KR101090459B1 - Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing - Google Patents

Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing Download PDF

Info

Publication number
KR101090459B1
KR101090459B1 KR1020090035785A KR20090035785A KR101090459B1 KR 101090459 B1 KR101090459 B1 KR 101090459B1 KR 1020090035785 A KR1020090035785 A KR 1020090035785A KR 20090035785 A KR20090035785 A KR 20090035785A KR 101090459 B1 KR101090459 B1 KR 101090459B1
Authority
KR
South Korea
Prior art keywords
gene
sweet potato
dna
potato leaf
sequence
Prior art date
Application number
KR1020090035785A
Other languages
Korean (ko)
Other versions
KR20090112597A (en
Inventor
이석찬
이건섭
최은석
이용
최홍수
곽해련
김미경
이수헌
김정수
박진우
정미남
고숙주
김국형
박정안
Original Assignee
대한민국(관리부서:농촌진흥청장)
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(관리부서:농촌진흥청장), 성균관대학교산학협력단 filed Critical 대한민국(관리부서:농촌진흥청장)
Priority to KR1020090035785A priority Critical patent/KR101090459B1/en
Publication of KR20090112597A publication Critical patent/KR20090112597A/en
Application granted granted Critical
Publication of KR101090459B1 publication Critical patent/KR101090459B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/12011Geminiviridae
    • C12N2750/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 전사 후 유전자 침묵 현상의 억제 활성을 갖는 국내 고구마 잎말림병 감염 DNA 바이러스 유래 유전자에 관한 것으로서, 더욱 상세하게는 저항성 식물을 개발하거나, 외래 유전자의 발현을 위해 식물의 방어 기작을 무력화하는 인자로써의 적용 가능하고, 또한 식물 내 특정 유전자의 도입 시 전달체의 효율 증대를 위해 이용될 수 있는 국내 고구마 잎마름병 감염 DNA 바이러스 유래 AC2 유전자에 관한 것이다.The present invention relates to genes derived from domestic sweet potato leaf rot infection DNA virus having inhibitory activity of gene silencing after transcription, and more particularly, to develop resistant plants or to neutralize plant defense mechanisms for expression of foreign genes. The present invention relates to an AC2 gene derived from a domestic sweet potato leaf blight infection DNA virus that is applicable as a factor and can be used to increase the efficiency of a carrier upon introduction of a specific gene in a plant.

고구마 잎말림병 감염 DNA 바이러스, 전사 후 유전자 침묵, AC2 유전자 Sweet Potato Blight Infection DNA Virus, Gene Silencing After Transcription, AC2 Gene

Description

전사 후 유전자 침묵 현상의 억제 활성을 갖는 국내 고구마 잎말림병 감염 DNA 바이러스 유래 유전자{Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing}Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing

본 발명의 전사 후 유전자 침묵 현상의 억제 활성을 갖는 국내 고구마 잎말림병 감염 DNA 바이러스 유래 유전자에 관한 것이다.The present invention relates to a gene derived from a sweet potato leaf disease infected DNA virus having a inhibitory activity of gene silencing after transcription.

고구마에 잎말림 증상을 유발시키는 제미니바이러스(geminivirus)는 제미니바이러스과(Geminiviridae)에 속하며, 이는 네 개의 속(genus)으로 나뉘며, 이 중 하위그룹(subgroup) Ⅲ에 해당하는 베고모바이러스(begomovirus)는 가루이(whitefly)[Bemisia tabaci (Gennadius)]에 의해 매개되는 특성을 갖고 있다. 따라서, 제미니바이러스에 관련한 보고는 가루이가 서식하기 알맞은 열대나 아열대 기후 지역에서 이루어진 것이 많다. 아시아 지역에서는 1960년대에 중국의 토마토 재배 지역에서 제미니바이러스가 관찰된다는 보고가 있었으나 일부 지역에 국한되어 있고 피해 정도가 경미해 연구가 이루어지지 않았다. 그러나, 최근 10년 사이에는 아시아 지역 주요 국가의 대부분의 토마토 재배 지역에서 가루이가 관찰되고 이 후 제미니바이러스가 검정된다는 보고가 급증하였다. Geminiviruses, which cause leafiness in sweet potatoes, belong to the Geminiviridae, which is divided into four genus, of which begomovirus, subgroup III. It has a characteristic mediated by whitefly [ Bemisia tabaci (Gennadius)]. Thus, reports on Geminiviruses are often made in tropical or subtropical climates where Garui is suitable. In Asia, geminiviruses were reported in tomato growing regions in China in the 1960s, but they were limited in some regions and the damage was minimal. However, there has been a surge of reports in recent decades that floury is observed in most tomato growing regions of major Asian countries, followed by the testing of geminiviruses.

중국, 대만, 일본, 인도 등 아시아 지역에서 보고되는 베고모바이러스는 ToLCV(Tomato leaf curl virus), TYLCV(Tomato yellow leaf curl virus), TbLCV(Tobacco leaf curl virus), HYVMVH(oneysuckle yellow vein mosaic virus) 등이 주를 이루고 있다. 이들은 일반적으로 두 개의 개놈을 갖는 다른 베고모바이러스와 달리 단 한 개의 게놈을 갖기 때문에 매우 특수한 바이러스로 분류가 된다. 또한, 복제를 완성하기 위해 부수 DNA(satellite DNA)를 필요로 한다는 공통적인 특징을 지니고 있다. 현재까지의 문헌과 보고에 따르면 아프리카, 아시아를 포함하는 구대륙에는 한 개의 게놈을 갖는 것이, 신대륙에는 두 개의 게놈을 갖는 것이 분포하고 있는 것으로 되어 있다. 이러한 현상이 나타나는 이유로는 한 개의 게놈을 갖는 바이러스에서 두 개의 게놈을 갖는 바이러스로 진화하고 있기 때문으로 해석되고 있다. Begomoviruses reported in Asia, including China, Taiwan, Japan, and India, include Tomato leaf curl virus (ToLCV), Tomato yellow leaf curl virus (TYLCV), Tobacco leaf curl virus (TbLCV), and oneysuckle yellow vein mosaic virus (HYVMVH). The back is dominant. They are generally classified as very specific viruses because they have only one genome, unlike other begomoviruses with two dogs. In addition, it has a common feature of requiring satellite DNA to complete replication. According to the literature and reports to date, one genome has been distributed in the old continent including Africa and Asia, and two genomes have been distributed in the new continent. This phenomenon appears to be interpreted as evolving from a virus with one genome to a virus with two genomes.

일반적으로 제미니바이러스에 존재하는 AC2 유전자는 전사 활성 조절의 기능을 가지는 단백질로 알려져 있고, 최근 일부 제미니바이러스에서 AC2 유전자가 전사 후 유전자 침묵 현상(PTGS; posttranscriptional gene silencing)에 대한 억제 단백질의 기능을 가지고 있는 것으로 알려져 있다. In general, the AC2 gene present in the geminivirus is known as a protein having a function of regulating transcriptional activity. Recently, in some geminiviruses, the AC2 gene has a function of an inhibitory protein for posttranscriptional gene silencing (PTGS). It is known.

이에, 본 발명자들은 국내에서 분리 동정된 고구마 잎말림병 감염 DNA 바이러스(SPLCV)의 AC2 유전자가 PTGS 억제 활성을 가지는 지를 확인한 결과, PTGS 억제 활성을 나타냄은 물론 식물 전체에 영향을 줄 수 있는 체계적 전체 활성(systemic silencing activity)을 나타내고, 식물 생장에 악영향을 주지 않을 정도의 적절한 활성을 나타내는 것을 확인하여, 본 발명을 완성하게 되었다.Therefore, the present inventors confirmed that the AC2 gene of the sweet potato leaf rot infection DNA virus (SPLCV) isolated from Korea has PTGS inhibitory activity, and thus shows a PTGS inhibitory activity as well as a systematic whole that can affect the whole plant. The present invention was completed by confirming that it exhibits an activity (systemic silencing activity) and exhibits appropriate activity that does not adversely affect plant growth.

따라서, 본 발명은 서열번호 16의 염기 서열을 갖는 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 유전자를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an AC2 gene derived from sweet potato leaf blight infected DNA virus having the nucleotide sequence of SEQ ID NO: 16.

또한, 본 발명은 서열번호 17의 아미노산 서열을 갖는 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 단백질 및 상기 AC2 유전자를 포함하는 재조합 발현벡터를 제공하는데 또 다른 목적이 있다.Another object of the present invention is to provide an AC2 protein derived from sweet potato leaf blight infected DNA virus having the amino acid sequence of SEQ ID NO: 17 and a recombinant expression vector including the AC2 gene.

본 발명은 서열번호 16의 염기 서열을 갖는 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 유전자를 그 특징으로 한다.The present invention is characterized by the AC2 gene derived from sweet potato leaf blight infected DNA virus having the nucleotide sequence of SEQ ID NO: 16.

또한, 본 발명은 서열번호 17의 아미노산 서열을 갖는 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 단백질 및 상기 AC2 유전자를 포함하는 재조합 발현벡터를 제공하는데 또 다른 특징으로 한다.In another aspect, the present invention is to provide an AC2 protein derived from sweet potato leaf blight infected DNA virus having the amino acid sequence of SEQ ID NO: 17 and a recombinant expression vector comprising the AC2 gene.

본 발명은 국내에서 최초로 분리된 고구마 식물 감염 단일 사슬 DNA 바이러 스로부터 분리한 전사 후 유전자 침묵 현상 억제 활성을 가지는 유전자에 관한 것으로, 이를 이용한 저항성 식물의 개발 및 외래 유전자의 발현을 조절하는 인자의 분리 및 특성 연구에 적용한 식물내 특정 유전자의 도입을 위한 전달체로서의 응용 및 개발이 가능하다.The present invention relates to a gene having a gene silencing inhibitory activity after transcription isolated from sweet potato plant infection single-chain DNA virus isolated for the first time in Korea. Application and development as a carrier for the introduction of specific genes in plants applied to isolation and characterization studies are possible.

이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

전사 후 유전자 침묵 현상 (PTGS; posttranscriptional gene silencing) 억제 활성을 갖는 유전자를 확인하기 위하여, 국내에서 분리 동정된 고구마 잎마름병 감염 DNA 바이러스(SPLCV)로부터 서열번호 16의 염기서열을 갖는 AC2 유전자를 분리하였고, 상기 유전자가 코딩하는 AC2 단백질과 다른 AC2 단백질과 서열정렬을 실시하였다. 서열정렬을 통해서, 서열번호 17의 아미노산 서열을 갖는 단백질은 전체적인 서열에서 다양한 차이를 보이지만 또한 비교된 AC2 단백질들과 도메인 별로 보존된 특징적인 서열을 모티프로서 공유하고 있음을 알 수 있었다. To identify genes with posttranscriptional gene silencing (PTGS) inhibitory activity after transcription, AC2 genes with the nucleotide sequence of SEQ ID NO: 16 were isolated from the isolated sweet potato leaf blight infection DNA virus (SPLCV). Then, sequence alignment was performed with the AC2 protein encoded by the gene and another AC2 protein. Through sequencing, it was found that the protein having the amino acid sequence of SEQ ID NO: 17 shows various differences in the overall sequence but also shares the characteristic sequences preserved by domains with the compared AC2 proteins.

유전자 및 아미노산 서열차이에 따른 PTGS 억제 활성에 차이가 있을 것으로 판단되어, 이들 유전자를 중합효소 연쇄반응을 통해 바이러스로부터 증폭해내고, 증폭된 서열을 식물 발현벡터인 pBI121에 재조합하여, 아그로박테리움 투메파시엔스 GV3101에 형질전환시킨 뒤 대량 배양을 통해 아그로인필트레이션 방법으로 모델 식물인 담배(Nicotiana benthamiana)의 잎에 주입하여 단백질 발현에 따른 활성을 확인하였다. 이때, 형질전환된 아그로박테리움 투메파시엔스 KYRT1를 2009년 4월 24일 KACC에 기탁하였으며, 기탁번호 KACC91470P를 부여받았다. It is judged that there will be a difference in PTGS inhibitory activity according to gene and amino acid sequence differences. These genes are amplified from the virus through a polymerase chain reaction, and the amplified sequences are recombined into the plant expression vector pBI121, thereby agrobacterium tume Passengens GV3101 was transformed and mass cultured through the agroinfiltration method to model tobacco ( Nicotiana) benthamiana ) was injected into the leaves to confirm the activity according to protein expression. At this time, the transformed Agrobacterium tumefaciens KYRT1 was deposited with KACC on April 24, 2009, and was given accession number KACC91470P.

대조군으로는 PTGS 억제 활성이 매우 높은 단일 가닥 RNA 바이러스인 TBSV(Tomato bush stunt virus)의 P19 단백질을 이용하여 비교하였다. 비교 결과 활성은 낮지만, SPLCV의 AC2 단백질 또한 PTGS 억제 활성을 보임을 알 수 있었다.As a control group, P19 protein of TBSV (Tomato bush stunt virus), a single-stranded RNA virus having a very high PTGS inhibitory activity, was compared. Although the activity was low, the AC2 protein of SPLCV also showed PTGS inhibitory activity.

PTGS 억제 활성의 측면에서 유전공학적으로 이용하기 위해 매우 중요한 점은 체계적 활성(systematic activity)을 보여 식물 전체에 영향을 줄 수 있는가의 여부와 활성의 강도가 너무 강하지 않은 상태로 식물의 생장에 악영향을 주지 않도록 하는가의 두 가지 관점에 있다. SPLCV에서 분리된 AC2 유전자의 경우 P19와 다르게 전자의 체계적 활성(systematic activity)을 나타내고 있었으며, 그 활성의 강도가 높지 않아 유전공학적 이용에 있어서 매우 적합하다. The important point for genetic engineering in terms of PTGS inhibitory activity is that it shows systematic activity that can affect the whole plant and that the intensity of the activity is not too strong to adversely affect plant growth. There are two aspects to refrain from giving. The AC2 gene isolated from SPLCV exhibited the systematic activity of the former unlike P19, and is not suitable for genetic engineering because its strength is not high.

이하, 본 발명은 실시예에 의거하여 상세하게 설명하겠는 바, 본 발명이 다음 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limited to the following Examples.

실시예 1: 국내 SPLCV 유전자 분리 및 서열 분석 Example 1 Domestic SPLCV Gene Isolation and Sequence Analysis

농촌진흥청 작물과학원 바이러스과로부터 의뢰받은 잎말림 증상이 심한 고구마로부터 Dellaporta 방법을 이용하여 게놈 DNA를 추출하고, 이를 고안된 프라이머 서열을 이용하여, 95℃ 3분; 94℃ 30초, 55℃ 30초, 72℃ 2분으로 30회 반복; 72℃ 10분의 PCR 반응 조건으로 하여 고구마 게놈 DNA 2 ㎕, 5'-프라이머와 3'-프라이머 각각 0.25 pmol, 1X PCR buffer, 0.125 mM dNTPs가 되도록 하여 최종 20 ㎕ 반응액을 조성하고 PCR을 통해 SPLCV의 SP1과 SP2의 부분서열을 증폭하고, 증폭된 서열을 전기영동하여 나타난 band를 RBC gel extraction kit를 이용하여, gel로부터 DNA를 회수하고, 이를 Promega의 pGEM-T easy vector ligation kit을 이용 T-벡터 내에 삽입하였다. 대장균 DH5alpha 균주에 접합 반응액을 첨가하여 42℃에서 45초간 열충격을 주어 형질전환을 유도한 후 이를 37 ℃에서 LB/amp 고체배지에 12시간 배양하여, 생성된 박테리아 콜로니를 LB/amp 액체배지에 접종하고 37 ℃에서 12시간 진탕배양하여 이들로부터 플라스미드를 분리하고, 시퀀싱 프라이머를 이용하여 시퀀싱 반응을 진행하였다. 세 번 반복된 시퀀싱 결과를 확인한 후, 최종 서열을 결정하고, 이를 NCBI BLAST 검색을 통해 최종 SPLCV 서열로 확인하였다.Genomic DNA was extracted from the sweet potato, which had been severely dried by the RDA Crop Science Division, Department of Virus, using Dellaporta method, using the designed primer sequence at 95 ° C. for 3 minutes; 30 repetitions of 94 ° C 30 seconds, 55 ° C 30 seconds, 72 ° C 2 minutes; Under the PCR reaction conditions of 72 ° C. for 10 minutes, 2 μl of sweet potato genomic DNA, 0.25 pmol of 5′-primer and 3'-primer, 0.25 × mol, 1X PCR buffer, and 0.125 mM dNTPs were prepared. Amplify partial sequences of SP1 and SP2 of SPLCV, and recover the DNA from the gel using RBC gel extraction kit, and amplify the bands by electrophoresis of the amplified sequences, and then use Promega pGEM-T easy vector ligation kit. -Inserted into the vector. The conjugated reaction solution was added to E. coli DH5alpha strain to induce transformation by thermal shock at 42 ° C. for 45 seconds, and then cultured in LB / amp solid medium at 37 ° C. for 12 hours, and the resulting bacterial colonies were transferred to LB / amp liquid medium. Inoculation was carried out for 12 hours shaking culture at 37 ℃ to isolate the plasmid from them, and the sequencing reaction using a sequencing primer. After confirming the sequencing results repeated three times, the final sequence was determined and confirmed as the final SPLCV sequence by NCBI BLAST search.

도 1에 나타낸 바와 같이, 예상되어진 크기의 SP1 (1632 bp), SP2 (2138 bp) 단편이 DNA 중합효소 연쇄반응을 통해 증폭되어졌다. As shown in FIG. 1, SP1 (1632 bp) and SP2 (2138 bp) fragments of expected sizes were amplified through DNA polymerase chain reaction.

Figure 112009024867741-pat00001
Figure 112009024867741-pat00001

SPLCV의 경우 도 2와 표 1의 프라이머를 이용해 증폭된 유전자 서열은 각각 pGEM-T easy vector에 클로닝되었으며, SP1과 SP2 클론으로부터 EcoRV digestion에 의해 1.2 mer에 해당하는 바이러스의 전체 서열을 포함하는 클론을 제작하였다. SPLCV의 경우는 1 kb 이상의 크기를 단편 2개만이 클로닝 되어 전체 서열을 결정하는 데 무리가 있었다. 따라서, SPLCV 전체 서열을 확인하기 위한 프라이머를 다음 표 2와 도 3과 같이 고안하여 시퀀싱 반응을 시행하고 전체 서열을 결정하였다. In the case of SPLCV, the gene sequences amplified using the primers of FIGS. 2 and 1 were cloned into pGEM-T easy vectors, respectively, and clones containing the entire sequence of the virus corresponding to 1.2 mer by EcoRV digestion from SP1 and SP2 clones. Produced. In the case of SPLCV, only two fragments having a size of 1 kb or more were cloned to determine the overall sequence. Therefore, primers for identifying the entire SPLCV sequence were devised as shown in Table 2 and FIG. 3 to perform a sequencing reaction to determine the total sequence.

프라이머primer 서열 (5'→3')Sequence (5 '→ 3') 5SpLCV2ndSeq 5SpLCV2ndSeq GAT GTG TGG GTC CCT GTA AG (서열번호 8)GAT GTG TGG GTC CCT GTA AG (SEQ ID NO: 8) 5SpLCV2Seq_Rc 5SpLCV2Seq_Rc CTT ACA GGG ACC CAC ACA TC (서열번호 9)CTT ACA GGG ACC CAC ACA TC (SEQ ID NO: 9) 5SpLCV3rdSeq 5SpLCV3rdSeq AGT AAT CCT GTG TAT CAG AC (서열번호 10)AGT AAT CCT GTG TAT CAG AC (SEQ ID NO: 10) 5SpLCV4thSeq 5SpLCV4thSeq CTG TGC GTG AAT CCA TGC TG (서열번호 11)CTG TGC GTG AAT CCA TGC TG (SEQ ID NO: 11) 5SpLCV5thSeq 5SpLCV5thSeq CCT ATT CTG CTT GGG CCT TC (서열번호 12)CCT ATT CTG CTT GGG CCT TC (SEQ ID NO: 12) 5SpLCVlastSeq5SpLCVlastSeq AAA GGC GGG CAC CGT ATT AA (서열번호 13)AAA GGC GGG CAC CGT ATT AA (SEQ ID NO: 13)

10 ㎍의 분리된 게놈 DNA를 0.8% 아가로즈 겔에 전기영동한 뒤, 나일론 멤브레인(Amersham사 Hybond-N+)으로 16 시간 동안 전이시킨 뒤, 감염 가능한 클론으로부터 만들어진 탐침 DNA 단편을 P32-labelled dCTP를 이용하여 방사능 표지한 뒤, 혼성화 반응을 수행하였다. 확인된 제미니바이러스의 게놈 서열을 바탕으로 바이러스의 ORF를 확인하고, 확인된 ORF는 GenBank에 기보고된 서열들의 상동성 검색 [BLAST]을 통해서 서열 정렬하였다. 10 μg of isolated genomic DNA was electrophoresed on a 0.8% agarose gel, then transferred to a nylon membrane (Amersham Hybond-N +) for 16 hours, after which a probe DNA fragment made from an infectious clone was P 32 -labelled dCTP. After radiolabeling, hybridization reaction was performed. The ORF of the virus was identified based on the genomic sequence of the identified geminivirus, and the identified ORF was sequenced through homology search [BLAST] of sequences previously reported in GenBank.

실시예 2: SPLCV로부터 AC2 유전자의 확보Example 2 Acquisition of AC2 Gene from SPLCV

제미니바이러스의 전사 활성 인자로 보고된 AC2 유전자를 PCR을 통해 분리하기 위하여, 다음 표 3과 같은 프라이머 세트를 고안하여 이용하였다.In order to isolate the AC2 gene reported as a transcriptional activator of geminivirus by PCR, a primer set as shown in Table 3 was designed and used.

GeneGene PrimerPrimer Sequence (5'→3')Sequence (5 '→ 3') SPLCVSPLCV AC2AC2 5SpAC2 5SpAC2 CCC GGA TCC CAA GCT TGC ATG TCC AAT CTC CCT TCT GGA ATC (서열번호 14)CCC GGA TCC CAA GCT TGC ATG TCC AAT CTC CCT TCT GGA ATC (SEQ ID NO: 14) 3SpAC23SpAC2 CCC AAG CTT CGG ATC CGC TTA AGG CGT TCC AAA ATA CCA GTC (서열번호 15)CCC AAG CTT CGG ATC CGC TTA AGG CGT TCC AAA ATA CCA GTC (SEQ ID NO: 15)

상기 표 3의 프라이머 세트를 이용하여 도 6과 같이 대략 450 bp 정도의 AC2 유전자를 확보할 수 있었고, PCR 산물을 전기영동을 통하여 확인하고, 밴드 부분을 잘라내어 Gel extraction kit으로 DNA를 회수하고, 회수된 DNA를 Promega사의 T-vector ligation kit을 이용하여, pGEM-Teasy vetor와 ligation시켰다. 16 ℃에서 ligation mixture를 overnight 반응시킨 후 DH5alpha competent cell에 heat shock transformation 방법을 이용하여, 42 ℃에서 45초간 열 충격을 주고 900 ㎕의 LB 액상배지를 첨가하여 37 ℃ 진탕배양기에서 1시간 동안 배양한 후 이를 앰피실린이 첨가된 LB 고형배지에 도말하여 12시간동안 37 ℃ 배양기에서 콜로니를 형성시켰다. 형성된 콜로니를 3 ml의 앰피실린이 첨가된 LB 액상배지에 접종하고, 37 ℃ 진탕배양기를 이용하여 12시간 동안 배양한 뒤에 배양액을 글리세롤이 최종 14%가 되게 첨가하여 섞어준 뒤에 -80 ℃에 보관하였다. 또한, 같은 배양액을 원심분리하여 플라스미드 분리 방법을 이용하여 플라스미드를 정제한 뒤에 EcoRI 효소를 이용하여, 10 X 완충액와 플라스미드를 섞어 준 뒤에 EcoRI 효소를 첨가하여 전체 20 ㎕ 반응액을 조성한 뒤 37 ℃ 배양기에서 1시간 정도 반응시킨 후 전기영동을 이용해 벡터로부터 잘려 나간 서열의 크기를 확인하고, pGEM-Teasy 벡터 내의 T7 및 SP6 프라이머 서열을 이용하여 시퀀싱 반응을 수행하고, 나온 염기서열 결과를 NCBI BLAST 검색을 통해 SPLCV AC2 유전자[서열번호 16]가 SPLCV Korean isolate로부터 클로닝 되었음을 확인하였다.Using the primer set of Table 3, it was possible to secure an AC2 gene of approximately 450 bp as shown in Figure 6, PCR product was confirmed by electrophoresis, cut out the band portion to recover the DNA by gel extraction kit, recovery The resulting DNA was ligation with pGEM-Teasy vetor using Promega's T-vector ligation kit. After reacting the ligation mixture overnight at 16 ℃, heat shock transformation method was applied to DH5alpha competent cell for 45 seconds at 42 ℃ and 900 ㎕ LB medium was added and incubated for 1 hour at 37 ℃ shaking incubator It was then plated in LB solid medium to which ampicillin was added to form colonies in a 37 ° C. incubator for 12 hours. The colonies formed were inoculated into LB medium containing 3 ml of ampicillin, incubated for 12 hours using a 37 ° C shaking incubator, and the culture solution was added at a final 14% of glycerol and mixed at -80 ° C. It was. In addition, the same culture solution was centrifuged to purify the plasmid using the plasmid separation method, and then, using EcoRI enzyme, mixed 10X buffer and plasmid, and then added EcoRI enzyme to form a total 20 μl reaction solution and then in a 37 ° C. incubator. After the reaction for about 1 hour, the size of the sequence cut out from the vector was confirmed by electrophoresis, and the sequencing reaction was performed using the T7 and SP6 primer sequences in the pGEM-Teasy vector. The SPLCV AC2 gene [SEQ ID NO: 16] was cloned from the SPLCV Korean isolate.

또한, 확보된 유전자로부터 결정된 전체 염기서열을 기준으로 각각을 단백질로 코딩하여 서열번호 17의 아미노산 서열을 갖는 단백질을 얻었고, 그 아미노산 서열에서 Nuclear localization signal과 zinc-finger binding motif라는 도메인이 SPLCV의 AC2 유전자에서 모두에서 잘 보존되어 있음을 확인할 수 있었다(도 7). In addition, a protein having an amino acid sequence of SEQ ID NO: 17 was obtained by encoding each protein based on the entire nucleotide sequence determined from the obtained gene, and the domains of the Nuclear localization signal and the zinc-finger binding motif in the amino acid sequence were AC2 of SPLCV. It was confirmed that the gene is well preserved in all (FIG. 7).

실시예 3: AC2 유전자를 이용한 재조합 벡터의 제조Example 3: Preparation of Recombinant Vector Using AC2 Gene

상기 실시예 2에서 분리된 서열번호 17의 SPLCV의 AC2 유전자의 PTGS 억제 활성을 확인하기 위하여, 서열번호 16의 유전자를 도 8의 프라이머를 이용하여 PCR 방법으로 분리하여, 도 9와 같이 식물 형질전환 벡터인 pBI121에 클로닝하였다. In order to confirm the PTGS inhibitory activity of the AC2 gene of SPLCV of SEQ ID NO: 17 isolated in Example 2, the gene of SEQ ID NO: 16 was separated by PCR using the primer of Figure 8, plant transformation as shown in Figure 9 The vector was cloned into pBI121.

상기 실시예 2의 pGEM-Teasy 벡터에 들어있는 SPLCV AC2 유전자를 회수하기 위하여 Sac I과 Xba I 제한 효소를 이용하여 T-벡터로부터 잘려 나온 SPLCV AC2 유전자를 전기영동을 통해 밴드 부분을 잘라내어 Gel extraction kit으로 DNA를 회수하고, 회수된 DNA를 마찬가지 방법으로 준비된 pBI121의 Sac I과 Xba I 제한효소로 절단된 단편을 이용하여, pBI121 벡터와 ligation시켰다. 16 ℃에서 ligation mixture를 overnight 반응시킨 후 DH5alpha competent cell에 heat shock transformation 방법을 이용하여, 42 ℃에서 45초간 열 충격을 주고 900 ㎕의 LB 액상배지를 첨가하여 37 ℃ 진탕배양기에서 1시간 동안 배양한 후 이를 앰피실린이 첨가된 LB 고형배지에 도말하여 12시간동안 37 ℃ 배양기에서 콜로니를 형성시켰다. 형성된 콜로니를 3 ml의 카나마이신이 첨가된 LB 액상배지에 접종하고, 37 ℃ 진탕배양기를 이용하여 12시간 동안 배양한 뒤에 배양액을 글리세롤이 최종 14%가 되게 첨가하여 섞어준 뒤에 -80℃에 보관하였다. 또한, 같은 배양액을 원심분리하여 플라스미드 분리방법을 이용하여 플라스미드를 정제한 뒤에 SacI과 XbaI 제한효소를 이용하여, 10 X 완충액과 플라스미드를 섞어준 뒤에 상기 두 가지 제한효소를 첨가하여 전체 20 ㎕ 반응액을 조성한 뒤 37 ℃ 배양기에서 1시간 정도 반응시킨 후 전기영동을 이용해 벡터로부터 잘려 나간 서열의 크기를 확인하고, pBI121 벡터 내의 35s 프로모터 및 NOS 터미네이터 서열을 이용하여 시퀀싱 반응을 수행하고, 나온 염기서열 결과를 NCBI BLAST 검색을 통해 서열번호 16의 유전자인 SPLCV AC2 유전자가 식물 형질전환 벡터인 pBI121에 클로닝 되었음을 확인하였다.In order to recover the SPLCV AC2 gene contained in the pGEM-Teasy vector of Example 2, a gel extraction kit was obtained by electrophoresis of the SPLCV AC2 gene cut out from the T-vector using Sac I and Xba I restriction enzymes. The DNA was recovered, and the recovered DNA was ligation with the pBI121 vector using fragments digested with Sac I and Xba I restriction enzymes of pBI121 prepared in the same manner. After reacting the ligation mixture overnight at 16 ℃, heat shock transformation method was applied to DH5alpha competent cell for 45 seconds at 42 ℃ and 900 ㎕ LB medium was added and incubated for 1 hour at 37 ℃ shaking incubator It was then plated in LB solid medium to which ampicillin was added to form colonies in a 37 ° C. incubator for 12 hours. The colonies formed were inoculated into 3 ml of kanamycin-added LB medium, incubated for 12 hours using a 37 ° C. shaking incubator, and the mixture was mixed with glycerol to be 14% final, and then stored at -80 ° C. . In addition, after centrifugation of the same culture to purify the plasmid by using the plasmid separation method, using SacI and XbaI restriction enzyme, the mixture of 10 X buffer and the plasmid and then the two restriction enzymes were added to the total 20 ㎕ reaction solution After the composition was reacted in an incubator at 37 ° C. for about 1 hour, the size of the sequence cut out from the vector was confirmed by electrophoresis, and the sequencing reaction was performed using the 35s promoter and NOS terminator sequences in the pBI121 vector. The NCBI BLAST search confirmed that the SPLCV AC2 gene, which is the gene of SEQ ID NO: 16, was cloned into pBI121, a plant transformation vector.

실시예 4: 재조합 벡터를 이용한 형질전환체의 제조 및 PTGS 억제 활성의 확인Example 4: Preparation of transformants and recombinant PTGS inhibitory activity using recombinant vector

상기 실시예 3의 서열번호 16의 SPLCV의 AC2 유전자가 재조합된 pBI121 벡터를 아그로박테리움 투메파시엔스 KYRT1에 형질전환시킨 뒤 대량 배양을 통해 아그로인필트레이션 방법으로, 먼저 Inverted Repeat GFP와 GFP를 발현하는 벡터가 형질전환된 아그로박테리아와 억제유전자(suppressor_로서 생각되는 SPLCV AC2 유전자가 형질전환된 아그로박테리아를 0.1:1:1의 농도 비율로 섞어 주고, 마찬가지로 양성대조군과 음성대조군으로서 TBSV-P19 유전자를 발현하는 벡터와 pBI121만을 각각 형질전환시킨 아그로박테리아도 IR-GFP와 GFP에 대해 상기의 농도와 같은 비율로 섞어주었다. 아세토시린곤(Acetosyringone)을 최종적으로 150 μM이 되도록 각각의 반응액에 첨가하여 4시간동안 실온에서 반응시킨 뒤에 모델 식물인 담배(Nicotiana benthamiana)의 잎에 주입하여 15일까지(11일경에 분석 실시) UV light 하에서 관찰하며, 단백질 발현에 따른 활성을 확인하였다. Agrobacterium tumefaciens KYRT1 was transformed into the pBI121 vector, which was recombined with the AC2 gene of SPLCV of SEQ ID NO: 16 of Example 3, and then expressed inverted repeat GFP and GFP by mass culture. Agrobacterium transformed with the vector was mixed with Agrobacterium transformed with the SPLCV AC2 gene (presumed as a suppressor_) at a concentration ratio of 0.1: 1: 1, and the TBSV-P19 gene as a positive control and a negative control. Agrobacteria transforming the vector and pBI121, respectively, were also mixed with IR-GFP and GFP at the same ratio as above, adding acetosyringone to each reaction solution to finally reach 150 μM. for 4 hours and injected into the leaves of tobacco (Nicotiana benthamiana) plants model after reaction at room temperature for up to 15 days (11 analyzing the Nikkei City), and observed under UV light, it was confirmed the activity of the protein.

대조군으로는 PTGS 억제 활성이 매우 높은 단일 가닥 RNA 바이러스인 TBSV(Tomato bush stunt virus)의 P19 단백질을 이용하여 비교하였다. 도 10에서, GFP를 제외한 P19, GUS, SPLCV-AC2는 최종 OD600=3이 되도록 배양된 뒤에 GFP OD600=3, IR-GFP OD600=0.3과 혼합하여 cell 농도 비율을 OD600 기준으로 최종 1:1:0.1이 되도록 모두 GFP 및 IR-GFP를 발현하는 아크로박테리움(agrobacterium)과 함께 coinfiltration되었다. GFP의 경우에는 대조군으로서 OD600=1이 되도록 배양하여 infiltration되었다. 형광단백질인 GFP의 silencing을 억제하는 지를 확인한 결과, GUS 대조군에서는 거의 억제유전자 활성이 나타나지 않음을 확인할 수 있었고, RNA 바이러스 유래의 P19와 비교하여 활성은 낮지만, SPLCV의 AC2 단백질 또한 PTGS 억제 활성을 보임을 알 수 있었다(도 10). 또한, 10일 이상 동안의 발현 결과에 의하여 다른 보고들에서와 마찬가지로 SPLCV 바이러스의 AC2 유전자도 체계적인 전체 활성(systemic silencing activity)에 대한 억제가 가능함이 확인되었다.As a control group, P19 protein of TBSV (Tomato bush stunt virus), a single-stranded RNA virus having a very high PTGS inhibitory activity, was compared. 10, the final 1 to P19, GUS, SPLCV-AC2 is GFP OD600 = 3, IR-GFP OD600 = 0.3 , and mixing to cell density ratio after the cultured to a final OD 600 = 3, except for GFP by OD 600 by: Coinfiltration with acrobacterium (agrobacterium) expressing both GFP and IR-GFP to 1: 0.1. In the case of GFP, OD 600 = 1 was cultured to infiltration as a control. Inhibition of silencing of GFP, a fluorescent protein, confirmed that the inhibitory gene activity was almost absent in the GUS control group. Although the activity was lower than that of P19 derived from RNA virus, the AC2 protein of SPLCV also inhibited PTGS inhibitory activity. It can be seen that (Fig. 10). In addition, as a result of expression for more than 10 days, it was confirmed that the AC2 gene of SPLCV virus was able to suppress the systematic silencing activity as in other reports.

GFP의 발광을 분자생물학적으로 검정하기 위하여 관찰 후 infiltrated region을 액체질소를 이용하여 막자사발로 곱게 간 뒤에 100mM Tris-HCl (pH 8.0), 10mM EDTA, 5% SDS, 20% sucrose, 5% 2-mercaptoethanol을 500 마이크로리터 첨가하여 강하게 교반한 후 15,000 rpm으로 4 ℃에서 1 시간동안 원심분리하여 상층액을 회수하여 -80℃ deep freezer에 보관하였다. Bradford 방법에 의해 단백질 정량을 실시한 뒤에 최종 0.1 μg/μl가 되도록 각 샘플을 96 well plate에 sample을 멸균수로 희석하여 최종 100 마이크로리터씩 분주한 뒤에 fluorometer를 이용하여, emission 509nm, excitation 395 nm 파장으로 측정을 실시하였다. 세 번 반복한 실험으로부터 측정 결과의 평균값을 구하고 오차값을 산출한 결과, P19의 경우 P19의 경우 42.131±1.812 RU, AC2의 경우 26.325±3.245 RU, GFP의 경우 7.312±2.263 RU, GUS의 경우 4.121±0.348 RU값을 나타내는 것을 확인하였다. 따라서, P19에 비해서 강도는 약하지만, AC2 역시 GFP를 silencing으로부터 억제하는 것을 확인할 수 있었으며, 이것은 GFP만을 infiltration한 샘플에서의 GFP 발현 시간보다 억제유전자 활성이 작용했을 때 더 긴 시간 동안 발현을 유지할 수 있게 하는 것이 가능함을 확인하였다(도 11).In order to molecularly assay the luminescence of GFP, the infiltrated region was finely ground in a mortar with liquid nitrogen, followed by 100 mM Tris-HCl (pH 8.0), 10 mM EDTA, 5% SDS, 20% sucrose, 5% 2- 500 microliters of mercaptoethanol was added thereto, stirred vigorously, and centrifuged at 15,000 rpm for 1 hour at 15,000 rpm to recover the supernatant and stored in a -80 ° C deep freezer. After protein quantification by Bradford method, each sample was diluted in sterile water in 96 well plate so that the final 0.1 μg / μl was dispensed by the final 100 microliter, and then fluorometer, emission 509nm, excitation 395 nm wavelength. The measurement was carried out. The average value of the measurement results was obtained from three repeated experiments, and the error value was calculated. 42.131 ± 1.812 RU for P19, 26.325 ± 3.245 RU for AC2, 7.312 ± 2.263 RU for GFP, 4.121 for GUS It was confirmed that the value represented ± 0.348 RU. Thus, although weaker than P19, AC2 also inhibited GFP from silencing, which was able to maintain expression for longer periods of time when the inhibitory gene activity was applied than the GFP expression time in the sample infiltrated with GFP alone. It was confirmed that it was possible to make (FIG. 11).

또한, 상기 동일 샘플 조직으로부터 total RNA를 TRIzol reagent를 이용하여 추출한 뒤에 이를 Promega 역전사 킷트를 이용하여 올리고-dT 프라이머로 cDNA를 합성한 뒤, 실시간 RT-PCR 방법을 이용하여 GFP 단백질의 발현량을 각 샘플별로 정량하였다. 이를 위해 고안된 프라이머 서열[5'-aag cgt tca act agc aga cca-3', 3'-ccc agc agc tgt tac aaa ctc-5']을 이용하여, 95℃ 1분; 94℃ 10초, 55℃ 10초, 68℃ 15초로 40회 반복하는 PCR 반응 조건으로 하여 각 조직 샘플로부터 준비된 주형 cDNA 2 ㎕, 5'-프라이머와 3'-프라이머 각각 0.25 pmol, 1X PCR buffer, 0.125 mM dNTPs, 1X SYBR solution이 되도록 하여 최종 10 ㎕ 반응액을 조성하고 PCR을 통해 유전자 발현량을 정량하였다(도 12).In addition, after extracting the total RNA from the same sample tissue using TRIzol reagent, and synthesized the cDNA with oligo-dT primers using the Promega reverse transcription kit, using the real-time RT-PCR method to express the amount of GFP protein expression Quantified by sample. Using a primer sequence designed for this [5'-aag cgt tca act agc aga cca-3 ', 3'-ccc agc agc tgt tac aaa ctc-5'], 95 ° C. for 1 minute; 2 μl of template cDNA prepared from each tissue sample at 0.25 ° C 10 sec, 55 ° C 10 sec, and 68 ° C 15 sec, 0.25 pmol of 5'-primer and 3'-primer, 1X PCR buffer, 0.125 mM dNTPs, 1X SYBR solution to prepare a final 10 μl reaction solution and quantified the gene expression by PCR (Fig. 12).

도 1은 국내산 고구마로부터 순수 분리된 SPLCV 유전자의 중합효소 연쇄반응 검정 및 전체 서열 결정을 위한 부분 유전자 서열의 증폭 결과 전기영동 사진을 나타낸 것이다. 예상되어진 크기의 SP1 (1632 bp), SP2 (2138 bp) 단편이 DNA 중합효소 연쇄반응을 통해 증폭되어졌다. Figure 1 shows the results of electrophoresis of the polymerase chain reaction assay of the SPLCV gene purely isolated from domestic sweet potatoes and partial gene sequence amplification for the overall sequence determination. SP1 (1632 bp) and SP2 (2138 bp) fragments of expected sizes were amplified by DNA polymerase chain reaction.

도 2는 전체 서열 결정을 위한 프라이머 디자인을 나타낸 것이다. 프라이머 서열이 SPLCV 상에 어떤 위치에 존재하는지를 보여주는 프라이머 디자인 모식도로써 증폭된 지역 중 겹치는 부분을 이용하여 바이러스 전체 염기서열을 확보하였다.2 shows the primer design for overall sequencing. As a primer design schematic showing where the primer sequences are located on SPLCV, overlapping regions of the amplified regions were used to obtain the entire virus sequence.

도 3은 SPLCV 서열 확인을 위한 시퀀싱 프라이머의 디자인을 나타낸 것이다.3 shows the design of sequencing primers for SPLCV sequence identification.

도 4는 SPLCV의 2828 bp 길이에 해당하는 전체 염기서열을 나타낸 것이다.Figure 4 shows the total base sequence corresponding to the length 2828 bp of SPLCV.

도 5는 본 발명의 SPLCV의 유전체 지도를 나타낸 것이다[화살표는 각각의 유전자(상보적인 유전자 가닥; C1, AC2, C3, C4, 바이러스 유전자 가닥; V1, V2)를 의미한다]. Figure 5 shows a genomic map of the SPLCV of the present invention (arrow indicates each gene (complementary gene strand; C1, AC2, C3, C4, viral gene strand; V1, V2)).

도 6은 중합효소 연쇄 반응에 의한 SPLCV AC2 유전자 서열의 증폭 결과에 대한 전기영동 사진을 나타낸 것이다. 486 bp 크기의 전체 유전자 서열이 증폭되었음을 확인할 수 있다. Figure 6 shows the electrophoresis picture of the amplification result of the SPLCV AC2 gene sequence by the polymerase chain reaction. It can be seen that the entire gene sequence of 486 bp was amplified.

도 7은 본 발명의 SPLCV의 AC2 아미노산 서열과 다른 AC2 아미노산 서열을 비교한 것이다. 148개의 아미노산으로 구성되어 아미노 말단 쪽에 NLS(nuclear localization signal)이 존재하고, 중앙부에 DNA 결합 지역에 해당하는 징크 핑거 바인딩 모티브(zinc finger binding motif)가 존재하며, 카르복실말단 쪽에는 활성 도메인이 존재함을 알 수 있다. NCBI_AC2는 고구마 잎마름병 바이러스(USA)의 AC2 유전자이고(Genbank NP_808843.1), CelTech_AC2는 국내 고구마 잎마름병 바이러스로부터 확인된 AC2 유전자(Genbank ACL97985.1)이다.Figure 7 compares the AC2 amino acid sequence of the SPLCV of the present invention and other AC2 amino acid sequences. Consists of 148 amino acids, NLS (nuclear localization signal) at the amino terminus, zinc finger binding motif corresponding to the DNA binding region at the center, and the active domain at the carboxyl terminus It can be seen. NCBI_AC2 is the AC2 gene of sweet potato leaf blight virus (USA) (Genbank NP_808843.1) and CelTech_AC2 is the AC2 gene identified from domestic sweet potato leaf blight virus (Genbank ACL97985.1).

도 8은 본 발명의 SPLCV AC2 유전자의 서열 증폭을 위해 사용된 프라이머 서열로서, 유전자의 개시코돈 앞에 Xba I(밑줄 그은 이탤릭채) 제한효소 인식 서열을 삽입하고, 종결코돈 부근에서 종결코돈을 변형시킨 뒤, 단백질 정제 또는 다양한 용도의 목적을 위하여 His tag(밑줄)을 삽입한 뒤 Sac I(밑줄 그은 이탤릭채) 제한효소 인식 서열을 삽입하여, 식물 발현 벡터인 pBI121에 재조합이 용이하게 디자인하였다.8 is a primer sequence used for sequence amplification of the SPLCV AC2 gene of the present invention, in which an Xba I (underlined italic) restriction enzyme recognition sequence is inserted before a start codon of a gene, and a stop codon is modified near a stop codon. Subsequently, his tag (underlined) was inserted for protein purification or various purposes, followed by insertion of a Sac I (underlined italic) restriction enzyme recognition sequence to easily recombine the plant expression vector pBI121.

도 9는 본 발명의 SPLCV AC2 유전자를 식물 형질 전환 벡터인 pBI121에 클로닝 하는 과정을 도시한 실시예의 하나이다.Figure 9 is one of the examples illustrating the process of cloning the SPLCV AC2 gene of the present invention to the plant transformation vector pBI121.

도 10은 아그로인필트레이션(agroinfiltration) 방법에 의한 억제 활성 검정한 결과를 나타낸 것이다. GFP 형질전환체인 Nicotiana benthamiana 16c에 GFP 형질전환 아그로박테리아를 주입하여 전사 후 유전자 침묵현상(PTGS)을 유도하고, 대조군인 P19 형질전환 아그로 박테리아와 실험군인 SPLCV AC2 형질전환 아그로 박테리아를 각각 주입하였을 때, 전사 후 유전자 침묵현상이 억제되어 GFP 발현을 확인하였다. Figure 10 shows the results of the inhibitory activity assay by agroinfiltration (agroinfiltration) method. When the GFP transformant Nicotiana benthamiana 16c was injected with GFP transgenic agrobacteria to induce posttranscriptional gene silencing (PTGS), and when the control group was injected with the control group P19 transgenic Agro bacteria and the experimental group SPLCV AC2 transgenic Agro, respectively. Gene transcription was suppressed after transcription to confirm GFP expression.

도 11은 아그로인필트레이션(agroinfiltration) 후 억제활성 검정 결과를 확인하고 식물체의 infiltrated region으로부터 단백질을 추출하여 형광광도계를 이 용하여 상대적인 형광값을 측정한 결과이다. 11 shows the results of inhibition activity assay after agroinfiltration, and extracting proteins from infiltrated regions of plants to measure relative fluorescence values using a fluorophotometer.

도 12는 아그로인필트레이션(agroinfiltration) 후 억제활성 검정 결과를 확인하고 식물체의 infiltrated region으로부터 total RNA를 추출하여 정량적 실시간 RT-PCR을 이용하여 상대적인 발현량을 측정한 결과이다. 세 번의 반복 실험 결과를 세 번 측정한 값을 이용하여 도표화하였다. 12 is a result of confirming the inhibitory activity assay results after agroinfiltration and extracting total RNA from infiltrated regions of plants to measure relative expression levels using quantitative real-time RT-PCR. The results of three replicates were plotted using three measurements.

<110> SUNGKYUNKWAN UNIVERSITY Foundation for Corporate Collaboration RURAL DEVELOPMENT ADMINISTRATION <120> Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing <150> KR10-2008-0038414 <151> 2008-04-24 <160> 19 <170> KopatentIn 1.71 <210> 1 <211> 2820 <212> DNA <213> SPLCKV <400> 1 taatattacc ggtgcccgcc gcgcccttta atagtgggcc ccacaaggga ccacgcgtct 60 tttccgtact gtctttaatg attactttgc tttataagga ccaatcaggt ttccgtgctt 120 gggcgccaag aatggagcag ttgtgggacc ctttgcagaa cccactcccg gatactttat 180 acggttttag gtgtatgcta tccgtaaaat acttgcagag tattttgaag aaatacgagc 240 caggaacctt agggttcgag ctctgttcgg agttaatccg tatattcagg gtcaggcagt 300 atgacagggc gaattcccgt ttcgcggaga tttcatccat atggggggag accggtaaga 360 cggaggctga acttcgagac agctatcgtg ccctacactg ggaatgctgt cccaattgct 420 gcccgaagct atgtcccggt ttcaagaggc gtccggatga agagaaagag gggtgaccgc 480 atcccgaagg gatgtgttgg tccctgtaag gtccaggact atgagttcaa gatggacgtt 540 ccccacacgg gaacgtttgt ctgtgtctcg gattttacta ggggaactgg gcttactcat 600 cgcctgggta agcgtgtttg tgtgaagtcc atgggtatag atgggaaggt ctggatggat 660 gacaatgtgg ccaagagaga tcacaccaat atcatcacgt attggttgat tcgtgacaga 720 aggcccaata aggatccgct gaactttggc caagtcttca ctatgtatga caatgagccc 780 actactgcta agatccgaat ggatctgagg gatagaatgc aggtattgaa gaagttctct 840 gttacagttt caggaggtcc atacagccac aaggagcagg ccttaattag gaagtttttt 900 aagggtttgt ataatcatgt tacttacaat cataaggaag aagctaagta tgagaatcag 960 ttagaaaatg ctttgatgtt gtatagtgct agcagtcatg cgagtaatcc tgtgtatcag 1020 accctgcgtt gcaggtctta tttctatgat tcgcacaata attaataaaa ttatatttta 1080 ttaatacagt aatatcttta catcatcatt acaatctaca gtatctactt catctatcca 1140 agaacatact cttggaagat atctaataac aaaaactaaa ttaactaaac taaaaaaccc 1200 taaatttgct aattcattac atatacgcca tttaaggcgt tccaaaatac cagtccaact 1260 gtgaatagca ccagttagac gggtcgtcaa gatccggaat tggaggaaga tcttgtggaa 1320 tcccagttgc ctcctttccc tgtagttgac ccacatctgg aatttgagga tggttctccc 1380 ctgtgtgctc tcgtgggcat acataattct gagatggaac ggtgcagtcc gacccacaga 1440 catggggttg gtgtcgaatt cgagtgctct cgtagtctga gcatgactta gtgattcccc 1500 tgtgcgtgaa tccatgctga tacttgcagt ttggggtgat gaaggctgaa cagccgcaac 1560 ccttccacac tatccttgtc ctctgttcag gaactttcct cttggccttc ttcgcctctg 1620 cgtgcagtgg ctcctgaatg ggacacttcc tcttgattcc agaagggaga ttggacatcg 1680 cagaatatag cgtttgctgt tgcccaattc ttgagtgctc cttgctctgg tttgtccaac 1740 cagagtttaa atgaggagcc ctctcctgga ttgcagagga agatagtggg aattccacct 1800 ttaatttgaa ctggctttcc gtatttacag ttggattgcc agtccttctg ggcccccatg 1860 aattccttaa agtgctttag gtattggggg ttgacgtcat caatgacgtt ataccaagca 1920 ctgttgctgt atacttttgg gcttagatct aaatgcccac acaaataatt gtgagggccc 1980 aaagacctgg cccatactgt tttgcctatt ctgcttgggc cttcaataac aatggatatg 2040 ggtctatccg gccgcgcagc ggcatccatg acattttcag cggcccagtc gctgataatg 2100 tcaggaactg cattgaaaga agaagatgaa aaaggagaag aatatacaga aggaggagga 2160 gaaaaaatcc tatctaaatt actaactaaa ttgtgaaatt gaaacaaata tttttcaggg 2220 agtttctccc taattatttg caacgcagct tctttagaac ctgcgtttag agcctctgcg 2280 gctgcgtcat tagcagtctg ctggcctcct ctagcagatc tgccgtcgac ctggaattca 2340 ccccaggtga tggtatcccc gtccttgtca acgtaggact tgacatcgga cgaggattta 2400 gctccctgaa tgttggggtg aaagtgattc gatctgttcg gtgagaccag atcgaagaat 2460 ctgctatttg tgcagacgaa tttgccttcg aactgcacca gcacatggag gtgaggttcc 2520 ccatcctcgt gcagttctct tgctacgtgt atgtattttt tgttggtggg tgtttggata 2580 tttaggagtt gggctaggca gtcctctttt gagagagaac agcgtggata agtaataaaa 2640 taatttttgg cctgaatttt aaaacgtttt ggaggagcca tttggagaca cgcataagtt 2700 caaatgaatt ggagactgga gacaatatat agtatgtctc caaatggcat tctggtaatt 2760 tagaagatcc ttttagcttt aattcaaatt ccgacaactc tgggtccacc aaaaggcggg 2820 2820 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF1 (forward) <400> 2 ctcgtgcagt tctcttgcta 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR1 (reverse) <400> 3 gcaactggga ttccacaaga 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 4 gtgtatcaga ccctgcgttg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 5 atacggtgcc cgccttttgg 20 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR3 (reverse) <400> 6 ccttcaaaag tgggccccac a 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR4 (reverse) <400> 7 atgacagggc gaatgcgcgt t 21 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2ndSeq <400> 8 gatgtgtggg tccctgtaag 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2Seq_Rc <400> 9 cttacaggga cccacacatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV3rdSeq <400> 10 agtaatcctg tgtatcagac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV4thSeq <400> 11 ctgtgcgtga atccatgctg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV5thSeq <400> 12 cctattctgc ttgggccttc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCVlastSeq <400> 13 aaaggcgggc accgtattaa 20 <210> 14 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_5SpAC2 <400> 14 cccggatccc aagcttgcat gtccaatctc ccttctggaa tc 42 <210> 15 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_3SpAC2 <400> 15 cccaagcttc ggatccgctt aaggcgttcc aaaataccag tc 42 <210> 16 <211> 444 <212> DNA <213> SPLCKV <400> 16 atgtccaatc tcccttctgg aatcaagagg aagtgtccca ttcaggagcc actgcacgca 60 gaggcgaaga aggccaagag gaaagttcct gaacagagga caaggatagt gtggaagggt 120 tgcggctgtt cagccttcat caccccaaac tgcaagtatc agcatggatt cacgcacagg 180 ggaatcacta agtcatgctc agactacgag agcactcgaa ttcgacacca accccatgtc 240 tgtgggtcgg actgcaccgt tccatctcag aattatgtat gcccacgaga gcacacaggg 300 gagaaccatc ctcaaattcc agatgtgggt caactacagg gaaaggaggc aactgggatt 360 ccacaagatc ttcctccaat tccggatctt gacgacccgt ctaactggtg ctattcacag 420 ttggactggt attttggaac gcct 444 <210> 17 <211> 148 <212> PRT <213> SPLCKV <400> 17 Met Ser Asn Leu Pro Ser Gly Ile Lys Arg Lys Cys Pro Ile Gln Glu 1 5 10 15 Pro Leu His Ala Glu Ala Lys Lys Ala Lys Arg Lys Val Pro Glu Gln 20 25 30 Arg Thr Arg Ile Val Trp Lys Gly Cys Gly Cys Ser Ala Phe Ile Thr 35 40 45 Pro Asn Cys Lys Tyr Gln His Gly Phe Thr His Arg Gly Ile Thr Lys 50 55 60 Ser Cys Ser Asp Tyr Glu Ser Thr Arg Ile Arg His Gln Pro His Val 65 70 75 80 Cys Gly Ser Asp Cys Thr Val Pro Ser Gln Asn Tyr Val Cys Pro Arg 85 90 95 Glu His Thr Gly Glu Asn His Pro Gln Ile Pro Asp Val Gly Gln Leu 100 105 110 Gln Gly Lys Glu Ala Thr Gly Ile Pro Gln Asp Leu Pro Pro Ile Pro 115 120 125 Asp Leu Asp Asp Pro Ser Asn Trp Cys Tyr Ser Gln Leu Asp Trp Tyr 130 135 140 Phe Gly Thr Pro 145 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5'-primer <400> 18 aagcgttcaa ctagcagacc a 21 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 3'-primer <400> 19 cccagcagct gttacaaact c 21 <110> SUNGKYUNKWAN UNIVERSITY Foundation for Corporate Collaboration          RURAL DEVELOPMENT ADMINISTRATION <120> Korean sweet potato leaf curl virus isolated gene capable of          suppressing posttranscriptional gene silencing <150> KR10-2008-0038414 <151> 2008-04-24 <160> 19 <170> KopatentIn 1.71 <210> 1 <211> 2820 <212> DNA <213> SPLCKV <400> 1 taatattacc ggtgcccgcc gcgcccttta atagtgggcc ccacaaggga ccacgcgtct 60 tttccgtact gtctttaatg attactttgc tttataagga ccaatcaggt ttccgtgctt 120 gggcgccaag aatggagcag ttgtgggacc ctttgcagaa cccactcccg gatactttat 180 acggttttag gtgtatgcta tccgtaaaat acttgcagag tattttgaag aaatacgagc 240 caggaacctt agggttcgag ctctgttcgg agttaatccg tatattcagg gtcaggcagt 300 atgacagggc gaattcccgt ttcgcggaga tttcatccat atggggggag accggtaaga 360 cggaggctga acttcgagac agctatcgtg ccctacactg ggaatgctgt cccaattgct 420 gcccgaagct atgtcccggt ttcaagaggc gtccggatga agagaaagag gggtgaccgc 480 atcccgaagg gatgtgttgg tccctgtaag gtccaggact atgagttcaa gatggacgtt 540 ccccacacgg gaacgtttgt ctgtgtctcg gattttacta ggggaactgg gcttactcat 600 cgcctgggta agcgtgtttg tgtgaagtcc atgggtatag atgggaaggt ctggatggat 660 gacaatgtgg ccaagagaga tcacaccaat atcatcacgt attggttgat tcgtgacaga 720 aggcccaata aggatccgct gaactttggc caagtcttca ctatgtatga caatgagccc 780 actactgcta agatccgaat ggatctgagg gatagaatgc aggtattgaa gaagttctct 840 gttacagttt caggaggtcc atacagccac aaggagcagg ccttaattag gaagtttttt 900 aagggtttgt ataatcatgt tacttacaat cataaggaag aagctaagta tgagaatcag 960 ttagaaaatg ctttgatgtt gtatagtgct agcagtcatg cgagtaatcc tgtgtatcag 1020 accctgcgtt gcaggtctta tttctatgat tcgcacaata attaataaaa ttatatttta 1080 ttaatacagt aatatcttta catcatcatt acaatctaca gtatctactt catctatcca 1140 agaacatact cttggaagat atctaataac aaaaactaaa ttaactaaac taaaaaaccc 1200 taaatttgct aattcattac atatacgcca tttaaggcgt tccaaaatac cagtccaact 1260 gtgaatagca ccagttagac gggtcgtcaa gatccggaat tggaggaaga tcttgtggaa 1320 tcccagttgc ctcctttccc tgtagttgac ccacatctgg aatttgagga tggttctccc 1380 ctgtgtgctc tcgtgggcat acataattct gagatggaac ggtgcagtcc gacccacaga 1440 catggggttg gtgtcgaatt cgagtgctct cgtagtctga gcatgactta gtgattcccc 1500 tgtgcgtgaa tccatgctga tacttgcagt ttggggtgat gaaggctgaa cagccgcaac 1560 ccttccacac tatccttgtc ctctgttcag gaactttcct cttggccttc ttcgcctctg 1620 cgtgcagtgg ctcctgaatg ggacacttcc tcttgattcc agaagggaga ttggacatcg 1680 cagaatatag cgtttgctgt tgcccaattc ttgagtgctc cttgctctgg tttgtccaac 1740 cagagtttaa atgaggagcc ctctcctgga ttgcagagga agatagtggg aattccacct 1800 ttaatttgaa ctggctttcc gtatttacag ttggattgcc agtccttctg ggcccccatg 1860 aattccttaa agtgctttag gtattggggg ttgacgtcat caatgacgtt ataccaagca 1920 ctgttgctgt atacttttgg gcttagatct aaatgcccac acaaataatt gtgagggccc 1980 aaagacctgg cccatactgt tttgcctatt ctgcttgggc cttcaataac aatggatatg 2040 ggtctatccg gccgcgcagc ggcatccatg acattttcag cggcccagtc gctgataatg 2100 tcaggaactg cattgaaaga agaagatgaa aaaggagaag aatatacaga aggaggagga 2160 gaaaaaatcc tatctaaatt actaactaaa ttgtgaaatt gaaacaaata tttttcaggg 2220 agtttctccc taattatttg caacgcagct tctttagaac ctgcgtttag agcctctgcg 2280 gctgcgtcat tagcagtctg ctggcctcct ctagcagatc tgccgtcgac ctggaattca 2340 ccccaggtga tggtatcccc gtccttgtca acgtaggact tgacatcgga cgaggattta 2400 gctccctgaa tgttggggtg aaagtgattc gatctgttcg gtgagaccag atcgaagaat 2460 ctgctatttg tgcagacgaa tttgccttcg aactgcacca gcacatggag gtgaggttcc 2520 ccatcctcgt gcagttctct tgctacgtgt atgtattttt tgttggtggg tgtttggata 2580 tttaggagtt gggctaggca gtcctctttt gagagagaac agcgtggata agtaataaaa 2640 taatttttgg cctgaatttt aaaacgtttt ggaggagcca tttggagaca cgcataagtt 2700 caaatgaatt ggagactgga gacaatatat agtatgtctc caaatggcat tctggtaatt 2760 tagaagatcc ttttagcttt aattcaaatt ccgacaactc tgggtccacc aaaaggcggg 2820                                                                         2820 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF1 (forward) <400> 2 ctcgtgcagt tctcttgcta 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR1 (reverse) <400> 3 gcaactggga ttccacaaga 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 4 gtgtatcaga ccctgcgttg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 5 atacggtgcc cgccttttgg 20 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR3 (reverse) <400> 6 ccttcaaaag tgggccccac a 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR4 (reverse) <400> 7 atgacagggc gaatgcgcgt t 21 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2ndSeq <400> 8 gatgtgtggg tccctgtaag 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2Seq_Rc <400> 9 cttacaggga cccacacatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV3rdSeq <400> 10 agtaatcctg tgtatcagac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV4thSeq <400> 11 ctgtgcgtga atccatgctg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV5thSeq <400> 12 cctattctgc ttgggccttc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCVlastSeq <400> 13 aaaggcgggc accgtattaa 20 <210> 14 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_5SpAC2 <400> 14 cccggatccc aagcttgcat gtccaatctc ccttctggaa tc 42 <210> 15 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer_3SpAC2 <400> 15 cccaagcttc ggatccgctt aaggcgttcc aaaataccag tc 42 <210> 16 <211> 444 <212> DNA <213> SPLCKV <400> 16 atgtccaatc tcccttctgg aatcaagagg aagtgtccca ttcaggagcc actgcacgca 60 gaggcgaaga aggccaagag gaaagttcct gaacagagga caaggatagt gtggaagggt 120 tgcggctgtt cagccttcat caccccaaac tgcaagtatc agcatggatt cacgcacagg 180 ggaatcacta agtcatgctc agactacgag agcactcgaa ttcgacacca accccatgtc 240 tgtgggtcgg actgcaccgt tccatctcag aattatgtat gcccacgaga gcacacaggg 300 gagaaccatc ctcaaattcc agatgtgggt caactacagg gaaaggaggc aactgggatt 360 ccacaagatc ttcctccaat tccggatctt gacgacccgt ctaactggtg ctattcacag 420 ttggactggt attttggaac gcct 444 <210> 17 <211> 148 <212> PRT <213> SPLCKV <400> 17 Met Ser Asn Leu Pro Ser Gly Ile Lys Arg Lys Cys Pro Ile Gln Glu   1 5 10 15 Pro Leu His Ala Glu Ala Lys Lys Ala Lys Arg Lys Val Pro Glu Gln              20 25 30 Arg Thr Arg Ile Val Trp Lys Gly Cys Gly Cys Ser Ala Phe Ile Thr          35 40 45 Pro Asn Cys Lys Tyr Gln His Gly Phe Thr His Arg Gly Ile Thr Lys      50 55 60 Ser Cys Ser Asp Tyr Glu Ser Thr Arg Ile Arg His Gln Pro His Val  65 70 75 80 Cys Gly Ser Asp Cys Thr Val Pro Ser Gln Asn Tyr Val Cys Pro Arg                  85 90 95 Glu His Thr Gly Glu Asn His Pro Gln Ile Pro Asp Val Gly Gln Leu             100 105 110 Gln Gly Lys Glu Ala Thr Gly Ile Pro Gln Asp Leu Pro Pro Ile Pro         115 120 125 Asp Leu Asp Asp Pro Ser Asn Trp Cys Tyr Ser Gln Leu Asp Trp Tyr     130 135 140 Phe Gly Thr Pro 145 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5'-primer <400> 18 aagcgttcaa ctagcagacc a 21 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 3'-primer <400> 19 cccagcagct gttacaaact c 21  

Claims (4)

서열번호 17의 아미노산 서열을 갖는 국내 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 단백질.AC2 protein from domestic sweet potato leaf blight infected DNA virus having the amino acid sequence of SEQ ID NO: 17. 서열번호 16의 염기서열을 갖는 국내 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 유전자.AC2 gene derived from the domestic sweet potato leaf blight infection DNA virus having the nucleotide sequence of SEQ ID NO: 16. 제 2 항에 있어서, 전사 후 유전자 침묵 현상 억제 활성을 갖는 것을 특징으로 하는 국내 고구마 잎마름병 감염 DNA 바이러스 유래의 AC2 유전자. The AC2 gene derived from the domestic sweet potato leaf blight infection DNA virus according to claim 2, which has a gene silencing inhibitory activity after transcription. 청구항 2의 유전자를 포함하는 것을 특징으로 하는 KACC 91470P로 기탁된 재조합 벡터.A recombinant vector deposited with KACC 91470P, comprising the gene of claim 2.
KR1020090035785A 2008-04-24 2009-04-24 Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing KR101090459B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090035785A KR101090459B1 (en) 2008-04-24 2009-04-24 Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080038414 2008-04-24
KR1020090035785A KR101090459B1 (en) 2008-04-24 2009-04-24 Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing

Publications (2)

Publication Number Publication Date
KR20090112597A KR20090112597A (en) 2009-10-28
KR101090459B1 true KR101090459B1 (en) 2011-12-07

Family

ID=41553756

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090035785A KR101090459B1 (en) 2008-04-24 2009-04-24 Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing

Country Status (1)

Country Link
KR (1) KR101090459B1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GenBank accession number: ACL97985.1 (2009. 1. 21.)
Plant Pathology Journal, 2006, Vol. 22, No. 3, pp. 239-247
Virus Genes, 2007, Vol. 35, No. 2, pp. 379-385

Also Published As

Publication number Publication date
KR20090112597A (en) 2009-10-28

Similar Documents

Publication Publication Date Title
ES2343271T3 (en) SELF-ACTIVATED RESISTANCE PROTEIN.
CN104946665B (en) GmMYB62Application in cultivating transgenic plant with improved stress resistance
BRPI0713503B1 (en) SYNTHETIC PROMOTER INDUCTIBLE BY PATHOGEN, RECOMBINANT GENE AND PROCESS FOR PREPARING A PLANT RESISTANT TO PATHOGENS
US6391639B1 (en) Plant and viral promoters
CA2865208A1 (en) Pathogen-resistant transgenic plant
CN112143746B (en) Gene GmAP5 for improving disease resistance of plants and application thereof
KR100685520B1 (en) A seed specific promoter primers for amplification thereof an expression vector comprising the same and a transformant cell
CN114014918A (en) Upstream regulatory factor IbEBF2 and application thereof in regulation and control of IbbHLH2 expression of purple sweet potato
CN114605504B (en) Wheat yellow mosaic virus 14K protein capable of inducing plant cell necrosis and application thereof in antiviral
KR102000454B1 (en) Promoter recognition site by Xanthomonas oryzae pv. oryzae and uses thereof
KR101090459B1 (en) Korean sweet potato leaf curl virus isolated gene capable of suppressing posttranscriptional gene silencing
Vincent et al. Nodule-expressed Cyp15a cysteine protease genes map to syntenic genome regions in Pisum and Medicago spp.
NZ521488A (en) A construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences
CN109504680B (en) Salt stress inducible promoter, primer, expression vector and application thereof
CN109053870B (en) Application of AtERF49 gene in plant response high-temperature stress process
KR101452405B1 (en) The bidirectional promoter using Sweet potato leaf curl virus Korean isolate
CN106591357B (en) A kind of method of rape genetic transformation
KR101090458B1 (en) DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate
CN111500595A (en) Ephedra sinica gene CeDREB1 and application thereof
CN114606260B (en) Method for improving temperature-sensitive resistance of tomato root-knot nematode
CN104805086B (en) A kind of promoter of Bermuda grass Tifway dehydrin proteins Dehydrin genes
CN110760521B (en) Transcription factor for improving expression of wheat storage protein geneNAC1And uses thereof
CN111995668B (en) Corn WRKY transcription factor ZmWRKY112 and coding gene and application thereof
CN111574604B (en) Wheat disease-resistant protein TaAFRK and related biological material and application thereof
CN114875043B (en) Betula alba BpPIF4 gene participating in adventitious root development and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161130

Year of fee payment: 19