KR101141675B1 - 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법 - Google Patents

해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법 Download PDF

Info

Publication number
KR101141675B1
KR101141675B1 KR1020090074234A KR20090074234A KR101141675B1 KR 101141675 B1 KR101141675 B1 KR 101141675B1 KR 1020090074234 A KR1020090074234 A KR 1020090074234A KR 20090074234 A KR20090074234 A KR 20090074234A KR 101141675 B1 KR101141675 B1 KR 101141675B1
Authority
KR
South Korea
Prior art keywords
emim
hmf
furfural
reaction
hydroxymethyl
Prior art date
Application number
KR1020090074234A
Other languages
English (en)
Other versions
KR20110016627A (ko
Inventor
조진구
김상용
이도훈
김보라
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020090074234A priority Critical patent/KR101141675B1/ko
Priority to PCT/KR2010/002360 priority patent/WO2010131844A2/ko
Priority to CN201080020561.8A priority patent/CN102421877B/zh
Priority to US13/320,058 priority patent/US8795393B2/en
Publication of KR20110016627A publication Critical patent/KR20110016627A/ko
Application granted granted Critical
Publication of KR101141675B1 publication Critical patent/KR101141675B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only

Abstract

본 발명은 저비용으로 대량 공급이 가능하고, 해양계 재생자원인 해조류의 주요 성분으로 손쉽게 추출이 가능한 갈락탄을 출발물질로 사용하여, 석유자원 유래 물질을 대체할 수 있는 퓨란계 화합물인 5-히드록시메틸-2-푸르푸랄(HMF)을 제조하는 방법에 관한 것이다. 더욱이, 본 발명은 여타 바이오매스와 달리 식량자원에 영향을 주지 않고, 자원파괴 등의 문제 없이 대량 재배가 가능한 새로운 바이오매스로서, 해양계 공급자원인 해조류를 이용하여, 석유화학제품 대체 플랫폼 화합물을 생산하기 위한 방법을 제공한다.
해조류, 갈락탄, 아가, HMF, 석유자원대체, 퓨란계화합물

Description

해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법{METHOD OF PREPARING 5-HYDROXYMETHYL-2-FURFURAL FROM ALGAL GALACTANS}
본 발명은 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법에 관한 것으로서, 더욱 상세하게는, 해양계 바이오매스로 활용이 가능한 거대 해조류로부터 손쉽게 추출이 가능한 갈락탄을 출발물질로 하여 금속촉매전환반응을 통해 별도의 단당화과정 없이 단일 공정으로 석유화학 대체 플랫폼 화합물로 각종 수지, 섬유, 플라스틱 등의 단량체 또는 접착제, 점착제, 도료, 코팅제 등 정밀화학제품의 핵심 중간체로 사용할 수 있는 5-히드록시메틸-2-푸르푸랄(5-Hydroxymethyl-2-furfural, HMF)의 제조방법에 관한 것이다.
현재, 전체 원유생산량의 약 35%는 플라스틱, 기능성 고분자 소재, 섬유, 도료, 접착제, 의약품, 화장품 등 수많은 형태의 석유화학제품의 원료로서 사용되고 있다. 그러나, 석유자원은 제한된 매장량과 중국 등 신흥 개발도상국의 출현으로 인한 수요 증가로 가격이 급등하고 있고, 가까운 미래에 고갈이 현실화되고 있으 며, 재생이 불가능한 자원으로 국제규약에 근거한 막대한 환경비용 부담이 예상되어 세계 각국은 석유자원을 대체하기 위한 많은 노력을 기울이고 있다.
특히 전방위 화학 산업의 핵심 원료물질인 방향족 화합물의 경우 거의 대부분이 석유로부터 얻어지고 있는데, 최근 이러한 석유 기반 방향족 화합물질을 대체하기 위한 후보군 물질로서, 바이오매스(biomass)로부터 유래된 탄소 화합물에 대한 연구가 활발해지고 있다.
바이오매스는 크게 당질계(사탕수수, 사탕무 등), 전분질계(옥수수, 감자, 고구마 등)와 같이 식량으로 이용되는 작물계와, 목질계(나무, 볏짚, 폐지 등)로 이루어지며, 현재 이러한 바이오매스로부터 얻을 수 있는 다당류 탄소원으로는 작물계 공급자원으로부터 얻을 수 있는 전분 또는 당분과, 목질계 공급자원으로부터 얻을 수 있는 셀룰로오스 등을 들 수 있다. 이러한 다당류 물질들은 바이오매스 공급자원의 전처리공정을 통해 얻어지며, 이러한 전처리공정을 통해 얻어진 전분, 당분, 셀룰로오스의 다당류 물질은 가수분해에 의한 단당화과정을 거쳐 6탄당인 글루코오스 또는 프룩토오스로 전환된 후, 분리정제 과정을 거쳐 다음 공정에 적용된다.
구체적으로, 바이오스매스 공급원으로부터 원하는 최종 화합물을 얻기 위한 일반적인 제조방법은, (a) 다당류 물질인 전분, 당분, 셀룰로오스를 얻기 위한 전처리공정, (b) 글루코오스, 프룩토오스를 얻기 위한 단당화공정, 및 (c) 최종 화합물을 얻기 위한 생물발효 또는 촉매화학공정의 다단계 공정이 요구되며, 이러한 다단계 공정을 거치는 과정에서 수율이 저하되는 문제점이 있다.
한편, 최근에는 이러한 바이오매스(biomass)로부터 유래된 퓨란계 화합물이 많은 관심을 받고 있는데, 이 중 아래의 구조식에 나타낸 5-히드록시메틸-2-푸르푸랄(HMF)은 재생가능한 바이오매스 유래의 탄수화물로부터 얻어질 수 있는 대표적인 핵심 중간체 플랫폼 물질로서, 다양한 전환반응을 통해 바이오 기반 플라스틱의 단량체 및 접착제, 점착제, 코팅제 등 친환경 정밀화학제품으로 널리 활용이 가능하여 이를 대량생산할 수 있는 방법에 대한 연구가 활발히 수행 중에 있다.
[HMF의 구조식]
Figure 112009049197104-pat00001
또는
Figure 112009049197104-pat00002
지금까지 HMF를 얻기 위한 시도는 주로 작물계 바이오매스 공급원으로부터 유래된 프룩토오스(fructose)를 출발물질로 사용하였다. 이는 아래의 반응식에서 나타낸 바와 같이, 화학적으로 5각고리 구조의 6탄당인 프룩토오스(1)가 별도의 이성질체화(isomerization) 과정 없이 산 촉매 하에서 탈수화반응(dehydration) 만을 통하여 비교적 손쉽게 HMF(2)를 얻을 수 있었기 때문이다.
[D-프룩토오스의 탈수화반응의 반응식]
Figure 112009049197104-pat00003
그러나, 프룩토오스는 사탕수수 등 일부 제한된 공급원에만 존재하여 대량 확보가 어렵고, 더욱이 작물계 공급원은 식량자원과 경작지를 공유하는 문제로 인해 곡물가 상승을 야기할 수 있다. 이러한 문제점을 해결하기 위하여 자연에서 자생적으로 성장하는 목재를 활용할 수도 있고, 도시 폐기물 형태의 폐목재나 삼림 곳곳에 흩어져 있는 임산 부산물을 원료로 이용할 수 있어 대량 공급도 가능한 목질계 바이오매스에 대한 관심이 증가하고 있다. 그러나 이러한 목질계 바이오매스의 경우, 전처리과정에서 함유성분의 약 30%를 차지하고 있는 견고한 리그닌을 효율적으로 분리제거하기가 어렵고, 폐리그닌의 활용에 대해서도 많은 연구가 필요한 실정이다.
전술된 문제를 해결하기 위하여 제3세대 바이오매스로서 해양자원이 주목을 받고 있다. 해양자원은 가용 재배면적이 넓고, 담수, 토지, 비료 등의 사용으로 인한 원가상승의 효과가 거의 없으며, 육상 식물에 비해 생장성이 우수하여 단위면적당 생산량이 높다. 또한 리그닌과 같은 제거하기 힘든 성분을 포함하고 있지 않기 때문에 전처리 과정이 매우 용이하다. 따라서 해양계 바이오매스 자원을 새로운 공급원으로 활용하여 석유화학 대체 물질을 생산할 수 있는 전환기술의 개발은 탈석유화시대에 중요한 의미를 가질 것으로 기대된다.
본 발명은 저비용으로 대량공급이 가능하며, 탄수원의 함량이 풍부하고, 추출이 용이한 거대 해조류 바이오매스 자원 유래 갈락탄으로부터 석유화학 유래 방향족화합물을 대체할 수 있는 핵심 플랫폼 중간체인 5-히드록시메틸-2-푸르푸랄 (HMF)을 단당화과정을 거치지 않고 단일공정으로 제조하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로서, 본 발명은 저비용으로 대량 공급이 가능하고, 해양계 재생자원인 해조류의 주요 성분으로 손쉽게 추출이 가능한 갈락탄을 출발물질로 사용하여, 석유자원 유래 물질을 대체할 수 있는 퓨란계 화합물인 5-히드록시메틸-2-푸르푸랄(HMF)을 제조하는 방법에 관한 것이다. 더욱이, 본 발명은 여타 바이오매스와 달리 식량자원에 영향을 주지 않고, 자원파괴 등의 문제 없이 대량 재배가 가능한 새로운 바이오매스로서, 해양계 공급자원인 해조류를 이용하여, 석유화학제품 대체 플랫폼 화합물을 생산하기 위한 방법을 제공한다.
구체적으로, 본 발명에 의한 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법은, 해조류에서 다당류 물질인 갈락탄을 추출하는 출발물질 제조단계(S10)와; 상기 갈락탄을 이용하여 5-히드록시메틸-2-푸르푸랄(HMF)을 제조 하는 반응단계(S20)를 포함한다.
출발물질 제조단계(S10)는 간단하게 말해, 해조류로부터 다당류 물질을 추출하는 단계이며, 본 발명은, 이렇게 추출된 다당류 물질 중에서도 갈락탄을 이용하여 반응단계(S20)를 수행함으로써, 퓨란계 화합물인 HMF를 얻는 것을 특징으로 한다.
여기서, 상기 본 발명에 사용되는 해조류는 바람직하게는 거대 해조류로서, 홍조류, 갈조류, 녹조류 등 해양에 서식하며, 갈락탄을 포함하는 것이라면 제한 없이 사용될 수 있다. 상기 홍조류의 예로서는 우뭇가사리, 김, 코토니, 개도박, 둥근돌김, 개우무, 새발, 참풀가사리, 꼬시래기, 진두발, 참도박, 가시우무, 비단풀, 단박, 돌가사리, 석목, 지누아리 등이 있으며, 갈조류의 예로서는 미역, 다시마, 헛가지말, 민가지말, 패, 고리매, 미역쇠, 감태, 곰피, 대황, 쇠미역사촌, 모자반, 괭생이 모자반, 지충이, 톳 등을 들 수 있다. 또한, 상기 녹조류로는 청태, 해캄, 파래, 청각, 구슬청각, 옥덩굴, 염주말 등을 들 수 있다. 이들 해조류로부터 갈락탄 이외에도 셀룰로오스, 전분 등의 다당류를 얻을 수 있다.
상기 해조류로부터 갈락탄을 추출하는 방법으로서는, 해당 기술분야에서 사용되는 방법이라면 제한 없이 사용할 수 있다. 예를 들어, 해조류를 알칼리 수용액에 일정시간 침지시킨 후 물로 세척하고, 상기 세척된 해조류를 H2SO4, HCl, HBr, HNO3, CH3COOH, HCOOH, HClO4(perchloric acid), H3PO4, PTSA(para-toluene sulfonic acid) 등의 산성약품으로 이루어진 추출용매에 일정시간 침지시켜 아가(agar), 카 라기난, 알긴산 성분을 추출하는 방법을 사용할 수 있다.
본 발명에서 사용되는 갈락탄으로는, 아가(agar)를 사용하는 것이 바람직하다. 대표적인 갈락탄으로서의 아가(Agar)는 아가로오스(Agarose)를 단량체로 포함하는 천연고분자이며, 아가로오스는 아래 화학식 Ⅰ과 같이 갈락토오스(Galactose)와 3,6-안히드로글루코오스(1,3-anhydroglucose)로 이루어진 이당류 물질이다.
[화학식 Ⅰ]
Figure 112009049197104-pat00004
화학조성의 측면에서 거대 해조류로부터 간단한 전처리공정을 통해 얻어질 수 있는 갈락탄 내의 아가의 양은 Gelidium, Gracilaria 등 일부 홍조류의 경우 전체 성분의 최대 약 50 내지 60%에 이른다고 알려져 있다. 나머지 주요 구성성분으로는 셀룰로오스 섬유소인 글루칸이 약 10 내지 20%, 단백질인 10 내지 20%, 지질과 회분이 약 5 내지 15% 존재하나, 이들은 추출과정 등에서 손쉽게 제거가 가능하다.
이러한 아가는 분자내 수소결합을 통해 결정형을 이루어 용해도가 매우 낮은 셀룰로오스와는 달리 무정형의 고분자 물질로서 극성 용매 상에서 용해도가 우수하고, 화학구조상 고리변형(ring strain)이 큰 3,6-안히드로글루코오스로 인해 산성 조건 하에서 민감하게 반응하며, 구성요소인 아가로오스들 사이의 연결이 일반적인 C1-C4 연결이 아닌 C1-C3로 되어있어 중간체의 화학구조도 다를 것으로 예상되어 기존의 작물계, 목질계 바이오매스자원 유래 출발물질인 글루코오스, 프룩토오스, 셀룰로오스와는 다른 전환반응조건이 요구될 것으로 여겨진다. 따라서 본 발명의 발명자들은 조합화학(Combinatorial chemistry)적 접근방법을 이용하여 금속촉매의 종류, 용매의 종류, 온도, 시간 등의 다양한 반응조건을 변화시켜 최적의 금속촉매전화반응 조건을 찾고자 하는 시도를 하였다.
본 발명의 일 실시형태에 의한 반응단계(S20)는, 이러한 전환반응으로서의 최적조건을 수립하기 위하여 도출된 것으로서, 상기 갈락탄 및 금속촉매를 용매 내에 첨가하여, 금속촉매전환반응시킴으로써 수행된다.
즉, 상기 본 발명의 일 실시형태에 의한 반응단계(S20)에 따르면, 출발물질 제조단계(S10)를 통하여 추출된 다당류 갈락탄을 가수분해에 의하여 단당류로 전환하는 과정 없이, 단일 공정으로 목적하는 퓨란계 화합물인 HMF를 얻을 수 있다. 아래 반응식 2에서는 본 발명의 바람직한 일 실시예로서, 갈락탄으로서 아가를 이용하여, 단일반응에 의하여 HMF를 얻는 과정을 간략하게 나타내었다.
[반응식 1]
Figure 112009049197104-pat00005
여기서, 상기 본 발명의 일 실시형태에 사용되는 금속촉매(Metal Catalyst) 는, MXn 또는 MXn?H2O로 표현되는 물질이라면 특별히 한정되지 않고 사용될 수 있다. 여기서 M은 금속원소이고, X는 할로겐 원소 또는 할로겐원소를 포함하거나 이에 상응하는 작용기이며, n은 1 내지 3이다. 예를 들어 할로겐 원소로서 Cl, Br, I 등과, 할로겐원소를 포함하거나 이에 상응하는 작용기로서 트리플레이트, 노나플레이트, 메실레이트, 에틸술포네이트, 벤젠술포네이트, 토실레이트, 트리이소프로필벤젠술포네이트, 포르메이트, 아세테이트, 트리플루오로아세테이트, 니트로벤조에이트, 할로겐화 아릴카르복실레이트, 특히 불소화 벤조에이트, 메틸 카르보네이트, 에틸 카르보네이트, 벤질 카르보네이트, t-부틸카르보네이트, 디메틸 포스포네이트, 디에틸 포스포네이트, 디페닐 포스포네이트 또는 디아조늄 중 어느 하나이다. 이 중에서, 바람직하게는 할로겐 원소와 트리플레이트, 노나플레이트, 메실레이트, 토실레이트 또는 디아조늄 중 어느 하나의 작용기를 적용하는 것이 바람직하다.
여기서, 상기 금속원소로서 바람직하게 적용될 수 있는 원소는 Mn, Ni, Fe, Cr, Cu, Co, Ru, Zn, Al, Ce, La, Nd, Sc, Yb, In으로 이루어진 군에서 선택되며, 상기 용매는, 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl), 에틸메틸이미다졸리엄 브로민([EMIM]Br), 에틸메틸이미다졸리엄 요오드([EMIM]I) 등의 이온성 액체 또는 DMA (dimethylacetamide) DMSO (dimethyl sulfoxide), DMF(Dimethylformamide), 헥사메틸포스포로트리아미드, N-메틸피롤리돈, 테트라히드로퓨란(THF) 및 γ-부티로락톤 등의 비양자성(aprotic) 극성용매인 것이 바람직하다.
또한, 상기 용매와 여기에 첨가되는 갈락탄의 바람직한 비율은, 1 내지 50g/L, 더욱 바람직하게는 5 내지 20 g/L (wt/V)이며, 상기 비율로 적용하였을 경우에 우수한 수율을 나타내었다. 또한, 수율을 극대화시키기 위한 상기 금속촉매의 당량은 0.05 내지 50mol%, 더욱 바람직하게는 0.1 내지 20 mol%이다. 나아가, 본 발명의 일 실시형태에 의한 반응단계(S20)의 바람직한 반응온도는, 50 내지 200℃, 더욱 바람직하게는 70 내지 150 ℃이며, 반응시간은 1 내지 20 시간이다.
이처럼, 본 발명에 의한 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법에 따르면, 단일공정으로 간단하게 HMF를 제조할 수 있다.
상술한 바와 같이, 본 발명에 따르면, 해양계 바이오매스 자원인 해조류를 활용함으로서 작물계 바이오매스 자원처럼 곡물가에 영향을 미치는 문제가 없고, 목질계 바이오매스 자원에 비해 손쉽게 탄소원을 추출할 수 있는 효과가 있다.
또한, 본 발명에 따르면 석유화학 유래 방향족화합물을 대체할 수 있는 플랫폼 핵심 중간체를 단일 전환반응으로 손쉽게 생산하는 방법을 제공하여 석유자원을 대체할 수 있는 효과가 있다.
이하에서는 실시예를 들어, 본 발명에 의한 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법에 대하여 설명하기로 한다.
실시예 1
5 mL-Vial에 아가 50 mg, 용매로서 이온성 액체인 에틸메틸이미다졸리엄 클로라이드 [EMIM]Cl 500 mg, 표 1에 제시된 13 가지의 금속촉매 10 mol%를 각각 넣고, 온도를 서서히 90 ℃까지 가열한 후 교반하며 2 시간동안 반응을 진행시킨다. 반응 후 반응 혼합물 내의 부반응 고체물질인 휴민 (humin)을 필터로 제거하고, 희석한 후 HPLC를 통해 생성된 HMF의 수율을 측정하여 표 1에 정리하였다. 또한, 도 1에 나타낸 바와 같이, HPLC UV 검출기 (283 nm) 상에서 95% 이상의 순도로 HMF가 존재함을 알 수 있었다.
[표 1] 금속촉매에 따른 HMF 생성 수율 (온도 90 ℃)
순번 금속촉매 용매 온도 (℃) 시간 (h) 수율 (g/L)
1 FeCl3 [EMIM]Cl 90 2 3.3
2 CuCl2 [EMIM]Cl 90 2 3.0
3 NiCl2 [EMIM]Cl 90 2 0.3
4 CoCl2 6H2O [EMIM]Cl 90 2 0.2
5 CrCl2 [EMIM]Cl 90 2 0.1
6 ZnCl2 [EMIM]Cl 90 2 0.1
7 MnCl2 [EMIM]Cl 90 2 0.1
8 FeCl2 [EMIM]Cl 90 2 0.0
9 RuCl3 [EMIM]Cl 90 2 6.4
10 FeBr3 [EMIM]Cl 90 2 4.3
11 CuBr2 [EMIM]Cl 90 2 4.3
12 AlCl3 [EMIM]Cl 90 2 3.6
13 AlBr3 [EMIM]Cl 90 2 1.7
실시예 2
5 mL-Vial에 아가 50 mg, 용매로서 이온성 액체인 에틸메틸이미다졸리엄 클로라이드 [EMIM]Cl 500 mg, 표 2에 나타낸 8 가지의 금속촉매 10 mol%를 각각 넣고, 온도를 서서히 110 ℃까지 가열한 후 교반하며 2 시간동안 반응을 진행시킨다. 반응 후 반응 혼합물 내의 부반응 고체물질인 휴민 (humin)을 필터로 제거하고, 희석한 후 HPLC를 통해 생성된 HMF의 수율을 측정하여 표 2에 정리하였다.
[표 2] 금속촉매에 따른 HMF 생성 수율 (온도 110 ℃)
순번 금속촉매 용매 온도 (℃) 시간 (h) 수율 (g/L)
1 CrCl2 [EMIM]Cl 110 2 6.1
2 MnCl2 [EMIM]Cl 110 2 5.1
3 NiCl2 [EMIM]Cl 110 2 5.0
4 CoCl2 6H2O [EMIM]Cl 110 2 4.5
5 FeCl2 [EMIM]Cl 110 2 4.5
6 ZnCl2 [EMIM]Cl 110 2 4.4
7 FeCl3 [EMIM]Cl 110 2 0.9
8 CuCl2 [EMIM]Cl 110 2 0.7
실시예 3
5 mL-Vial에 아가 50 mg, 용매로서 이온성 액체인 에틸메틸이미다졸리엄 클로라이드 [EMIM]Cl 0.5 mL, 표 3에 나타낸 7 가지의 금속촉매 10 mol%를 각각 넣고, 온도를 서서히 80 ℃까지 가열한 후 교반하며 5 시간과 20 시간동안 반응을 진행시킨다. 반응 후 반응 혼합물 내의 부반응 고체물질인 휴민 (humin)을 필터로 제거하고, 희석한 후 HPLC를 통해 생성된 HMF의 수율을 측정하여 표 3에 정리하였다.
[표 3] 금속촉매에 따른 HMF 생성 수율 (온도 80 ℃)
순번 금속촉매 용매 온도 (℃) 시간 (h) 수율 (g/L)
1 CuCl2 [EMIM]Cl 80 20 2.0
2 FeCl3 [EMIM]Cl 80 20 1.9
3 FeCl3 [EMIM]Cl 80 5 0.8
4 CuCl2 [EMIM]Cl 80 5 0.0
실시예 4
5 mL-Vial에 아가 50 mg, 용매로서 이온성 액체인 에틸메틸이미다졸리엄 브로마이드 [EMIM]Br 500 mg, 표 4에 나타낸 12 가지의 금속촉매 10 mol%를 각각 넣고, 온도를 서서히 90 ℃까지 가열한 후 교반하며 2 시간동안 반응을 진행시킨다. 반응 후 반응 혼합물 내의 부반응 고체물질인 휴민 (humin)을 필터로 제거하고, 희석한 후 HPLC를 통해 생성된 HMF의 수율을 측정하여 표 4에 정리하였다.
표 4. 금속촉매에 따른 HMF 생성 수율 (용매 [EMIM]Br)
순번 금속촉매 용매 온도 (℃) 시간 (h) 수율 (g/L)
1 RuCl3 [EMIM]Br 90 2 2.6
2 FeCl3 [EMIM]Br 90 2 1.0
3 CuCl2 [EMIM]Br 90 2 0.9
4 CuBr2 [EMIM]Br 90 2 0.4
5 AlCl3 [EMIM]Br 90 2 0.2
6 CoCl2 6H2O [EMIM]Br 90 2 <0.1
7 FeCl2 [EMIM]Br 90 2 <0.1
8 MnCl2 [EMIM]Br 90 2 <0.1
9 NiCl2 [EMIM]Br 90 2 <0.1
10 ZnCl2 [EMIM]Br 90 2 <0.1
11 AlBr3 [EMIM]Br 90 2 <0.1
12 FeBr3 [EMIM]Br 90 2 <0.1
실시예 5
5 mL-Vial에 아가 50 mg, 용매로서 DMSO 0.5 mL, 표 5에 나타낸 4 가지의 금속촉매 10 mol%를 각각 넣고, 온도를 서서히 90 ℃까지 가열한 후 교반하며 2 시간 동안 반응을 진행시킨다. 반응 후 반응 혼합물 내의 부반응 고체물질인 휴민 (humin)을 필터로 제거하고, 희석한 후 HPLC를 통해 생성된 HMF의 수율을 측정하여 표 5에 정리하였다.
[표 5] 금속촉매에 따른 HMF 생성 수율 (용매 DMSO)
순번 금속촉매 용매 온도 (℃) 시간 (h) 수율 (g/L)
1 RuCl3 DMSO 90 2 3.6
2 CrCl2 DMSO 90 2 <0.1
3 FeCl3 DMSO 90 2 <0.1
4 CuCl2 DMSO 90 2 <0.1
실시예 6
5 mL-Vial에 아가 50 mg, 용매로서 이온성 액체인 에틸메틸이미다졸리엄 클로라이드 [EMIM]Cl 0.5 mL, 표 6에 나타낸 7 가지의 금속촉매 10 mol%를 각각 넣고, 온도를 서서히 90 ℃까지 가열한 후 교반하며 2 시간동안 반응을 진행시킨다. 반응 후 반응 혼합물 내의 부반응 고체물질인 휴민 (humin)을 필터로 제거하고, 희석한 후 HPLC를 통해 생성된 HMF의 수율을 측정하여 표 6에 정리하였다.
[표 6] 금속촉매에 따른 HMF 생성 수율
순번 금속촉매 용매 온도 (℃) 시간 (h) 수율 (g/L)
1 BiCl3 [EMIM]Cl 90 2 <0.1
2 CeCl3 7H2O [EMIM]Cl 90 2 <0.1
3 InCl3 [EMIM]Cl 90 2 <0.1
4 LaCl3 7H2O [EMIM]Cl 90 2 <0.1
5 NdCl3 6H2O [EMIM]Cl 90 2 <0.1
6 Sc(OTf)3 [EMIM]Cl 90 2 <0.1
7 Yb(OTf)3 [EMIM]Cl 90 2 <0.1
상기 실시예 1 내지 3에 나타낸 바와 같이, 다양한 금속촉매를 사용하여 이온성 액체 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl) 상에서 90 ℃로 2시간 반응하였을 때, FeCl3, RuCl3, FeBr3, CuBr3에 의한 HMF 전환수율이 우수한 것을 확인하였다. 한편, 기존에 글루코오스의 HMF 전환반응 촉매로 우수한 성능이 알려진 CrCl2의 경우는 흥미롭게도 아가의 경우에는 큰 효과가 나타나지 않았다. 보고에 의하면 글루코오스와 같은 6각고리 구조의 화합물이 5각고리 구조의 HMF로 전환되기 위해서는 이성질체화 반응이 요구되고, 크롬(Cr) 금속이 그 역할을 담당하는 것으로 알려져 있으나 [Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C., Science, 2007, 316, 1579-1600.], 아가의 경우는 전술된 바와 같이 독특한 화학적 구조로 인해 중간체의 화학구조도 새로운 형태를 가질 것으로 예상되며 이에 Cr이 아닌 Fe, Ru과 같은 다른 금속촉매가 더 HMF 전환반응에 효율적인 것으로 여겨진다. 하지만 실시예 2에서 나타낸 바와 같이, 반응온도를 110 ℃로 올렸을 때는 Cr의 활성이 가장 우수한 것으로 나타났다. 이것은 물의 끓는점보다 높은 110 ℃에서는 탈수화 반응이 촉진되어 아가로부터 글루코오스와 유사한 화학구조를 갖는 갈락토오스의 생성이 일차적으로 발생하여 글루코오스와 동일한 메커니즘을 통해 HMF가 생성되기 때문으로 여겨진다.
한편 용매를 [EMIM]Br(실시예 4) 또는 DMSO(실시예 5)로 바꾸어 실험한 결과 RuCl3와 FeCl3가 가장 우수한 성능을 보이는 전술된 것과 비슷한 양상을 보였으나, 수율은 오히려 감소하는 경향을 나타내었다. 또한, 실시예 6에 나타낸 바와 같이, BiCl3, InCl3, LaCl3 7H2O, NdCl3 6H2O, Sc(OTf)3, Yb(OTf)3와 같은 탈수화반응이 우수한 것으로 알려진 금속촉매의 경우는 HMF 전환반응이 거의 진행되지 않았다.
이상, 본 발명의 실시예를 중심으로 상세하게 설명하였다. 그러나 본 발명의 권리범위는 상기 실시예에 한정되는 것은 아니라 첨부된 특허청구범위내에서 용이하게 변환 또는 삭제 가능한 범위까지 포함하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 가능한 다양한 변형 가능한 범위까지 본 발명의 청구 범위 기재의 범위 내에 있는 것으로 본다.
도 1은 본 발명의 실시예 1을 통해 아가로부터 생성된 HMF의 HPLC 크로마토그램을 나타낸 도면이다 (금속촉매 FeCl3, 온도 90 ℃, 반응시간 2 h).

Claims (10)

  1. 갈락탄을 이용하여 5-히드록시메틸-2-푸르푸랄(HMF)을 제조하는 반응단계를 포함하며,
    상기 반응단계는, 상기 갈락탄 및 금속촉매를 용매 내에 첨가하여, 금속촉매전환반응시키며,
    상기 금속촉매는 MXn 또는 MXn?H2O(M은 금속원소이며, 상기 금속원소는 Fe, Cu, Ni, Co, Cr, Zn, Mn, Ru 또는 Al이고, X는 할로겐 원소이며, n은 1 내지 3이다)로 표현되고,
    상기 용매는 이미다졸리엄을 포함하는 이온성 액체인 것을 특징으로 하는 5-히드록시메틸-2-푸르푸랄의 제조방법.
  2. 제1항에 있어서,
    상기 갈락탄은, 아가(agar)인 것을 특징으로 하는 5-히드록시메틸-2-푸르푸랄의 제조방법.
  3. 제1항 또는 제2항에 있어서,
    상기 반응단계의 반응 시간은 1 내지 20 시간이고, 상기 반응단계의 반응온도는, 50 내지 200℃인 것을 특징으로 하는 5-히드록시메틸-2-푸르푸랄의 제조방법.
  4. 제1항 또는 제2항에 있어서,
    상기 용매와 상기 갈락탄의 비율은, 상기 용매 1L 당 상기 갈락탄 1g 내지 50g인 것을 특징으로 하는 5-히드록시메틸-2-푸르푸랄의 제조방법.
  5. 제1항 또는 제2항에 있어서,
    상기 금속촉매의 당량은 0.05 내지 50mol%인 것을 특징으로 하는 5-히드록시메틸-2-푸르푸랄의 제조방법.
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
KR1020090074234A 2009-05-11 2009-08-12 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법 KR101141675B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020090074234A KR101141675B1 (ko) 2009-08-12 2009-08-12 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법
PCT/KR2010/002360 WO2010131844A2 (ko) 2009-05-11 2010-04-15 해조류 유래 갈락탄을 이용한 바이오연료의 제조방법
CN201080020561.8A CN102421877B (zh) 2009-05-11 2010-04-15 利用来源于海藻类的半乳聚糖的生物燃料的制造方法
US13/320,058 US8795393B2 (en) 2009-05-11 2010-04-15 Method for producing biofuel using marine algae-derived galactan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090074234A KR101141675B1 (ko) 2009-08-12 2009-08-12 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법

Publications (2)

Publication Number Publication Date
KR20110016627A KR20110016627A (ko) 2011-02-18
KR101141675B1 true KR101141675B1 (ko) 2012-05-04

Family

ID=43774934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090074234A KR101141675B1 (ko) 2009-05-11 2009-08-12 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법

Country Status (1)

Country Link
KR (1) KR101141675B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039705A1 (ko) * 2017-08-21 2019-02-28 한국생산기술연구원 5-히드록시메틸-2-푸르푸랄의 제조공정에서 5-히드록시메틸-2-푸르푸랄과 다이메틸설폭사이드의 분리방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385236B1 (ko) * 2009-11-11 2014-04-16 한국생산기술연구원 해조류로부터 5-히드록시메틸퍼퓨랄을 제조하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553280A (en) * 1978-10-12 1980-04-18 Noguchi Kenkyusho Preparation of 5-hydroxymethyl-2-furfural
KR100882462B1 (ko) * 2007-06-29 2009-02-06 나현주 제주산 홍조류의 효소적 추출물을 이용한 항혈액응고성설페이티드 갈락탄조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553280A (en) * 1978-10-12 1980-04-18 Noguchi Kenkyusho Preparation of 5-hydroxymethyl-2-furfural
KR100882462B1 (ko) * 2007-06-29 2009-02-06 나현주 제주산 홍조류의 효소적 추출물을 이용한 항혈액응고성설페이티드 갈락탄조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039705A1 (ko) * 2017-08-21 2019-02-28 한국생산기술연구원 5-히드록시메틸-2-푸르푸랄의 제조공정에서 5-히드록시메틸-2-푸르푸랄과 다이메틸설폭사이드의 분리방법

Also Published As

Publication number Publication date
KR20110016627A (ko) 2011-02-18

Similar Documents

Publication Publication Date Title
Antonetti et al. New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock
Morone et al. Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications
Signoretto et al. Catalytic production of levulinic acid (LA) from actual biomass
KR101186502B1 (ko) 해조류 유래 갈락탄으로부터 5-클로로메틸-2-푸르푸랄을 제조하기 위한 산촉매조성물 및 이를 이용하여 이성분계 상에서 해조류 유래 갈락탄으로부터 5-클로로메틸-2-푸르푸랄을 제조하는 방법
CN102066304A (zh) 木素纤维素生物质到燃料和化学品的化学转变方法
US9199956B2 (en) Process for chemical conversion of cellulose isolated from aromatic spent biomass to hydroxymethyl furfural
Jeong et al. Thermochemical conversion of defatted microalgae Scenedesmus obliquus into levulinic and formic acids
Jeong et al. Hydrothermal conversion of microalgae Chlorella sp. into 5-hydroxymethylfurfural and levulinic acid by metal sulfate catalyst
EP3224231B1 (fr) Procédé de transformation de biomasse lignocellulosique ou de cellulose par des acides solides de lewis non zéolithique stables à base d&#39;étain ou d&#39;antimoine seul ou en mélange.
KR101141675B1 (ko) 해조류 유래 갈락탄을 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법
US8871957B2 (en) Metal catalyst composition for producing furfural derivatives from raw materials of lignocellulosic biomass, and method for producing furfural derivatives using the composition
CA2862586A1 (en) Process for making levulinic acid
Tnah et al. Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis
US8795393B2 (en) Method for producing biofuel using marine algae-derived galactan
Elumalai et al. Advances in transformation of lignocellulosic biomass to carbohydrate-derived fuel precursors
Fulignati et al. Novel challenges on the catalytic synthesis of 5-hydroxymethylfurfural (HMF) from real feedstocks
Ahmed et al. A cookbook for bioethanol from macroalgae: review of selecting and combining processes to enhance bioethanol production
KR101186503B1 (ko) 목질계 바이오매스 유래 셀룰로오스를 이용한 5-히드록시메틸-2-푸르푸랄의 제조방법
Wagh et al. Self-catalyzed deconstruction of acid-modified k-carrageenan for production of 5-hydroxymethyl furfural
CN111187236A (zh) 自含有葡萄糖的原料制备5-羟甲基糠醛的方法
van Putten et al. Furan‐Based Building Blocks from Carbohydrates
Truong et al. Catalytic transformation of biomass-based feedstocks in green solvents
CN109929119A (zh) 锡镧双金属多孔配位聚合物(SnxLaPCP)的制备及其应用
CN113788805B (zh) 一种乳糖转化合成羟甲基糠醛方法
KR101385236B1 (ko) 해조류로부터 5-히드록시메틸퍼퓨랄을 제조하는 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 8