KR101086730B1 - Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same - Google Patents

Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same Download PDF

Info

Publication number
KR101086730B1
KR101086730B1 KR1020090090691A KR20090090691A KR101086730B1 KR 101086730 B1 KR101086730 B1 KR 101086730B1 KR 1020090090691 A KR1020090090691 A KR 1020090090691A KR 20090090691 A KR20090090691 A KR 20090090691A KR 101086730 B1 KR101086730 B1 KR 101086730B1
Authority
KR
South Korea
Prior art keywords
copper
oxide catalyst
chromium
acetaldehyde
catalyst
Prior art date
Application number
KR1020090090691A
Other languages
Korean (ko)
Other versions
KR20110032929A (en
Inventor
전기원
임소영
이윤조
정순용
노경호
박지원
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020090090691A priority Critical patent/KR101086730B1/en
Publication of KR20110032929A publication Critical patent/KR20110032929A/en
Application granted granted Critical
Publication of KR101086730B1 publication Critical patent/KR101086730B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/06Acetaldehyde

Abstract

본 발명은 에탄올로부터 아세트알데하이드(acetaldehyde)를 합성하기 위한 탈수소화 반응용 혼합금속 산화물 촉매 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 구리-크롬-금속원소를 포함하는 산화물 촉매로서, 상기 구리, 크롬, 금속원소를 특정 몰비로 포함하고 있다. 본 발명의 촉매는 에탄올로부터 아세트알데하이드를 제조 시 높은 전환율과 높은 선택도를 갖기 때문에, 높은 수율로 아세트알데하이드를 제조할 수 있다. The present invention relates to a mixed metal oxide catalyst for dehydrogenation for synthesizing acetaldehyde from ethanol and a method for preparing the same, and more particularly, to an oxide catalyst including a copper-chromium-metal element, wherein the copper, It contains chromium and metal elements in specific molar ratios. Since the catalyst of the present invention has high conversion and high selectivity in preparing acetaldehyde from ethanol, acetaldehyde can be produced in high yield.

에탄올, 아세트알데하이드, 전환율, 선택도 Ethanol, acetaldehyde, conversion, selectivity

Description

에탄올로부터 아세트알데하이드를 합성하기 위한 탈수소화 반응용 혼합금속 산화물 촉매 및 이의 제조방법{Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same}Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same} for synthesis of acetaldehyde from ethanol

본 발명은 에탄올로부터 아세트알데하이드를 합성하는 탈수소화 반응 공정에 사용되는 구리, 크롬, 금속원소를 특정 몰비로 포함하고 있는 혼합금속 산화물 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a mixed metal oxide catalyst containing copper, chromium and metal elements in a specific molar ratio used in a dehydrogenation reaction process for synthesizing acetaldehyde from ethanol and a method for producing the same.

아세트알데하이드(acetaldehyde)는 CH3CHO라는 화학식으로 표시되는 유기 화합물로서, 자극성 냄새가 나는 액체 가연성 물질이다. 상기 아세트알데하이드는 비중 0.7893(16℃), 비점 20.8℃, 융점 -123.3℃, 인화점 -37.8℃, 발화점 185 ℃, 연소범위 4 ~ 57 부피%이고, 물, 알코올, 에테르에 임의의 비율로 녹으며 보통 유기액체와도 혼합되며 화학적 반응성이 높고, 여러 가지 합성의 중요한 중간체로 이용되고 있다. Acetaldehyde is an organic compound represented by the chemical formula CH 3 CHO and is a liquid flammable substance with an irritating odor. The acetaldehyde has a specific gravity of 0.7893 (16 ° C.), a boiling point of 20.8 ° C., a melting point of -123.3 ° C., a flash point of -37.8 ° C., a flash point of 185 ° C., a combustion range of 4 to 57% by volume, and are dissolved in water, alcohol, and ether at an arbitrary ratio. It is usually mixed with organic liquids, has high chemical reactivity, and is used as an important intermediate for various synthesis.

현재 아세트알데하이드를 공업적으로 합성하는 방법으로는, 독일등록특허 제1,190,451호에 기재된 ‘에틸렌으로부터 아세트알데하이드를 제조하는 공정’이 사 용되고 있다. 상기 독일등록특허에 게재된 에틸렌으로부터 아세트알데하이드를 제조하는 공정은 염화백금, 염화구리의 수용액 및 산소의 존재 하에서 에틸렌을 산화하여 아세트알데하이드를 얻는 방법인데, 상기 공정은 염화메틸, 염화에틸, 염화아세트알데하이드와 같은 반환경적인 부산물을 많이 생산하는 문제가 있다.As a method of industrially synthesizing acetaldehyde, the "step of preparing acetaldehyde from ethylene" described in German Patent No. 1,190,451 is used. The process for preparing acetaldehyde from ethylene disclosed in the German patent is a method of obtaining acetaldehyde by oxidizing ethylene in the presence of platinum chloride, an aqueous solution of copper chloride and oxygen, the process is methyl chloride, ethyl chloride, acet chloride There is a problem of producing a lot of return byproducts such as aldehydes.

반면, 에탄올로부터 아세트알데하이드를 합성하는 공정은, 반환경적인 부산물을 생산하는 에틸렌으로부터 아세트알데하이드를 제조하는 공정의 단점에서 자유롭다. 에탄올로부터 아세트알데하이드를 합성하는 공정은 크게 탈수소화 반응 공정과 산화 탈수소화 반응 공정으로 나뉘는데, 탈수소화 반응 공정은 촉매 존재 하에서 에탄올로부터 수소를 제거하여 아세트알데하이드를 얻는 반응으로서, 선택도가 높고 공정이 단순하며 다른 공정에 이용될 수 있는 수소를 생산하는 장점이 있으나, 전환율이 낮다. 이에 비해, 산화 탈수소화 반응 공정은 촉매와 산소 존재 하에서 에탄올을 산화하고 수소를 제거하여 아세트알데하이드를 얻는 반응으로서, 전환율은 높지만, 부산물이 많이 생성되어 아세트알데하이드의 선택도가 낮고, 산소 및 물을 제거해야 하므로 공정이 복잡한 문제가 있다.On the other hand, the process of synthesizing acetaldehyde from ethanol is free from the disadvantages of the process of preparing acetaldehyde from ethylene, which produces return by-products. The process of synthesizing acetaldehyde from ethanol is divided into dehydrogenation and oxidative dehydrogenation. The dehydrogenation is a reaction that removes hydrogen from ethanol in the presence of a catalyst to obtain acetaldehyde. Simple and has the advantage of producing hydrogen that can be used in other processes, but the conversion rate is low. In contrast, the oxidative dehydrogenation reaction is a reaction in which ethanol is oxidized in the presence of a catalyst and oxygen and hydrogen is removed to obtain acetaldehyde. The conversion is high, but many by-products are generated, resulting in low selectivity of acetaldehyde and oxygen and water. The process is complicated because it must be removed.

에탄올의 탈수소화 반응 공정의 대표적인 촉매로는 미국등록특허 제1,977,750호에 기재된 구리-크롬 계열의 촉매가 있는데, 상기 구리-크롬 계열의 촉매는 260 ~ 290℃의 반응온도에서 전환율은 35 ~ 50%이고, 공정이 단순하지만, 전환율이 높아지면 에틸아세테이트나 초산의 생성량 증가로 아세트알데하이드의 선택도가 감소하는 문제점이 있다. 따라서, 공업적 규모를 고려할 때, 선택도를 높이는 것은 경제적으로 매우 중요한 문제이다.Representative catalysts for the dehydrogenation of ethanol include the copper-chromium catalyst described in US Pat. No. 1,977,750. The copper-chromium catalyst has a conversion rate of 35 to 50% at a reaction temperature of 260 to 290 ° C. Although the process is simple, when the conversion rate is high, there is a problem that the selectivity of acetaldehyde is decreased due to the increase in the amount of ethyl acetate or acetic acid produced. Therefore, considering the industrial scale, increasing the selectivity is a very economically important problem.

이에, 본 발명자들은 에탄올로부터 아세트알데하이드를 합성하는 탈수소화 반응 공정용 촉매를 연구하던 중, 구리-크롬 계열의 촉매나 지지체에 담지된 구리-크롬 계열의 촉매에 알칼리 금속이나 알칼리 토금속을 이용하여, 구리-크롬 계열의 촉매가 가지는 전환율을 그대로 유지하면서도 선택성이 높은 촉매를 완성하였다. 즉, 부산물을 생성하는 역할을 하는 구리-크롬 계열 촉매나 지지체에 담지된 구리-크롬 계열 촉매에 산재하는 산점에, 염기인 알칼리 금속이나 알칼리 토금속을 첨가하여 중화함으로써, 부산물을 억제하여 선택도를 높일 수 있게 한 것이다. 따라서, 본 발명은 에탄올로부터 아세트알데하이드(acetaldehyde)를 합성하기 위한 탈수소화 반응용 혼합금속 산화물 촉매를 제공하는 데 그 목적이 있다.Accordingly, the present inventors, while studying a catalyst for the dehydrogenation reaction process for synthesizing acetaldehyde from ethanol, using an alkali metal or an alkaline earth metal in a copper-chromium catalyst or a copper-chromium catalyst supported on a support , The catalyst with high selectivity was completed while maintaining the conversion rate of the copper-chromium catalyst. That is, by neutralizing by adding alkali metal or alkaline earth metal, which is a base, to the acid point scattered on a copper-chromium catalyst or a copper-chromium catalyst supported on a support, which produces a by-product, the by-product is suppressed to improve selectivity. It can be increased. Accordingly, an object of the present invention is to provide a mixed metal oxide catalyst for dehydrogenation for synthesizing acetaldehyde from ethanol.

상기 목적을 달성하기 위한 본 발명은 에탄올로부터 아세트알데하이드를 합성하기 위한 탈수소화 반응용 혼합금속 산화물 촉매에 관한 것으로서, 구리, 크롬, 및 알칼리 금속 또는 알칼리 토금속을 1 : 0.01 ~ 0.5 : 0.001 ~ 0.25 몰비로 포함하는 것을 특징으로 한다.The present invention for achieving the above object relates to a mixed metal oxide catalyst for the dehydrogenation reaction for synthesizing acetaldehyde from ethanol, 1: 0.01 ~ 0.5: 0.001 ~ 0.25 molar ratio of copper, chromium, and alkali or alkaline earth metal It characterized by including as.

또한, 본 발명은 상기 탈수소화 반응용 혼합금속 산화물 촉매를 제조하는 방법에 관한 것으로서, 구리 전구체와 크롬 전구체에 증류수를 첨가한 후, 교반 및 용해하여 혼합용액을 제조하는 1 단계; 상기 혼합용액에 탄산나트륨 수용액을 첨가 및 교반하여, 구리-크롬 화합물을 공침하는 2 단계; 상기 구리-크롬 화합물을 소성하는 3 단계; 상기 소성한 구리-크롬 화합물에 알칼리 금속 화합물 또는 알칼리 토금속 화합물을 첨가하여 혼합물을 제조하는 4 단계; 및 상기 혼합물을 소성하는 5 단계;를 포함하는 것을 그 특징으로 한다.In addition, the present invention relates to a method for producing the mixed metal oxide catalyst for the dehydrogenation reaction, the first step of adding distilled water to the copper precursor and chromium precursor, stirring and dissolving to prepare a mixed solution; Adding and stirring an aqueous sodium carbonate solution to the mixed solution to co-precipitate a copper-chromium compound; Calcining the copper-chromium compound; Adding an alkali metal compound or an alkaline earth metal compound to the calcined copper-chromium compound to prepare a mixture; And five steps of firing the mixture.

본 발명에 따른 촉매는 부산물을 생성하는 역할을 하는, 구리-크롬 계열 촉매나 지지체에 담지된 구리-크롬 계열 촉매에 산재하는 산점에, 염기인 알칼리 금속 또는 알칼리 토금속을 첨가하여 중화함으로써, 구리-크롬 계열 촉매가 보여주는 전환율을 그대로 유지하면서도 고선택도를 나타내므로, 에탄올로부터 아세트알데하이드를 합성하는 탈수소화 반응 공정에 유용하게 사용될 수 있다.The catalyst according to the present invention is neutralized by adding an alkali metal or alkaline earth metal as a base to an acid point interspersed with a copper-chromium-based catalyst or a copper-chromium-based catalyst supported on a support, which serves to generate a byproduct. Since the chromium-based catalyst exhibits high selectivity while maintaining the conversion rate shown, it can be usefully used in the dehydrogenation process for synthesizing acetaldehyde from ethanol.

이하에서 본 발명을 더욱 상세하게 설명을 하겠다.Hereinafter, the present invention will be described in more detail.

본 발명은 구리, 크롬, 및 알칼리 금속 또는 알칼리 토금속을 1 : 0.01 ~ 0.5 : 0.001 ~ 0.25 몰비로 포함하는 것을 특징으로 하는 에탄올로부터 아세트알데하이드를 합성하는 탈수소화 반응용 산화물 촉매에 관한 것이다.The present invention relates to an oxide catalyst for the dehydrogenation reaction for synthesizing acetaldehyde from ethanol, comprising copper, chromium, and alkali metal or alkaline earth metal in a molar ratio of 1: 0.01 to 0.5: 0.001 to 0.25.

상기 구리, 크롬, 및 알칼리 금속 또는 알칼리 토금속의 몰비가 상기 범위를 벗어나면, 촉매의 안정성이 떨어져서 촉매의 수명이 단축되거나, 아세트알데하이드에 대한 선택도가 감소할 수 있으므로 상기 범위의 몰비를 유지하는 것이 바람직하다.When the molar ratio of the copper, chromium, and alkali metal or alkaline earth metal is out of the range, the stability of the catalyst may be reduced and the life of the catalyst may be shortened, or the selectivity to acetaldehyde may be reduced. It is preferable.

상기 알칼리 금속은 Na 또는 K을 포함할 수 있으며, 상기 알칼리 토금속은 Mg, Ca, Sr, 또는 Ba을 포함할 수 있다.The alkali metal may include Na or K, and the alkaline earth metal may include Mg, Ca, Sr, or Ba.

또한, 본 발명의 상기 산화물 촉매는 Al2O3, SiO2, ZrO2, CeO2 및 TiO2 중에서 선택된 1 종 이상의 지지체를 더 포함할 수 있다. In addition, the oxide catalyst of the present invention may further include at least one support selected from Al 2 O 3 , SiO 2 , ZrO 2 , CeO 2 and TiO 2 .

지지체에 상기 산화물 촉매를 담지하는 경우, 본 발명의 탈수소화 반응용 산화물 촉매는 전체 중량에 대하여 상기 산화물 촉매 20 ~ 95 중량% 및 상기 지지체 5 ~ 80 중량%를, 더욱 바람직하게는 상기 산화물 촉매 25 ~ 80 중량% 및 상기 지지체 20 ~ 75 중량%를 포함하고 있는 것이 좋다. 이때, 지지체의 사용량이 전체 중량에 대하여 5 중량% 미만이면 선택도가 떨어질 수 있고, 80 중량% 이상이면 상기 산화물 촉매의 함유량이 상대적으로 적어서 지지체에 담지시키는 효과를 볼 수 없는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 바람직하다.When the oxide catalyst is supported on the support, the oxide catalyst for the dehydrogenation reaction of the present invention is 20 to 95% by weight of the oxide catalyst and 5 to 80% by weight of the support, more preferably the oxide catalyst 25 ~ 80% by weight and 20 to 75% by weight of the support is preferably included. In this case, if the amount of the support is less than 5% by weight based on the total weight, the selectivity may drop, and when the amount of the support is 80% by weight or more, the content of the oxide catalyst may be relatively small, so that there may be a problem in that the effect of being supported on the support may not be seen. It is preferable to use within the said range.

본 발명의 상기 탈수소화 반응용 산화물 촉매를 제조하는 방법을 설명을 하면, 아래와 같다.Referring to the method for producing the oxide catalyst for dehydrogenation reaction of the present invention will be described.

구리 전구체와 크롬 전구체에 증류수를 첨가한 후, 교반 및 용해하여 혼합용액을 제조하는 1 단계; 상기 혼합용액에 탄산나트륨 수용액을 첨가 및 교반하여, 구리-크롬 화합물을 공침하는 2 단계; 상기 구리-크롬 화합물을 소성하는 3 단계; 상기 소성한 구리-크롬 화합물에 알칼리 금속 화합물 또는 알칼리 토금속 화합물을 첨가하여 혼합물을 제조하는 4 단계; 및 상기 혼합물을 소성하는 5 단계;를 포함한다.Adding distilled water to the copper precursor and the chromium precursor, followed by stirring and dissolving to prepare a mixed solution; Adding and stirring an aqueous sodium carbonate solution to the mixed solution to co-precipitate a copper-chromium compound; Calcining the copper-chromium compound; Adding an alkali metal compound or an alkaline earth metal compound to the calcined copper-chromium compound to prepare a mixture; And five steps of firing the mixture.

또한, 본 발명에 있어서, 상기 2 단계는 상기 혼합용액에 탄산나트륨 수용액 외에 Al2O3, SiO2, ZrO2, CeO2 및 TiO2 중에서 선택된 1 종 이상의 지지체를 더 첨가할 수 있다.In addition, in the present invention, in the step 2 , at least one support selected from Al 2 O 3 , SiO 2 , ZrO 2 , CeO 2, and TiO 2 may be further added to the mixed solution in addition to an aqueous sodium carbonate solution.

상기 구리 전구체는 질산구리, 황산구리, 구리산화물, 지방산구리 등을 사용할 수 있으며, 상기 크롬 전구체는 질산크롬, 황산크롬, 크롬산화물, 지방산크롬 등을 사용할 수 있으며, 특별히 한정하지는 않으나, 상기 구리 전구체는 질산구리를 상기 크롬 전구체는 질산크롬을 사용하는 것이 바람직하다.The copper precursor may be copper nitrate, copper sulfate, copper oxide, fatty acid copper, and the like, and the chromium precursor may be chromium nitrate, chromium sulfate, chromium oxide, fatty acid chromium, and the like, but is not particularly limited. Copper nitrate The chromium precursor is preferably used chromium nitrate.

상기 3 단계와 상기 5 단계의 소성 온도는 200 ~ 500℃, 더욱 바람직하게는 250 ~ 450℃에서 하는 것이 좋다.The firing temperature of the three steps and the five steps is preferably carried out at 200 ~ 500 ℃, more preferably 250 ~ 450 ℃.

앞서 설명한 본 발명의 상기 탈수소화 반응용 산화물 촉매는 에탄올로부터 아세트알데하이드 합성 시 아세트알데하이드에 대한 선택도가 90% 이상, 바람직하게는 90 ~ 99.9%이기 때문에, 높은 수율로 아세트알데하이드를 얻을 수 있다.In the above-described oxide catalyst for dehydrogenation of the present invention, when acetaldehyde is synthesized from ethanol, the acetaldehyde selectivity is 90% or more, preferably 90 to 99.9%, so that acetaldehyde can be obtained in high yield.

이하에서는 본 발명을 실시예에 의거하여 더욱 자세하게 설명을 하겠다. 그러나, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples. However, the scope of the present invention is not limited by the following examples.

실시예 1 : CuExample 1 Cu 1One CrCr 0.10.1 BaBa 0.01 0.01 oxide로 표시되는 탈수소화 반응용 산화물 촉매의 제조Preparation of oxide catalyst for dehydrogenation reaction represented by oxide

비이커에 48.32 g(200.0 mmol)의 질산구리(Cu(NO3)23H2O)와 8.000 g(20.00 mmol)의 질산크롬(Cr(NO3)39H2O)을 넣은 다음, 360 g의 증류수를 첨가한 후, 교반하 고 용해하여 혼합용액을 제조하였다. 이와는 별도로 29.26 g(276.0 mmol)의 탄산나트륨(Na2CO3)에 360 g의 증류수를 첨가한 후, 교반하고 용해하여 탄산나트륨 수용액을 제조하였다. 1000 ㎖ 비이커에 상기 혼합용액과 탄산나트륨 수용액을 pH가 8.0±0.1이 되도록 교반하면서 천천히 첨가하였으며, 온도는 55±1℃가 되도록 유지하였다. 생성된 침전물을 여과하고 증류수로 세정하여 100℃에서 12 시간 동안 건조한 후, 400℃에서 5 시간 동안 소성하여, 구리-크롬 화합물을 얻었다. 상기 방법으로 제조된 구리-크롬 화합물에 0.5227 g(2.000 mmol)의 질산바륨(Ba(NO3)2)을 첨가한 다음, 100℃에서 12 시간 동안 건조한 후, 400℃에서 5시간 동안 소성하여 Cu : Cr : Ba의 몰비가 1 : 0.1 : 0.01인 탈수소화 반응용 산화물 촉매를 제조하였다. To a beaker add 48.32 g (200.0 mmol) of copper nitrate (Cu (NO 3 ) 2 3H 2 O) and 8.000 g (20.00 mmol) of chromium nitrate (Cr (NO 3 ) 3 9H 2 O), followed by 360 g of After adding distilled water, the mixture was stirred and dissolved to prepare a mixed solution. Separately, 360 g of distilled water was added to 29.26 g (276.0 mmol) of sodium carbonate (Na 2 CO 3 ), followed by stirring and dissolving to prepare an aqueous sodium carbonate solution. The mixed solution and sodium carbonate aqueous solution were slowly added to a 1000 ml beaker with stirring to make the pH of 8.0 ± 0.1, and the temperature was maintained at 55 ± 1 ° C. The resulting precipitate was filtered, washed with distilled water, dried at 100 ° C. for 12 hours, and calcined at 400 ° C. for 5 hours to obtain a copper-chromium compound. 0.5227 g (2.000 mmol) of barium nitrate (Ba (NO 3 ) 2 ) was added to the copper-chromium compound prepared by the above method, dried at 100 ° C. for 12 hours, and then calcined at 400 ° C. for 5 hours. An oxide catalyst for dehydrogenation reaction was prepared in which the molar ratio of: Cr: Ba is 1: 0.1: 0.01.

실시예 2 : CuExample 2 Cu 1One CrCr 0.10.1 BaBa 0.02 0.02 oxide로with oxide 표시되는 탈수소화 반응용 산화물 촉매의 제조 Preparation of Oxide Catalyst for Dehydrogenation Reaction

상기 실시예 1과 동일하게 실시하되, 질산바륨을 1.045 g(4.000 mmol)을 첨가하여 Cu : Cr : Ba의 몰비가 1 : 0.1 : 0.02인 탈수소화 반응용 산화물 촉매를 제조하였다.In the same manner as in Example 1, 1.045 g (4.000 mmol) of barium nitrate was added to prepare an oxide catalyst for a dehydrogenation reaction having a molar ratio of Cu: Cr: Ba of 1: 0.1: 0.02.

실시예 3 : CuExample 3 Cu 1One CrCr 0.10.1 BaBa 0.04 0.04 oxide로 표시되는 탈수소화 반응용 산화물 촉매의 제조Preparation of oxide catalyst for dehydrogenation reaction represented by oxide

상기 실시예 1과 동일하게 실시하되, 질산바륨 2.091 g(8.000 mmol)을 첨가하여 Cu : Cr : Ba의 몰비가 1 : 0.1 : 0.04인 탈수소화 반응용 산화물 촉매를 제 조하였다.In the same manner as in Example 1, 2.091 g (8.000 mmol) of barium nitrate was added to prepare an oxide catalyst for a dehydrogenation reaction having a molar ratio of Cu: Cr: Ba of 1: 0.1: 0.04.

실시예 4 : CuExample 4 Cu 1One CrCr 0.10.1 KK 0.01 0.01 oxide로 표시되는 탈수소화 반응용 산화물 촉매의 제조Preparation of oxide catalyst for dehydrogenation reaction represented by oxide

상기 실시예 1과 동일하게 실시하되, 질산바륨 대신 질산칼륨(KNO3) 0.2022 g(2.000 mmol)을 첨가하여, Cu : Cr : K의 몰비가 1 : 0.1 : 0.01인 탈수소화 반응용 산화물 촉매를 제조하였다.In the same manner as in Example 1, 0.2022 g (2.000 mmol) of potassium nitrate (KNO 3 ) was added instead of barium nitrate to obtain an oxide catalyst for a dehydrogenation reaction having a molar ratio of Cu: Cr: K of 1: 0.1: 0.01. Prepared.

실시예 5 : CuExample 5 Cu 1One CrCr 0.10.1 KK 0.03 0.03 oxide로 표시되는 탈수소화 반응용 산화물 촉매의 제조Preparation of oxide catalyst for dehydrogenation reaction represented by oxide

상기 실시예 4와 동일하게 실시하되, 질산칼륨 0.6066 g(6.000 mmol)을 첨가하여, Cu : Cr : K의 몰비가 1 : 0.1 : 0.03인 탈수소화 반응용 산화물 촉매를 제조하였다.In the same manner as in Example 4, but 0.6066 g (6.000 mmol) of potassium nitrate was added to prepare an oxide catalyst for the dehydrogenation reaction with a molar ratio of Cu: Cr: K of 1: 0.1: 0.03.

실시예 6 : 알루미나(AlExample 6 Alumina (Al 22 OO 33 )에 담지된 Cu) Supported Cu 1One CrCr 0.10.1 BaBa 0.2 0.2 oxide로 표시되는 탈수소화 반응용 산화물 촉매의 제조Preparation of oxide catalyst for dehydrogenation reaction represented by oxide

비이커에 7.248 g(30.00 mmol)의 질산구리와 1.200 g(3.000 mmol)의 질산크롬을 넣은 다음, 54 g의 증류수를 첨가한 후, 교반하고 용해하여 혼합용액을 제조하였다. 이와는 별도로 4.388 g(41.40 mmol)의 탄산나트륨(Na2CO3)에 54 g의 증류수를 첨가한 후, 교반 및 용해하여 탄산나트륨 수용액을 제조하였다. 500 ㎖ 비이커에 상기 혼합용액과 탄산나트륨 수용액을 pH가 8.0±0.1이 되도록 교반하면서 천천히 첨가하였으며, 6.089 g의 알루미나(Al2O3)를 상기 비이커에 첨가하고, 상기 용액의 온도가 55±1℃가 되도록 유지하였다. 생성된 침전물을 여과하고 증류수로 세정하여 100℃에서 12 시간 동안 건조한 후, 400℃에서 5 시간 동안 소성하여, 알루미나에 담지된 구리-크롬 화합물을 얻었다. 상기 알루미나에 담지된 구리-크롬 화합물에 1.568 g(6.000 mmol)의 질산바륨(Ba(NO3)2)을 첨가하여 100℃에서 12 시간 동안 건조한 후, 400℃에서 5 시간 동안 소성하여 Cu : Cr : Ba의 몰비가 1 : 0.1 : 0.2인 알루미나에 담지된 탈수소화 반응용 산화물 촉매를 제조하였다. 그리고, 제조된 촉매는 전체 중량에 대하여, 상기 Cu1Cr0.1Ba0.2 oxide로 표시되는 산화물 촉매 36.7 중량% 및 알루미나 63.3 중량%이다.7.248 g (30.00 mmol) of copper nitrate and 1.200 g (3.000 mmol) of chromium nitrate were added to a beaker, followed by addition of 54 g of distilled water, followed by stirring and dissolving to prepare a mixed solution. Separately, 54 g of distilled water was added to 4.388 g (41.40 mmol) of sodium carbonate (Na 2 CO 3 ), followed by stirring and dissolving to prepare an aqueous sodium carbonate solution. The mixed solution and sodium carbonate aqueous solution were slowly added to a 500 ml beaker with stirring to have a pH of 8.0 ± 0.1, 6.089 g of alumina (Al 2 O 3 ) was added to the beaker, and the temperature of the solution was 55 ± 1 ° C. Was maintained. The resulting precipitate was filtered, washed with distilled water, dried at 100 ° C. for 12 hours, and calcined at 400 ° C. for 5 hours to obtain a copper-chromium compound supported on alumina. 1.568 g (6.000 mmol) of barium nitrate (Ba (NO 3 ) 2 ) was added to the copper-chromium compound supported on the alumina, dried at 100 ° C. for 12 hours, and calcined at 400 ° C. for 5 hours to form Cu: Cr. An oxide catalyst for the dehydrogenation reaction supported on alumina having a molar ratio of: Ba of 1: 0.1: 0.2 was prepared. In addition, the prepared catalyst is 36.7 wt% of an oxide catalyst represented by Cu 1 Cr 0.1 Ba 0.2 oxide and 63.3 wt% of alumina, based on the total weight.

비교예 1 : CuComparative Example 1: Cu 1One CrCr 0.1 0.1 oxide로 표시되는 산화물 촉매의 제조Preparation of oxide catalyst represented by oxide

비이커에 48.32 g(200.0 mmol)의 질산구리와 8.000 g(20.00 mmol)의 질산크롬을 넣은 후, 360 g의 증류수를 첨가한 다음, 교반 및 용해하여 혼합용액을 제조하였다. 이와는 별도로 29.26 g(276.0 mmol)의 탄산나트륨에 360 g의 증류수를 첨가한 후, 교반하고 용해하여 탄산나트륨 수용액을 제조하였다. 1000 ㎖ 비이커에 상기 혼합용액과 탄산나트륨 수용액을 pH가 8.0±0.1이 되도록 교반하면서 천천히 첨가하였고, 온도는 55±1℃가 되도록 유지하였다. 생성된 침전물을 여과하고 증류수로 세정하여 100℃에서 12 시간 동안 건조한 후, 400℃에서 5 시간 동 안 소성하여 Cu : Cr의 몰비가 1 : 0.1인 산화물 촉매를 제조하였다. 48.32 g (200.0 mmol) of copper nitrate and 8.000 g (20.00 mmol) of chromium nitrate were added to a beaker, followed by 360 g of distilled water, followed by stirring and dissolving to prepare a mixed solution. Separately, 360 g of distilled water was added to 29.26 g (276.0 mmol) of sodium carbonate, followed by stirring and dissolving to prepare an aqueous sodium carbonate solution. The mixed solution and sodium carbonate aqueous solution were slowly added to a 1000 ml beaker with stirring to make the pH of 8.0 ± 0.1, and the temperature was maintained at 55 ± 1 ° C. The resulting precipitate was filtered, washed with distilled water, dried at 100 ° C. for 12 hours, and calcined at 400 ° C. for 5 hours to prepare an oxide catalyst having a molar ratio of Cu: Cr: 1: 0.1.

비교예 2 : 알루미나에 담지된 CuComparative Example 2: Cu Supported on Alumina 1One CrCr 0.1 0.1 oxide로 표시되는 산화물 촉매의 제조Preparation of oxide catalyst represented by oxide

7.248 g (30.00 mmol)의 질산구리와 1.200 g (3.000 mmol)의 질산크롬에 54 g의 증류수를 첨가한 후, 교반하여 용해하였다. 이와는 별도로 4.388 g (41.40 mmol)의 탄산나트륨에 54 g의 증류수를 첨가한 후, 교반하여 용해하였다. 500 ㎖ 비이커에 상기 혼합용액과 탄산나트륨 수용액을 pH가 8.0±0.1이 되도록 교반하면서 천천히 첨가하였으며, 6.089 g의 알루미나(Al2O3)를 상기 비이커에 첨가하고, 상기 용액의 온도가 55±1℃가 되도록 유지하였다. 생성된 침전물을 여과하고 증류수로 세정하여 100℃에서 12시간 동안 건조한 후, 400℃에서 5시간 동안 소성하여 Cu : Cr의 몰비가 1 : 0.1인 알루미나에 담지된 산화물 촉매를 제조하였다. 54 g of distilled water was added to 7.248 g (30.00 mmol) of copper nitrate and 1.200 g (3.000 mmol) of chromium nitrate, followed by stirring to dissolve. Separately, 54 g of distilled water was added to 4.388 g (41.40 mmol) of sodium carbonate, followed by stirring to dissolve it. The mixed solution and sodium carbonate aqueous solution were slowly added to a 500 ml beaker with stirring to have a pH of 8.0 ± 0.1, 6.089 g of alumina (Al 2 O 3 ) was added to the beaker, and the temperature of the solution was 55 ± 1 ° C. Was maintained. The resulting precipitate was filtered, washed with distilled water, dried at 100 ° C. for 12 hours, and calcined at 400 ° C. for 5 hours to prepare an oxide catalyst supported on alumina having a Cu: Cr molar ratio of 1: 0.1.

실험예 1 : 촉매의 전환율 및 선택도 비교 분석 실험Experimental Example 1 Comparative Analysis of Conversion Rate and Selectivity of Catalysts

상기 실시예 및 비교예에서 제조된 각각의 촉매를, 파쇄한 후, 425 ~ 850 ㎛ 크기로 분별하였다. 분별된 촉매 0.50 g을 희석제인 씨샌드(sea sand) 1.5 g과 교반한 후, 외경 0.5 인치 크기의 스테인레스 스틸 반응기에 충진하고, 5 몰%의 H2/Ar 혼합기체 분위기 하에서, 100 ㎖/분의 유속으로 3 시간 동안 200℃에서 환원하였다. 그리고, 270℃에서 에탄올로부터 아세트알데하이드를 합성하는 탈수소화 반응을 수행하였다. 이때, 에탄올(95 부피%)은 액체 펌프를 사용하여 0.15 ㎖/분의 유속으로 에탄올 증기 상태로 스테인레스 스틸 반응기에 공급하였다. 상기 생성물을 기체 크로마토그래피(Gas Chromatography)로 분석하여 그 결과를 하기 표 1에 나타내었다.Each catalyst prepared in Examples and Comparative Examples, after crushing, was fractionated to a size of 425 ~ 850 ㎛. 0.50 g of the fractionated catalyst was stirred with 1.5 g of diluent sea sand, and then charged into a stainless steel reactor having an outer diameter of 0.5 inch, and 100 mL / min under a 5 mol% H 2 / Ar mixed gas atmosphere. It was reduced at 200 ℃ for 3 hours at a flow rate of. And the dehydrogenation reaction which synthesize | combines acetaldehyde from ethanol was performed at 270 degreeC. At this time, ethanol (95% by volume) was fed to the stainless steel reactor in ethanol vapor state at a flow rate of 0.15 ml / min using a liquid pump. The product was analyzed by gas chromatography (Gas Chromatography) and the results are shown in Table 1 below.

구분division 전환율(%)% Conversion 선택도(%)Selectivity (%) 실시예 1Example 1 3939 9292 실시예 2Example 2 3939 9494 실시예 3Example 3 3232 9595 실시예 4Example 4 3939 9696 실시예 5Example 5 3333 9797 실시예 6Example 6 4242 9292 비교예 1Comparative Example 1 3939 8989 비교예 2Comparative Example 2 3939 8181

표 1에 나타난 바와 같이, 상기 실시예 1, 2, 3 및 비교예 1에서 제조된 촉매의, 270℃에서 에탄올로부터 아세트알데하이드를 합성하는 반응에서의 전환율 및 선택도를 비교한 결과, 바륨 함량이 증가하면, 전환율을 그대로 유지하면서 선택도가 증가하는 것을 확인할 수 있다. As shown in Table 1, as a result of comparing the conversion and selectivity of the catalyst prepared in Examples 1, 2, 3 and Comparative Example 1 in the reaction of synthesizing acetaldehyde from ethanol at 270 ℃, barium content was Increasing, it can be seen that the selectivity increases while maintaining the conversion rate.

그리고, 상기 실시예 4, 5 및 비교예 1에서 제조된 촉매의, 270℃에서 에탄올로부터 아세트알데하이드를 합성하는 반응에서의 전환율 및 선택도를 비교한 결과, 칼륨 함량이 증가하면, 전환율을 그대로 유지하면서 선택도가 증가하는 것을 확인할 수 있다. And, as a result of comparing the conversion and selectivity of the catalyst prepared in Examples 4, 5 and Comparative Example 1 in the reaction of synthesizing acetaldehyde from ethanol at 270 ℃, if the potassium content is increased, the conversion is maintained as it is As you can see the selectivity increases.

그리고, 지지체에 담지된 상기 실시예 6 및 비교예 2 촉매의 경우, 270℃에서 에탄올로부터 아세트알데하이드를 합성하는 반응에서의 전환율 및 선택도를 비교한 결과, 전환율과 선택도가 실시예 6의 촉매가 더 우수함을 확인할 수 있다.And, in the case of the catalyst of Example 6 and Comparative Example 2 supported on the support, the conversion and selectivity in the reaction of synthesizing acetaldehyde from ethanol at 270 ℃ as a result, the conversion and selectivity of the catalyst of Example 6 It can be seen that better.

Claims (8)

구리, 크롬 및 알칼리 금속 또는 알칼리 토금속을 1 : 0.01 ~ 0.5 : 0.001 ~ 0.25 몰비로 포함하는 것을 특징으로 하는 에탄올로부터 아세트알데하이드를 합성하기 위한 탈수소화 반응용 산화물 촉매. An oxide catalyst for dehydrogenation reaction for synthesizing acetaldehyde from ethanol, comprising copper, chromium and alkali metal or alkaline earth metal in a molar ratio of 1: 0.01 to 0.5: 0.001 to 0.25. 제 1 항에 있어서, 상기 알칼리 금속은 Na 또는 K을 포함하며, 상기 알칼리 토금속은 Mg, Ca, Sr, 또는 Ba을 포함하고 있는 것을 특징으로 하는 탈수소화 반응용 산화물 촉매.The oxide catalyst for dehydrogenation of claim 1, wherein the alkali metal comprises Na or K, and the alkaline earth metal includes Mg, Ca, Sr, or Ba. 제 1 항에 있어서, Al2O3, SiO2, ZrO2, CeO2 및 TiO2 중에서 선택된 1 종 이상의 지지체를 더 포함하고 있는 것을 특징으로 하는 탈수소화 반응용 산화물 촉매.The oxide catalyst for dehydrogenation of claim 1, further comprising at least one support selected from Al 2 O 3 , SiO 2 , ZrO 2 , CeO 2, and TiO 2 . 제 3 항에 있어서, 상기 지지체를 촉매 전체 중량에 대하여, 5 ~ 80 중량%를 포함하고 있는 것을 특징으로 하는 탈수소화 반응용 산화물 촉매.The oxide catalyst for dehydrogenation reaction according to claim 3, wherein the support contains 5 to 80% by weight based on the total weight of the catalyst. 제 1 항 내지 제 4 항 중에서 선택된 어느 한 항에 있어서, 상기 촉매는 에탄올로부터 아세트알데하이드를 합성 시, 선택도가 90% 이상인 것을 특징으로 하는 탈수소화 반응용 산화물 촉매.The oxide catalyst for dehydrogenation according to any one of claims 1 to 4, wherein the catalyst has a selectivity of 90% or more when synthesizing acetaldehyde from ethanol. 구리 전구체와 크롬 전구체에 증류수를 첨가한 후, 교반 및 용해하여 혼합용액을 제조하는 1 단계; Adding distilled water to the copper precursor and the chromium precursor, followed by stirring and dissolving to prepare a mixed solution; 상기 혼합용액에 탄산나트륨 수용액을 첨가 및 교반하여, 구리-크롬 화합물을 공침하는 2 단계; Adding and stirring an aqueous sodium carbonate solution to the mixed solution to co-precipitate a copper-chromium compound; 상기 구리-크롬 화합물을 소성하는 3 단계; Calcining the copper-chromium compound; 상기 소성한 구리-크롬 화합물에 알칼리 금속 화합물 또는 알칼리 토금속 화합물을 첨가하여 혼합물을 제조하는 4 단계; 및Adding an alkali metal compound or an alkaline earth metal compound to the calcined copper-chromium compound to prepare a mixture; And 상기 혼합물을 소성하는 5 단계;Calcining the mixture; 를 포함하는 것을 특징으로 하는 탈수소화 반응용 산화물 촉매의 제조방법.Method for producing an oxide catalyst for dehydrogenation reaction comprising a. 제 6 항에 있어서, 상기 2 단계는 상기 혼합용액에 탄산나트륨 수용액 외에 Al2O3, SiO2, ZrO2, CeO2 및 TiO2 중에서 선택된 1 종 이상의 지지체를 더 첨가하는 것을 특징으로 하는 탈수소화 반응용 산화물 촉매의 제조방법.The dehydrogenation reaction of claim 6, wherein the step 2 further comprises adding at least one support selected from Al 2 O 3 , SiO 2 , ZrO 2 , CeO 2 and TiO 2 in addition to the aqueous sodium carbonate solution. Method for producing an oxide catalyst for use. 제 6 항에 있어서, 상기 구리 전구체는 질산구리이고, 상기 크롬 전구체는 질산크롬인 것을 특징으로 하는 탈수소화 반응용 산화물 촉매의 제조방법.The method of claim 6, wherein the copper precursor is copper nitrate, and the chromium precursor is chromium nitrate.
KR1020090090691A 2009-09-24 2009-09-24 Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same KR101086730B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090090691A KR101086730B1 (en) 2009-09-24 2009-09-24 Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090090691A KR101086730B1 (en) 2009-09-24 2009-09-24 Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same

Publications (2)

Publication Number Publication Date
KR20110032929A KR20110032929A (en) 2011-03-30
KR101086730B1 true KR101086730B1 (en) 2011-11-25

Family

ID=43937601

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090090691A KR101086730B1 (en) 2009-09-24 2009-09-24 Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same

Country Status (1)

Country Link
KR (1) KR101086730B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105521790B (en) * 2014-10-22 2017-11-24 中国石油化工股份有限公司 A kind of preprocess method of catalyst for dehydrogenation of low-carbon paraffin
RU2644770C1 (en) * 2016-12-19 2018-02-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Catalyst and a method for production of acetaldehyde with its use
KR102545704B1 (en) * 2020-03-02 2023-06-20 한화솔루션 주식회사 Dehydrogenation catalyst, preparation method of the catalyst, and preparation method of an alkene using the catalyst
US11890599B2 (en) * 2021-10-18 2024-02-06 ExxonMobil Technology and Engineering Company Catalyst for oxidative olefin generation from paraffins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977750A (en) 1931-12-07 1934-10-23 Carbide & Carbon Chem Corp Process for making acetaldehyde and a catalyst therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977750A (en) 1931-12-07 1934-10-23 Carbide & Carbon Chem Corp Process for making acetaldehyde and a catalyst therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
응용화학, 1997

Also Published As

Publication number Publication date
KR20110032929A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4654516B2 (en) Ester production catalyst and ester production method
ES2404534T3 (en) Process for the preparation of 1,6-hexandiol by hydrogenation of oligo- and polyesters
US9051234B2 (en) Method for producing alkanediol
US10077227B2 (en) Method for synthesizing an alkenoic acid
TWI725347B (en) Preparation method of 2,5-furandicarboxylic acid
KR101086730B1 (en) Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same
CN103769149A (en) Catalyst for preparing propenoic acid through oxidation of propenal, as well as preparation and application of catalyst
KR101270678B1 (en) Copper-based catalyst for the conversion of ethanol to acetaldehyde by dehydrogenation and preparing method of the same
KR101774543B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
Chornaja et al. Selective oxidation of glycerol to glyceraldehyde over novel monometallic platinum catalysts
KR101205897B1 (en) The noble metal based catalyst supported on complex metal oxide and the method for the producing of 1,2-propanediol
JP6245605B2 (en) Process for producing .ALPHA.,. BETA.-unsaturated carbonyl compounds.
KR20040077781A (en) Method for Producing Toluol Derivatives
WO2016099066A1 (en) Catalyst for glycerin dehydration, preparation method therefor, and acrolein preparation method using catalyst
KR101810328B1 (en) Catalyst for direct oxidation of propylene to propylene oxide, preparing method same and preparing method of propylene oxide by direct oxidation of propylene using same
JP2022541096A (en) Method for preparing glycolic acid
CN113908828B (en) Bismuth molybdate catalyst for preparing cyclohexene oxide by cyclohexene epoxidation, and preparation method and application thereof
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JPS62258335A (en) Production of methyl isobutyl ketone
WO2020130080A1 (en) Method for producing p-quinones
RU2564257C1 (en) Method of producing bis(2-hydroxyphenyl)ether of oligoethylene glycol in monohydrate form
JPH08301815A (en) Production of glyoxylic acid ester
JP2005087861A (en) Alcohol oxidation catalyst and manufacturing method for aldehyde or ketone using the catalyst
KR101436146B1 (en) Catalyst system for producing acrolein from glycerol and the method of producing acrolein by using said catalyst system
JP2005349257A (en) Method of manufacturing methacrylic acid ester

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141023

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181030

Year of fee payment: 8