue testing machine. Here, 1 is a test piece, 2 is a load roller, 3 and 4
Is a meshing gear, 5 is a bearing, 6 is a coupling, 7 is a transmission belt, and 8 is a motor. 7B shows the shape of the test piece, and FIG. 7C shows the shape of the load roller. The test conditions are a maximum Hertzian surface pressure of 3430 MPa and a slip rate of 4
It is 0%. The test ingot was hot forged and machined into a test piece after normalizing, and carburized and tempered under the conditions shown in FIG. 1. A part of these test pieces was cut and the hardness distribution and microstructure of the carburized layer were observed. The results are shown in FIG. 13 and Table 6.
Shown in.

【0026】[0026]

【表7】 これより、先ず、本発明鋼は心部にフェライトが発生せ
ず、粒界酸化深さが8.5μmと浅いことが確認され
た。図8にはローラー・ピッチング疲労試験の結果を示
す。本図は本発明鋼のピッチング疲労寿命を現在まで実
施してきた現用鋼のそれらとともに累積破損確率で表わ
したものである。これから、本発明鋼のピッチング疲労
寿命は現用鋼のそれらの範囲を越えて長いことがわか
る。図9は疲労試験における転動中の硬さ低下を経時的
に把握するために、疲労試験を一定の繰り返し数で中断
し、表面硬さを測定した結果を示す。同様に現用鋼の範
囲とともに示すが、本発明鋼は転動中の表面硬さの低下
が現用鋼に比べて小さいことがわかる。従って、所期の
設計思想通り、Si含有量を高めた効果により、軟化抵
抗が向上し、すべりをふくむ高面圧下転動中の摩擦熱に
対してもピッチング疲労強度に最も重要な表面硬さの低
下が抑えられ、かつ心部においてフェライトが発生せ
ず、粒界酸化深さが浅いため、疲労寿命が延びたと解釈
できる。このように発明鋼は現用鋼に比べピッチング疲
労寿命が長く、優れた特性を有している。
[Table 7] From this, it was first confirmed that in the steel of the present invention, ferrite did not occur in the core, and the grain boundary oxidation depth was as shallow as 8.5 μm. FIG. 8 shows the results of the roller pitching fatigue test. This figure shows the pitting fatigue life of the steel of the present invention in terms of cumulative failure probability together with those of the current steels that have been used up to now. From this, it can be seen that the pitting fatigue life of the steel of the present invention is longer than those of the current steel. FIG. 9 shows the results of measuring the surface hardness by interrupting the fatigue test at a certain number of repetitions in order to grasp the decrease in hardness during rolling in the fatigue test with time. Similarly, although it is shown together with the range of the current steel, it can be seen that the steel of the present invention has a smaller decrease in surface hardness during rolling than the current steel. Therefore, according to the intended design concept, the effect of increasing the Si content improves the softening resistance, and the surface hardness that is most important for the pitching fatigue strength against friction heat during rolling under high surface pressure including slip. It can be construed that the fatigue life was extended because the decrease in the grain size was suppressed, ferrite was not generated in the core, and the oxidation depth at the grain boundaries was shallow. As described above, the invented steel has a longer pitting fatigue life than the currently used steel and has excellent properties.

【0027】[0027]

【発明の効果】以上の結果からも判るように、本発明鋼
は現在歯車用鋼として最も重要な要件であるピッチング
疲労強度が現用鋼に比べて極めて優れている。従って、
本発明鋼を使用することによって、現状の浸炭焼入条
件、設計諸元で浸炭歯車の小型、軽量化が可能であり、
また形状、寸法が同じでもより高出力化が可能である。
このような理由により、本発明の効果は過酷な条件で歯
車類を使用する産業界においてコストの低減と信頼性の
向上に広く貢献できることである。
As can be seen from the above results, the steel of the present invention is far superior to the current steel in the pitching fatigue strength, which is the most important requirement for steel for gears at present. Therefore,
By using the steel of the present invention, it is possible to reduce the size and weight of the carburized gear under the current carburizing and quenching conditions and design specifications.
Further, even if the shape and size are the same, higher output can be achieved.
For these reasons, the effect of the present invention is that it can widely contribute to cost reduction and reliability improvement in the industrial world where gears are used under severe conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】浸炭焼入−焼戻条件を示す説明図、FIG. 1 is an explanatory diagram showing carburizing and quenching-tempering conditions,

【図2】再加熱実験の熱処理条件を示す説明図、FIG. 2 is an explanatory view showing heat treatment conditions of a reheating experiment,

【図3】再加熱後の硬さとSi含有量の関係を示すグラ
フ、
FIG. 3 is a graph showing the relationship between hardness and Si content after reheating,

【図4】心部の浸炭焼入を模擬した実験の熱処理条件、FIG. 4 is a heat treatment condition of an experiment simulating carburizing and quenching of the core,

【図5】試験片の浸炭焼入条件、FIG. 5 Carburizing and quenching conditions for test pieces,

【図6】粒界酸化層深さとSi含有量の関係を示すグラ
フ、
FIG. 6 is a graph showing the relationship between grain boundary oxide layer depth and Si content,

【図7】(a)ローラー・ピッチング疲労試験機の概略
図、(b)ローラー・ピッチング疲労試験の試験片の概
略図、(c)ローラー・ピッチング疲労試験の負荷ロー
ラーの概略図、
7A is a schematic view of a roller / pitting fatigue tester, FIG. 7B is a schematic view of a test piece of a roller / pitting fatigue test, and FIG. 7C is a schematic view of a load roller of a roller / pitting fatigue test.

【図8】発明鋼及び現用鋼のピッチング疲労寿命を示す
グラフ、
FIG. 8 is a graph showing the pitting fatigue life of the invention steel and the current steel,

【図9】発明鋼及び現用鋼の表面硬さの転動中の経時変
化を示すグラフ、
FIG. 9 is a graph showing changes with time in surface hardness of the invention steel and the current steel during rolling,

【図10】図4に示す条件で浸炭した金属試験片のミク
ロ組織を示す顕微鏡写真、
10 is a micrograph showing the microstructure of a metal test piece carburized under the conditions shown in FIG.

【図11】図4に示す条件で浸炭した金属試験片のミク
ロ組織を示す顕微鏡写真、
FIG. 11 is a micrograph showing a microstructure of a metal test piece carburized under the conditions shown in FIG.

【図12】図4に示す条件で浸炭した金属試験片のミク
ロ組織を示す顕微鏡写真、
12 is a micrograph showing a microstructure of a metal test piece carburized under the conditions shown in FIG. 4,

【図13】図1に示す条件で浸炭焼入−焼戻しをした金
属試験片のミクロ組織を示す顕微鏡写真。
FIG. 13 is a photomicrograph showing the microstructure of a metal test piece carburized and tempered under the conditions shown in FIG.

【符号の説明】[Explanation of symbols]

1 試験片 2 負荷ローラー 3,4 噛み合い歯車 5 軸受け 6 カップリング 7 伝達ベルト 8 モーター 1 test piece 2 load roller 3,4 meshing gear 5 bearings 6 coupling 7 transmission belt 8 motor

フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/60 C22C 38/60 (56)参考文献 特開 平5−140696(JP,A) 特開 平5−125437(JP,A) 特開 昭63−60257(JP,A) 特開 昭62−1843(JP,A) 「第三版鉄鋼便覧▲IV▼」129ペー ジ右欄、日本鉄鋼協会編、昭和59年1月 20日丸善株式会社発行 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 6/00 C21D 9/32 Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 38/60 C22C 38/60 (56) Reference JP-A-5-140696 (JP, A) JP-A-5-125437 (JP, A) JP-A-63-60257 (JP, A) JP-A-62-1843 (JP, A) "The 3rd edition Iron and Steel Handbook ▲ IV ▼" Page 129, right column, Japan Iron and Steel Institute, January 20, 1984 Published by Maruzen Co., Ltd. (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 6/00 C21D 9/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C=0.18〜0.25%、
Si=0.45〜1.00%、Mn=0.40〜0.7
0%、Ni=0.30〜0.70%、Cr=1.00〜
1.50%、Mo=0.30〜0.70%、Cu=0.
50%以下、Al=0.015〜0.030%、V=
0.03〜0.30%、Nb=0.010〜0.030
%、O=0.0015%以下、N=0.0100〜0.
0200%を含有し、残部Fe並びに不可避的不純物元
素からなり、浸炭後820℃以上の温度で焼入を行った
後も、心部の焼入組織中にフェライトを発生させるこ
なく、更に、160〜180℃で焼戻を行った後、
使用中にこの温度を超えて300℃以下の温度にさらさ
れても浸炭層の硬さが浸炭焼入焼戻後の硬さに比較して
HV50以上低下しないことを特徴とする軟化抵抗を有
する浸炭歯車用鋼。
1. In weight%, C = 0.18 to 0.25%,
Si = 0.45-1.00%, Mn = 0.40-0.7
0%, Ni = 0.30 to 0.70%, Cr = 1.00
1.50%, Mo = 0.30 to 0.70%, Cu = 0.
50% or less, Al = 0.015 to 0.030%, V =
0.03-0.30%, Nb = 0.10-0.030
%, O = 0.0015% or less, N = 0.0100-0.
Containing 0200% and the balance Fe and unavoidable impurity elements, even after the hardening was performed at 820 ° C. or higher temperature after carburizing, without causing the ferrite phase hardenability tissue heart portion, further after the tempering was Tsu line at 160~180 ℃,
Exposed to temperatures above 300 ° C during use
Also the hardness of the carburized layer is steel carburized gear having a softening resistance, characterized in that not reduced carburization quenching and the hardness of Modonochi compared to HV50 or more.
【請求項2】 素材中に被削性を向上する元素で、かつ
疲労特性を著しく阻害しない元素として重量%でS=
0.006〜0.020%、Pb=0.03〜0.09
%、Te=0.003〜0.030%のから1種また
は2種以上を含有していることを特徴とする請求項1に
記載している浸炭歯車用鋼。
2. An element that improves machinability in the material and does not significantly impair fatigue properties, and is S = wt%.
0.006-0.020%, Pb = 0.03-0.09
%, Te = 0.003~0.030% of one or steel for carburized gear is according to claim 1, characterized in that it contains two or more from among.
JP32984494A 1994-02-03 1994-12-06 Steel for carburized gear Expired - Fee Related JP3375221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32984494A JP3375221B2 (en) 1994-02-03 1994-12-06 Steel for carburized gear

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-30852 1994-02-03
JP3085294 1994-02-03
JP32984494A JP3375221B2 (en) 1994-02-03 1994-12-06 Steel for carburized gear

Publications (2)

Publication Number Publication Date
JPH07258793A JPH07258793A (en) 1995-10-09
JP3375221B2 true JP3375221B2 (en) 2003-02-10

Family

ID=26369278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32984494A Expired - Fee Related JP3375221B2 (en) 1994-02-03 1994-12-06 Steel for carburized gear

Country Status (1)

Country Link
JP (1) JP3375221B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097561B (en) * 2010-04-19 2015-07-29 新日铁住金株式会社 The steel part that anti-temper softening is excellent
JP6601359B2 (en) * 2016-09-30 2019-11-06 Jfeスチール株式会社 Carburized parts with excellent wear resistance and manufacturing method thereof
JP7436779B2 (en) * 2019-08-09 2024-02-22 日本製鉄株式会社 Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「第三版鉄鋼便覧▲IV▼」129ページ右欄、日本鉄鋼協会編、昭和59年1月20日丸善株式会社発行

Also Published As

Publication number Publication date
JPH07258793A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP5129564B2 (en) Carburized induction hardening parts
KR101464712B1 (en) Steel component having excellent temper softening resistance
JPWO2010082454A1 (en) Induction hardening steel
JP3452225B2 (en) Bearing steel, bearing member excellent in heat resistance and toughness, and manufacturing method thereof
JP4581966B2 (en) Induction hardening steel
KR20120099519A (en) Case-hardened steel and carburized material
CN112292471B (en) Mechanical component
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP5206271B2 (en) Carbonitriding parts made of steel
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JPH0421757A (en) High surface pressure gear
US5518685A (en) Steel for carburized gear
JP2001200348A (en) Gear couple excellent in surface fatigue strength
KR940002139B1 (en) Carburized boron steels for gears
JP4847681B2 (en) Ti-containing case-hardened steel
JP2001192765A (en) Steel for carburizing and carbo-nitriding
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP4504550B2 (en) Steel for gears and gears with excellent root bending fatigue and surface fatigue properties
JP2002212672A (en) Steel member
JP5177517B2 (en) Hardened steel for shafts with excellent low cycle torsional fatigue strength
JP2934485B2 (en) High-strength gear steel and high-strength gear that can be rapidly carburized
JP2000273574A (en) Steel for carburizing or carbonitriding treatment
JP3375221B2 (en) Steel for carburized gear
JPH07188895A (en) Manufacture of parts for machine structure use

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees