KR101090458B1 - DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate - Google Patents

DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate Download PDF

Info

Publication number
KR101090458B1
KR101090458B1 KR1020090035784A KR20090035784A KR101090458B1 KR 101090458 B1 KR101090458 B1 KR 101090458B1 KR 1020090035784 A KR1020090035784 A KR 1020090035784A KR 20090035784 A KR20090035784 A KR 20090035784A KR 101090458 B1 KR101090458 B1 KR 101090458B1
Authority
KR
South Korea
Prior art keywords
sweet potato
ser
leu
arg
pro
Prior art date
Application number
KR1020090035784A
Other languages
Korean (ko)
Other versions
KR20090112596A (en
Inventor
이석찬
이건섭
최은석
이용
최홍수
곽해련
김미경
이수헌
김정수
박진우
정미남
고숙주
김국형
박정안
Original Assignee
대한민국(관리부서:농촌진흥청장)
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(관리부서:농촌진흥청장), 성균관대학교산학협력단 filed Critical 대한민국(관리부서:농촌진흥청장)
Priority to KR1020090035784A priority Critical patent/KR101090458B1/en
Publication of KR20090112596A publication Critical patent/KR20090112596A/en
Application granted granted Critical
Publication of KR101090458B1 publication Critical patent/KR101090458B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/12011Geminiviridae
    • C12N2750/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 국내 고구마 잎말림병 감염 DNA 바이러스 유전자 및 재조합 플라스미드에 관한 것으로서, 더욱 상세하게는 국내에서 주로 식용으로 재배되고 있는 고구마에 잎말림 증상을 유발시키는 제미니바이러스(geminivirus)인 고구마 잎말림병 감염 DNA 바이러스(SPLCV)의 감염을 확인하고, 고구마의 DNA로부터 이 바이러스의 전체 염기서열을 획득하여 재조합 바이러스 형태로 고구마에 감염시켜 병증 전이를 확인한, 국내 최초의 고구마 잎말림병증의 유발을 인위적으로 일으킬 수 있는 재조합 플라스미드에 관한 것이다.The present invention relates to a domestic sweet potato leaf blight infection DNA virus gene and recombinant plasmid, more specifically, sweet potato leaf blight infection which is a geminivirus that causes leaf blight symptoms in sweet potatoes that are cultivated mainly in Korea. Confirmed infection of DNA virus (SPLCV), and obtained the entire nucleotide sequence of the virus from the sweet potato DNA to infect the sweet potato in the form of a recombinant virus to confirm the pathogenesis of artificially induced the induction of sweet potato leaf rotosis The present invention relates to a recombinant plasmid which can be used.

고구마 잎말림병 감염 DNA 바이러스 유전자 Sweet potato leaf disease infection DNA virus gene

Description

국내 고구마 잎말림병 감염 DNA 바이러스 유전자 및 재조합 플라스미드{DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate}DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate

본 발명은 국내 고구마 잎말림병 감염 DNA 바이러스 유전자 및 재조합 플라스미드에 관한 것이다.The present invention relates to domestic sweet potato leaf blight infection DNA virus gene and recombinant plasmid.

고구마 잎말림(leaf curl)병은 고구마에 제미니바이러스가 감염함으로 인해서 고구마잎이 위로 말려 올라가며, 식용에 사용되는 고구마의 작물적 가치를 현저히 떨어뜨리는 질병으로서 최초 미국에서 1978년에 이 병을 일으키는 SPLCV를 발견하였고, 전세계적으로 아직 보고된 사례가 몇 안 되는 신종 질병에 해당하며 바이러스의 감염으로부터 육안으로 증상의 발현을 확인하기까지 짧으면 숙주에서 길면 수개월까지 걸리는 잠복기를 가지고 있다. 미국과 더불어 최근까지 시실리와 중국에서만 보고되었으며, 이 바이러스의 진단 방법은 PCR 검정법에만 의존하고 있는 실정이다. 따라서, 연구결과 등이 바이러스의 검출에 국한되어 있으며, 바이러스를 이용한 적용사례는 전무하다.Sweet potato leaf curl is a disease that causes sweet potato leaves to curl up due to the infection of sweet potato with the Gemini virus. Is one of the few new diseases reported in the world. Long hosts have a dormant period of up to several months. It has been reported only recently in Sicily and China, along with the United States, and the diagnosis of the virus relies solely on PCR assays. Therefore, the research results are limited to the detection of viruses, and there are no cases of application using viruses.

고구마에 잎말림 증상을 유발시키는 제미니바이러스(geminivirus)는 제미니 바이러스과(Geminiviridae)에 속하며, 이는 네 개의 속(genus)으로 나뉘며, 이 중 하위그룹(subgroup) Ⅲ에 해당하는 베고모바이러스(begomovirus)는 가루이(whitefly)[Bemisia tabaci (Gennadius)]에 의해 매개되는 특성을 갖고 있다. 따라서, 제미니바이러스에 관련한 보고는 가루이가 서식하기 알맞은 열대나 아열대 기후 지역에서 이루어진 것이 많다. 아시아 지역에서는 1960년대에 중국의 토마토 재배 지역에서 제미니바이러스가 관찰된다는 보고가 있었으나 일부 지역에 국한되어 있고 피해 정도가 경미해 연구가 이루어지지 않았다. 그러나, 최근 10년 사이에는 아시아 지역 주요 국가의 대부분의 토마토 재배 지역에서 가루이가 관찰되고 이 후 제미니바이러스가 검정된다는 보고가 급증하였다. Geminiviruses, which cause leaf swelling in sweet potatoes, belong to the Geminiviridae, which is divided into four genus, of which begomovirus, subgroup III. It has a characteristic mediated by whitefly [ Bemisia tabaci (Gennadius)]. Thus, reports on Geminiviruses are often made in tropical or subtropical climates where Garui is suitable. In Asia, geminiviruses were reported in tomato growing regions in China in the 1960s, but they were limited in some regions and the damage was minimal. However, there has been a surge of reports in recent decades that floury is observed in most tomato growing regions of major Asian countries, followed by the testing of geminiviruses.

중국, 대만, 일본, 인도 등 아시아 지역에서 보고되는 베고모바이러스는 ToLCV(Tomato leaf curl virus), TYLCV(Tomato yellow leaf curl virus), TbLCV(Tobacco leaf curl virus), HYVMV(Honeysuckle yellow vein mosaic virus) 등이 주를 이루고 있다. 이들은 일반적으로 두 개의 개놈을 갖는 다른 베고모바이러스와 달리 단 한 개의 게놈을 갖기 때문에 매우 특수한 바이러스로 분류가 된다. 또한, 복제를 완성하기 위해 부수 DNA(satellite DNA)를 필요로 한다는 공통적인 특징을 지니고 있다. 현재까지의 문헌과 보고에 따르면 아프리카, 아시아를 포함하는 구대륙에는 한 개의 게놈을 갖는 것이, 신대륙에는 두 개의 게놈을 갖는 것이 분포하고 있는 것으로 되어 있다. 이러한 현상이 나타나는 이유로는 한 개의 게놈을 갖는 바이러스에서 두 개의 게놈을 갖는 바이러스로 진화하고 있기 때문으로 해석되고 있다. Begomoviruses reported in Asia, including China, Taiwan, Japan, and India, include Tomato leaf curl virus (ToLCV), Tomato yellow leaf curl virus (TYLCV), Tobacco leaf curl virus (TbLCV), and Honeysuckle yellow vein mosaic virus (HYVMV). The back is dominant. They are generally classified as very specific viruses because they have only one genome, unlike other begomoviruses with two dogs. In addition, it has a common feature of requiring satellite DNA to complete replication. According to the literature and reports to date, one genome has been distributed in the old continent including Africa and Asia, and two genomes have been distributed in the new continent. This phenomenon appears to be interpreted as evolving from a virus with one genome to a virus with two genomes.

우리나라에서 발견되는 제미니바이러스도 한 개의 게놈을 갖는 베고모바이러스일 가능성이 높을 것으로 사료된다. 그러나, 다른 바이러스일 가능성도 배제할 수 없으므로 다양한 종류의 베고모바이러스에 친화력이 있는 프라이머를 제작하여 PCR을 수행한 결과, 국내에서 분리한 제미니바이러스는 CP의 코어 부위(core region)는 비교적 높은 수준으로 유지되고 있었지만 이를 제외한 서열은 많은 변이가 일어나 있음을 알 수 있었다. 이러한 변이 때문에 전체 염기 서열을 획득하고 분석하는데 많은 어려움이 있다. Gemini virus found in Korea is also likely to be a begomovirus with one genome. However, since the possibility of other viruses cannot be excluded, PCR was carried out by preparing primers with affinity for various kinds of begomovirus. As a result, Gemini virus isolated from Korea has a relatively high core region of CP. Although it was maintained as, the sequence was found to be many variations occur. Because of this variation, there are many difficulties in obtaining and analyzing the entire nucleotide sequence.

이는 현재까지 제미니바이러스에 의한 피해나 보고사례가 없었던 국내의 작물재배환경에서 TLCV와 비슷한 제미니바이러스가 확인됨에 의해 여러 가지 변이를 통해 국내 재배환경에 심각한 피해를 줄 수 있는 제미니바이러스의 유입이 가능하거나 혹은 이미 유입된 환경으로 바뀐 것을 암시한다. 또한, 현재로서는 제미니바이러스의 분리 상황이 미약한 수준임을 볼 때 제미니바이러스의 국내 분포가 아직은 유입 초기이며, 이들의 재조합율(recombination rate)과 전염성(infectivity)의 변화에 따라 머지않은 시점에 국내에도 제미니바이러스에 의한 피해 상황이 속출할 것으로 고려되어, 빠른 동정과 연구를 통해 이들 바이러스에 대한 대응책을 마련함이 시급한 실정이다.Gemini virus similar to TLCV has been identified in domestic crop cultivation environment, which has not been reported by Gemini virus or reported cases so far, and it is possible to introduce Gemini virus that can seriously damage domestic cultivation environment through various mutations. Or implies a change to an already introduced environment. In addition, the current distribution of the Gemini virus is still in the early stage of the introduction of the Gemini Virus due to the low level of separation of the Gemini Virus, and it may not be established in Korea anytime soon due to the change in recombination rate and infectivity. Since the damage caused by the Gemini virus is considered to continue, it is urgent to prepare countermeasures against these viruses through rapid identification and research.

이에, 본 발명자들은 SPLCV를 검출하고, 바이러스의 지역별 균주가 가지는 고유한 특징을 이용, 이들의 전체 염기서열로부터 적용할 수 있는 분야로서 고구마형질전환용 벡터 시스템을 개발하기 위하여 연구 노력한 결과, 잎말림(leaf curl)병 증상을 나타내는 국내산 고구마 식물(Ipomoea batatas)로부터 PCR법으로 식물체내 단일 사슬 DNA 유전체를 가지는 바이러스의 부분 서열을 분리하여, 서열 내에 단일로 존재하는 근접 제한효소 사이트를 이용하여 다르게 잘린 동일 길이의 바이러스 전체서열을 서로 재조합하여 반복서열을 형성하는 이량체(dimeric) SPLCV 유전체를 만들고, 이를 클로닝 플라스미드에 재조합하여 대장균에 형질전환시키고 상기 형질전환된 대장균을 대량 배양하여 무독묘 고구마에 감염시킨 결과, 제미니바이러스 고유의 잎말림 및 감염 증상을 확인함으로써 본 발명을 완성하게 되었다. 또한, 국내에서는 보통 RNA 바이러스 규명이 전부였으나, DNA 바이러스 규명은 최초임을 밝혀두는 바이다. 또한, 과거 기 보고된 고구마 감염 SPLCV 유전자 서열과 높은 상동성을 가지기는 하지만, 전혀 시도된 바 없었던 이량체 SPLCV 유전체의 제작을 통해 고구마내로의 형질전환을 가능하게 하는 전달체로서의 적용을 가능케 하는 원천 물질을 완성하게 되었음을 밝혀두는 바이다. Therefore, the present inventors have detected the SPLCV, using the unique characteristics of the region-specific strains of the virus, as a field that can be applied from the entire sequence of them as a field of research efforts to develop a vector system for sweet potato transformation, leaf curling, PCR was used to isolate a partial sequence of a virus having a single-stranded DNA genome in a plant from domestic sweet potato plants (Ipomoea batatas) showing the symptoms of (leaf curl) disease. A dimeric SPLCV genome is formed by recombining the entire sequence of viruses of the same length with each other to form a repeat sequence. The dimeric SPLCV genome is recombined with a cloning plasmid, transformed into E. coli, and the cultured transformed Escherichia coli is cultured to infect a non-toxic sweet potato. The result of the drying and infection symptoms inherent in the Gemini virus Confirmed by thereby completing the present invention. In addition, in Korea, RNA virus was usually identified, but DNA virus is the first to find out. In addition, although a high homology with the previously reported sweet potato infection SPLCV gene sequence, a dimer SPLCV genome which has never been attempted by using a source material that can be applied as a transporter that enables transformation into sweet potato It is clear that it is completed.

따라서, 본 발명은 서열번호 1로 표시되는 국내 고구마 잎말림병 감염 DNA 바이러스(SPLCV) 유전자를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a domestic sweet potato leaf rolling infection DNA virus (SPLCV) gene represented by SEQ ID NO: 1.

또한, 본 발명은 상기 유전자 이량체(dimer)를 포함하는 클로닝용 재조합 플라스미드, 상기 재조합 플라스미드로 형질전환된 대장균을 제공하는데 근본적인 목적이 있다.In addition, the present invention has a fundamental object to provide a recombinant plasmid for cloning comprising the dimer, the E. coli transformed with the recombinant plasmid.

본 발명은 본 발명은 서열번호 1로 표시되는 국내 고구마 잎말림병 감염 DNA 바이러스(SPLCV) 유전자를 그 특징으로 한다.The present invention is characterized by the domestic sweet potato leaf rolling infection DNA virus (SPLCV) gene represented by SEQ ID NO: 1.

또한, 본 발명은 상기 유전자 이량체(dimer)를 포함하는 클로닝용 재조합 플라스미드, 상기 재조합 플라스미드로 형질전환된 대장균을 제공하는 것을 또 다른 특징으로 한다.In another aspect, the present invention is to provide a recombinant plasmid for cloning comprising the dimer, the E. coli transformed with the recombinant plasmid.

본 발명은 국내에서 최초로 분리된 고구마 식물 감염 단일 사슬 DNA 바이러스에 관한 것으로서, 국내에서 고구마 잎말림병을 일으킬 수 있는 바이러스를 최초로 분리해 냄으로써, 우리나라 생태환경과 기후 조건에서 발생할 수 있는 고구마 잎말림병 관련 연구를 서둘러 대응책을 마련하는데 밑거름이 될 것으로 기대되며, 일반적인 DNA 바이러스의 숙주 핵 내 복제 기작과 전사조절 기작을 이용 및 치환하여 고구마 유전체에 특정 유전자를 전달할 수 있는 전달체로서 응용 및 개발이 가능해 고구마 육종에 기여할 수 있으며, 이와 더불어 SPLCV 바이러스의 유용 유전자 서열을 이용한 저항성 고구마 식물의 개발 및 외래 유전자의 발현을 조절하는 바이러스 인자의 분리 등 복합적 개발이 가능하다.The present invention relates to a sweet potato plant infection single-chain DNA virus isolated for the first time in Korea, by first separating a virus that can cause sweet potato leaf curling disease in Korea, sweet potato leaf curling disease that can occur in the ecological environment and climatic conditions of Korea It is expected to be the foundation for preparing countermeasures in a hurry, and can be applied and developed as a transporter that can transfer specific genes to the sweet potato genome by using and replacing replication mechanisms and transcription control mechanisms in the host nucleus of general DNA viruses. It can contribute to breeding, and also a complex development such as the development of resistant sweet potato plants using the useful gene sequence of SPLCV virus and the isolation of viral factors that regulate the expression of foreign genes is possible.

이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 국내에서 주로 식용으로 재배되고 있는 고구마에 잎말림 증상을 유발시키는 제미니바이러스(geminivirus)인 고구마 잎말림병 감염 DNA 바이러 스(SPLCV)의 감염을 확인하고, 식물의 DNA로부터 이 바이러스의 전체 염기서열을 획득하여 재조합 바이러스 형태로 다시 고구마에 인위적으로 감염시켜 병증 전이를 확인한, 국내 최초의 고구마 잎말림 병증의 유발을 인위적으로 일으킬 수 있는 재조합 플라스미드에 관한 것이다.The present invention confirms the infection of sweet potato foliar infection DNA virus (SPLCV), which is a geminivirus that causes leaf foliation symptoms in sweet potatoes cultivated mainly for food in Korea. The present invention relates to a recombinant plasmid capable of artificially inducing the induction of sweet potato leaf curling disease in Korea, by acquiring the entire nucleotide sequence and artificially infecting the sweet potato in the form of a recombinant virus to confirm the metastasis.

본 발명자들은 잎말림(leaf curl)병 증상을 나타내는 국내산 고구마 식물(Ipomoea batatas)로부터 직접 고안한 올리고뉴클레오타이드 프라이머 세트를 이용하여 중합효소 연쇄반응(PCR)법으로 식물체내 단일 사슬 DNA 유전체를 가지는 바이러스의 부분 서열을 확인하고, DNA 혼성화 기법을 이용하여 식물체 내에 바이러스가 복제 중임을 확인하였다. 상기 바이러스의 전체 염기서열을 분리하기 위하여, 식물체로부터 전체 유전체 DNA를 추출하고 상기 바이러스의 전체 염기서열 분리를 위하여, 중합효소 연쇄반응 방법으로 두 개의 부분 가닥을 증폭하고 (SP1; 1632 bp, SP2; 2138 bp), 이를 재조합하여 대략 3.4 kbp [도 3 참조] 핵산 길이에 해당하는 서열을 확보하였다. 이를 클로닝에 사용되는 플라스미드 DNA 서열에 재조합하여 박테리아에 형질전환시킨 후 박테리아의 배양을 통해 다량으로 생성된 재조합 서열을 순수 분리하고, 염기서열 결정법을 통해 전체 염기서열에 해당하는 2828 bp의 핵산 염기서열[서열번호 1]을 결정하고, 이를 상동성 검정을 통해 분석한 결과 기 보고된 SPLCV(sweet potato leaf curl virus)와 96% 정도의 상동성을 가지는 서열임을 확인하였다. 따라서, 새롭게 발견된 서열로서 가치가 인정되어 [서열번호 1]은 NCBI GENBANK에 등록되었다 [FJ560719.1]. The present inventors have used oligonucleotide primer sets devised directly from domestic sweet potato plants ( Ipomoea batatas ) showing the symptoms of leaf curl disease, using a polymerase chain reaction (PCR) method. Partial sequences were identified and confirmed that the virus was replicating in plants using DNA hybridization techniques. In order to isolate the entire nucleotide sequence of the virus, the whole genomic DNA is extracted from the plant, and for separating the entire nucleotide sequence of the virus, amplification of two partial strands by a polymerase chain reaction method (SP1; 1632 bp, SP2; 2138 bp), which was recombined to obtain a sequence corresponding to approximately 3.4 kbp [see FIG. 3] nucleic acid length. The recombinant plasmid DNA sequence used for cloning was transformed into bacteria, followed by pure separation of a large amount of the recombinant sequence generated through cultivation of the bacteria, and a nucleotide sequence of 2828 bp corresponding to the entire nucleotide sequence through sequencing method. [SEQ ID NO: 1] was determined and analyzed through a homology test to confirm that the sequence has a homology of about 96% with the previously reported sweet potato leaf curl virus (SPLCV). Thus, value was recognized as a newly discovered sequence and [SEQ ID NO: 1] was registered in NCBI GENBANK [FJ560719.1].

결정된 서열 내에 단일로 존재하는 제한효소 사이트(Sac I 과 Kas I 사이트) 를 이용하여 다르게 잘린 동일 길이(2828 bp)의 바이러스 전체서열을 서로 재조합하여 반복서열을 형성하는 이량체 SPLCV 유전체(5656 bp)를 만들고, 이를 플라스미드에 재조합하여 대장균 DH5 알파에 형질전환시켰다. Dimeric SPLCV genome (5656 bp) that recombines the entire sequence of viruses of the same length (2828 bp) that were differently truncated using restriction enzyme sites (Sac I and Kas I sites) that exist in the determined sequence to form a repeat sequence. E. coli DH5 alpha was transformed into the plasmid.

상기 형질전환된 대장균 DH5 알파를 2009년 4월 23일자로 KACC에 기탁하였고, KACC91467P를 부여받았다.The transformed E. coli DH5 alpha was deposited with KACC on April 23, 2009 and received KACC91467P.

형질전환된 박테리아를 대량 배양하여 재조합 플라스미드를 초고순도로 분리한 뒤 숙주 식물에 해당하는 고구마 담배(Ipomoea batatas)에 particle bombardment 방법으로 유전자 총(gene gun)을 이용하여 플라스미드를 고구마 잎에 발사하여 감염시킨 결과, 제미니바이러스 감염 증상을 나타내었다.After mass cultivation of the transformed bacteria, the recombinant plasmid was isolated to ultra high purity, and then the plasmid was fired on the sweet potato leaf by using a gene gun in a particle bombardment method to the potato plant (Ipomoea batatas) corresponding to the host plant. As a result, symptoms of Geminivirus infection were shown.

DNA 혼성화 방법을 이용하여 최종적으로 재조합된 바이러스 전달체가 인위적으로 감염시킨 고구마 식물체 내에서 실제적으로 복제를 수행하는지 확인함으로써, 재조합 SPLCV의 플라스미드 전달체를 개발하는 데 성공하였다.The DNA hybridization method was used to confirm that the finally recombined virus carriers actually replicated in artificially infected sweet potato plants, thereby developing a plasmid carrier of recombinant SPLCV.

본 발명은 제미니바이러스에 대한 고구마 감염 DNA 바이러스 저항성 작물 생산 및 안정적인 고구마 식물 내 형질전환 전달체의 개발을 이용한 유전자 변형 작물의 육종을 가능하게 할 수 있는 시스템으로서, 이들 바이러스에 의한 피해가 심각한 국외 환경의 경우 작물 및 시스템 상품화를 통해 연간 1000억 원대 시장을 형성할 수 있을 것으로 판단되며, 국내의 경우 이들 바이러스들에 대한 예방 및 복구 차원의 사용으로 연간 100억원 이상의 농작물 폐해를 절감할 수 있을 것으로 판단된다. The present invention provides a system for enabling the breeding of genetically modified crops using the production of sweet potato infected DNA virus-resistant crops against the gemini virus and the development of stable transgenic carriers in sweet potato plants. In this case, the market is expected to form a market of 100 billion won annually through the commercialization of crops and systems, and in Korea, it is expected to reduce agricultural wastes of more than 10 billion won annually by using prevention and recovery measures for these viruses. .

이하, 본 발명은 실시예에 의거하여 상세하게 설명하겠는 바, 본 발명이 다음 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limited to the following Examples.

실시예 1: 국내 SPLCV 유전자 분리 및 서열분석 Example 1 Domestic SPLCV Gene Isolation and Sequencing

농촌진흥청 작물과학원 바이러스과로부터 의뢰받은 잎말림 증상이 심한 고구마로부터 Dellaporta 방법을 이용하여 게놈 DNA를 추출하고, 이를 고안된 프라이머 서열을 이용하여, DNA 초기 변성 과정으로 95 ℃ 3분, [DNA 변성을 위해 94 ℃ 30초, 프라이머 바인딩(annealing)을 위해 55 ℃ 30초, DNA 사슬 신장을 위해 72 ℃ 2분]을 30회 반복한 후, 최종적으로 DNA 사슬 신장을 위해 72 ℃ 10분의 PCR 반응 조건으로 하여 고구마 게놈 DNA 2 마이크로리터, 5'-프라이머와 3'-프라이머 각각 0.25 pmol, 1X PCR buffer, 0.125 mM dNTPs가 되도록 하여 최종 20 마이크로리터 반응액을 조성하고 PCR을 통해 SPLCV의 SP1과 SP2의 서열을 증폭하였다. 증폭된 서열을 전기영동하여 나타난 밴드(도 1)를 RBC 겔 추출 킷트(gel extraction kit)를 이용하여, 겔로부터 DNA를 회수하고, 이를 Promega의 pGEM-T easy vector ligation kit을 이용 T-벡터 (2992 bp) 내에 삽입하였다. 박테리아 E. coli DH5alpha 균주에 라이게이션(ligation) 반응액을 첨가하여 42 ℃에서 45초간 열 쇼크(heat shock)를 주어 형질전환을 유도한 후 이를 37 ℃에서 LB/amp 고체배지에 12시간 배양하여, 생성된 박테리아 콜로니를 LB/amp 액체배지에 접종하고 37 ℃에서 12시간 진탕 배양하여 이들로부터 플라스미드를 분리하고, 기술된 시퀀싱 프라이머를 이용하여 시퀀싱 반응을 진행하였다. 세 번 반복된 시퀀싱 결과를 확인 한 후, 최종 서열을 결정하고, 이를 NCBI BLAST 서치를 통해 최종 한국 내 존재하는 새로운 타입의 SPLCV 서열로 확인하였다.Genomic DNA was extracted from the sweet potato, which had been severely dried by the RDA Crop Science Division, using the Dellaporta method, and then, using the designed primer sequence, 95 ° C 3 minutes for the initial DNA denaturation process. 30 seconds at 30 ° C., 55 ° C. 30 seconds for primer binding, 72 ° C. 2 minutes for DNA chain extension], 30 times, and finally at 72 ° C. for 10 minutes for PCR chain extension. Sweet potato genomic DNA 2 microliter, 5'- primer and 3'- primer respectively 0.25 pmol, 1X PCR buffer, 0.125 mM dNTPs to form a final 20 microliter reaction solution and the sequence of SP1 and SP2 of SPLCV through PCR Amplified. The bands obtained by electrophoresis of the amplified sequences (FIG. 1) were recovered from the gel using an RBC gel extraction kit, and the T-vectors were prepared using Promega's pGEM-T easy vector ligation kit. 2992 bp). The ligation reaction solution was added to the bacterial E. coli DH5alpha strain to induce transformation by heat shock at 42 ° C. for 45 seconds and incubated for 12 hours in LB / amp solid medium at 37 ° C. , The resulting bacterial colonies were inoculated in LB / amp liquid medium and shaken for 12 hours at 37 ° C. to separate plasmids from them, and the sequencing reaction was performed using the sequencing primers described. After confirming the sequencing results repeated three times, the final sequence was determined and confirmed as a new type of SPLCV sequence existing in the final Korea through the NCBI BLAST search.

도 1에 나타낸 바와 같이, 예상되어진 크기의 SP1 (1632 bp), SP2 (2138 bp) 단편이 DNA 중합효소 연쇄반응을 통해 증폭되어졌다. As shown in FIG. 1, SP1 (1632 bp) and SP2 (2138 bp) fragments of expected sizes were amplified through DNA polymerase chain reaction.

[표 1][Table 1]

Figure 112009024867606-pat00001
Figure 112009024867606-pat00001

SPLCV의 경우 도 2와 상기 표 1의 프라이머를 이용해 증폭된 유전자 서열은 각각 pGEM-T easy vector에 클로닝되었으며, SP1과 SP2 클론으로부터 EcoRV digestion에 의해 1.2 mer에 해당하는 바이러스의 전체 서열을 포함하는 클론을 제작하였다. SPLCV의 경우는 1 kb 이상의 크기를 단편 2개만이 클로닝 되어 전체 서열을 결정하는 데 무리가 있었다. 따라서, SPLCV 전체 서열을 확인하기 위한 프라이머를 다음 표 2와 도 3과 같이 고안하여 시퀀싱 반응을 시행하고 전체 서열을 결정하였다. In the case of SPLCV, the gene sequence amplified using the primers of FIG. 2 and Table 1, respectively, was cloned into the pGEM-T easy vector, and the clone including the entire sequence of the virus corresponding to 1.2 mer by EcoRV digestion from the SP1 and SP2 clones. Was produced. In the case of SPLCV, only two fragments having a size of 1 kb or more were cloned to determine the overall sequence. Therefore, primers for identifying the entire SPLCV sequence were devised as shown in Table 2 and FIG. 3 to perform a sequencing reaction to determine the total sequence.

[표 2]TABLE 2

SPLCV 전체 염기 서열 확인을 위한 시퀀싱 프라이머Sequencing primers for SPLCV full sequencing

프라이머primer 서열 (5'→3')Sequence (5 '→ 3') 5SpLCV2ndSeq 5SpLCV2ndSeq GAT GTG TGG GTC CCT GTA AG (서열번호 8)GAT GTG TGG GTC CCT GTA AG (SEQ ID NO: 8) 5SpLCV2Seq_Rc 5SpLCV2Seq_Rc CTT ACA GGG ACC CAC ACA TC (서열번호 9)CTT ACA GGG ACC CAC ACA TC (SEQ ID NO: 9) 5SpLCV3rdSeq 5SpLCV3rdSeq AGT AAT CCT GTG TAT CAG AC (서열번호 10)AGT AAT CCT GTG TAT CAG AC (SEQ ID NO: 10) 5SpLCV4thSeq 5SpLCV4thSeq CTG TGC GTG AAT CCA TGC TG (서열번호 11)CTG TGC GTG AAT CCA TGC TG (SEQ ID NO: 11) 5SpLCV5thSeq 5SpLCV5thSeq CCT ATT CTG CTT GGG CCT TC (서열번호 12)CCT ATT CTG CTT GGG CCT TC (SEQ ID NO: 12) 5SpLCVlastSeq5SpLCVlastSeq AAA GGC GGG CAC CGT ATT AA (서열번호 13)AAA GGC GGG CAC CGT ATT AA (SEQ ID NO: 13)

10 ㎍의 분리된 게놈 DNA를 0.8% 아가로즈 겔에 전기영동한 뒤, 나일론 멤브레인(Amersham사 Hybond-N+)으로 16 시간 동안 전이시킨 뒤, 감염 가능한 클론으로부터 만들어진 탐침 DNA 단편을 P32-labelled dCTP를 이용하여 방사능 표지한 뒤, 혼성화 반응을 수행하였다. 확인된 제미니바이러스의 게놈 서열을 바탕으로 바이러스의 ORF를 확인하고, 확인된 ORF는 GenBank에 기보고된 서열들의 상동성 검색 [BLAST]을 통해서 서열 정렬하였다. 10 μg of isolated genomic DNA was electrophoresed on a 0.8% agarose gel, then transferred to a nylon membrane (Amersham Hybond-N +) for 16 hours, after which a probe DNA fragment made from an infectious clone was P 32 -labelled dCTP. After radiolabeling, hybridization reaction was performed. The ORF of the virus was identified based on the genomic sequence of the identified geminivirus, and the identified ORF was sequenced through homology search [BLAST] of sequences previously reported in GenBank.

도 5는 국내산 고구마로부터 순수 분리된 SPLCV의 유전체 지도를 나타내는 것으로, 화살표는 각각의 유전자(상보적인 유전자 가닥; C1, C2, C3, C4, 바이러스 유전자 가닥; V1, V2)를 의미한다. Figure 5 shows a genomic map of SPLCV purely isolated from domestic sweet potatoes, the arrow indicates each gene (complementary gene strand; C1, C2, C3, C4, viral gene strand; V1, V2).

또한, 도 4는 SPLCV의 전체 염기서열로서, 2828 bp 길이에 해당하는 전체 염기서열이 결정되었으며, 물결무늬가 표시된 부분은 각각의 해당 제한효소 인식 서열을 의미한다. In addition, Figure 4 is the total nucleotide sequence of the SPLCV, the total sequence corresponding to the length of 2828 bp was determined, and the moiety is indicated by the respective restriction enzyme recognition sequence.

실시예 2: SPLCV내 유전자의 코딩 및 구조 예측Example 2: Coding and Structure Prediction of Genes in SPLCV

확인된 전체 염기서열을 참고서열(AF_104036)과 비교하여, 국내산 고구마로 부터 순수 분리된 SPLCV의 확인된 전체 염기서열(서열번호 1, FJ_560719)에 존재하는 각각의 ORF를 확인하였다. 확인된 ORF의 아미노산 서열 [서열번호 14] 정렬 결과, 몇 개의 특정 아미노산 서열이 참고 서열과 상이함을 알 수 있었다[도 6 참조]. 이는 컴퓨터 시뮬레이션을 통한 구조 분석 결과, 참고서열의 단백질 서열과는 단백질의 3차원 구조가 다른 것으로 예측됨에 따라 기존의 보고된 단백질과는 다른 등전점 (AF_104036; 6.68, FJ_560719; 6.64)과 pH7에서의 전하값 (AF_104036; -1.22, FJ_560719; -1.33) 등의 새로운 특성을 가질 수 있음을 암시한다[도 7 참조]. 이러한 구조적 특징의 변화는 또한 단백질의 기능적 특징과도 연결되어 있으므로 새로운 기능성 단백질의 분리 또한 기대할 수 있다.Comparing the entire nucleotide sequence identified with the reference sequence (AF_104036), each ORF present in the identified total nucleotide sequence (SEQ ID NO: 1, FJ_560719) of SPLCV purely isolated from domestic sweet potatoes. As a result of the alignment of the identified amino acid sequence [SEQ ID NO: 14], it was found that some specific amino acid sequences differed from the reference sequence (see FIG. 6). The structural analysis through computer simulation shows that the three-dimensional structure of the protein is different from that of the reference sequence, so that the charge value at the isoelectric point (AF_104036; 6.68, FJ_560719; 6.64) and pH7 is different from those of the previously reported protein. (AF_104036; -1.22, FJ_560719; -1.33), etc., which may have new characteristics (see FIG. 7). Since these structural changes are also linked to the protein's functional features, isolation of new functional proteins can also be expected.

실시예 3: SPLCV 유전자의 재조합 플라스미드 제작Example 3: Recombinant Plasmid Construction of SPLCV Gene

고구마 게놈 DNA로부터 증폭된 SP1와 SP2 단편의 클론으로부터 EcoRV와 PstI처리에 의한 단편간의 재조합을 이용하여 pSP1의 단편 내에 pSP2의 EcoRV와 PstI 단편을 ligation함으로써 pSPLCV 1.2 클론을 만들고 SacI digestion을 통해 2828 bp의 단량체 단편(monomeric fragment)을 획득한 뒤에 pGEM-Teasy self-ligated vector의 SacI digested fragment(2992 bp)의 CIAP(Calf intestinal alkaline phosphatase) 처리 후 단량체 단편과의 라이게이션을 통해 pSPLCV1.0 단량체 클론(monomeric clone)을 확보하였다. 이 단량체 클론 pSPLCV1.0을 다시 KasI으로 자르고, 여기에 pSPLCV1.2의 KasI digest 단량체 단편(monomeric fragment)을 다시 같은 과정을 거쳐 라이게이션하여 이량체 클론(dimeric clone)인 pSPLCV2.0을 완성하였다[도 8, 도 9 참조]. From the clones of the SP1 and SP2 fragments amplified from sweet potato genomic DNA, fragments of pSP1 were cloned into the fragments of pSP2 using EcoRV and PstI treatment to clone pSPLCV 1.2 clones and 2828 bp through SacI digestion. After acquiring the monomeric fragment, after treatment with Calp intestinal alkaline phosphatase (CIAP) of the SacI digested fragment (2992 bp) of the pGEM-Teasy self-ligated vector, the pSPLCV1.0 monomer clone was obtained by ligation with the monomer fragment. clone). The monomer clone pSPLCV1.0 was cut again into KasI, and the KasI digest monomer fragment of pSPLCV1.2 was ligated again to complete the dimeric clone pSPLCV2.0 [ 8, 9].

실시예 4: 형질전환 대장균의 제작Example 4 Preparation of Transgenic E. Coli

완성된 이량체 pSPLCV 2.0 DNA 0.1 마이크로그램을 DH5alpha competent cell에 heat shock transformation 방법을 이용하여, 42℃에서 45초간 열 충격을 주고 900 ㎕의 LB 액상배지를 첨가하여 37℃ 진탕배양기에서 1시간 동안 배양한 후 이를 앰피실린이 첨가된 LB 고형배지에 도말하여 12시간동안 37℃ 배양기에서 콜로니를 형성시켰다. 형성된 콜로니를 3 ml의 앰피실린이 첨가된 LB 액상배지에 접종하고, 37℃ 진탕배양기를 이용하여 12시간 동안 배양한 뒤에 배양액을 글리세롤이 최종 14%가 되게 첨가하여 섞어준 뒤에 -80 ℃에 보관하였다. 또한, 같은 배양액을 원심분리하여 플라스미드 분리 방법을 이용하여 플라스미드를 정제한 뒤에 10 X 완충액와 플라스미드를 섞어 준 뒤에 SacI 효소를 첨가하여 전체 20 ㎕ 반응액을 조성한 뒤 37℃ 배양기에서 1시간 정도 반응시킨 후 전기영동을 이용해 벡터로부터 잘려 나간 서열의 크기를 확인하고, pGEM-Teasy vectror 내의 T7 및 SP6 프라이머 서열을 이용하여 시퀀싱 반응을 수행하고, 나온 염기서열 결과를 NCBI BLAST 검색을 통해 확인하고 최종 클로닝되었음을 확인하였다.0.1 microgram of dimer pSPLCV 2.0 DNA was heat shock transformed to DH5alpha competent cell at 42 ° C for 45 seconds and incubated in 37 ° C shaker for 1 hour by adding 900 µl of LB medium. After that, it was plated on ampicillin-added LB solid medium to form colonies in a 37 ° C. incubator for 12 hours. The colonies formed were inoculated into LB liquid medium containing 3 ml of ampicillin, incubated for 12 hours using a 37 ° C shaking incubator, and the mixture was added at a final concentration of 14% glycerol and then stored at -80 ° C. It was. In addition, the same culture solution was centrifuged to purify the plasmid using the plasmid separation method, and then mixed with 10 X buffer solution and the plasmid, followed by addition of Sac I enzyme to form a total 20 μl reaction solution, followed by reaction at 37 ° C. for 1 hour. After electrophoresis, the size of the sequence cut out from the vector was confirmed, the sequencing reaction was performed using the T7 and SP6 primer sequences in the pGEM-Teasy vectror, and the result of the sequencing was confirmed by NCBI BLAST search. Confirmed.

실시예 5: 재조합 유전자에 의한 고구마 잎말림병 발현 확인Example 5: Confirmation of Sweet Potato Leaf Dough Expression by Recombinant Gene

고순도(1 mg/ml)로 정제된 500 마이크로리터 pSPLCV2.0 재조합 플라스미드를 유전자 총(gene gun)을 이용하여 고구마의 슛 팁(shoot tip) 부분에 발사하는 방식 으로 감염(infection)을 진행하고, 3 ~ 4주 동안 증상의 발현을 관찰한 결과 잎말림 증상이 나타나는 것을 확인할 수 있었다[도 10 참조].Infection is performed by firing 500 microliter pSPLCV2.0 recombinant plasmid purified at high purity (1 mg / ml) onto a shoot tip portion of sweet potato using a gene gun. As a result of observing the manifestation of the symptoms for 3 to 4 weeks, it was confirmed that the leaf symptom appeared [see FIG. 10].

상기 잎말림 증상이 나타나는 고구마 잎[도 10]으로부터 10 ㎍의 분리된 게놈 DNA를 0.8% 아가로즈 겔에 전기영동한 뒤, 나일론 멤브레인(Amersham사 Hybond-N+)으로 16 시간 동안 전이시킨 뒤, 감염 가능한 재조합 클론으로부터 만들어진 탐침 DNA 단편을 P32-labelled dCTP를 이용하여 방사능 표지한 뒤, 혼성화 반응을 수행하여 X-ray 필름에 노출시킨 결과 일부 잎에서 바이러스가 복제되고 있음을 확인하였다[도 11 참조].10 [mu] g of isolated genomic DNA from the sweet potato leaf [Fig. 10] showing the curling symptoms was electrophoresed on a 0.8% agarose gel and then transferred to a nylon membrane (Amersham Hybond-N +) for 16 hours, followed by infection. Probe DNA fragments made from possible recombinant clones were radiolabeled using P32-labelled dCTP and then hybridized to expose X-ray films to confirm that viruses were replicating in some leaves. .

세계적으로 큰 산업적 피해를 주고 있는 국내에는 미보고 되어 있는 바이러스 유전자원의 확보로 인한 학문적/산업적 적용의 활성화 및 다양한 식물에 대한 형질전환체의 개발시 동일한 방법적 적용이 어려운 현대 기술의 한계를 극복할 수 있는 형질전환 전달체로서의 개발 및 적용이 기대된다. Overcoming the limitations of modern technology, which is difficult to apply the same method for the activation of academic / industrial applications and development of transformants for various plants due to the securing of unreported viral genetic resources in Korea, which is causing a great industrial damage worldwide. It is anticipated that the development and application as a transgenic carrier can be done.

도 1은 SPLCV 중합효소 연쇄반응 검정 및 전체 서열 결정을 위한 부분 유전자 서열의 증폭 결과 전기영동 사진을 나타낸 것이다. 예상되어진 크기의 SP1 (1632 bp), SP2 (2138 bp) 단편이 DNA 중합효소 연쇄반응을 통해 증폭되어졌다. Figure 1 shows the electrophoresis picture of the result of amplification of the partial gene sequence for SPLCV polymerase chain reaction assay and overall sequence determination. SP1 (1632 bp) and SP2 (2138 bp) fragments of expected sizes were amplified by DNA polymerase chain reaction.

도 2는 전체 서열 결정을 위한 프라이머 디자인을 나타낸 것으로, 프라이머 서열이 SPLCV 상에 어떤 위치에 존재하는지를 보여주는 프라이머 디자인 모식도로써 증폭된 지역 중 겹치는 부분을 이용하여 바이러스 전체 염기서열을 확보함.Figure 2 shows a primer design for determining the overall sequence, a primer design schematic showing where the primer sequence is located on SPLCV using the overlapping portion of the amplified region to secure the entire virus sequence.

도 3은 국내산 고구마로부터 순수 분리된 SPLCV 서열 확인을 위한 시퀀싱 프라이머의 디자인을 나타낸 것이다.Figure 3 shows the design of the sequencing primer for identifying the SPLCV sequence purely isolated from domestic sweet potatoes.

도 4는 국내산 고구마로부터 순수 분리된 SPLCV의 2828 bp 길이에 해당하는 전체 염기서열이다.Figure 4 is a total sequence corresponding to the length of 2828 bp of pure purified SPLCV from domestic sweet potatoes.

도 5는 국내산 고구마로부터 순수 분리된 SPLCV의 유전체 지도를 나타낸 것이다[화살표는 각각의 유전자(상보적인 유전자 가닥; C1, C2, C3, C4, 바이러스 유전자 가닥; V1, V2)를 의미한다]. Figure 5 shows a genomic map of SPLCV purely isolated from domestic sweet potatoes (arrow indicates each gene (complementary gene strand; C1, C2, C3, C4, viral gene strand; V1, V2)).

도 6은 국내산 고구마로부터 순수 분리된 SPLCV 염기서열(FJ_560719)로부터 유추된 각 ORF의 아미노산 서열(상)과 참고 서열(AF_104036)간의 서열(하) 정렬을 나타낸 것이다.Figure 6 shows the sequence alignment between the amino acid sequence (top) and reference sequence (AF_104036) of each ORF inferred from the SPLCV base sequence (FJ_560719) purely isolated from domestic sweet potatoes.

도 7은 국내산 고구마로부터 순수 분리된 SPLCV 염기서열로부터 유추된 ORF 중 AC1의 예측된 단백질 구조(좌)와 참고 서열(AF_104036)의 AC1 단백질 서열로부터 예측된 단백질 구조(우)를 비교하여 나타낸 것이다.FIG. 7 compares the predicted protein structure (left) of AC1 in the ORF inferred from SPLCV sequences purely isolated from domestic sweet potatoes and the predicted protein structure (right) from the AC1 protein sequence of reference sequence (AF_104036).

도 8은 전달체 완성을 위한 유전자 재조합 과정의 모식도를 나타낸 것이다. 확보된 전체 염기서열(좌상단)로부터 플라스미드를 이용하여 각기 다른 크기의 반복된 바이러스 서열(1.2 mer; pSPLCV1.2, monomer; pSPLCV1.0, dimer; pSPLCV2.0)이 들어간 재조합 플라스미드를 만들어 재조합 바이러스 전달체를 제작하였다. 8 shows a schematic diagram of the gene recombination process for the completion of the carrier. Using a plasmid from the entire sequence obtained (top left), a recombinant plasmid containing repeated viral sequences of different sizes (1.2 mer; pSPLCV1.2, monomer; pSPLCV1.0, dimer; pSPLCV2.0) was made. Was produced.

도 9는 재조합 플라스미드 pSPLCV2.0의 개열지도를 나타낸 것이다.9 shows a cleavage map of the recombinant plasmid pSPLCV2.0.

도 10은 고구마에 입자 주입(particle bombardment) 방법을 이용하여 유전자 총(gene gun)으로 재조합 이량체 SPLCV 유전자가 들어있는 플라스미드 pSPLCV2.0를 무독묘 고구마에 biolistic 감염하였을 때 바이러스의 복제 및 증식에 의하여 감염 증상을 보이는 고구마 잎을 나타낸 것이다[화살표는 감염 위치(좌하)와 감염증상(우)을 표시].FIG. 10 shows the plasmid pSPLCV2.0 containing a recombinant dimeric SPLCV gene with a gene gun using a particle bombardment method in a sweet potato. Sweet potato leaves showing symptoms of infection are shown (arrows indicate infection location (lower left) and infection symptoms (right)).

도 11은 유전자 총(gene gun)을 이용하여 재조합 이량체 SPLCV 유전자가 들어있는 플라스미드 pSPLCV2.0의 감염에 의하여 감염 증상을 보인 고구마로부터 추출한 게놈 DNA를 이용하여 DNA 혼성화 반응을 실시하고, 이를 통해 고구마 내에서 재조합 플라스미드로부터 바이러스가 복제됨을 확인한 것이다 [-; no DNA 대조구, +; 재조합 플라스미드, I; 입자 주입 부위, 1-5; 도 10의 각 고구마 잎으로부터 추출한 게놈 DNA].FIG. 11 illustrates a DNA hybridization reaction using genomic DNA extracted from sweet potato showing infection symptoms by infection with plasmid pSPLCV2.0 containing a recombinant dimer SPLCV gene using a gene gun. It is confirmed that the virus is replicated from the recombinant plasmid in the [-; no DNA control, +; Recombinant plasmid, I; Particle injection sites, 1-5; Genomic DNA extracted from each sweet potato leaf of FIG. 10].

<110> SUNGKYUNKWAN UNIVERSITY Foundation for Corporate Collaboration RURAL DEVELOPMENT ADMINISTRATION <120> DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate <150> KR10-2008-0038413 <151> 2008-04-24 <160> 19 <170> KopatentIn 1.71 <210> 1 <211> 2828 <212> DNA <213> SPLCKV <400> 1 taatattacc ggtgcccgcc gcgcccttta atagtgggcc ccacaaggga ccacgcgtct 60 tttccgtact gtctttaatg attactttgc tttataagga ccaatcaggt ttccgtgctt 120 gggcgccaag aatggagcag ttgtgggacc ctttgcagaa cccactcccg gatactttat 180 acggttttag gtgtatgcta tccgtaaaat acttgcagag tattttgaag aaatacgagc 240 caggaacctt agggttcgag ctctgttcgg agttaatccg tatattcagg gtcaggcagt 300 atgacagggc gaattcccgt ttcgcggaga tttcatccat atggggggag accggtaaga 360 cggaggctga acttcgagac agctatcgtg ccctacactg ggaatgctgt cccaattgct 420 gcccgaagct atgtcccggt ttcaagaggc gtccggatga agagaaagag gggtgaccgc 480 atcccgaagg gatgtgttgg tccctgtaag gtccaggact atgagttcaa gatggacgtt 540 ccccacacgg gaacgtttgt ctgtgtctcg gattttacta ggggaactgg gcttactcat 600 cgcctgggta agcgtgtttg tgtgaagtcc atgggtatag atgggaaggt ctggatggat 660 gacaatgtgg ccaagagaga tcacaccaat atcatcacgt attggttgat tcgtgacaga 720 aggcccaata aggatccgct gaactttggc caagtcttca ctatgtatga caatgagccc 780 actactgcta agatccgaat ggatctgagg gatagaatgc aggtattgaa gaagttctct 840 gttacagttt caggaggtcc atacagccac aaggagcagg ccttaattag gaagtttttt 900 aagggtttgt ataatcatgt tacttacaat cataaggaag aagctaagta tgagaatcag 960 ttagaaaatg ctttgatgtt gtatagtgct agcagtcatg cgagtaatcc tgtgtatcag 1020 accctgcgtt gcaggtctta tttctatgat tcgcacaata attaataaaa ttatatttta 1080 ttaatacagt aatatcttta catcatcatt acaatctaca gtatctactt catctatcca 1140 agaacatact cttggaagat atctaataac aaaaactaaa ttaactaaac taaaaaaccc 1200 taaatttgct aattcattac atatacgcca tttaaggcgt tccaaaatac cagtccaact 1260 gtgaatagca ccagttagac gggtcgtcaa gatccggaat tggaggaaga tcttgtggaa 1320 tcccagttgc ctcctttccc tgtagttgac ccacatctgg aatttgagga tggttctccc 1380 ctgtgtgctc tcgtgggcat acataattct gagatggaac ggtgcagtcc gacccacaga 1440 catggggttg gtgtcgaatt cgagtgctct cgtagtctga gcatgactta gtgattcccc 1500 tgtgcgtgaa tccatgctga tacttgcagt ttggggtgat gaaggctgaa cagccgcaac 1560 ccttccacac tatccttgtc ctctgttcag gaactttcct cttggccttc ttcgcctctg 1620 cgtgcagtgg ctcctgaatg ggacacttcc tcttgattcc agaagggaga ttggacatcg 1680 cagaatatag cgtttgctgt tgcccaattc ttgagtgctc cttgctctgg tttgtccaac 1740 cagagtttaa atgaggagcc ctctcctgga ttgcagagga agatagtggg aattccacct 1800 ttaatttgaa ctggctttcc gtatttacag ttggattgcc agtccttctg ggcccccatg 1860 aattccttaa agtgctttag gtattggggg ttgacgtcat caatgacgtt ataccaagca 1920 ctgttgctgt atacttttgg gcttagatct aaatgcccac acaaataatt gtgagggccc 1980 aaagacctgg cccatactgt tttgcctatt ctgcttgggc cttcaataac aatggatatg 2040 ggtctatccg gccgcgcagc ggcatccatg acattttcag cggcccagtc gctgataatg 2100 tcaggaactg cattgaaaga agaagatgaa aaaggagaag aatatacaga aggaggagga 2160 gaaaaaatcc tatctaaatt actaactaaa ttgtgaaatt gaaacaaata tttttcaggg 2220 agtttctccc taattatttg caacgcagct tctttagaac ctgcgtttag agcctctgcg 2280 gctgcgtcat tagcagtctg ctggcctcct ctagcagatc tgccgtcgac ctggaattca 2340 ccccaggtga tggtatcccc gtccttgtca acgtaggact tgacatcgga cgaggattta 2400 gctccctgaa tgttggggtg aaagtgattc gatctgttcg gtgagaccag atcgaagaat 2460 ctgctatttg tgcagacgaa tttgccttcg aactgcacca gcacatggag gtgaggttcc 2520 ccatcctcgt gcagttctct tgctacgtgt atgtattttt tgttggtggg tgtttggata 2580 tttaggagtt gggctaggca gtcctctttt gagagagaac agcgtggata agtaataaaa 2640 taatttttgg cctgaatttt aaaacgtttt ggaggagcca tttggagaca cgcataagtt 2700 caaatgaatt ggagactgga gacaatatat agtatgtctc caaatggcat tctggtaatt 2760 tagaagatcc ttttagcttt aattcaaatt ccgacaactc tgggtccacc aaaaggcggg 2820 caccgtat 2828 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF1 (forward) <400> 2 ctcgtgcagt tctcttgcta 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR1 (reverse) <400> 3 gcaactggga ttccacaaga 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF2 (forward) <400> 4 gtgtatcaga ccctgcgttg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 5 atacggtgcc cgccttttgg 20 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR3 (reverse) <400> 6 ccttcaaaag tgggccccac a 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR4 (reverse) <400> 7 atgacagggc gaatgcgcgt t 21 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2ndSeq <400> 8 gatgtgtggg tccctgtaag 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2Seq_Rc <400> 9 cttacaggga cccacacatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV3rdSeq <400> 10 agtaatcctg tgtatcagac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV4thSeq <400> 11 ctgtgcgtga atccatgctg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV5thSeq <400> 12 cctattctgc ttgggccttc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCVlastSeq <400> 13 aaaggcgggc accgtattaa 20 <210> 14 <211> 114 <212> PRT <213> SPLCKV-AV2 <400> 14 Met Glu Gln Leu Trp Asp Pro Leu Gln Asn Pro Leu Pro Asp Thr Leu 1 5 10 15 Tyr Gly Phe Arg Cys Met Leu Ser Val Lys Tyr Leu Gln Ser Ile Leu 20 25 30 Lys Lys Tyr Glu Pro Gly Thr Leu Gly Phe Glu Leu Cys Ser Glu Leu 35 40 45 Ile Arg Ile Phe Arg Val Arg Gln Tyr Asp Arg Ala Asn Ser Arg Phe 50 55 60 Ala Glu Ile Ser Ser Ile Trp Gly Glu Thr Gly Lys Thr Glu Ala Glu 65 70 75 80 Leu Arg Asp Ser Tyr Arg Ala Leu His Trp Glu Cys Cys Pro Asn Cys 85 90 95 Cys Pro Lys Leu Cys Pro Gly Phe Lys Arg Arg Pro Asp Glu Glu Lys 100 105 110 Glu Gly <210> 15 <211> 254 <212> PRT <213> SPLCKV-AV1 <400> 15 Met Thr Gly Arg Ile Pro Val Ser Arg Arg Phe His Pro Tyr Gly Gly 1 5 10 15 Arg Pro Val Arg Arg Arg Leu Asn Phe Glu Thr Ala Ile Val Pro Tyr 20 25 30 Thr Gly Asn Ala Val Pro Ile Ala Ala Arg Ser Tyr Val Pro Val Ser 35 40 45 Arg Gly Val Arg Met Lys Arg Lys Arg Gly Asp Arg Ile Pro Lys Gly 50 55 60 Cys Val Gly Pro Cys Lys Val Gln Asp Tyr Glu Phe Lys Met Asp Val 65 70 75 80 Pro His Thr Gly Thr Phe Val Cys Val Ser Asp Phe Thr Arg Gly Thr 85 90 95 Gly Leu Thr His Arg Leu Gly Lys Arg Val Cys Val Lys Ser Met Gly 100 105 110 Ile Asp Gly Lys Val Trp Met Asp Asp Asn Val Ala Lys Arg Asp His 115 120 125 Thr Asn Ile Ile Thr Tyr Trp Leu Ile Arg Asp Arg Arg Pro Asn Lys 130 135 140 Asp Pro Leu Asn Phe Gly Gln Val Phe Thr Met Tyr Asp Asn Glu Pro 145 150 155 160 Thr Thr Ala Lys Ile Arg Met Asp Leu Arg Asp Arg Met Gln Val Leu 165 170 175 Lys Lys Phe Ser Val Thr Val Ser Gly Gly Pro Tyr Ser His Lys Glu 180 185 190 Gln Ala Leu Ile Arg Lys Phe Phe Lys Gly Leu Tyr Asn His Val Thr 195 200 205 Tyr Asn His Lys Glu Glu Ala Lys Tyr Glu Asn Gln Leu Glu Asn Ala 210 215 220 Leu Met Leu Tyr Ser Ala Ser Ser His Ala Ser Asn Pro Val Tyr Gln 225 230 235 240 Thr Leu Arg Cys Arg Ser Tyr Phe Tyr Asp Ser His Asn Asn 245 250 <210> 16 <211> 85 <212> PRT <213> SPLCKV-AC4 <400> 16 Met Gly Asn Leu Thr Ser Met Cys Trp Cys Ser Ser Lys Ala Asn Ser 1 5 10 15 Ser Ala Gln Ile Ala Asp Ser Ser Ile Trp Ser His Arg Thr Asp Arg 20 25 30 Ile Thr Phe Thr Pro Thr Phe Arg Glu Leu Asn Pro Arg Pro Met Ser 35 40 45 Ser Pro Thr Leu Thr Arg Thr Gly Ile Pro Ser Pro Gly Val Asn Ser 50 55 60 Arg Ser Thr Ala Asp Leu Leu Glu Glu Ala Ser Arg Leu Leu Met Thr 65 70 75 80 Gln Pro Gln Arg Leu 85 <210> 17 <211> 144 <212> PRT <213> SPLCKV-AC3 <400> 17 Met Asp Ser Arg Thr Gly Glu Ser Leu Ser His Ala Gln Thr Thr Arg 1 5 10 15 Ala Leu Glu Phe Asp Thr Asn Pro Met Ser Val Gly Arg Thr Ala Pro 20 25 30 Phe His Leu Arg Ile Met Tyr Ala His Glu Ser Thr Gln Gly Arg Thr 35 40 45 Ile Leu Lys Phe Gln Met Trp Val Asn Tyr Arg Glu Arg Arg Gln Leu 50 55 60 Gly Phe His Lys Ile Phe Leu Gln Phe Arg Ile Leu Thr Thr Arg Leu 65 70 75 80 Thr Gly Ala Ile His Ser Trp Thr Gly Ile Leu Glu Arg Leu Lys Trp 85 90 95 Arg Ile Cys Asn Glu Leu Ala Asn Leu Gly Phe Phe Ser Leu Val Asn 100 105 110 Leu Val Phe Val Ile Arg Tyr Leu Pro Arg Val Cys Ser Trp Ile Asp 115 120 125 Glu Val Asp Thr Val Asp Cys Asn Asp Asp Val Lys Ile Leu Leu Tyr 130 135 140 <210> 18 <211> 148 <212> PRT <213> SPLCKV-AC2 <400> 18 Met Ser Asn Leu Pro Ser Gly Ile Lys Arg Lys Cys Pro Ile Gln Glu 1 5 10 15 Pro Leu His Ala Glu Ala Lys Lys Ala Lys Arg Lys Val Pro Glu Gln 20 25 30 Arg Thr Arg Ile Val Trp Lys Gly Cys Gly Cys Ser Ala Phe Ile Thr 35 40 45 Pro Asn Cys Lys Tyr Gln His Gly Phe Thr His Arg Gly Ile Thr Lys 50 55 60 Ser Cys Ser Asp Tyr Glu Ser Thr Arg Ile Arg His Gln Pro His Val 65 70 75 80 Cys Gly Ser Asp Cys Thr Val Pro Ser Gln Asn Tyr Val Cys Pro Arg 85 90 95 Glu His Thr Gly Glu Asn His Pro Gln Ile Pro Asp Val Gly Gln Leu 100 105 110 Gln Gly Lys Glu Ala Thr Gly Ile Pro Gln Asp Leu Pro Pro Ile Pro 115 120 125 Asp Leu Asp Asp Pro Ser Asn Trp Cys Tyr Ser Gln Leu Asp Trp Tyr 130 135 140 Phe Gly Thr Pro 145 <210> 19 <211> 364 <212> PRT <213> SPLCKV-AC1 <400> 19 Met Ala Pro Pro Lys Arg Phe Lys Ile Gln Ala Lys Asn Tyr Phe Ile 1 5 10 15 Thr Tyr Pro Arg Cys Ser Leu Ser Lys Glu Asp Cys Leu Ala Gln Leu 20 25 30 Leu Asn Ile Gln Thr Pro Thr Asn Lys Lys Tyr Ile His Val Ala Arg 35 40 45 Glu Leu His Glu Asp Gly Glu Pro His Leu His Val Leu Val Gln Phe 50 55 60 Glu Gly Lys Phe Val Cys Thr Asn Ser Arg Phe Phe Asp Leu Val Ser 65 70 75 80 Pro Asn Arg Ser Asn His Phe His Pro Asn Ile Gln Gly Ala Lys Ser 85 90 95 Ser Ser Asp Val Lys Ser Tyr Val Asp Lys Asp Gly Asp Thr Ile Thr 100 105 110 Trp Gly Glu Phe Gln Val Asp Gly Arg Ser Ala Arg Gly Gly Gln Gln 115 120 125 Thr Ala Asn Asp Ala Ala Ala Glu Ala Leu Asn Ala Gly Ser Lys Glu 130 135 140 Ala Ala Leu Gln Ile Ile Arg Glu Lys Leu Pro Glu Lys Tyr Leu Phe 145 150 155 160 Gln Phe His Asn Leu Val Ser Asn Leu Asp Arg Ile Phe Ser Pro Pro 165 170 175 Pro Ser Val Tyr Ser Ser Pro Phe Ser Ser Ser Ser Phe Asn Ala Val 180 185 190 Pro Asp Ile Ile Ser Asp Trp Ala Ala Glu Asn Val Met Asp Ala Ala 195 200 205 Ala Arg Pro Asp Arg Pro Ile Ser Ile Val Ile Glu Gly Pro Ser Arg 210 215 220 Ile Gly Lys Thr Val Trp Ala Arg Ser Leu Gly Pro His Asn Tyr Leu 225 230 235 240 Cys Gly His Leu Asp Leu Ser Pro Lys Val Tyr Ser Asn Ser Ala Trp 245 250 255 Tyr Asn Val Ile Asp Asp Val Asn Pro Gln Tyr Leu Lys His Phe Lys 260 265 270 Glu Phe Met Gly Ala Gln Lys Asp Trp Gln Ser Asn Cys Lys Tyr Gly 275 280 285 Lys Pro Val Gln Ile Lys Gly Gly Ile Pro Thr Ile Phe Leu Cys Asn 290 295 300 Pro Gly Glu Gly Ser Ser Phe Lys Leu Trp Leu Asp Lys Pro Glu Gln 305 310 315 320 Gly Ala Leu Lys Asn Trp Ala Thr Ala Asn Ala Ile Phe Cys Asp Val 325 330 335 Gln Ser Pro Phe Trp Asn Gln Glu Glu Val Ser His Ser Gly Ala Thr 340 345 350 Ala Arg Arg Gly Glu Glu Gly Gln Glu Glu Ser Ser 355 360 <110> SUNGKYUNKWAN UNIVERSITY Foundation for Corporate Collaboration          RURAL DEVELOPMENT ADMINISTRATION <120> DNA Recombinant virus vector and Recombinant HYVV gene using          Sweet Potato Leaf Curl Virus Korean Isolate <150> KR10-2008-0038413 <151> 2008-04-24 <160> 19 <170> KopatentIn 1.71 <210> 1 <211> 2828 <212> DNA <213> SPLCKV <400> 1 taatattacc ggtgcccgcc gcgcccttta atagtgggcc ccacaaggga ccacgcgtct 60 tttccgtact gtctttaatg attactttgc tttataagga ccaatcaggt ttccgtgctt 120 gggcgccaag aatggagcag ttgtgggacc ctttgcagaa cccactcccg gatactttat 180 acggttttag gtgtatgcta tccgtaaaat acttgcagag tattttgaag aaatacgagc 240 caggaacctt agggttcgag ctctgttcgg agttaatccg tatattcagg gtcaggcagt 300 atgacagggc gaattcccgt ttcgcggaga tttcatccat atggggggag accggtaaga 360 cggaggctga acttcgagac agctatcgtg ccctacactg ggaatgctgt cccaattgct 420 gcccgaagct atgtcccggt ttcaagaggc gtccggatga agagaaagag gggtgaccgc 480 atcccgaagg gatgtgttgg tccctgtaag gtccaggact atgagttcaa gatggacgtt 540 ccccacacgg gaacgtttgt ctgtgtctcg gattttacta ggggaactgg gcttactcat 600 cgcctgggta agcgtgtttg tgtgaagtcc atgggtatag atgggaaggt ctggatggat 660 gacaatgtgg ccaagagaga tcacaccaat atcatcacgt attggttgat tcgtgacaga 720 aggcccaata aggatccgct gaactttggc caagtcttca ctatgtatga caatgagccc 780 actactgcta agatccgaat ggatctgagg gatagaatgc aggtattgaa gaagttctct 840 gttacagttt caggaggtcc atacagccac aaggagcagg ccttaattag gaagtttttt 900 aagggtttgt ataatcatgt tacttacaat cataaggaag aagctaagta tgagaatcag 960 ttagaaaatg ctttgatgtt gtatagtgct agcagtcatg cgagtaatcc tgtgtatcag 1020 accctgcgtt gcaggtctta tttctatgat tcgcacaata attaataaaa ttatatttta 1080 ttaatacagt aatatcttta catcatcatt acaatctaca gtatctactt catctatcca 1140 agaacatact cttggaagat atctaataac aaaaactaaa ttaactaaac taaaaaaccc 1200 taaatttgct aattcattac atatacgcca tttaaggcgt tccaaaatac cagtccaact 1260 gtgaatagca ccagttagac gggtcgtcaa gatccggaat tggaggaaga tcttgtggaa 1320 tcccagttgc ctcctttccc tgtagttgac ccacatctgg aatttgagga tggttctccc 1380 ctgtgtgctc tcgtgggcat acataattct gagatggaac ggtgcagtcc gacccacaga 1440 catggggttg gtgtcgaatt cgagtgctct cgtagtctga gcatgactta gtgattcccc 1500 tgtgcgtgaa tccatgctga tacttgcagt ttggggtgat gaaggctgaa cagccgcaac 1560 ccttccacac tatccttgtc ctctgttcag gaactttcct cttggccttc ttcgcctctg 1620 cgtgcagtgg ctcctgaatg ggacacttcc tcttgattcc agaagggaga ttggacatcg 1680 cagaatatag cgtttgctgt tgcccaattc ttgagtgctc cttgctctgg tttgtccaac 1740 cagagtttaa atgaggagcc ctctcctgga ttgcagagga agatagtggg aattccacct 1800 ttaatttgaa ctggctttcc gtatttacag ttggattgcc agtccttctg ggcccccatg 1860 aattccttaa agtgctttag gtattggggg ttgacgtcat caatgacgtt ataccaagca 1920 ctgttgctgt atacttttgg gcttagatct aaatgcccac acaaataatt gtgagggccc 1980 aaagacctgg cccatactgt tttgcctatt ctgcttgggc cttcaataac aatggatatg 2040 ggtctatccg gccgcgcagc ggcatccatg acattttcag cggcccagtc gctgataatg 2100 tcaggaactg cattgaaaga agaagatgaa aaaggagaag aatatacaga aggaggagga 2160 gaaaaaatcc tatctaaatt actaactaaa ttgtgaaatt gaaacaaata tttttcaggg 2220 agtttctccc taattatttg caacgcagct tctttagaac ctgcgtttag agcctctgcg 2280 gctgcgtcat tagcagtctg ctggcctcct ctagcagatc tgccgtcgac ctggaattca 2340 ccccaggtga tggtatcccc gtccttgtca acgtaggact tgacatcgga cgaggattta 2400 gctccctgaa tgttggggtg aaagtgattc gatctgttcg gtgagaccag atcgaagaat 2460 ctgctatttg tgcagacgaa tttgccttcg aactgcacca gcacatggag gtgaggttcc 2520 ccatcctcgt gcagttctct tgctacgtgt atgtattttt tgttggtggg tgtttggata 2580 tttaggagtt gggctaggca gtcctctttt gagagagaac agcgtggata agtaataaaa 2640 taatttttgg cctgaatttt aaaacgtttt ggaggagcca tttggagaca cgcataagtt 2700 caaatgaatt ggagactgga gacaatatat agtatgtctc caaatggcat tctggtaatt 2760 tagaagatcc ttttagcttt aattcaaatt ccgacaactc tgggtccacc aaaaggcggg 2820 caccgtat 2828 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF1 (forward) <400> 2 ctcgtgcagt tctcttgcta 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR1 (reverse) <400> 3 gcaactggga ttccacaaga 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF2 (forward) <400> 4 gtgtatcaga ccctgcgttg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 5 atacggtgcc cgccttttgg 20 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR3 (reverse) <400> 6 ccttcaaaag tgggccccac a 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR4 (reverse) <400> 7 atgacagggc gaatgcgcgt t 21 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2ndSeq <400> 8 gatgtgtggg tccctgtaag 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2Seq_Rc <400> 9 cttacaggga cccacacatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV3rdSeq <400> 10 agtaatcctg tgtatcagac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV4thSeq <400> 11 ctgtgcgtga atccatgctg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV5thSeq <400> 12 cctattctgc ttgggccttc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCVlastSeq <400> 13 aaaggcgggc accgtattaa 20 <210> 14 <211> 114 <212> PRT <213> SPLCKV-AV2 <400> 14 Met Glu Gln Leu Trp Asp Pro Leu Gln Asn Pro Leu Pro Asp Thr Leu   1 5 10 15 Tyr Gly Phe Arg Cys Met Leu Ser Val Lys Tyr Leu Gln Ser Ile Leu              20 25 30 Lys Lys Tyr Glu Pro Gly Thr Leu Gly Phe Glu Leu Cys Ser Glu Leu          35 40 45 Ile Arg Ile Phe Arg Val Arg Gln Tyr Asp Arg Ala Asn Ser Arg Phe      50 55 60 Ala Glu Ile Ser Ser Ile Trp Gly Glu Thr Gly Lys Thr Glu Ala Glu  65 70 75 80 Leu Arg Asp Ser Tyr Arg Ala Leu His Trp Glu Cys Cys Pro Asn Cys                  85 90 95 Cys Pro Lys Leu Cys Pro Gly Phe Lys Arg Arg Pro Asp Glu Glu Lys             100 105 110 Glu gly         <210> 15 <211> 254 <212> PRT <213> SPLCKV-AV1 <400> 15 Met Thr Gly Arg Ile Pro Val Ser Arg Arg Phe His Pro Tyr Gly Gly   1 5 10 15 Arg Pro Val Arg Arg Arg Leu Asn Phe Glu Thr Ala Ile Val Pro Tyr              20 25 30 Thr Gly Asn Ala Val Pro Ile Ala Ala Arg Ser Tyr Val Pro Val Ser          35 40 45 Arg Gly Val Arg Met Lys Arg Lys Arg Gly Asp Arg Ile Pro Lys Gly      50 55 60 Cys Val Gly Pro Cys Lys Val Gln Asp Tyr Glu Phe Lys Met Asp Val  65 70 75 80 Pro His Thr Gly Thr Phe Val Cys Val Ser Asp Phe Thr Arg Gly Thr                  85 90 95 Gly Leu Thr His Arg Leu Gly Lys Arg Val Cys Val Lys Ser Met Gly             100 105 110 Ile Asp Gly Lys Val Trp Met Asp Asp Asn Val Ala Lys Arg Asp His         115 120 125 Thr Asn Ile Thr Tyr Trp Leu Ile Arg Asp Arg Arg Pro Asn Lys     130 135 140 Asp Pro Leu Asn Phe Gly Gln Val Phe Thr Met Tyr Asp Asn Glu Pro 145 150 155 160 Thr Thr Ala Lys Ile Arg Met Asp Leu Arg Asp Arg Met Gln Val Leu                 165 170 175 Lys Lys Phe Ser Val Thr Val Ser Gly Gly Pro Tyr Ser His Lys Glu             180 185 190 Gln Ala Leu Ile Arg Lys Phe Phe Lys Gly Leu Tyr Asn His Val Thr         195 200 205 Tyr Asn His Lys Glu Glu Ala Lys Tyr Glu Asn Gln Leu Glu Asn Ala     210 215 220 Leu Met Leu Tyr Ser Ala Ser Ser His Ala Ser Asn Pro Val Tyr Gln 225 230 235 240 Thr Leu Arg Cys Arg Ser Tyr Phe Tyr Asp Ser His Asn Asn                 245 250 <210> 16 <211> 85 <212> PRT <213> SPLCKV-AC4 <400> 16 Met Gly Asn Leu Thr Ser Met Cys Trp Cys Ser Ser Lys Ala Asn Ser   1 5 10 15 Ser Ala Gln Ile Ala Asp Ser Ser Ile Trp Ser His Arg Thr Asp Arg              20 25 30 Ile Thr Phe Thr Pro Thr Phe Arg Glu Leu Asn Pro Arg Pro Met Ser          35 40 45 Ser Pro Thr Leu Thr Arg Thr Gly Ile Pro Ser Pro Gly Val Asn Ser      50 55 60 Arg Ser Thr Ala Asp Leu Leu Glu Glu Ala Ser Arg Leu Leu Met Thr  65 70 75 80 Gln Pro Gln Arg Leu                  85 <210> 17 <211> 144 <212> PRT <213> SPLCKV-AC3 <400> 17 Met Asp Ser Arg Thr Gly Glu Ser Leu Ser His Ala Gln Thr Thr Arg   1 5 10 15 Ala Leu Glu Phe Asp Thr Asn Pro Met Ser Val Gly Arg Thr Ala Pro              20 25 30 Phe His Leu Arg Ile Met Tyr Ala His Glu Ser Thr Gln Gly Arg Thr          35 40 45 Ile Leu Lys Phe Gln Met Trp Val Asn Tyr Arg Glu Arg Arg Gln Leu      50 55 60 Gly Phe His Lys Ile Phe Leu Gln Phe Arg Ile Leu Thr Thr Arg Leu  65 70 75 80 Thr Gly Ala Ile His Ser Trp Thr Gly Ile Leu Glu Arg Leu Lys Trp                  85 90 95 Arg Ile Cys Asn Glu Leu Ala Asn Leu Gly Phe Phe Ser Leu Val Asn             100 105 110 Leu Val Phe Val Ile Arg Tyr Leu Pro Arg Val Cys Ser Trp Ile Asp         115 120 125 Glu Val Asp Thr Val Asp Cys Asn Asp Asp Val Lys Ile Leu Leu Tyr     130 135 140 <210> 18 <211> 148 <212> PRT <213> SPLCKV-AC2 <400> 18 Met Ser Asn Leu Pro Ser Gly Ile Lys Arg Lys Cys Pro Ile Gln Glu   1 5 10 15 Pro Leu His Ala Glu Ala Lys Lys Ala Lys Arg Lys Val Pro Glu Gln              20 25 30 Arg Thr Arg Ile Val Trp Lys Gly Cys Gly Cys Ser Ala Phe Ile Thr          35 40 45 Pro Asn Cys Lys Tyr Gln His Gly Phe Thr His Arg Gly Ile Thr Lys      50 55 60 Ser Cys Ser Asp Tyr Glu Ser Thr Arg Ile Arg His Gln Pro His Val  65 70 75 80 Cys Gly Ser Asp Cys Thr Val Pro Ser Gln Asn Tyr Val Cys Pro Arg                  85 90 95 Glu His Thr Gly Glu Asn His Pro Gln Ile Pro Asp Val Gly Gln Leu             100 105 110 Gln Gly Lys Glu Ala Thr Gly Ile Pro Gln Asp Leu Pro Pro Ile Pro         115 120 125 Asp Leu Asp Asp Pro Ser Asn Trp Cys Tyr Ser Gln Leu Asp Trp Tyr     130 135 140 Phe Gly Thr Pro 145 <210> 19 <211> 364 <212> PRT <213> SPLCKV-AC1 <400> 19 Met Ala Pro Pro Lys Arg Phe Lys Ile Gln Ala Lys Asn Tyr Phe Ile   1 5 10 15 Thr Tyr Pro Arg Cys Ser Leu Ser Lys Glu Asp Cys Leu Ala Gln Leu              20 25 30 Leu Asn Ile Gln Thr Pro Thr Asn Lys Lys Tyr Ile His Val Ala Arg          35 40 45 Glu Leu His Glu Asp Gly Glu Pro His Leu His Val Leu Val Gln Phe      50 55 60 Glu Gly Lys Phe Val Cys Thr Asn Ser Arg Phe Phe Asp Leu Val Ser  65 70 75 80 Pro Asn Arg Ser Asn His Phe His Pro Asn Ile Gln Gly Ala Lys Ser                  85 90 95 Ser Ser Asp Val Lys Ser Tyr Val Asp Lys Asp Gly Asp Thr Ile Thr             100 105 110 Trp Gly Glu Phe Gln Val Asp Gly Arg Ser Ala Arg Gly Gly Gln Gln         115 120 125 Thr Ala Asn Asp Ala Ala Ala Glu Ala Leu Asn Ala Gly Ser Lys Glu     130 135 140 Ala Ala Leu Gln Ile Ile Arg Glu Lys Leu Pro Glu Lys Tyr Leu Phe 145 150 155 160 Gln Phe His Asn Leu Val Ser Asn Leu Asp Arg Ile Phe Ser Pro Pro                 165 170 175 Pro Ser Val Tyr Ser Ser Pro Phe Ser Ser Ser Ser Phe Asn Ala Val             180 185 190 Pro Asp Ile Ile Ser Asp Trp Ala Ala Glu Asn Val Met Asp Ala Ala         195 200 205 Ala Arg Pro Asp Arg Pro Ile Ser Ile Val Ile Glu Gly Pro Ser Arg     210 215 220 Ile Gly Lys Thr Val Trp Ala Arg Ser Leu Gly Pro His Asn Tyr Leu 225 230 235 240 Cys Gly His Leu Asp Leu Ser Pro Lys Val Tyr Ser Asn Ser Ala Trp                 245 250 255 Tyr Asn Val Ile Asp Asp Val Asn Pro Gln Tyr Leu Lys His Phe Lys             260 265 270 Glu Phe Met Gly Ala Gln Lys Asp Trp Gln Ser Asn Cys Lys Tyr Gly         275 280 285 Lys Pro Val Gln Ile Lys Gly Gly Ile Pro Thr Ile Phe Leu Cys Asn     290 295 300 Pro Gly Glu Gly Ser Ser Phe Lys Leu Trp Leu Asp Lys Pro Glu Gln 305 310 315 320 Gly Ala Leu Lys Asn Trp Ala Thr Ala Asn Ala Ile Phe Cys Asp Val                 325 330 335 Gln Ser Pro Phe Trp Asn Gln Glu Glu Val Ser His Ser Gly Ala Thr             340 345 350 Ala Arg Arg Gly Glu Glu Gly Gln Glu Glu Ser Ser         355 360  

Claims (4)

서열번호 1로 표시되는 국내 고구마 잎말림병 감염 DNA 바이러스(Sweet Potato Leaf Curl Virus) 유전자.Sweet Potato Leaf Curl Virus gene of domestic sweet potato leaf curling disease represented by SEQ ID NO: 1. 청구항 1의 유전자의 이량체(dimer)를 포함하며, 도 9의 개열지도로 표시되는 재조합 플라스미드.Recombinant plasmid containing a dimer of the gene of claim 1, represented by the cleavage map of FIG. 9. 청구항 2의 재조합 플라스미드로 형질전환되어 KACC 91467P로 기탁된 대장균 DH5알파(Escherichia coli DH5alpha). Escherichia coli DH5alpha transformed with the recombinant plasmid of claim 2 and deposited with KACC 91467P. 서열번호 14 내지 19로 표시되는 국내 고구마 잎말림병 감염 DNA 바이러스(Sweet Potato Leaf Curl Virus) 단백질.Sweet Potato Leaf Curl Virus protein of domestic sweet potato leaf disease shown in SEQ ID NO: 14 to 19.
KR1020090035784A 2008-04-24 2009-04-24 DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate KR101090458B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090035784A KR101090458B1 (en) 2008-04-24 2009-04-24 DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080038413 2008-04-24
KR1020090035784A KR101090458B1 (en) 2008-04-24 2009-04-24 DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate

Publications (2)

Publication Number Publication Date
KR20090112596A KR20090112596A (en) 2009-10-28
KR101090458B1 true KR101090458B1 (en) 2011-12-07

Family

ID=41553755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090035784A KR101090458B1 (en) 2008-04-24 2009-04-24 DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate

Country Status (1)

Country Link
KR (1) KR101090458B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065921A (en) * 2018-11-30 2020-06-09 대한민국(농촌진흥청장) Novel virus gene from sweet potato

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110367123B (en) * 2019-08-21 2022-08-02 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) Resistance identification method for sweet potato leaf curl virus disease

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GenBank accession number: FJ560719.1
Plant Pathology Journal, 2006, Vol. 22, No. 3, pp. 239-247
Virus Genes, 2007, Vol. 35, No. 2, pp. 379-385

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065921A (en) * 2018-11-30 2020-06-09 대한민국(농촌진흥청장) Novel virus gene from sweet potato
KR102121942B1 (en) 2018-11-30 2020-06-11 대한민국 Novel virus gene from sweet potato

Also Published As

Publication number Publication date
KR20090112596A (en) 2009-10-28

Similar Documents

Publication Publication Date Title
Howitt et al. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant ‘potex-like’viruses
Faria et al. Variability in geminivirus isolates associated with Phaseolus spp. in Brazil
Silva et al. Sequence diversity of NS M movement protein of tospoviruses
CN110317250B (en) Application of MYB6 gene and encoding protein thereof in regulation and control of verticillium wilt resistance of plants
CN109280082B (en) A kind of rice blast resistance gene Pi57 and its coding albumen and application
Chen et al. High sequence conservation among cucumber mosaic virus isolates from lily
Tobias et al. Comparison of the nucleotide sequences of wheat dwarf virus (WDV) isolates from Hungary and Ukraine
Newbert The genetic diversity of Turnip yellows virus in oilseed rape (Brassica napus) in Europe, pathogenic determinants, new sources of resistance and host range
CN110938118B (en) Plant immune activation protein PC2 secreted by phytophthora infestans and application thereof
Verma et al. Coat protein sequence shows that Cucumber mosaic virus isolate from geraniums (Pelargonium spp.) belongs to subgroup II
CN111154731A (en) Tomato yellow leaf curl virus isolate TYLCV-BJ and infectious clone construction method and application
Méndez‐López et al. Tomato SlGSTU38 interacts with the PepMV coat protein and promotes viral infection
CN110526960B (en) Antiviral polypeptide and preparation method and application thereof
CN109134633B (en) Rice blast resistant protein and gene, isolated nucleic acid and application thereof
CN112646818B (en) Soybean gene GmTCM1 as well as obtaining method and application thereof
CN110894218B (en) Plant immune activator protein SCR50 secreted by phytophthora infestans and application thereof
KR101090458B1 (en) DNA Recombinant virus vector and Recombinant HYVV gene using Sweet Potato Leaf Curl Virus Korean Isolate
CN114605504B (en) Wheat yellow mosaic virus 14K protein capable of inducing plant cell necrosis and application thereof in antiviral
Sawangjit et al. Molecular characterization of tomato-infecting begomoviruses in Thailand
Jiang et al. Genomic and pathogenic diversity of barley yellow mosaic virus and barley mild mosaic virus isolates in fields of China and their compatibility with resistance genes of cultivated barley
CN109517775B (en) Preparation method and application of large yellow croaker IFNc gene escherichia coli expression product
CN108754019B (en) Amplification method of porcine epidemic diarrhea virus ORF1 gene complete sequence
CN108531489B (en) Rice kernel Smut pathogen effector gene Smut _2965 and application thereof
Jami et al. Detection of important viruses on Dianthus caryophillus L. In markazi Province, Iran, and molecular analysis of Carnation vein mottle virus
KR101452405B1 (en) The bidirectional promoter using Sweet potato leaf curl virus Korean isolate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161130

Year of fee payment: 19