WO2020130080A1 - Method for producing p-quinones - Google Patents

Method for producing p-quinones Download PDF

Info

Publication number
WO2020130080A1
WO2020130080A1 PCT/JP2019/049847 JP2019049847W WO2020130080A1 WO 2020130080 A1 WO2020130080 A1 WO 2020130080A1 JP 2019049847 W JP2019049847 W JP 2019049847W WO 2020130080 A1 WO2020130080 A1 WO 2020130080A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
ring
compound
formula
alkyl
Prior art date
Application number
PCT/JP2019/049847
Other languages
French (fr)
Japanese (ja)
Inventor
寿文 土肥
秀泰 知名
Original Assignee
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館 filed Critical 学校法人立命館
Priority to JP2020561511A priority Critical patent/JP7442826B2/en
Publication of WO2020130080A1 publication Critical patent/WO2020130080A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/02Quinones with monocyclic quinoid structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/10Quinones the quinoid structure being part of a condensed ring system containing two rings
    • C07C50/12Naphthoquinones, i.e. C10H6O2

Definitions

  • the present invention relates to a method for producing p-quinones.
  • a heavy metal such as silver oxide (AgO) or ammonium cerium (IV) nitrate ((NH 4 ) 2 Ce(NO 3 ) 6 ) as an oxidizing agent.
  • a non-metal type oxidation method is required because it gives an environmental load from the viewpoint of treatment. Under these circumstances, a non-metal type hypervalent iodine oxidizing agent has been developed in recent years and is currently used in the synthesis of p-quinone.
  • Non-Patent Document 1 a method of synthesizing from phenols
  • Non-Patent Document 2 a method of synthesizing from 1,4-dimethoxybenzenes
  • FIG. 1 of Non-Patent Document 2 This is because two methoxys have been previously introduced into the 1,4-dimethoxybenzenes at the para-position, and by-products such as o-quinone are unlikely to occur.
  • 1,4-dimethoxybenzenes are disubstituted products in which methoxy is introduced at the para-position in advance, and therefore their synthesis is not as simple as that of phenols.
  • the former method using phenols is mainly used.
  • Non-patent documents 3 and 4 a method for synthesizing p-quinone using anisole as a raw material is known (Non-patent documents 3 and 4).
  • o-quinone is by-produced, it is not easy to purify p-quinone, and the yield is low.
  • the yield of the method of Non-Patent Document 4 is low, and a by-product in which the benzene ring is opened becomes a main product. Therefore, these methods are rarely used.
  • R 1 represents alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl
  • R 2 and R 3 are the same or different and each represents a hydrogen atom or an organic functional group, and R 2 and R 3 may be bonded to each other to form a ring, and the ring has a substituent on the ring.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an organic functional group, and R 4 and R 5 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
  • R 6 represents a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen.
  • Iodine compounds A method comprising the step of oxidizing in the presence of Item 2.
  • Item 2. The method according to Item 1, wherein the oxidizing step is performed under conditions in which hydrogen peroxide or hydrogen peroxide and a metal catalyst are further present.
  • Item 3. Item 3.
  • Item 4. Item 4. The method according to any one of Items 1 to 3, wherein R 1 is lower alkyl.
  • R 2 and R 3 are the same or different and are a hydrogen atom, halogen, alkyl or alkoxy, or R 2 and R 3 are bonded to each other to form a benzene ring
  • R 4 and R 5 are the same or different and are a hydrogen atom, halogen, alkyl or alkoxy, or R 4 and R 5 are bonded to each other to form a benzene ring, Item 5.
  • p-quinones can be produced from the compound of the above formula (I). Further, according to the present invention, p-quinones can be produced from the compound of the above formula (I) even if the reaction temperature is in the normal temperature range (for example, 10°C to 30°C). Furthermore, according to the present invention, the production of by-products, o-quinones, is suppressed. Further, according to the present invention, lignins can be converted into useful low molecular weight compounds such as the compound of the above formula (II).
  • FIG. 1 is a graph showing the yield (%) of 2-methoxy-1,4-benzoquinone when the solvent is acetonitrile, a mixed solution of acetonitrile and water mixed at various volume ratios, or water. (Test Example 2).
  • the horizontal axis represents the water content of the solvent, and the vertical axis represents the yield.
  • R 1 represents alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl
  • R 2 and R 3 are the same or different and each represents a hydrogen atom or an organic functional group, and R 2 and R 3 may be bonded to each other to form a ring, and the ring has a substituent on the ring.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an organic functional group, and R 4 and R 5 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
  • R 6 represents a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen.
  • alkyl includes, for example, C1-C12 alkyl having a linear, branched or cyclic structure, preferably C1-C6 alkyl, more preferably C1-C4 alkyl, particularly preferably Is C1-C3 alkyl.
  • linear or branched alkyl includes methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl, n-pentyl, neopentyl, n.
  • alkyl having a cyclic structure examples include cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl and the like.
  • alkyl more preferably linear C1-C6 alkyl (methyl, ethyl, 1-propyl, 1-butyl, n-pentyl, n-hexyl), 2-propyl, 2-butyl or t-.
  • Butyl more preferably linear C1-C4 alkyl, particularly preferably methyl or ethyl.
  • examples of the “lower alkyl” include C1-C6 alkyl having a linear, branched or cyclic structure, preferably C1-C4 alkyl, more preferably C1-C3 alkyl.
  • linear or branched lower alkyl includes methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl, n-pentyl, neopentyl, Examples thereof include n-hexyl and isohexyl
  • examples of the lower alkyl having a cyclic structure include cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl and the like.
  • Preferred are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, t-but
  • examples of the “organic functional group” include alkyl, hydroxyalkyl, halogenoalkyl, hydroxycycloalkyl, cycloalkyl, aralkyl, alkenyl, alkynyl, alkoxy, halogenoalkoxy, alkylthio, mono- or dialkylamino, acyl, carbamoyl, Examples thereof include phenyl and naphthyl.
  • alkyl, hydroxyalkyl, hydroxycycloalkyl, cycloalkyl, alkoxy, phenyl, etc. and more preferred are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl. , Methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, t-butoxy and the like.
  • examples of the “halogen” include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and preferably a bromine atom and an iodine atom.
  • examples of “hydroxyalkyl” include the above-mentioned alkyl having at least one (eg, one or two) hydroxy. Specifically, hydroxymethyl, 2-hydroxyethyl, 1-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 1-methyl-2-hydroxyethyl, 4-hydroxybutyl, 2,2-dimethyl-2- Hydroxyethyl, 5-hydroxypentyl, 3,3-dimethyl-3-hydroxypropyl, 6-hydroxyhexyl, dihydroxymethyl, 1,2-dihydroxyethyl, 2,3-dihydroxypropyl, 3,4-dihydroxybutyl, 4, Examples thereof include 5-dihydroxypentyl, 5,6-dihydroxyhexyl, etc., preferably an alkyl having one hydroxy, and more preferably a lower alkyl having one hydroxy.
  • the “halogenoalkyl” is, for example, a C1-C6 linear or branched alkyl having 1 to 13 halogens (halogeno C1-C6 alkyl), and specifically, fluoromethyl, difluoro Examples include halogeno C1-C6 alkyl such as methyl, trifluoromethyl, trichloromethyl, fluoroethyl, 1,1,1-trifluoroethyl, monofluoro-n-propyl, perfluoro-n-propyl and perfluoroisopropyl.
  • halogeno C1-C4 alkyl is preferably halogeno C1-C4 alkyl, more preferably halogeno C1-C4 alkyl having 1 to 7 halogen atoms, and further preferably halogeno C1-C4 alkyl having 1 to 3 halogen atoms.
  • examples of “hydroxycycloalkyl” include the above C3-C7 cyclic alkyl having at least one (eg, one or two) hydroxy. Specifically, 1-hydroxycyclopropyl, 2-hydroxycyclopropyl, 1-hydroxycyclobutyl, 3-hydroxycyclobutyl, 1-hydroxycyclopentyl, 3,4-dihydroxycyclopentyl, 1-hydroxycyclohexyl, 4-hydroxycyclohexyl , 1-hydroxycycloheptyl and the like, and preferably hydroxycycloalkyl having one hydroxy.
  • examples of “cycloalkyl-alkyl” include C1-C4 alkyl substituted with C3-C7 cycloalkyl such as cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl and cycloheptylmethyl.
  • the number of cycloalkyl contained in alkyl is 1 or more, preferably 1 or 2, and more preferably 1.
  • aralkyl examples include C7-C13 aralkyl such as benzyl, phenethyl, naphthylmethyl and fluorenylmethyl.
  • alkenyl means an unsaturated hydrocarbon group which may be linear, branched or cyclic and has at least one double bond (eg, 1 or 2), and examples thereof include Vinyl, allyl, 1-propenyl, 2-methyl-2-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, isobutenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-methyl-2 And C2-C6 alkenyl such as -butenyl, 3-methyl-2-butenyl, 5-hexenyl, 1-cyclopentenyl, 1-cyclohexenyl, 3-methyl-3-butenyl and the like.
  • alkynyl means an unsaturated hydrocarbon group which may be linear, branched or cyclic and has at least one triple bond (eg, 1 or 2), for example, ethynyl.
  • C2-C6 alkynyl such as 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl and 1-methyl-2-propynyl.
  • alkoxy includes, for example, C1-C12 alkoxy having a straight chain, branched or cyclic structure, preferably C1-C8 alkoxy, more preferably C1-C6 alkoxy, and further Preferred is C1-C4 alkoxy, and particularly preferred is C1-C3 alkoxy.
  • linear or branched alkoxy includes methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, t-butoxy, n-pentyloxy, neopentyl. Oxy, n-hexyloxy, isohexyloxy, 3-methylpentyloxy and the like can be mentioned.
  • alkoxy having a cyclic structure examples include cyclopropoxy, cyclopropylmethoxy, cyclobutyroxy, cyclobutylmethoxy, cyclopentyloxy, cyclopentylmethoxy, cyclohexyloxy, cyclohexylmethoxy, cyclohexylethoxy and the like.
  • Preferred are methoxy, ethoxy, 2-propoxy, t-butoxy, cyclopropoxy and the like.
  • the “halogenoalkoxy” is a C1-C6 linear or branched alkoxy having 1 to 13 halogen atoms (halogenoC1-C6 alkoxy), for example, fluoromethoxy, difluoromethoxy, trifluoro.
  • Halogeno C1-C6 alkoxy such as methoxy, trichloromethoxy, fluoroethoxy, 1,1,1-trifluoroethoxy, monofluoro-n-propoxy, perfluoro-n-propoxy, perfluoro-isopropoxy, preferably halogeno C1- C4 alkoxy is mentioned, more preferably halogeno C1-C4 alkoxy having 1 to 7 halogen atoms.
  • alkylthio may be linear, branched or cyclic and is, for example, methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, n-pentylthio.
  • C1-C6 alkylthio such as isopentylthio, hexylthio, cyclopentylthio and cyclohexylthio.
  • “monoalkylamino” includes, for example, methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, isobutylamino, tert-butylamino, n-pentylamino, isopentylamino, hexyl. Mention may be made of amino mono-substituted with straight chain or branched C1-C6 alkyl such as amino.
  • dialkylamino includes, for example, dimethylamino, diethylamino, di(n-propyl)amino, diisopropylamino, di(n-butyl)amino, diisobutylamino, di(tert-butyl)amino, di(n-butyl)amino.
  • -Pentyl)amino diisopentylamino, dihexylamino, methylethylamino, methylisopropylamino and the like, which may be the same or different linear, branched or cyclic C1-C6 alkyl disubstituted amino.
  • acyl means alkylcarbonyl or arylcarbonyl.
  • alkylcarbonyl includes, for example, methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, isobutylcarbonyl, tert-butylcarbonyl, n-pentylcarbonyl, isopentylcarbonyl, hexylcarbonyl.
  • straight-chain, branched or cyclic (C1-C8 alkyl)carbonyl such as cyclopentylcarbonyl and cyclohexylcarbonyl.
  • arylcarbonyl examples include phenylcarbonyl, naphthylcarbonyl, fluorenylcarbonyl, anthrylcarbonyl, biphenylylcarbonyl, tetrahydronaphthylcarbonyl, chromanylcarbonyl, indanylcarbonyl, phenanthrylcarbonyl and the like ( C6-C13 aryl)carbonyl.
  • acyloxy means alkylcarbonyloxy or arylcarbonyloxy.
  • alkylcarbonyloxy includes, for example, methylcarbonyloxy, ethylcarbonyloxy, n-propylcarbonyloxy, isopropylcarbonyloxy, n-butylcarbonyloxy, isobutylcarbonyloxy, tert-butylcarbonyloxy, n-pentyl.
  • Examples thereof include linear or branched (C1-C6 alkyl)carbonyloxy groups such as carbonyloxy, isopentylcarbonyloxy and hexylcarbonyloxy.
  • arylcarbonyloxy examples include phenylcarbonyloxy, naphthylcarbonyloxy, fluorenylcarbonyloxy, anthrylcarbonyloxy, biphenylylcarbonyloxy, tetrahydronaphthylcarbonyloxy, chromanylcarbonyloxy, 2,3. (C6-C13 aryl)carbonyloxy groups such as -dihydro-1,4-dioxanaphthalenylcarbonyloxy, indanylcarbonyloxy and phenanthrylcarbonyloxy.
  • the compound represented by the formula (I) is a raw material of the compound represented by the formula (II) together with lignins.
  • OR 1 and R 6 in the formula (I) are converted into oxo by oxidation to produce a compound represented by the formula (II).
  • R 1 is alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl.
  • the alkyl may be linear or branched lower alkyl, more preferably methyl, ethyl, 1-propyl, 2-propyl, 1-butyl or t-butyl, even more preferably It is methyl or ethyl.
  • R 1 is “1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl”
  • —OR 1 means a group represented by the following formula (in the formula, * Indicates a bond that bonds to the carbon atom of the benzene ring in formula (I)).
  • R 2 and R 3 are the same or different and each is a hydrogen atom or an organic functional group.
  • the organic functional group is as described above, preferably a hydrogen atom, lower alkyl or C1-C6 alkoxy.
  • R 2 and R 3 may be bonded to each other to form a ring, and the ring may have a substituent on the ring. Examples of the ring include a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated carbocycle and a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated heterocycle.
  • the monocyclic saturated or unsaturated carbocycle is, for example, a 3- to 6-membered carbocycle, and specifically, benzene, cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, cyclohexene, cyclo Hexadiene and the like can be mentioned, with preference given to benzene, cyclopentane and cyclohexane.
  • the bicyclic saturated or unsaturated carbocyclic ring is, for example, an 8- to 10-membered carbocyclic ring, and specifically includes naphthalene, dihydronaphthalene, tetrahydronaphthalene, perhydronaphthalene, pentalene, perhydropentalene, azulene, perylene.
  • Examples include hydroazulene, indene, perhydroindene, indane and the like.
  • it is a bicyclic carbon ring having a benzene ring, and examples thereof include naphthalene, dihydronaphthalene, indene, and indane.
  • the saturated or unsaturated heterocycle contains 1 to 5 heteroatoms (preferably 1 or 2 nitrogen atoms) selected from oxygen atom, nitrogen atom and sulfur atom as ring-constituting atoms.
  • the monocyclic saturated or unsaturated heterocycle is, for example, a 3- to 8-membered heterocycle, and specifically, pyrrole, imidazole, triazole, tetrazole, pyrazole, furan, thiophene, oxazole, isoxazole, thiazole, Unsaturated heterocycles such as isothiazole, furazan, oxadiazole, thiadiazole, pyridine, pyrazine, pyrimidine, pyridazine, azepine, pyran, thiopyran, oxepin, thiepine, oxazine, oxadiazine, oxazepine, oxadiazepine, thiazine, thiazinane, thiazepine, thiadiazepine Aziridine, azetidine, thiirane, oxetane, azetidine,
  • the bicyclic saturated or unsaturated heterocycle is, for example, an 8- to 10-membered heterocycle, and specifically, indole, isoindole, indolizine, benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, indazole.
  • Quinoline isoquinoline, quinolidine, purine, phthalazine, pteridine, naphthyridine, quinoxaline, quinazoline, cinnoline, benzoxazole, benzothiazole, benzimidazole, benzodioxole, benzooxathiol, chromene, benzofurazan, benzothiadiazole, benzotriazole, dihydrobenzofuran , Dihydrobenzothiophene, dihydroisobenzothiophene, dihydroisobenzofuran, dihydroindazole, dihydroquinoline, tetrahydroquinoline, dihydroisoquinoline, tetrahydroisoquinoline, dihydrophthalazine, tetrahydrophthalazine, dihydronaphthyridine, tetrahydronaphthyridine, dihydroquinoxaline, tetrahydro
  • the ring to which R 2 and R 3 are bonded may have a substituent on the ring.
  • the substituents include halogen, cyano, nitro, alkyl, hydroxyalkyl, halogenoalkyl, hydroxycycloalkyl, cycloalkyl, aralkyl, alkenyl, alkynyl, alkoxy, halogenoalkoxy, alkylthio, mono- or dialkylamino, acyl, carboxy, carbamoyl. , Phenyl, naphthyl and the like.
  • alkyl, hydroxyalkyl, hydroxycycloalkyl, cycloalkyl, alkoxy, phenyl, etc. and more preferred are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl. , Methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, t-butoxy and the like.
  • the number of substituents on the ring is, for example, 1 to 5, preferably 1 to 3, and more preferably 1 or 2.
  • R 4 and R 5 are the same or different and each is a hydrogen atom or an organic functional group.
  • the organic functional group is as described above.
  • R 4 and R 5 may be bonded to each other to form a ring, and the ring may have a substituent on the ring.
  • the ring include a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated carbocycle, and a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated heterocycle.
  • the substituents are the same as those described for R 2 and R 3 .
  • R 6 is a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen, preferably a hydrogen atom and hydroxy.
  • R 1 is lower alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl
  • R 6 is a hydrogen atom
  • R 2 and R 3 are bonded to each other and are unsubstituted.
  • a compound which is a benzene ring and R 4 and R 5 are the same or different and is a hydrogen atom, lower alkyl or lower alkoxy; or R 1 is lower alkyl or 1-(3,4-dimethoxyphenyl)-1,3- Dihydroxy-2-propyl, R 6 is a hydrogen atom, at least one of R 2 , R 3 , R 4 and R 5 is a hydrogen atom, and the remaining groups are lower alkyl or lower alkoxy.
  • R 1 is methyl, ethyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl
  • R 6 is a hydrogen atom
  • R 2 and R 3 are substituted with one another
  • R 1 is methyl, ethyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl
  • R 6 is a hydrogen atom
  • at least one of R 2 , R 3 , R 4 and R 5 is a hydrogen atom
  • the remaining group is methyl, ethyl, methoxy or ethoxy
  • the remaining group is When there are plural compounds, they may be the same or different; Is.
  • the raw material in the present invention may be lignins.
  • Lignin is a major constituent of the cell wall of plants, and a large amount of it is generated as a by-product in the papermaking process, so it is desired to effectively utilize it.
  • monolignol is a polymer obtained by polymerizing a lignin monomer called monolignol.
  • Monolignol is a p-hydroxycinnamic alcohol whose basic skeleton is a phenylpropane unit (C6-C3 unit), and coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol are typical.
  • the monomers are bound to each other by an ether bond and a carbon-carbon bond, of which ⁇ -O-4 bonds account for about 50%.
  • the lignins have a structure unique to lignin.
  • it refers to a structure having a structure unique to lignin such as a structure in which the above-mentioned monomers are bonded or a structure mainly having a ⁇ -O-4 bond as an inter-monomer bond.
  • It may be a lignin derivative that has been modified, modified, or reduced in molecular weight. Examples of lignins are those partially having the structures shown below.
  • lignins examples include lignosulfonic acid and craft lignin. Lignosulfonic acid is preferred.
  • the compound represented by the formula (I) or lignin is converted into the compound represented by the formula (II) by oxidizing the compound by a predetermined method.
  • R 2, R 3 in formula (II), R 4 and R 5 are the same as R 2, R 3, R 4 and R 5 in the formula (I).
  • the compound represented by formula (I) or lignin is oxidized in the presence of a persulfate and an organic iodine compound in a suitable solvent.
  • the organic iodine compound may be a hypervalent iodine catalyst or its precursor.
  • the raw material is converted to p-quinone by treating the raw material with a hypervalent iodine catalyst having an oxidizing action or a precursor thereof and a persulfate in a solvent. At this time, the hypervalent iodine catalyst is reduced and converted into a precursor. The precursor is oxidized by persulfate and converted to a hypervalent iodine catalyst.
  • reaction process formula of one embodiment of the present invention is as follows: 2-iodoxobenzoic acid (IBA), which is a hypervalent iodine catalyst, oxidizes methoxybenzene, which is a raw material, and is itself reduced to give a precursor. It is converted to 2-iodobenzoic acid (2-IB), which is the body, and 2-IB is oxidized by oxone and converted to IBA.
  • IBA 2-iodoxobenzoic acid
  • 2-IB 2-iodobenzoic acid
  • the present inventor tested the organic iodine compound in the absence of persulfate, and as a result, the yield of p-quinones was low. Therefore, persulfate oxidizes the precursor and converts it into a hypervalent iodine catalyst. It is possible that p-quinones are produced not only by the action but also by some action in the oxidation of the raw material.
  • a solvent selected from water and a mixed solvent of water and an organic solvent is used in the oxidation step.
  • water water or water in a mixed solvent
  • water is important in terms of dissolving oxone and introducing an oxygen atom at the p-position.
  • the solvent a mixed solvent of water and an organic solvent is preferable.
  • the mixing ratio (volume ratio) is not particularly limited as long as the target product can be produced, but for example, the organic solvent/water is 85/15 to 0/100, preferably 70/30 to 50/50.
  • organic solvent in the mixed solvent examples include tetrahydrofuran (THF), ether solvents such as dioxane and dimethoxymethane, hydrocarbon solvents such as benzene, N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP) and acetonitrile.
  • Aprotic solvent such as methanol, ethanol, tert-butyl alcohol, 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) And the like. Two or more kinds of these solvents may be mixed and used at an appropriate ratio.
  • the oxidation step uses at least one persulfate salt selected from monopotassium peroxomonosulfate and oxone.
  • Monopotassium peroxomonosulfate is a monopotassium salt of peroxomonosulfate (H 2 SO 5 ) and is represented by the chemical formula of KHSO 5 .
  • Oxone is a registered trademark and is represented by the chemical formula of 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4 .
  • both may be mixed and used at an appropriate ratio.
  • the mixing ratio is, for example, monopotassium peroxomonosulfate:oxone 1:95 to 99:1 (molar ratio).
  • a preferred persulfate is oxone.
  • the amount of the persulfate used is not particularly limited as long as it can produce the desired product, but is usually 2 mol or more, preferably 2 mol to 10 mol, and more preferably 3 mol to 10 mol with respect to 1 mol of the raw material.
  • the organic iodine compound used in the oxidation step has a compound in which an iodine atom is bonded to a benzene ring and an acidic group, carboxy or sulfo, is bonded to the ortho position (the carboxy or sulfo is bonded to the iodine atom to form (Including the case of forming a member ring) and an alkali metal salt thereof; a compound in which an iodine atom is bonded to a benzene ring and an alkyl having carboxy or sulfo is bonded to the ortho position thereof and an alkali metal salt thereof; iodobenzene; and iodooxy Contains benzene.
  • organic iodine compound examples include 2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2-IB alkali metal salt (2-IBM), 2- Iodooxybenzenesulfonic acid (IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali metal salt (2-ISM), iodooxybenzene (PhIO) 2 ), iodobenzene (PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), IPPA alkali metal salt (IPPAM), these benzene rings May be a substituent substituted with halogen, alkoxy, hydroxy, amino, nitro, cyano, carb
  • 2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2-IB alkali metal salt (2-IBM), 2-iodoxybenzenesulfonic acid ( IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali metal salt (2-ISM), iodooxybenzene (PhIO 2 ), iodobenzene ( PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), IPPA alkali metal salt (IPPAM) are compounds represented by the following chemical structural formulas. Is. In the chemical structural formula, M represents an alkali metal atom.
  • 2-IBM, 2-ISM, IPAAM and IPPAM are, for example, sodium salt, potassium salt and lithium salt, preferably sodium salt and potassium salt.
  • 2-IB or 2-IBM is oxidized under persulfate or other oxidizing agent to be converted into IBA, and IBA oxidizes the raw material under persulfate to oxidize and Is converted to 2-IB or 2-IBM, and 2-IB or 2-IBM is converted to IBA under persulfate.
  • IBX also oxidizes and oxidizes the raw material under persulfate and converts itself to 2-IB or 2-IBM, but 2-IB or 2-IBM converts to IBA under persulfate. Then, the cycle is started.
  • 2-IS or 2-ISM is oxidized under persulfate or other oxidant to be converted to IBSA, and IBSA oxidizes and oxidizes the raw material under persulfate as well as 2-IS. Or, it is converted to 2-ISM, and 2-IS or 2-ISM is converted to IBSA under persulfate, resulting in a cycle.
  • IBS also oxidizes and oxidizes the raw material under persulfate and is converted to 2-IS or 2-ISM, but 2-IS or 2-ISM is converted to IBSA under persulfate. Enter the catalyst cycle. Therefore, it can be said that 2-IB and 2-IBM are precursors of IBX and IBA, and 2-IS and 2-ISM are precursors of IBS and IBSA.
  • PhI can be said to be a precursor of PhIO 2 .
  • IBX, IBA, 2-IB, 2-IBM, IBS, IBSA, 2-IS, 2-ISM, PhIO 2 , PhI, IPAA, IPAAM, IPPA, and IPPAM are known compounds, and commercially available ones are also known. Those manufactured by a known method can also be used.
  • IBX, IBA, 2-IB, 2-IBM, IBS, IBSA, 2-IS, 2-ISM, PhIO 2 , PhI, IPAA, IPAAM, IPPA, or IPPAM benzene ring is halogen, alkoxy, Substituted products substituted with hydroxy, amino, nitro, cyano, carboxy, acyloxy, or lower alkyl can also be used as the organic iodine compound.
  • the halogen is preferably a bromine atom or an iodine atom, more preferably an iodine atom.
  • acyloxy acetoxy or tert-butylcarbonyloxy is preferable, and acetoxy is more preferable.
  • the lower alkyl is preferably methyl, ethyl, 1-propyl, 2-propyl or t-butyl, more preferably methyl.
  • the number of these substituents in the above-mentioned substitution product is 1 to 4, preferably 1 or 2, and more preferably 1.
  • the organic iodine compound is IBX, IBA, 2-IB, 2-IBM, IBS, IBSA, 2-IS, 2-ISM, and compounds in which a methyl group is bonded to the para position of the iodine atom in these compounds. It is at least 1 sort(s) selected from the group which consists of. When these organic iodine compounds are used, the yield of the compound represented by the formula (II) is high.
  • the organic iodine compound is at least 1 selected from the group consisting of IBS, IBSA, 2-IS, 2-ISM, and a compound having a methyl group bonded to the para position of the iodine atom in these compounds. It is a seed.
  • the compound represented by the formula (II) can be produced in a low amount (for example, a catalytic amount).
  • the organic iodine compound is used by supporting it on a carrier such as a resin such as silica gel and polystyrene, and in the present invention, the organic iodine compound supported on the carrier may be used.
  • the amount of the organic iodine compound used is not particularly limited as long as the intended product can be produced, but relative to 1 mol of the raw material, for example, 0.001 mol or more, 0.005 mol or more, 0.01 mol or more, 0.05 mol or more , 0.1 mol or more, 10 mol or less, 5 mol or less, 2 mol or less, 1 mol or less, 0.5 mol or less, 0.1 mol or less, etc., preferably 0.001 mol to 10 mol, more preferably Is 0.005 mol to 10 mol, more preferably 0.05 mol to 10 mol, and still more preferably 0.05 mol to 1 mol.
  • An oxidizing agent may be used in the oxidation step.
  • the use of the oxidizing agent facilitates the oxo oxidation of the raw material. It is considered that this is because radical active species that contribute to the reaction are likely to be generated.
  • oxidant for example, peroxides such as oxone, hydrogen peroxide, metachloroperbenzoic acid (mCPBA), peracetic acid, sodium periodate, sodium hypochlorite, ozone and dimethyldioxirane (DDO) can be used. They may be used alone or in combination of two or more. Preferred oxidants are oxone, peracetic acid, or metachloroperbenzoic acid (mCPBA).
  • the amount of the oxidizing agent used is not particularly limited as long as the target product can be produced, but is usually 1 mol or more, preferably 1 to 10 mol, and more preferably 5 to 10 mol per 1 mol of the raw material.
  • a metal catalyst may be used in the oxidation step.
  • the use of the metal catalyst facilitates the oxo oxidation of the raw material. It is considered that this is because radical active species that contribute to the reaction are likely to be generated.
  • metal catalyst examples include vanadium oxide (V) (V 2 O 5 ), vanadium (III) oxide, ruthenium (IV) oxide (RuO 2 ), ruthenium oxide (VIII), titanium oxide (IV) (TiO 2 ), and the like. Metal oxides can be used.
  • the amount of the metal catalyst used is not particularly limited as long as the intended product can be produced, but is usually 0.05 mol or more, preferably 0.05 to 0.5 mol, and more preferably 0 mol, relative to 1 mol of the raw material. 0.05 to 0.1 mol.
  • the metal catalyst in combination with an oxidant.
  • the target product can be produced without heating the reaction system, but it may be heated.
  • the reaction temperature is generally 4°C-40°C, preferably 10°C-40°C, more preferably 30°C-35°C.
  • the reaction time is not particularly limited as long as the desired product can be produced, but it is usually 30 minutes or more, preferably 1.5 hours to 3 hours.
  • the raw material, persulfate and organic iodine compound may be present in the solvent, and in addition to these, an oxidizing agent and/or a metal catalyst may be present. If necessary, the reaction system may be heated.
  • the order of adding the solvent, the raw material, the persulfate, and the organic iodine compound is not particularly limited.
  • the raw material and the organic iodine compound are added to an organic solvent, and the persulfate, water, and optionally an oxidizing agent and/or a metal catalyst are added. Should be added.
  • the target product obtained in the above oxidation step can be isolated and purified.
  • isolation procedures such as filtration, concentration, and extraction are performed to separate the crude reaction product from the reaction mixture, and then the crude reaction product is subjected to general purification procedures such as column chromatography and recrystallization.
  • the desired product can be isolated and purified from the reaction mixture.
  • the target substance is often dissolved in a solvent, and in that case, the target substance can be extracted with an appropriate solvent such as deuterated chloroform or dichloromethane.
  • an appropriate solvent such as deuterated chloroform or dichloromethane.
  • the production of isomers such as o-quinone is suppressed, so that the desired product can be easily purified.
  • the yield of the target compound was as low as 3% at maximum (entry 1-entry Five).
  • the yield of the desired product was 30 to 60%, the conversion yield was 65 to 99%, which was higher than when other iodine compounds were used.
  • the by-product 1,2-naphthoquinone was not detected (entry 13 to entry 22).
  • IBX and IBA in an amount of 1 equivalent or less were used together with Oxone, the yield of the target substance was 6% at maximum (entry 6 to entry 9), and no catalytic action was observed.
  • 1,3-dimethoxybenzene (4a) (0.1 mmol, 13.8 mg), 2-IB (0.1 mmol, 24.8 mg) and 1,4-dinitrobenzene as a standard substance were added to a 5 mL sample tube. (0.05 mmol, 8.4 mg) was added, and oxone (0.3 mmol, 184 mg) and a predetermined volume ratio of acetonitrile/water mixed solvent (1.0 mL) were added thereto and stirred with a magnetic stir bar. After stirring at room temperature for 1.5 hours, deuterated chloroform (1 mL) was added and shaken vigorously, and the obtained organic layer was subjected to quantitative NMR.
  • the volume ratio (acetonitrile/water) of the mixed solvent is as follows. 100/0, 80/20, 60/40, 50/50, 40/60, 30/70, 20/80, 0/100
  • the yield and 11b selectivity were improved by using 5-Me2-IB with a methyl group introduced at the 5-position.
  • 11b selectivity was improved by using 5-Me2-ISM with a methyl group introduced at the 5-position. From these facts, it was confirmed that the selectivity was improved by introducing an alkyl into the para-position of the iodine atom of the organic iodine compound.
  • the lignin model substrate 12a was converted into a useful low molecular weight compound 4b.
  • the lignin model substrate 12a has a ⁇ -O-4 structure.
  • the ⁇ -O-4 structure is an ether bond that accounts for about 50% of the total bond mode in lignin.
  • the ⁇ -O-4 structure of this substrate was cleaved to cleave 2-methoxy-[1,4]benzoquinone. Therefore, the production method of the present invention uses lignin as a raw material to produce useful p-quinone. It was confirmed that it can be converted into a low molecular weight compound of the system.
  • the conversion efficiencies (Conversions) of the raw material compounds 5a and 10a were close to the yields (Yield) of the p-quinone compounds 5b and 10b. From this, it was confirmed that even when a catalytic amount of the organic iodine compound was used, almost no by-products were generated. Therefore, the compounds 5b and 10b could be purified by a simple method such as suction filtration and silica gel chromatography.
  • the present invention is suitable for decomposing lignin, which is highly water-soluble among lignins, because the reaction proceeds in the presence of water.
  • sulfonic acid-based organic iodine compounds (2-ISM-Na and 5-Me 2-ISM-K) were able to decompose lignin with a small amount (catalytic amount).
  • As a method for converting a lignin model substrate into p-quinone it is known that the maximum yield is 30% by using a porphyrin-oxone reaction system (New J. Chem., 1989, 13, 801). ).
  • the present invention is superior to this method in terms of activity and ease of catalyst synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a method for synthesizing a p-quinone using one of alkoxy-substituted benzenes as a starting material. The present invention relates to a method for producing a compound of formula (II) (wherein R2, R3, R4 and R5 are as defined below) from a compound of formula (I) (wherein R1 represents an alkyl group; R2, R3, R4 and R5 may be the same or different, and each represents a hydrogen atom or an organic functional group; R2 and R3, and R4 and R5 may respectively combine with each other to form a ring, and the ring may have a substituent thereon; and R6 represents a hydrogen atom or the like) or the like. This method comprises a step for oxidizing a compound of formula (I) or the like in the presence of: a solvent that is selected from among water and a mixed solvent of water and an organic solvent; a persulfuric acid salt; and at least one compound that is selected from among 2-iodoxybenzoic acid, 2-iodosobenzoic acid, 2-iodobenzoic acid and the like.

Description

p-キノン類の製造方法Process for producing p-quinones
 本発明は、p-キノン類の製造方法に関する。 The present invention relates to a method for producing p-quinones.
 キノン類の合成には、酸化銀(AgO)や硝酸アンモニウムセリウム(IV)((NHCe(NO)などの重金属を酸化剤として用いる方法が知られているが、これらは廃液処理の観点で環境負荷を与えるため、非金属型の酸化方法の開発が求められている。このような中、近年では非金属型の超原子価ヨウ素酸化剤が開発されており、p-キノンの合成において現在利用されている。例えば、[ビス(トリフルオロアセトキシ)ヨード]ベンゼン(PIFA)を用いたp-キノン合成法では、フェノール類から合成する方法(非特許文献1)と、1,4-ジメトキシベンゼン類から合成する方法(非特許文献2)が知られており、特に後者では高収率の結果を与える(非特許文献2の図1)。これは1,4-ジメトキシベンゼン類に2つのメトキシがパラ位にあらかじめ導入されているため、o-キノンのような副生成物が生じにくいからである。しかしながら、1,4-ジメトキシベンゼン類は予めパラ位にメトキシが導入された2置換体であることから、フェノール類と比較して合成が簡便でなく、したがって原料入手の観点から、現実的にはフェノール類を使用する前者の方法が主に利用される。 For the synthesis of quinones, it is known to use a heavy metal such as silver oxide (AgO) or ammonium cerium (IV) nitrate ((NH 4 ) 2 Ce(NO 3 ) 6 ) as an oxidizing agent. Development of a non-metal type oxidation method is required because it gives an environmental load from the viewpoint of treatment. Under these circumstances, a non-metal type hypervalent iodine oxidizing agent has been developed in recent years and is currently used in the synthesis of p-quinone. For example, in the p-quinone synthesis method using [bis(trifluoroacetoxy)iodo]benzene (PIFA), a method of synthesizing from phenols (Non-Patent Document 1) and a method of synthesizing from 1,4-dimethoxybenzenes (Non-Patent Document 2) is known, and particularly the latter gives a high yield result (FIG. 1 of Non-Patent Document 2). This is because two methoxys have been previously introduced into the 1,4-dimethoxybenzenes at the para-position, and by-products such as o-quinone are unlikely to occur. However, 1,4-dimethoxybenzenes are disubstituted products in which methoxy is introduced at the para-position in advance, and therefore their synthesis is not as simple as that of phenols. The former method using phenols is mainly used.
 一方、アニソール類を原料としたp-キノンの合成方法が知られている(非特許文献3、非特許文献4)。しかし、非特許文献3の方法ではo-キノンが副生することからp-キノンの精製が容易ではなく、また収率も低い。また、非特許文献4の方法では収率が低く、さらにベンゼン環が開環した副生物が主生成物となる。このため、これらの方法はほとんど用いられていない。 On the other hand, a method for synthesizing p-quinone using anisole as a raw material is known (Non-patent documents 3 and 4). However, in the method of Non-Patent Document 3, since o-quinone is by-produced, it is not easy to purify p-quinone, and the yield is low. Further, the yield of the method of Non-Patent Document 4 is low, and a by-product in which the benzene ring is opened becomes a main product. Therefore, these methods are rarely used.
 原料の入手が容易なメトキシモノ置換ベンゼン類を原料とした場合でもp-キノンを合成できる方法を提供することを課題とする。 It is an object to provide a method for synthesizing p-quinone even when methoxymono-substituted benzenes, which are easily available, are used as a raw material.
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、水の存在下にて、ペルオキソ一硫酸モノカリウム及び/又はオキソンと特定の有機ヨウ素化合物を用いることにより、アルコキシを有するベンゼン類のエーテル結合部位とパラ位が選択的にオキソ化されることを見出し、p-キノンの製造方法を完成させた。代表的な本発明は以下の通りである。 MEANS TO SOLVE THE PROBLEM As a result of earnestly studying in order to solve the said subject, the present inventors used benzenes having alkoxy by using monopotassium peroxomonosulfate and/or oxone and a specific organic iodine compound in the presence of water. It was found that the ether bond site and the para-position of p-quinone were selectively oxolated, and the method for producing p-quinone was completed. The representative present invention is as follows.
項1.
式(I)
Figure JPOXMLDOC01-appb-C000003
[式中、
はアルキル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルを示し、
及びRは、同一に又は異なって、水素原子又は有機官能基を示し、RとRとは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。
及びRは、同一に又は異なって、水素原子又は有機官能基を示し、RとRとは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。
は、水素原子、ヒドロキシ、アミノ、アルコキシ、チオール又はハロゲンを示す。]で表される化合物又はリグニン類から、
式(II)
Figure JPOXMLDOC01-appb-C000004
[式中、R、R、R及びRは前記と同じ。]
で表される化合物を製造する方法であって、
式(I)で表される化合物又はリグニン類を、
水及び水と有機溶媒との混合溶媒から選択される溶媒中、
ペルオキソ一硫酸モノカリウム及びオキソンから選択される少なくとも1つの過硫酸塩、並びに
2-ヨードキシ安息香酸(IBX)、2-ヨードソ安息香酸(IBA)、2-ヨード安息香酸(2-IB)、2-IBのアルカリ金属塩(2-IBM)、2-ヨードキシベンゼンスルホン酸(IBS)、2-ヨードソベンゼンスルホン酸(IBSA)、2-ヨードベンゼンスルホン酸(2-IS)、2-ISのアルカリ金属塩(2-ISM)、ヨードキシベンゼン(PhIO2)、ヨードベンゼン(PhI)、2-ヨードベンゼン酢酸(IPAA)、IPAAのアルカリ金属塩(IPAAM)、2-ヨードベンゼンプロパン酸(IPPA)、IPPAのアルカリ金属塩(IPPAM)、及びこれらのベンゼン環がハロゲン、アルコキシ、ヒドロキシ、アミノ、ニトロ、シアノ、カルボキシ、アシルオキシ又は低級アルキルで置換された置換体からなる群から選択される少なくとも1つの有機ヨウ素化合物、
の存在下で酸化する工程を含む、方法。
項2.
前記酸化工程が、過酸化水素、又は過酸化水素及び金属触媒がさらに存在する条件下で行われる項1に記載の方法。
項3.
が水素原子である項1又は2に記載の方法。
項4.
が低級アルキルである項1~3のいずれかに記載の方法。
項5.
及びRが、同一に又は異なって、水素原子、ハロゲン、アルキル又はアルコキシであるか、或いはRとRとは互いに結合してベンゼン環を形成するものであり、
及びRが、同一に又は異なって、水素原子、ハロゲン、アルキル又はアルコキシであるか、或いはRとRとは互いに結合してベンゼン環を形成するものである、
項1~4のいずれかに記載の方法。
Item 1.
Formula (I)
Figure JPOXMLDOC01-appb-C000003
[In the formula,
R 1 represents alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl,
R 2 and R 3 are the same or different and each represents a hydrogen atom or an organic functional group, and R 2 and R 3 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
R 4 and R 5 are the same or different and each represents a hydrogen atom or an organic functional group, and R 4 and R 5 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
R 6 represents a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen. ] From the compound or lignin represented by
Formula (II)
Figure JPOXMLDOC01-appb-C000004
[Wherein R 2 , R 3 , R 4 and R 5 are the same as defined above. ]
A method for producing a compound represented by:
A compound represented by the formula (I) or lignins,
In a solvent selected from water and a mixed solvent of water and an organic solvent,
At least one persulfate selected from monopotassium peroxomonosulfate and oxone, and 2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2- Alkali metal salt of IB (2-IBM), 2-iodoxybenzenesulfonic acid (IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali Metal salt (2-ISM), iodooxybenzene (PhIO 2 ), iodobenzene (PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), Alkali metal salt of IPPA (IPPAM), and at least one organic compound selected from the group consisting of substituents in which these benzene rings are substituted with halogen, alkoxy, hydroxy, amino, nitro, cyano, carboxy, acyloxy or lower alkyl. Iodine compounds,
A method comprising the step of oxidizing in the presence of
Item 2.
Item 2. The method according to Item 1, wherein the oxidizing step is performed under conditions in which hydrogen peroxide or hydrogen peroxide and a metal catalyst are further present.
Item 3.
Item 3. The method according to Item 1 or 2, wherein R 6 is a hydrogen atom.
Item 4.
Item 4. The method according to any one of Items 1 to 3, wherein R 1 is lower alkyl.
Item 5.
R 2 and R 3 are the same or different and are a hydrogen atom, halogen, alkyl or alkoxy, or R 2 and R 3 are bonded to each other to form a benzene ring,
R 4 and R 5 are the same or different and are a hydrogen atom, halogen, alkyl or alkoxy, or R 4 and R 5 are bonded to each other to form a benzene ring,
Item 5. The method according to any one of Items 1 to 4.
 本発明によれば、p-キノン類を上記式(I)の化合物から製造できる。また、本発明によれば反応温度が常温域(例えば10℃~30℃)であっても上記式(I)の化合物からp-キノン類を製造できる。さらに、本発明によれば、副生物であるo-キノン類の生成が抑制される。また、本発明によればリグニン類を上記式(II)の化合物のような有用な低分子化合物に変換しうる。 According to the present invention, p-quinones can be produced from the compound of the above formula (I). Further, according to the present invention, p-quinones can be produced from the compound of the above formula (I) even if the reaction temperature is in the normal temperature range (for example, 10°C to 30°C). Furthermore, according to the present invention, the production of by-products, o-quinones, is suppressed. Further, according to the present invention, lignins can be converted into useful low molecular weight compounds such as the compound of the above formula (II).
図1は、溶媒を、アセトニトリル、アセトニトリルと水とを種々の容積比率で混合した混合液、又は水とした場合の2-メトキシ-1,4-ベンゾキノンの収率(%)を示すグラフである(試験例2)。横軸は、溶媒の水含有率を示し、縦軸は収率を示す。FIG. 1 is a graph showing the yield (%) of 2-methoxy-1,4-benzoquinone when the solvent is acetonitrile, a mixed solution of acetonitrile and water mixed at various volume ratios, or water. (Test Example 2). The horizontal axis represents the water content of the solvent, and the vertical axis represents the yield.
 本発明の前記概要は、本発明の各々の開示された実施形態または全ての実装を記述することを意図するものではない。
 本発明の後記説明は、実例の実施形態をより具体的に例示する。
 本発明のいくつかの箇所では、例示を通してガイダンスが提供され、及びこの例示は、様々な組み合わせにおいて使用できる。
 それぞれの場合において、例示の群は、非排他的な、及び代表的な群として機能できる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられる。
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention.
The following description of the invention more specifically illustrates example embodiments.
In some places of the invention, guidance is provided through examples, which examples can be used in various combinations.
In each case, the exemplary groups can serve as non-exclusive and representative groups.
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.
 用語
 本明細書中の記号及び略号は、特に限定のない限り、本明細書の文脈に沿い、本発明が属する技術分野において通常用いられる意味に理解できる。
 本明細書中、語句「含有する」は、語句「から本質的になる」、及び語句「からなる」を包含することを意図して用いられる。
 本明細書中に記載されている工程、処理、又は操作は、特に断りのない限り、室温で実施され得る。本明細書中、室温は、10℃~40℃の範囲内の温度を意味することができる。
 本明細書中、表記「Cn-Cm」(ここで、n、及びmは、それぞれ、数である。)は、当業者が通常理解する通り、炭素数がn以上、且つm以下であることを表す。
Terms Unless otherwise specified, the symbols and abbreviations used in the present specification are understood to have meanings commonly used in the technical field to which the present invention belongs, in the context of the present specification.
The term “comprising” is used herein to be inclusive of the terms “consisting essentially of” and “consisting of”.
Any process, treatment, or operation described herein may be performed at room temperature unless otherwise stated. In the present specification, room temperature can mean a temperature within the range of 10°C to 40°C.
In the present specification, the notation “Cn-Cm” (where n and m are each numbers) means that the number of carbon atoms is n or more and m or less, as is usually understood by those skilled in the art. Represents.
 本発明の一実施形態は、式(I)
Figure JPOXMLDOC01-appb-C000005
[式中、
はアルキル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルを示し、
及びRは、同一に又は異なって、水素原子又は有機官能基を示し、RとRとは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。
及びRは、同一に又は異なって、水素原子又は有機官能基を示し、RとRとは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。
は、水素原子、ヒドロキシ、アミノ、アルコキシ、チオール又はハロゲンを示す。]で表される化合物又はリグニン類から、
式(II)
Figure JPOXMLDOC01-appb-C000006
[式中、R、R、R及びRは前記と同じ。]
で表される化合物を製造する方法であって、
式(I)で表される化合物又はリグニン類を、
水及び水と有機溶媒との混合溶媒から選択される溶媒中、
ペルオキソ一硫酸モノカリウム及びオキソンから選択される少なくとも1つの過硫酸塩、並びに
2-ヨードキシ安息香酸(IBX)、2-ヨードソ安息香酸(IBA)、2-ヨード安息香酸(2-IB)、2-IBのアルカリ金属塩(2-IBM)、2-ヨードキシベンゼンスルホン酸(IBS)、2-ヨードソベンゼンスルホン酸(IBSA)、2-ヨードベンゼンスルホン酸(2-IS)、2-ISのアルカリ金属塩(2-ISM)、ヨードキシベンゼン(PhIO2)、ヨードベンゼン(PhI)、2-ヨードベンゼン酢酸(IPAA)、IPAAのアルカリ金属塩(IPAAM)、2-ヨードベンゼンプロパン酸(IPPA)、IPPAのアルカリ金属塩(IPPAM)、及びこれらのベンゼン環がハロゲン、アルコキシ、ヒドロキシ、アミノ、ニトロ、シアノ、カルボキシ、アシルオキシ又は低級アルキルで置換された置換体からなる群から選択される少なくとも1つの有機ヨウ素化合物、
の存在下で酸化する工程を含む、方法、である。
One embodiment of the present invention is the formula (I)
Figure JPOXMLDOC01-appb-C000005
[In the formula,
R 1 represents alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl,
R 2 and R 3 are the same or different and each represents a hydrogen atom or an organic functional group, and R 2 and R 3 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
R 4 and R 5 are the same or different and each represents a hydrogen atom or an organic functional group, and R 4 and R 5 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
R 6 represents a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen. ] From the compound or lignin represented by
Formula (II)
Figure JPOXMLDOC01-appb-C000006
[Wherein R 2 , R 3 , R 4 and R 5 are the same as defined above. ]
A method for producing a compound represented by:
A compound represented by the formula (I) or lignins,
In a solvent selected from water and a mixed solvent of water and an organic solvent,
At least one persulfate selected from monopotassium peroxomonosulfate and oxone, and 2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2- Alkali metal salt of IB (2-IBM), 2-iodoxybenzenesulfonic acid (IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali Metal salt (2-ISM), iodooxybenzene (PhIO 2 ), iodobenzene (PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), Alkali metal salt of IPPA (IPPAM), and at least one organic compound selected from the group consisting of substituents in which these benzene rings are substituted with halogen, alkoxy, hydroxy, amino, nitro, cyano, carboxy, acyloxy or lower alkyl. Iodine compounds,
A method comprising the step of oxidizing in the presence of
 本発明において「アルキル」としては、例えば、直鎖状、分枝状、または環状構造を含む、C1-C12アルキルが挙げられ、好ましくはC1-C6アルキル、より好ましくはC1-C4アルキル、特に好ましくはC1-C3アルキルが挙げられる。具体的には、直鎖状または分枝状のアルキルとしては、メチル、エチル、1-プロピル、2-プロピル、1-ブチル、2-ブチル、イソブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、イソヘキシル、3-メチルペンチル等が挙げられ、環状構造を含むアルキルとしては、シクロプロピル、シクロプロピルメチル、シクロブチル、シクロブチルメチル、シクロペンチル、シクロペンチルメチル、シクロヘキシル、シクロヘキシルメチル、シクロヘキシルエチル等が挙げられる。好ましくは低級アルキルであり、より好ましくは直鎖状のC1-C6アルキル(メチル、エチル、1-プロピル、1-ブチル、n-ペンチル、n-ヘキシル)、2-プロピル、2-ブチル又はt-ブチルであり、より一層好ましくは直鎖状のC1-C4アルキル、特に好ましくはメチル又はエチルである。 In the present invention, “alkyl” includes, for example, C1-C12 alkyl having a linear, branched or cyclic structure, preferably C1-C6 alkyl, more preferably C1-C4 alkyl, particularly preferably Is C1-C3 alkyl. Specifically, linear or branched alkyl includes methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl, n-pentyl, neopentyl, n. -Hexyl, isohexyl, 3-methylpentyl and the like, and examples of the alkyl having a cyclic structure include cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl and the like. To be It is preferably lower alkyl, more preferably linear C1-C6 alkyl (methyl, ethyl, 1-propyl, 1-butyl, n-pentyl, n-hexyl), 2-propyl, 2-butyl or t-. Butyl, more preferably linear C1-C4 alkyl, particularly preferably methyl or ethyl.
 本発明において「低級アルキル」としては、例えば、直鎖状、分枝状、または環状構造を含む、C1-C6アルキルが挙げられ、好ましくはC1-C4アルキル、より好ましくはC1-C3アルキルが挙げられる。具体的には、直鎖状または分枝状の低級アルキルとしては、メチル、エチル、1-プロピル、2-プロピル、1-ブチル、2-ブチル、イソブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、イソヘキシル等が挙げられ、環状構造を含む低級アルキルとしては、シクロプロピル、シクロプロピルメチル、シクロブチル、シクロブチルメチル、シクロペンチル、シクロペンチルメチル、シクロヘキシル等が挙げられる。好ましくは、メチル、エチル、1-プロピル、2-プロピル、1-ブチル、t-ブチル、シクロプロピル等が挙げられる。 In the present invention, examples of the “lower alkyl” include C1-C6 alkyl having a linear, branched or cyclic structure, preferably C1-C4 alkyl, more preferably C1-C3 alkyl. To be Specifically, linear or branched lower alkyl includes methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl, n-pentyl, neopentyl, Examples thereof include n-hexyl and isohexyl, and examples of the lower alkyl having a cyclic structure include cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl and the like. Preferred are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, t-butyl, cyclopropyl and the like.
 本発明において「有機官能基」としては、例えば、アルキル、ヒドロキシアルキル、ハロゲノアルキル、ヒドロキシシクロアルキル、シクロアルキル、アラルキル、アルケニル、アルキニル、アルコキシ、ハロゲノアルコキシ、アルキルチオ、モノ若しくはジアルキルアミノ、アシル、カルバモイル、フェニル、ナフチルなどが挙げられる。好ましくはアルキル、ヒドロキシアルキル、ヒドロキシシクロアルキル、シクロアルキル、アルコキシ、フェニルなどが挙げられ、より好ましくはメチル、エチル、1-プロピル、2-プロピル、1-ブチル、2-ブチル、イソブチル、t-ブチル、メトキシ、エトキシ、1-プロポキシ、2-プロポキシ、1-ブトキシ、2-ブトキシ、イソブトキシ、t-ブトキシなどが挙げられる。 In the present invention, examples of the “organic functional group” include alkyl, hydroxyalkyl, halogenoalkyl, hydroxycycloalkyl, cycloalkyl, aralkyl, alkenyl, alkynyl, alkoxy, halogenoalkoxy, alkylthio, mono- or dialkylamino, acyl, carbamoyl, Examples thereof include phenyl and naphthyl. Preferred are alkyl, hydroxyalkyl, hydroxycycloalkyl, cycloalkyl, alkoxy, phenyl, etc., and more preferred are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl. , Methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, t-butoxy and the like.
 本発明において「ハロゲン」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、好ましくは臭素原子、ヨウ素原子が挙げられる。 In the present invention, examples of the “halogen” include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and preferably a bromine atom and an iodine atom.
 本発明において「ヒドロキシアルキル」としては、例えば、ヒドロキシを少なくとも1個(例えば、1個又は2個)有する、前記アルキルなどが挙げられる。具体的には、ヒドロキシメチル、2-ヒドロキシエチル、1-ヒドロキシエチル、3-ヒドロキシプロピル、2-ヒドロキシプロピル、1-メチル-2-ヒドロキシエチル、4-ヒドロキシブチル、2,2-ジメチル-2-ヒドロキシエチル、5-ヒドロキシペンチル、3,3-ジメチル-3-ヒドロキシプロピル、6-ヒドロキシヘキシル、ジヒドロキシメチル、1,2-ジヒドロキシエチル、2,3-ジヒドロキシプロピル、3,4-ジヒドロキシブチル、4,5-ジヒドロキシペンチル、5,6-ジヒドロキシヘキシル等がげられ、好ましくはヒドロキシを1個有するアルキルであり、より好ましくはヒドロキシを1個有する低級アルキルである。 In the present invention, examples of “hydroxyalkyl” include the above-mentioned alkyl having at least one (eg, one or two) hydroxy. Specifically, hydroxymethyl, 2-hydroxyethyl, 1-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 1-methyl-2-hydroxyethyl, 4-hydroxybutyl, 2,2-dimethyl-2- Hydroxyethyl, 5-hydroxypentyl, 3,3-dimethyl-3-hydroxypropyl, 6-hydroxyhexyl, dihydroxymethyl, 1,2-dihydroxyethyl, 2,3-dihydroxypropyl, 3,4-dihydroxybutyl, 4, Examples thereof include 5-dihydroxypentyl, 5,6-dihydroxyhexyl, etc., preferably an alkyl having one hydroxy, and more preferably a lower alkyl having one hydroxy.
 本発明において「ハロゲノアルキル」としては、例えば、ハロゲンを1~13個有するC1-C6の直鎖状又は分枝状アルキル(ハロゲノC1-C6アルキル)であり、具体的には、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリクロロメチル、フルオロエチル、1,1,1-トリフルオロエチル、モノフルオロ-n-プロピル、パーフルオロ-n-プロピル、パーフルオロイソプロピルなどのハロゲノC1-C6アルキルなどが挙げられ、好ましくはハロゲノC1-C4アルキル、より好ましくはハロゲン原子を1~7個有するハロゲノC1-C4アルキルであり、さらに好ましくはハロゲン原子を1~3個有するハロゲノC1-C4アルキルである。 In the present invention, the “halogenoalkyl” is, for example, a C1-C6 linear or branched alkyl having 1 to 13 halogens (halogeno C1-C6 alkyl), and specifically, fluoromethyl, difluoro Examples include halogeno C1-C6 alkyl such as methyl, trifluoromethyl, trichloromethyl, fluoroethyl, 1,1,1-trifluoroethyl, monofluoro-n-propyl, perfluoro-n-propyl and perfluoroisopropyl. It is preferably halogeno C1-C4 alkyl, more preferably halogeno C1-C4 alkyl having 1 to 7 halogen atoms, and further preferably halogeno C1-C4 alkyl having 1 to 3 halogen atoms.
 本発明において「ヒドロキシシクロアルキル」としては、例えば、ヒドロキシを少なくとも1個(例えば、1個又は2個)有する、C3-C7の前記環状のアルキルなどが挙げられる。具体的には、1-ヒドロキシシクロプロピル、2-ヒドロキシシクロプロピル、1-ヒドロキシシクロブチル、3-ヒドロキシシクロブチル、1-ヒドロキシシクロペンチル、3,4-ジヒドロキシシクロペンチル、1-ヒドロキシシクロヘキシル、4-ヒドロキシシクロヘキシル、1-ヒドロキシシクロヘプチルなどが挙げられ、好ましくはヒドロキシを1個有するヒドロキシシクロアルキルである。 In the present invention, examples of “hydroxycycloalkyl” include the above C3-C7 cyclic alkyl having at least one (eg, one or two) hydroxy. Specifically, 1-hydroxycyclopropyl, 2-hydroxycyclopropyl, 1-hydroxycyclobutyl, 3-hydroxycyclobutyl, 1-hydroxycyclopentyl, 3,4-dihydroxycyclopentyl, 1-hydroxycyclohexyl, 4-hydroxycyclohexyl , 1-hydroxycycloheptyl and the like, and preferably hydroxycycloalkyl having one hydroxy.
 本発明において「シクロアルキル-アルキル」としては、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロヘプチルメチルなどのC3-C7シクロアルキルで置換されたC1-C4アルキルが挙げられる。シクロアルキル-アルキルにおいて、アルキルが有するシクロアルキルの数は1以上であり、好ましくは1又は2個、より好ましくは1個である。 In the present invention, examples of “cycloalkyl-alkyl” include C1-C4 alkyl substituted with C3-C7 cycloalkyl such as cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl and cycloheptylmethyl. In cycloalkyl-alkyl, the number of cycloalkyl contained in alkyl is 1 or more, preferably 1 or 2, and more preferably 1.
 本発明において「アラルキル」としては、ベンジル、フェネチル、ナフチルメチル、フルオレニルメチルなどのC7-C13アラルキルが挙げられる。 In the present invention, examples of “aralkyl” include C7-C13 aralkyl such as benzyl, phenethyl, naphthylmethyl and fluorenylmethyl.
 本発明において「アルケニル」としては、直鎖状、分枝状又は環状のいずれでもよく、二重結合を少なくとも1個(例えば、1個又は2個)有する不飽和炭化水素基を意味し、例えばビニル、アリル、1-プロペニル、2-メチル-2-プロペニル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、イソブテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、2-メチル-2-ブテニル、3-メチル-2-ブテニル、5-ヘキセニル、1-シクロペンテニル、1-シクロヘキセニル、3-メチル-3-ブテニルなどのC2-C6アルケニルが挙げられる。 In the present invention, “alkenyl” means an unsaturated hydrocarbon group which may be linear, branched or cyclic and has at least one double bond (eg, 1 or 2), and examples thereof include Vinyl, allyl, 1-propenyl, 2-methyl-2-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, isobutenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-methyl-2 And C2-C6 alkenyl such as -butenyl, 3-methyl-2-butenyl, 5-hexenyl, 1-cyclopentenyl, 1-cyclohexenyl, 3-methyl-3-butenyl and the like.
 本発明において「アルキニル」としては、直鎖状、分枝状又は環状のいずれでもよく、三重結合を少なくとも1個(例えば、1個又は2個)有する不飽和炭化水素基を意味し、例えばエチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-メチル-2-プロピニルなどのC2-C6アルキニルが挙げられる。 In the present invention, “alkynyl” means an unsaturated hydrocarbon group which may be linear, branched or cyclic and has at least one triple bond (eg, 1 or 2), for example, ethynyl. C2-C6 alkynyl such as 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl and 1-methyl-2-propynyl.
 本発明において「アルコキシ」としては、例えば、直鎖状、分枝状、または環状構造を含む、C1-C12アルコキシが挙げられ、好ましくはC1-C8アルコキシ、より好ましくはC1-C6アルコキシ、より一層好ましくはC1-C4アルコキシ、特に好ましくはC1-C3アルコキシが挙げられる。具体的には、直鎖状または分枝状のアルコキシとしては、メトキシ、エトキシ、1-プロポキシ、2-プロポキシ、1-ブトキシ 、2-ブトキシ、イソブトキシ、t-ブトキシ、n-ペンチルオキシ、ネオペンチルオキシ、n-ヘキシルオキシ、イソヘキシルオキシ、3-メチルペンチルオキシ等が挙げられる。環状構造を含むアルコキシとしては、シクロプロポキシ、シクロプロピルメトキシ、シクロブチロキシ、シクロブチルメトキシ、シクロペンチロキシ、シクロペンチルメトキシ、シクロヘキシロキシ、シクロヘキシルメトキシ、シクロヘキシルエトキシ等が挙げられる。好ましくは、メトキシ、エトキシ、2-プロポキシ、t-ブトキシ、シクロプロポキシ等が挙げられる。 In the present invention, “alkoxy” includes, for example, C1-C12 alkoxy having a straight chain, branched or cyclic structure, preferably C1-C8 alkoxy, more preferably C1-C6 alkoxy, and further Preferred is C1-C4 alkoxy, and particularly preferred is C1-C3 alkoxy. Specifically, linear or branched alkoxy includes methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, t-butoxy, n-pentyloxy, neopentyl. Oxy, n-hexyloxy, isohexyloxy, 3-methylpentyloxy and the like can be mentioned. Examples of alkoxy having a cyclic structure include cyclopropoxy, cyclopropylmethoxy, cyclobutyroxy, cyclobutylmethoxy, cyclopentyloxy, cyclopentylmethoxy, cyclohexyloxy, cyclohexylmethoxy, cyclohexylethoxy and the like. Preferred are methoxy, ethoxy, 2-propoxy, t-butoxy, cyclopropoxy and the like.
 本発明において「ハロゲノアルコキシ」としては、ハロゲン原子を1~13個有するC1-C6の直鎖状又は分枝状アルコキシであり(ハロゲノC1-C6アルコキシ)、例えば、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリクロロメトキシ、フルオロエトキシ、1,1,1-トリフルオロエトキシ、モノフルオロ-n-プロポキシ、パーフルオロ-n-プロポキシ、パーフルオロ-イソプロポキシなどのハロゲノC1-C6アルコキシ、好ましくはハロゲノC1-C4アルコキシが挙げられ、更に好ましくはハロゲン原子を1~7個有するハロゲノC1-C4アルコキシである。 In the present invention, the “halogenoalkoxy” is a C1-C6 linear or branched alkoxy having 1 to 13 halogen atoms (halogenoC1-C6 alkoxy), for example, fluoromethoxy, difluoromethoxy, trifluoro. Halogeno C1-C6 alkoxy such as methoxy, trichloromethoxy, fluoroethoxy, 1,1,1-trifluoroethoxy, monofluoro-n-propoxy, perfluoro-n-propoxy, perfluoro-isopropoxy, preferably halogeno C1- C4 alkoxy is mentioned, more preferably halogeno C1-C4 alkoxy having 1 to 7 halogen atoms.
 本発明において「アルキルチオ」としては、直鎖状、分枝状又は環状のいずれでもよく、例えば、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、tert-ブチルチオ、n-ペンチルチオ、イソペンチルチオ、ヘキシルチオ、シクロペンチルチオ、シクロヘキシルチオなどのC1-C6アルキルチオが挙げられる。 In the present invention, the “alkylthio” may be linear, branched or cyclic and is, for example, methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, n-pentylthio. C1-C6 alkylthio such as isopentylthio, hexylthio, cyclopentylthio and cyclohexylthio.
 本発明において「モノアルキルアミノ」としては、例えば、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、tert-ブチルアミノ、n-ペンチルアミノ、イソペンチルアミノ、ヘキシルアミノなどの直鎖状又は分枝状のC1-C6アルキルでモノ置換されたアミノが挙げられる。 In the present invention, “monoalkylamino” includes, for example, methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, isobutylamino, tert-butylamino, n-pentylamino, isopentylamino, hexyl. Mention may be made of amino mono-substituted with straight chain or branched C1-C6 alkyl such as amino.
 本発明において「ジアルキルアミノ」としては、例えば、ジメチルアミノ、ジエチルアミノ、ジ(n-プロピル)アミノ、ジイソプロピルアミノ、ジ(n-ブチル)アミノ、ジイソブチルアミノ、ジ(tert-ブチル)アミノ、ジ(n-ペンチル)アミノ、ジイソペンチルアミノ、ジヘキシルアミノ、メチルエチルアミノ、メチルイソプロピルアミノなどの同一又は異なった直鎖状、分枝状又は環状のC1-C6アルキルでジ置換されたアミノが挙げられる。 In the present invention, “dialkylamino” includes, for example, dimethylamino, diethylamino, di(n-propyl)amino, diisopropylamino, di(n-butyl)amino, diisobutylamino, di(tert-butyl)amino, di(n-butyl)amino. -Pentyl)amino, diisopentylamino, dihexylamino, methylethylamino, methylisopropylamino and the like, which may be the same or different linear, branched or cyclic C1-C6 alkyl disubstituted amino.
 本発明において「アシル」は、アルキルカルボニル又はアリールカルボニルを意味する。 In the present invention, “acyl” means alkylcarbonyl or arylcarbonyl.
 本発明において「アルキルカルボニル」としては、例えば、メチルカルボニル、エチルカルボニル、n-プロピルカルボニル、イソプロピルカルボニル、n-ブチルカルボニル、イソブチルカルボニル、tert-ブチルカルボニル、n-ペンチルカルボニル、イソペンチルカルボニル、ヘキシルカルボニル、シクロペンチルカルボニル、シクロヘキシルカルボニルなどの直鎖状、分枝状又は環状の(C1-C8アルキル)カルボニルが挙げられる。 In the present invention, “alkylcarbonyl” includes, for example, methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, isobutylcarbonyl, tert-butylcarbonyl, n-pentylcarbonyl, isopentylcarbonyl, hexylcarbonyl. And straight-chain, branched or cyclic (C1-C8 alkyl)carbonyl such as cyclopentylcarbonyl and cyclohexylcarbonyl.
 本発明において「アリールカルボニル」としては、例えば、フェニルカルボニル、ナフチルカルボニル、フルオレニルカルボニル、アントリルカルボニル、ビフェニリルカルボニル、テトラヒドロナフチルカルボニル、クロマニルカルボニル、インダニルカルボニル、フェナントリルカルボニルなどの(C6-C13アリール)カルボニルが挙げられる。 Examples of the “arylcarbonyl” in the present invention include phenylcarbonyl, naphthylcarbonyl, fluorenylcarbonyl, anthrylcarbonyl, biphenylylcarbonyl, tetrahydronaphthylcarbonyl, chromanylcarbonyl, indanylcarbonyl, phenanthrylcarbonyl and the like ( C6-C13 aryl)carbonyl.
 本発明において「アシルオキシ」は、アルキルカルボニルオキシ又はアリールカルボニルオキシを意味する。 In the present invention, “acyloxy” means alkylcarbonyloxy or arylcarbonyloxy.
 本発明において「アルキルカルボニルオキシ」としては、例えば、メチルカルボニルオキシ、エチルカルボニルオキシ、n-プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、n-ブチルカルボニルオキシ、イソブチルカルボニルオキシ、tert-ブチルカルボニルオキシ、n-ペンチルカルボニルオキシ、イソペンチルカルボニルオキシ、ヘキシルカルボニルオキシなどの直鎖状又は分枝状の(C1-C6アルキル)カルボニルオキシ基が挙げられる。 In the present invention, “alkylcarbonyloxy” includes, for example, methylcarbonyloxy, ethylcarbonyloxy, n-propylcarbonyloxy, isopropylcarbonyloxy, n-butylcarbonyloxy, isobutylcarbonyloxy, tert-butylcarbonyloxy, n-pentyl. Examples thereof include linear or branched (C1-C6 alkyl)carbonyloxy groups such as carbonyloxy, isopentylcarbonyloxy and hexylcarbonyloxy.
 本発明において「アリールカルボニルオキシ」としては、例えば、フェニルカルボニルオキシ、ナフチルカルボニルオキシ、フルオレニルカルボニルオキシ、アントリルカルボニルオキシ、ビフェニリルカルボニルオキシ、テトラヒドロナフチルカルボニルオキシ、クロマニルカルボニルオキシ、2,3-ジヒドロ-1,4-ジオキサナフタレニルカルボニルオキシ、インダニルカルボニルオキシ、フェナントリルカルボニルオキシ等の(C6-C13アリール)カルボニルオキシ基が挙げられる。 Examples of the “arylcarbonyloxy” in the present invention include phenylcarbonyloxy, naphthylcarbonyloxy, fluorenylcarbonyloxy, anthrylcarbonyloxy, biphenylylcarbonyloxy, tetrahydronaphthylcarbonyloxy, chromanylcarbonyloxy, 2,3. (C6-C13 aryl)carbonyloxy groups such as -dihydro-1,4-dioxanaphthalenylcarbonyloxy, indanylcarbonyloxy and phenanthrylcarbonyloxy.
<原料>
 式(I)で表される化合物は、リグニン類とともに、式(II)で表される化合物の原料である。本発明では、式(I)中のORとRが酸化によりオキソに変換され、式(II)で表される化合物が製造される。
<raw material>
The compound represented by the formula (I) is a raw material of the compound represented by the formula (II) together with lignins. In the present invention, OR 1 and R 6 in the formula (I) are converted into oxo by oxidation to produce a compound represented by the formula (II).
 式(I)においてRは、アルキル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルである。ここで、アルキルは直鎖状又は分枝状の低級アルキルであってもよく、より好ましくはメチル、エチル、1-プロピル、2-プロピル、1-ブチル又はt-ブチルであり、より一層好ましくはメチル又はエチルである。 In the formula (I), R 1 is alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl. Here, the alkyl may be linear or branched lower alkyl, more preferably methyl, ethyl, 1-propyl, 2-propyl, 1-butyl or t-butyl, even more preferably It is methyl or ethyl.
 なお、Rが「1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピル」である場合、-ORは次の式で表される基を意味する(式中、*は、式(I)中のベンゼン環の炭素原子と結合する結合手であることを示す)。
Figure JPOXMLDOC01-appb-C000007
When R 1 is “1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl”, —OR 1 means a group represented by the following formula (in the formula, * Indicates a bond that bonds to the carbon atom of the benzene ring in formula (I)).
Figure JPOXMLDOC01-appb-C000007
 式(I)においてR及びRは、同一に又は異なって、水素原子又は有機官能基である。ここで、有機官能基は前記のとおりであり、好ましくは水素原子、低級アルキル又はC1-C6アルコキシである。また、R及びRは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。該環としては、例えば3~10員の単環又は二環の飽和又は不飽和の炭素環、3~10員の単環又は二環の飽和又は不飽和の複素環などが挙げられる。 In formula (I), R 2 and R 3 are the same or different and each is a hydrogen atom or an organic functional group. Here, the organic functional group is as described above, preferably a hydrogen atom, lower alkyl or C1-C6 alkoxy. R 2 and R 3 may be bonded to each other to form a ring, and the ring may have a substituent on the ring. Examples of the ring include a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated carbocycle and a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated heterocycle.
 単環の飽和又は不飽和の炭素環としては、例えば3~6員の炭素環であり、具体的にはベンゼン、シクロプロパン、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、シクロへキセン、シクロヘキサジエンなどが挙げられ、好ましくはベンゼン、シクロペンタン、シクロヘキサンである。 The monocyclic saturated or unsaturated carbocycle is, for example, a 3- to 6-membered carbocycle, and specifically, benzene, cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, cyclohexene, cyclo Hexadiene and the like can be mentioned, with preference given to benzene, cyclopentane and cyclohexane.
 二環の飽和又は不飽和の炭素環としては、例えば8~10員の炭素環であり、具体的にはナフタレン、ジヒドロナフタレン、テトラヒドロナフタレン、パーヒドロナフタレン、ペンタレン、パーヒドロペンタレン、アズレン、パーヒドロアズレン、インデン、パーヒドロインデン、インダンなどが挙げられる。好ましくはベンゼン環を有する二環の炭素環であり、例えばナフタレン、ジヒドロナフタレン、インデン、インダンである。 The bicyclic saturated or unsaturated carbocyclic ring is, for example, an 8- to 10-membered carbocyclic ring, and specifically includes naphthalene, dihydronaphthalene, tetrahydronaphthalene, perhydronaphthalene, pentalene, perhydropentalene, azulene, perylene. Examples include hydroazulene, indene, perhydroindene, indane and the like. Preferably, it is a bicyclic carbon ring having a benzene ring, and examples thereof include naphthalene, dihydronaphthalene, indene, and indane.
 飽和又は不飽和の複素環は酸素原子、窒素原子および硫黄原子から選択される1~5個のヘテロ原子(好ましくは1又は2個の窒素原子)を環構成原子として含む。 The saturated or unsaturated heterocycle contains 1 to 5 heteroatoms (preferably 1 or 2 nitrogen atoms) selected from oxygen atom, nitrogen atom and sulfur atom as ring-constituting atoms.
 単環の飽和又は不飽和の複素環としては、例えば3~8員の複素環であり、具体的には、ピロール、イミダゾール、トリアゾール、テトラゾール、ピラゾール、フラン、チオフェン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フラザン、オキサジアゾール、チアジアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、アゼピン、ピラン、チオピラン、オキセピン、チエピン、オキサジン、オキサジアジン、オキサゼピン、オキサジアゼピン、チアジン、チアジナン、チアゼピン、チアジアゼピン等の不飽和複素環;アジリジン、アゼチジン、チイラン、オキセタン、アゼチジン、チエタン、ピロリジン、テトロヒドロフラン、ヒトラヒドロチオフェン、ピペリジン、テトラヒドロピラン、テトラヒドロチオピラン、ピペラジン、ピラゾリジン、イミダゾリジン、イソオキサゾリジン、イソチアゾリジン、モルホリン、チオモルホリン等の飽和複素環などが挙げられる。好ましくはピロール、イミダゾール、ピリジン、ピリミジン、ピラジンである。 The monocyclic saturated or unsaturated heterocycle is, for example, a 3- to 8-membered heterocycle, and specifically, pyrrole, imidazole, triazole, tetrazole, pyrazole, furan, thiophene, oxazole, isoxazole, thiazole, Unsaturated heterocycles such as isothiazole, furazan, oxadiazole, thiadiazole, pyridine, pyrazine, pyrimidine, pyridazine, azepine, pyran, thiopyran, oxepin, thiepine, oxazine, oxadiazine, oxazepine, oxadiazepine, thiazine, thiazinane, thiazepine, thiadiazepine Aziridine, azetidine, thiirane, oxetane, azetidine, thietane, pyrrolidine, tetrohydrofuran, humanlahydrothiophene, piperidine, tetrahydropyran, tetrahydrothiopyran, piperazine, pyrazolidine, imidazolidine, isoxazolidine, isothiazolidine, morpholine, thiomorpholine, etc. And saturated heterocycles. Preferred are pyrrole, imidazole, pyridine, pyrimidine and pyrazine.
 二環の飽和又は不飽和の複素環としては、例えば8~10員の複素環であり、具体的には、インドール、イソインドール、インドリジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インダゾール、キノリン、イソキノリン、キノリジン、プリン、フタラジン、プテリジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾジオキソ-ル、ベンゾオキサチオール、クロメン、ベンゾフラザン、ベンゾチアジアゾール、ベンゾトリアゾール、ジヒドロベンゾフラン、ジヒドロベンゾチオフェン、ジヒドロイソベンゾチオフェン、ジヒドロイソベンゾフラン、ジヒドロインダゾール、ジヒドロキノリン、テトラヒドロキノリン、ジヒドロイソキノリン、テトラヒドロイソキノリン、ジヒドロフタラジン、テトラヒドロフタラジン、ジヒドロナフチリジン、テトラヒドロナフチリジン、ジヒドロキノキサリン、テトラヒドロキノキサリン、ジヒドロキナゾリン、テトラヒドロキナゾリン、ジヒドロシンノリン、テトラヒドロシンノリン、ベンゾオキサチアン、ジヒドロベンゾオキサジン、ジヒドロベンゾチアジン、ピラジノモルホリン、ジヒドロベンゾオキサゾール、ジヒドロベンゾチアゾール、ジヒドロベンゾイミダゾールなどが挙げられる。 The bicyclic saturated or unsaturated heterocycle is, for example, an 8- to 10-membered heterocycle, and specifically, indole, isoindole, indolizine, benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, indazole. , Quinoline, isoquinoline, quinolidine, purine, phthalazine, pteridine, naphthyridine, quinoxaline, quinazoline, cinnoline, benzoxazole, benzothiazole, benzimidazole, benzodioxole, benzooxathiol, chromene, benzofurazan, benzothiadiazole, benzotriazole, dihydrobenzofuran , Dihydrobenzothiophene, dihydroisobenzothiophene, dihydroisobenzofuran, dihydroindazole, dihydroquinoline, tetrahydroquinoline, dihydroisoquinoline, tetrahydroisoquinoline, dihydrophthalazine, tetrahydrophthalazine, dihydronaphthyridine, tetrahydronaphthyridine, dihydroquinoxaline, tetrahydroquinoxaline, dihydro Examples thereof include quinazoline, tetrahydroquinazoline, dihydrocinnoline, tetrahydrocinnoline, benzooxathiane, dihydrobenzoxazine, dihydrobenzothiazine, pyrazinomorpholine, dihydrobenzoxazole, dihydrobenzothiazole, and dihydrobenzimidazole.
 R及びRが結合した環は環上に置換基を有していてもよい。この置換基としては、ハロゲン、シアノ、ニトロ、アルキル、ヒドロキシアルキル、ハロゲノアルキル、ヒドロキシシクロアルキル、シクロアルキル、アラルキル、アルケニル、アルキニル、アルコキシ、ハロゲノアルコキシ、アルキルチオ、モノ若しくはジアルキルアミノ、アシル、カルボキシ、カルバモイル、フェニル、ナフチルなどが挙げられる。好ましくはアルキル、ヒドロキシアルキル、ヒドロキシシクロアルキル、シクロアルキル、アルコキシ、フェニルなどが挙げられ、より好ましくはメチル、エチル、1-プロピル、2-プロピル、1-ブチル、2-ブチル、イソブチル、t-ブチル、メトキシ、エトキシ、1-プロポキシ、2-プロポキシ、1-ブトキシ 、2-ブトキシ、イソブトキシ、t-ブトキシなどが挙げられる。
 該環上の置換基の数は例えば1~5個であり、好ましくは1~3個、より好ましくは1個又は2個である。
The ring to which R 2 and R 3 are bonded may have a substituent on the ring. The substituents include halogen, cyano, nitro, alkyl, hydroxyalkyl, halogenoalkyl, hydroxycycloalkyl, cycloalkyl, aralkyl, alkenyl, alkynyl, alkoxy, halogenoalkoxy, alkylthio, mono- or dialkylamino, acyl, carboxy, carbamoyl. , Phenyl, naphthyl and the like. Preferred are alkyl, hydroxyalkyl, hydroxycycloalkyl, cycloalkyl, alkoxy, phenyl, etc., and more preferred are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, t-butyl. , Methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, t-butoxy and the like.
The number of substituents on the ring is, for example, 1 to 5, preferably 1 to 3, and more preferably 1 or 2.
 式(I)においてR及びRは、同一に又は異なって、水素原子又は有機官能基である。ここで、有機官能基は前記のとおりである。また、R及びRは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。該環としては、例えば3~10員の単環又は二環の飽和又は不飽和の炭素環、3~10員の単環又は二環の飽和又は不飽和の複素環が挙げられ、該環及び該置換基はR及びRで説明されたそれらと同じである。 In formula (I), R 4 and R 5 are the same or different and each is a hydrogen atom or an organic functional group. Here, the organic functional group is as described above. R 4 and R 5 may be bonded to each other to form a ring, and the ring may have a substituent on the ring. Examples of the ring include a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated carbocycle, and a 3- to 10-membered monocyclic or bicyclic saturated or unsaturated heterocycle. The substituents are the same as those described for R 2 and R 3 .
 式(I)においてRは、水素原子、ヒドロキシ、アミノ、アルコキシ、チオール又はハロゲンであり、好ましくは水素原子及びヒドロキシである。 In formula (I), R 6 is a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen, preferably a hydrogen atom and hydroxy.
 好ましい式(I)で表される化合物は、
が低級アルキル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルであり、Rが水素原子であり、R及びRが互いに結合した置換されていないベンゼン環であり、R及びRが同一に又は異なって水素原子、低級アルキル又は低級アルコキシである化合物;或いは
が低級アルキル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルであり、Rが水素原子であり、R、R、R及びRのうち少なくとも1つの基が水素原子であり、残りの基は低級アルキル又は低級アルコキシであり、当該残りの基は複数ある場合は同一であっても異なっていてもよい化合物;
である。
Preferred compounds represented by formula (I) are
R 1 is lower alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl, R 6 is a hydrogen atom, R 2 and R 3 are bonded to each other and are unsubstituted. A compound which is a benzene ring and R 4 and R 5 are the same or different and is a hydrogen atom, lower alkyl or lower alkoxy; or R 1 is lower alkyl or 1-(3,4-dimethoxyphenyl)-1,3- Dihydroxy-2-propyl, R 6 is a hydrogen atom, at least one of R 2 , R 3 , R 4 and R 5 is a hydrogen atom, and the remaining groups are lower alkyl or lower alkoxy. , A compound which may be the same or different when the remaining groups are plural;
Is.
 より好ましい式(I)で表される化合物は、
がメチル、エチル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルであり、Rが水素原子であり、R及びRが互いに結合した置換されていないベンゼン環であり、R及びRがともに水素原子である化合物;或いは
がメチル、エチル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルであり、Rが水素原子であり、R、R、R及びRのうち少なくとも1つの基が水素原子であり、残りの基はメチル、エチル、メトキシ又はエトキシであり、当該残りの基は複数ある場合は同一であっても異なっていてもよい化合物;
である。
More preferred compounds of formula (I) are
R 1 is methyl, ethyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl, R 6 is a hydrogen atom, and R 2 and R 3 are substituted with one another A compound having no benzene ring and R 4 and R 5 both being hydrogen atoms; or R 1 is methyl, ethyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl, R 6 is a hydrogen atom, at least one of R 2 , R 3 , R 4 and R 5 is a hydrogen atom, the remaining group is methyl, ethyl, methoxy or ethoxy, and the remaining group is When there are plural compounds, they may be the same or different;
Is.
 具体的な式(I)で表される化合物は、例えば以下に示されるものである。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the compound represented by the formula (I) are shown below.
Figure JPOXMLDOC01-appb-C000008
 本発明における原料は、リグニン類であってもよい。リグニンは植物の細胞壁の主要な構成成分であり、製紙プロセスにおいて副産物として多量に発生することからこれを有効利用することが望まれている。リグニンの正確な化学構造は解明されていないが、モノリグノールと呼ばれるリグニンモノマーが重合したポリマーであることは判明している。モノリグノールは基本骨格がフェニルプロパン単位(C6-C3単位)であるp-ヒドロキシケイ皮アルコールであり、コニフェリルアルコール、シナピルアルコール、p-クマリルアルコールが代表的である。リグニン中でモノマーはエーテル結合及び炭素-炭素結合で互いに結合しているが、それらの中でもβ-O-4結合が50%程度を占める。 The raw material in the present invention may be lignins. Lignin is a major constituent of the cell wall of plants, and a large amount of it is generated as a by-product in the papermaking process, so it is desired to effectively utilize it. Although the exact chemical structure of lignin has not been elucidated, it is known to be a polymer obtained by polymerizing a lignin monomer called monolignol. Monolignol is a p-hydroxycinnamic alcohol whose basic skeleton is a phenylpropane unit (C6-C3 unit), and coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol are typical. In lignin, the monomers are bound to each other by an ether bond and a carbon-carbon bond, of which β-O-4 bonds account for about 50%.
 本発明においてリグニン類は、リグニンに特有の構造を有するものをいう。例えば前記モノマーが結合した構造、モノマー間結合としてβ-O-4結合を主として有する構造などのリグニンに特有の構造を有するものをいい、天然由来のものであっても、天然のリグニンに人工的に改変、修飾、低分子化等の手を加えられたリグニン誘導体であってもよい。リグニン類の例としては、以下に示す構造を部分的に有するものである。
Figure JPOXMLDOC01-appb-C000009
In the present invention, the lignins have a structure unique to lignin. For example, it refers to a structure having a structure unique to lignin such as a structure in which the above-mentioned monomers are bonded or a structure mainly having a β-O-4 bond as an inter-monomer bond. It may be a lignin derivative that has been modified, modified, or reduced in molecular weight. Examples of lignins are those partially having the structures shown below.
Figure JPOXMLDOC01-appb-C000009
 リグニン類としては、例えばリグノスルホン酸やクラフトリグニンなどが挙げられる。好ましくはリグノスルホン酸である。 Examples of lignins include lignosulfonic acid and craft lignin. Lignosulfonic acid is preferred.
 本発明では、リグニンモデル基質を用いた試験においてβ-O-4結合が切断されてp-キノンを製造できることを確認しているため、リグニン類も原料とできる。 In the present invention, it has been confirmed in a test using a lignin model substrate that the β-O-4 bond can be cleaved to produce p-quinone, so lignins can also be used as a raw material.
<製造物>
 本発明では、式(I)で表される化合物又はリグニン類を所定の方法で酸化することにより式(II)で表される化合物に変換する。式(II)中のR、R、R及びRは、式(I)中のR、R、R及びRと同様である。
<Products>
In the present invention, the compound represented by the formula (I) or lignin is converted into the compound represented by the formula (II) by oxidizing the compound by a predetermined method. R 2, R 3 in formula (II), R 4 and R 5 are the same as R 2, R 3, R 4 and R 5 in the formula (I).
<酸化工程>
 本発明では、式(I)で表される化合物又はリグニン類を、適当な溶媒中、過硫酸塩及び有機ヨウ素化合物の存在下で酸化する。
<Oxidation process>
In the present invention, the compound represented by formula (I) or lignin is oxidized in the presence of a persulfate and an organic iodine compound in a suitable solvent.
 有機ヨウ素化合物は超原子価ヨウ素触媒であってもその前駆体であってもよい。溶媒中で原料を、酸化作用を有する超原子価ヨウ素触媒又はその前駆体と過硫酸塩とで処理することでp-キノンに変換する。この際、超原子価ヨウ素触媒は還元されて前駆体に変換される。前駆体は過硫酸塩によって酸化されて超原子価ヨウ素触媒に変換される。例えば、本発明の一実施形態の反応工程式は次のとおりであり、超原子価ヨウ素触媒である2-ヨードキソ安息香酸(IBA)は原料であるメトキシベンゼンを酸化するとともに自身は還元されて前駆体である2-ヨード安息香酸(2-IB)に変換され、2-IBはオキソンにより酸化されてIBAに変換される。
Figure JPOXMLDOC01-appb-C000010
The organic iodine compound may be a hypervalent iodine catalyst or its precursor. The raw material is converted to p-quinone by treating the raw material with a hypervalent iodine catalyst having an oxidizing action or a precursor thereof and a persulfate in a solvent. At this time, the hypervalent iodine catalyst is reduced and converted into a precursor. The precursor is oxidized by persulfate and converted to a hypervalent iodine catalyst. For example, the reaction process formula of one embodiment of the present invention is as follows: 2-iodoxobenzoic acid (IBA), which is a hypervalent iodine catalyst, oxidizes methoxybenzene, which is a raw material, and is itself reduced to give a precursor. It is converted to 2-iodobenzoic acid (2-IB), which is the body, and 2-IB is oxidized by oxone and converted to IBA.
Figure JPOXMLDOC01-appb-C000010
 本発明者が過硫酸塩不在の下、有機ヨウ素化合物で試験した結果、p-キノン類の収率が低かったことから、過硫酸塩が前駆体を酸化して超原子価ヨウ素触媒に変換する作用だけでなく、原料の酸化においても何らかの作用を及ぼすことによってp-キノン類が生成している可能性がある。 The present inventor tested the organic iodine compound in the absence of persulfate, and as a result, the yield of p-quinones was low. Therefore, persulfate oxidizes the precursor and converts it into a hypervalent iodine catalyst. It is possible that p-quinones are produced not only by the action but also by some action in the oxidation of the raw material.
<溶媒>
 本発明では酸化工程において、水及び水と有機溶媒との混合溶媒から選択される溶媒を使用する。本発明において水(水又は混合溶媒中の水)はオキソンを溶解する点とp位に酸素原子を導入する点で重要である。
<Solvent>
In the present invention, a solvent selected from water and a mixed solvent of water and an organic solvent is used in the oxidation step. In the present invention, water (water or water in a mixed solvent) is important in terms of dissolving oxone and introducing an oxygen atom at the p-position.
 溶媒としては、水と有機溶媒との混合溶媒が好ましい。混合比(容積比)は、目的物が製造できる限り特に制限されないが、例えば、有機溶媒/水が85/15~0/100、好ましくは70/30~50/50である。 As the solvent, a mixed solvent of water and an organic solvent is preferable. The mixing ratio (volume ratio) is not particularly limited as long as the target product can be produced, but for example, the organic solvent/water is 85/15 to 0/100, preferably 70/30 to 50/50.
 混合溶媒における有機溶媒としては、テトラヒドロフラン(THF)、ジオキサン、ジメトキシメタン等のエーテル系溶媒、ベンゼン等の炭化水素系溶媒、N、N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、アセトニトリル等の非プロトン性溶媒、メタノール、エタノール、tert-ブチルアルコール、2,2,2-トリフルオロエタノール(TFE)、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)等のプロトン性溶媒などが挙げられる。これらの溶媒は、2種類以上を適宜の割合で混合して用いてもよい。好ましくは非プロトン性溶媒、プロトン性溶媒であり、より好ましくはアセトニトリル、メタノールである。 Examples of the organic solvent in the mixed solvent include tetrahydrofuran (THF), ether solvents such as dioxane and dimethoxymethane, hydrocarbon solvents such as benzene, N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP) and acetonitrile. Aprotic solvent such as methanol, ethanol, tert-butyl alcohol, 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) And the like. Two or more kinds of these solvents may be mixed and used at an appropriate ratio. Preferred are aprotic solvents and protic solvents, and more preferred are acetonitrile and methanol.
<過硫酸塩>
 酸化工程では、ペルオキソ一硫酸モノカリウム及びオキソンから選択される少なくとも1つの過硫酸塩を使用する。ペルオキソ一硫酸モノカリウムはペルオキソ一硫酸(HSO)のモノカリウム塩であり、KHSOの化学式で表される。また、オキソンは登録商標であり、2KHSO・KHSO・KSOの化学式で表される。本発明では両者を適当な比率で混合して用いてもよい。混合比率は例えばペルオキソ一硫酸モノカリウム:オキソンが1:95~99:1(モル比)などである。好ましい過硫酸塩はオキソンである。
<Persulfate>
The oxidation step uses at least one persulfate salt selected from monopotassium peroxomonosulfate and oxone. Monopotassium peroxomonosulfate is a monopotassium salt of peroxomonosulfate (H 2 SO 5 ) and is represented by the chemical formula of KHSO 5 . Oxone is a registered trademark and is represented by the chemical formula of 2KHSO 5 ·KHSO 4 ·K 2 SO 4 . In the present invention, both may be mixed and used at an appropriate ratio. The mixing ratio is, for example, monopotassium peroxomonosulfate:oxone 1:95 to 99:1 (molar ratio). A preferred persulfate is oxone.
 過硫酸塩の使用量は目的物を製造できる限り特に制限されないが、原料1モルに対して、通常2モル以上、好ましくは2モル~10モル、より好ましくは3モル~10モルである。 The amount of the persulfate used is not particularly limited as long as it can produce the desired product, but is usually 2 mol or more, preferably 2 mol to 10 mol, and more preferably 3 mol to 10 mol with respect to 1 mol of the raw material.
<有機ヨウ素化合物>
 酸化工程で使用される有機ヨウ素化合物には、ベンゼン環にヨウ素原子が結合し、そのオルト位に酸性基であるカルボキシ又はスルホが結合した化合物(該カルボキシ又はスルホが該ヨウ素原子と結合して5員環を形成する場合を含む)とそのアルカリ金属塩;ベンゼン環にヨウ素原子が結合し、そのオルト位にカルボキシまたはスルホを有するアルキルが結合した化合物とそのアルカリ金属塩;ヨードベンゼン;及びヨードキシベンゼンが含まれる。有機ヨウ素化合物は、例えば2-ヨードキシ安息香酸(IBX)、2-ヨードソ安息香酸(IBA)、2-ヨード安息香酸(2-IB)、2-IBのアルカリ金属塩(2-IBM)、2-ヨードキシベンゼンスルホン酸(IBS)、2-ヨードソベンゼンスルホン酸(IBSA)、2-ヨードベンゼンスルホン酸(2-IS)、2-ISのアルカリ金属塩(2-ISM)、ヨードキシベンゼン(PhIO2)、ヨードベンゼン(PhI)、2-ヨードベンゼン酢酸(IPAA)、IPAAのアルカリ金属塩(IPAAM)、2-ヨードベンゼンプロパン酸(IPPA)、IPPAのアルカリ金属塩(IPPAM)、これらのベンゼン環がハロゲン、アルコキシ、ヒドロキシ、アミノ、ニトロ、シアノ、カルボキシ、アシルオキシ、又は低級アルキルで置換された置換体であってよく、これらを単独で使用しても2つ以上組み合わせて使用してもよい。
<Organic iodine compound>
The organic iodine compound used in the oxidation step has a compound in which an iodine atom is bonded to a benzene ring and an acidic group, carboxy or sulfo, is bonded to the ortho position (the carboxy or sulfo is bonded to the iodine atom to form (Including the case of forming a member ring) and an alkali metal salt thereof; a compound in which an iodine atom is bonded to a benzene ring and an alkyl having carboxy or sulfo is bonded to the ortho position thereof and an alkali metal salt thereof; iodobenzene; and iodooxy Contains benzene. Examples of the organic iodine compound include 2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2-IB alkali metal salt (2-IBM), 2- Iodooxybenzenesulfonic acid (IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali metal salt (2-ISM), iodooxybenzene (PhIO) 2 ), iodobenzene (PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), IPPA alkali metal salt (IPPAM), these benzene rings May be a substituent substituted with halogen, alkoxy, hydroxy, amino, nitro, cyano, carboxy, acyloxy, or lower alkyl, and these may be used alone or in combination of two or more.
 2-ヨードキシ安息香酸(IBX)、2-ヨードソ安息香酸(IBA)、2-ヨード安息香酸(2-IB)、2-IBのアルカリ金属塩(2-IBM)、2-ヨードキシベンゼンスルホン酸(IBS)、2-ヨードソベンゼンスルホン酸(IBSA)、2-ヨードベンゼンスルホン酸(2-IS)、2-ISのアルカリ金属塩(2-ISM)、ヨードキシベンゼン(PhIO2)、ヨードベンゼン(PhI)、2-ヨードベンゼン酢酸(IPAA)、IPAAのアルカリ金属塩(IPAAM)、2-ヨードベンゼンプロパン酸(IPPA)、IPPAのアルカリ金属塩(IPPAM)は以下の化学構造式で表される化合物である。なお、当該化学構造式中、Mはアルカリ金属原子を示す。
Figure JPOXMLDOC01-appb-C000011
2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2-IB alkali metal salt (2-IBM), 2-iodoxybenzenesulfonic acid ( IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali metal salt (2-ISM), iodooxybenzene (PhIO 2 ), iodobenzene ( PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), IPPA alkali metal salt (IPPAM) are compounds represented by the following chemical structural formulas. Is. In the chemical structural formula, M represents an alkali metal atom.
Figure JPOXMLDOC01-appb-C000011
 2-IBM、2-ISM、IPAAM及びIPPAMは、例えばナトリウム塩、カリウム塩、リチウム塩であり、好ましくはナトリウム塩、カリウム塩である。 2-IBM, 2-ISM, IPAAM and IPPAM are, for example, sodium salt, potassium salt and lithium salt, preferably sodium salt and potassium salt.
 本発明では、2-IB又は2-IBMは過硫酸塩又は他の酸化剤の下で酸化されてIBAに変換され、IBAは過硫酸塩の下で原料を酸化してオキソ化するとともに、自身は2-IB又は2-IBMに変換され、2-IB又は2-IBMは過硫酸塩の下でIBAに変換されるサイクルが生じる。IBXも過硫酸塩の下で原料を酸化してオキソ化するとともに、自身は2-IB又は2-IBMに変換されるが、2-IB又は2-IBMは過硫酸塩の下でIBAに変換されて前記サイクルに入る。同様に、2-IS又は2-ISMは過硫酸塩又は他の酸化剤の下で酸化されてIBSAに変換され、IBSAは過硫酸塩の下で原料を酸化してオキソ化するとともに2-IS又は2-ISMに変換され、2-IS又は2-ISMは過硫酸塩の下でIBSAに変換されるサイクルが生じる。IBSも過硫酸塩の下で原料を酸化してオキソ化するとともに、2-IS又は2-ISMに変換されるが、2-IS又は2-ISMは過硫酸塩の下でIBSAに変換されて前記触媒サイクルに入る。したがって、2-IB及び2-IBMはIBX及びIBAの前駆体であり、2-IS及び2-ISMはIBS及びIBSAの前駆体ということもできる。同様に、PhIはPhIO2の前駆体ということもできる。 In the present invention, 2-IB or 2-IBM is oxidized under persulfate or other oxidizing agent to be converted into IBA, and IBA oxidizes the raw material under persulfate to oxidize and Is converted to 2-IB or 2-IBM, and 2-IB or 2-IBM is converted to IBA under persulfate. IBX also oxidizes and oxidizes the raw material under persulfate and converts itself to 2-IB or 2-IBM, but 2-IB or 2-IBM converts to IBA under persulfate. Then, the cycle is started. Similarly, 2-IS or 2-ISM is oxidized under persulfate or other oxidant to be converted to IBSA, and IBSA oxidizes and oxidizes the raw material under persulfate as well as 2-IS. Or, it is converted to 2-ISM, and 2-IS or 2-ISM is converted to IBSA under persulfate, resulting in a cycle. IBS also oxidizes and oxidizes the raw material under persulfate and is converted to 2-IS or 2-ISM, but 2-IS or 2-ISM is converted to IBSA under persulfate. Enter the catalyst cycle. Therefore, it can be said that 2-IB and 2-IBM are precursors of IBX and IBA, and 2-IS and 2-ISM are precursors of IBS and IBSA. Similarly, PhI can be said to be a precursor of PhIO 2 .
 IBX、IBA、2-IB、2-IBM、IBS、IBSA、2-IS、2-ISM、PhIO2、PhI、IPAA、IPAAM、IPPA、及びIPPAMは公知の化合物であり、市販されたものも従来知られた方法で製造されたものも使用できる。 IBX, IBA, 2-IB, 2-IBM, IBS, IBSA, 2-IS, 2-ISM, PhIO 2 , PhI, IPAA, IPAAM, IPPA, and IPPAM are known compounds, and commercially available ones are also known. Those manufactured by a known method can also be used.
 本発明では、IBX、IBA、2-IB、2-IBM、IBS、IBSA、2-IS、2-ISM、PhIO2、PhI、IPAA、IPAAM、IPPA、又はIPPAMのベンゼン環が、ハロゲン、アルコキシ、ヒドロキシ、アミノ、ニトロ、シアノ、カルボキシ、アシルオキシ、又は低級アルキルで置換された置換体も有機ヨウ素化合物として使用できる。ハロゲンとしては臭素原子又はヨウ素原子が好ましく、ヨウ素原子がより好ましい。アシルオキシとしてはアセトキシ又はtert-ブチルカルボニルオキシが好ましく、アセトキシがより好ましい。低級アルキルとしてはメチル、エチル、1-プロピル、2-プロピル又はt-ブチルが好ましく、メチルがより好ましい。 In the present invention, IBX, IBA, 2-IB, 2-IBM, IBS, IBSA, 2-IS, 2-ISM, PhIO 2 , PhI, IPAA, IPAAM, IPPA, or IPPAM benzene ring is halogen, alkoxy, Substituted products substituted with hydroxy, amino, nitro, cyano, carboxy, acyloxy, or lower alkyl can also be used as the organic iodine compound. The halogen is preferably a bromine atom or an iodine atom, more preferably an iodine atom. As acyloxy, acetoxy or tert-butylcarbonyloxy is preferable, and acetoxy is more preferable. The lower alkyl is preferably methyl, ethyl, 1-propyl, 2-propyl or t-butyl, more preferably methyl.
 前記置換体におけるこれらの置換基の数は1~4つであり、好ましくは1又は2つ、より好ましくは1つである。 The number of these substituents in the above-mentioned substitution product is 1 to 4, preferably 1 or 2, and more preferably 1.
 前記置換体におけるこれらの置換基はベンゼン環に結合したヨウ素原子のパラ位に存在することが収率の点から好ましい。 From the viewpoint of yield, it is preferable that these substituents in the above-mentioned substituted product are present at the para position of the iodine atom bonded to the benzene ring.
 一実施形態において有機ヨウ素化合物は、IBX、IBA、2-IB、2-IBM、IBS、IBSA、2-IS、2-ISM、及びこれら化合物中のヨウ素原子のパラ位にメチル基が結合した化合物からなる群から選択される少なくとも1種である。これらの有機ヨウ素化合物を使用すると、式(II)で表される化合物の収率が高い。 In one embodiment, the organic iodine compound is IBX, IBA, 2-IB, 2-IBM, IBS, IBSA, 2-IS, 2-ISM, and compounds in which a methyl group is bonded to the para position of the iodine atom in these compounds. It is at least 1 sort(s) selected from the group which consists of. When these organic iodine compounds are used, the yield of the compound represented by the formula (II) is high.
 また他の実施形態において有機ヨウ素化合物は、例えばIBS、IBSA、2-IS、2-ISM、及びこれら化合物中のヨウ素原子のパラ位にメチル基が結合した化合物からなる群から選択される少なくとも1種である。これらの有機ヨウ素化合物を使用すると、低使用量(例えば、触媒量)で式(II)で表される化合物を製造できる。 In another embodiment, the organic iodine compound is at least 1 selected from the group consisting of IBS, IBSA, 2-IS, 2-ISM, and a compound having a methyl group bonded to the para position of the iodine atom in these compounds. It is a seed. When these organic iodine compounds are used, the compound represented by the formula (II) can be produced in a low amount (for example, a catalytic amount).
 また、有機ヨウ素化合物はシリカゲル、ポリスチレンなどの樹脂等の担体に担持させて使用することが知られており、本発明においても担体に担持させた有機ヨウ素化合物を使用してもよい。 Further, it is known that the organic iodine compound is used by supporting it on a carrier such as a resin such as silica gel and polystyrene, and in the present invention, the organic iodine compound supported on the carrier may be used.
 有機ヨウ素化合物の使用量は目的物を製造できる限り特に制限されないが、原料1モルに対して、例えば、0.001モル以上、0.005モル以上、0.01モル以上、0.05モル以上、0.1モル以上、10モル以下、5モル以下、2モル以下、1モル以下、0.5モル以下、0.1モル以下などとでき、好ましくは0.001モル~10モル、より好ましくは0.005モル~10モル、さらに好ましくは0.05モル~10モル、より好ましくは0.05モル~1モルである。 The amount of the organic iodine compound used is not particularly limited as long as the intended product can be produced, but relative to 1 mol of the raw material, for example, 0.001 mol or more, 0.005 mol or more, 0.01 mol or more, 0.05 mol or more , 0.1 mol or more, 10 mol or less, 5 mol or less, 2 mol or less, 1 mol or less, 0.5 mol or less, 0.1 mol or less, etc., preferably 0.001 mol to 10 mol, more preferably Is 0.005 mol to 10 mol, more preferably 0.05 mol to 10 mol, and still more preferably 0.05 mol to 1 mol.
<酸化剤>
 酸化工程では酸化剤を使用してもよい。酸化剤の使用により原料のオキソ化が進行しやすくなる。これは、反応に寄与するラジカル活性種が発生しやすくなることが理由と考えられる。
<Oxidizing agent>
An oxidizing agent may be used in the oxidation step. The use of the oxidizing agent facilitates the oxo oxidation of the raw material. It is considered that this is because radical active species that contribute to the reaction are likely to be generated.
 酸化剤としては例えばオキソン、過酸化水素、メタクロロ過安息香酸(mCPBA)、過酢酸、過ヨウ素酸ナトリウム、次亜塩素酸ナトリウム、オゾン、ジメチルジオキシラン(DDO)、などの過酸化物が使用でき、1種単独で使用しても2種以上併用してもよい。好ましい酸化剤は、オキソン、過酢酸、又はメタクロロ過安息香酸(mCPBA)である。 As the oxidant, for example, peroxides such as oxone, hydrogen peroxide, metachloroperbenzoic acid (mCPBA), peracetic acid, sodium periodate, sodium hypochlorite, ozone and dimethyldioxirane (DDO) can be used. They may be used alone or in combination of two or more. Preferred oxidants are oxone, peracetic acid, or metachloroperbenzoic acid (mCPBA).
 酸化剤を使用する場合の使用量は目的物を製造できる限り特に制限されないが、原料1モルに対して、通常1モル以上、好ましくは1~10モル、より好ましくは5~10モルである。 The amount of the oxidizing agent used is not particularly limited as long as the target product can be produced, but is usually 1 mol or more, preferably 1 to 10 mol, and more preferably 5 to 10 mol per 1 mol of the raw material.
<金属触媒>
 酸化工程では金属触媒を使用してもよい。金属触媒の使用により原料のオキソ化が進行しやすくなる。これは、反応に寄与するラジカル活性種が発生しやすくなることが理由と考えられる。
<Metal catalyst>
A metal catalyst may be used in the oxidation step. The use of the metal catalyst facilitates the oxo oxidation of the raw material. It is considered that this is because radical active species that contribute to the reaction are likely to be generated.
 金属触媒としては、酸化バナジウム(V)(V2O5)、酸化バナジウム(III)、酸化ルテニウム(IV)(RuO2)、酸化ルテニウム(VIII)、酸化チタン(IV)(TiO2)などの金属酸化物が使用できる。 Examples of the metal catalyst include vanadium oxide (V) (V 2 O 5 ), vanadium (III) oxide, ruthenium (IV) oxide (RuO 2 ), ruthenium oxide (VIII), titanium oxide (IV) (TiO 2 ), and the like. Metal oxides can be used.
 金属触媒を使用する場合の使用量は目的物を製造できる限り特に制限されないが、原料1モルに対して、通常0.05モル以上、好ましくは0.05~0.5モル、より好ましくは0.05~0.1モルである。 The amount of the metal catalyst used is not particularly limited as long as the intended product can be produced, but is usually 0.05 mol or more, preferably 0.05 to 0.5 mol, and more preferably 0 mol, relative to 1 mol of the raw material. 0.05 to 0.1 mol.
 収率向上の点から金属触媒は酸化剤と併用することが好ましい。 From the viewpoint of improving yield, it is preferable to use the metal catalyst in combination with an oxidant.
<酸化反応>
 酸化工程は、反応系を加熱しなくとも目的物を製造できるが、加熱してもよい。反応温度は通常4℃~40℃、好ましくは10℃~40℃、より好ましくは30℃~35℃である。反応時間は目的物が製造できる限り特に制限されないが、通常30分間以上とすればよく、好ましくは1.5時間~3時間である。
<Oxidation reaction>
In the oxidation step, the target product can be produced without heating the reaction system, but it may be heated. The reaction temperature is generally 4°C-40°C, preferably 10°C-40°C, more preferably 30°C-35°C. The reaction time is not particularly limited as long as the desired product can be produced, but it is usually 30 minutes or more, preferably 1.5 hours to 3 hours.
 酸化工程では、溶媒中に原料、過硫酸塩、有機ヨウ素化合物を存在させればよく、またこれらに加えて必要であれば酸化剤及び/又は金属触媒を存在させてもよい。また、必要であれば反応系を加熱してもよい。溶媒、原料、過硫酸塩、有機ヨウ素化合物の添加順序は特に制限されないが、例えば原料及び有機ヨウ素化合物を有機溶媒に添加し、ここに過硫酸塩、水並びに任意に酸化剤及び/又は金属触媒を加えればよい。 In the oxidation step, the raw material, persulfate and organic iodine compound may be present in the solvent, and in addition to these, an oxidizing agent and/or a metal catalyst may be present. If necessary, the reaction system may be heated. The order of adding the solvent, the raw material, the persulfate, and the organic iodine compound is not particularly limited. For example, the raw material and the organic iodine compound are added to an organic solvent, and the persulfate, water, and optionally an oxidizing agent and/or a metal catalyst are added. Should be added.
 上記の酸化工程で得られる目的物を単離および精製することができる。例えば、反応混合物から粗反応生成物を分離するために濾過、濃縮、抽出等の単離手順を行い、その後、粗反応生成物を、カラムクロマトグラフィー、再結晶化等の一般的な精製手順に供することにより、反応混合物から目的物を単離および精製することができる。酸化工程では目的物は溶媒中に溶解している場合が多く、その場合は例えば、重クロロホルム、ジクロロメタンなどの適当な溶媒で目的物を抽出することができる。本発明ではo-キノン等の異性体生成が抑制されるため、目的物の精製は簡便に実施できる。 The target product obtained in the above oxidation step can be isolated and purified. For example, isolation procedures such as filtration, concentration, and extraction are performed to separate the crude reaction product from the reaction mixture, and then the crude reaction product is subjected to general purification procedures such as column chromatography and recrystallization. By providing, the desired product can be isolated and purified from the reaction mixture. In the oxidation step, the target substance is often dissolved in a solvent, and in that case, the target substance can be extracted with an appropriate solvent such as deuterated chloroform or dichloromethane. In the present invention, the production of isomers such as o-quinone is suppressed, so that the desired product can be easily purified.
 以下、試験例等を参照して本発明を具体的に説明するが、本発明はこれらに示された態様に限定されない。 Hereinafter, the present invention will be specifically described with reference to test examples and the like, but the present invention is not limited to the embodiments shown in these.
 以下の例で使用された化合物の略称は次のとおりである。
MeCN:アセトニトリル
NaIO4:過ヨウ素酸ナトリウム
PIDA:ヨードベンゼンジアセタート
PIFA:[ビス(トリフルオロアセトキシ)ヨード]ベンゼン
PhI(OCO-tBu)2:ビス(ピバロイルオキシ)ヨード(III)ベンゼン
MesI(OAc)2:ヨードメシチレンジアセタート
IBA:2-ヨードソ安息香酸
IBX:2-ヨードキシ安息香酸
2-IB:2-ヨード安息香酸
IBS:2-ヨードキシベンゼンスルホン酸
2-IS:2-ヨードベンゼンスルホン酸
2-ISM-Na:2-ヨードベンゼンスルホン酸ナトリウム
2-ISM-K:2-ヨードベンゼンスルホン酸カリウム
PhI:ヨードベンゼン
IPAA:2-ヨードベンゼン酢酸
IPPA:2-ヨードベンゼンプロパン酸
The abbreviations of the compounds used in the following examples are as follows.
MeCN: Acetonitrile
NaIO 4 : Sodium periodate
PIDA: Iodobenzene diacetate
PIFA: [bis(trifluoroacetoxy)iodo]benzene
PhI(OCO-tBu) 2 : Bis(pivaloyloxy)iodo(III)benzene
MesI(OAc) 2 : Iodume Citirange Acetate
IBA: 2-Iodosobenzoic acid
IBX: 2-iodoxybenzoic acid
2-IB:2-iodobenzoic acid
IBS: 2-iodoxybenzenesulfonic acid
2-IS: 2-iodobenzenesulfonic acid
2-ISM-Na: Sodium 2-iodobenzenesulfonate
2-ISM-K: Potassium 2-iodobenzenesulfonate
PhI: Iodobenzene
IPAA: 2-iodobenzeneacetic acid
IPPA: 2-iodobenzenepropanoic acid
<試験例1>有機ヨウ素化合物の検討
 次の反応工程式に従い、表1及び表2に示した有機ヨウ素化合物、過硫酸塩及び酸化剤を使用して合成を行った。
<Test Example 1> Examination of Organic Iodine Compound According to the following reaction process formula, synthesis was performed using the organic iodine compound, persulfate and oxidizing agent shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 10 mLのナスフラスコに1-メトキシナフタレン(0.2 mmol, 31.6 mg)と表1及び表2に示した有機ヨウ素化合物を入れ、これらをアセトニトリル(2.5 mL)で溶解させた後、表1及び表2で示した有機溶媒に溶解しない成分(オキソン、V2O5)を加え、更に水(2.5 mL)及び表1及び表2で示した過酸化水素を加えた。磁気撹拌子を用い、室温下で表1及び表2に示した時間で攪拌した後、ジクロロメタン(40 mL)を用いて反応混合物を分液漏斗に移し、下層の有機層において自然濾過による脱水処理を行った。エバポレーターによる濃縮後、シリカゲルクロマトグラフィーを行い、1,4-ナフトキノンを得た。
1H NMR (400 MHz, CDCl3) : δ 6.98 (2H, s), 7.76 (2H, dd, J = 5.9, 3.4 Hz), 8.08 (2H, dd, J = 5.4, 3.4 Hz) ppm。
1-Methoxynaphthalene (0.2 mmol, 31.6 mg) and the organic iodine compounds shown in Tables 1 and 2 were placed in a 10 mL eggplant flask, dissolved in acetonitrile (2.5 mL), and then added to Tables 1 and 2 A component (Oxone, V 2 O 5 ) which is not soluble in the organic solvent shown in 1 above was added, and further water (2.5 mL) and hydrogen peroxide shown in Tables 1 and 2 were added. After stirring at room temperature for the time shown in Table 1 and Table 2 using a magnetic stirrer, the reaction mixture was transferred to a separatory funnel using dichloromethane (40 mL), and the lower organic layer was dehydrated by natural filtration. I went. After concentration with an evaporator, silica gel chromatography was performed to obtain 1,4-naphthoquinone.
1 H NMR (400 MHz, CDCl 3 ): δ 6.98 (2H, s), 7.76 (2H, dd, J = 5.9, 3.4 Hz), 8.08 (2H, dd, J = 5.4, 3.4 Hz) ppm.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 有機ヨウ素化合物としてNaIO4、PIDA、PIFA、PhI(OCO-tBu)2又はMesI(OAc)2を使用した場合、目的物の収率は最大で3%と低いものであった(entry 1~entry 5)。
 IBA、IBX又は2-IBとオキソンとの存在下では、目的物の収率が30~60%、変換収率が65~99%であり、他のヨウ素化合物を使用した場合より高く、また、表1及び表2には示していないが、副生物である1,2-ナフトキノンは検出されなかった(entry 13~entry 22)。
 1当量以下のIBX及びIBAは、オキソンと併用しないと、目的物の収率は最大で6%であり(entry 6~entry 9)、触媒作用は認められなかった。
When NaIO 4 , PIDA, PIFA, PhI(OCO-tBu) 2 or MesI(OAc) 2 was used as the organic iodine compound, the yield of the target compound was as low as 3% at maximum (entry 1-entry Five).
In the presence of IBA, IBX or 2-IB and oxone, the yield of the desired product was 30 to 60%, the conversion yield was 65 to 99%, which was higher than when other iodine compounds were used. Although not shown in Tables 1 and 2, the by-product 1,2-naphthoquinone was not detected (entry 13 to entry 22).
When IBX and IBA in an amount of 1 equivalent or less were used together with Oxone, the yield of the target substance was 6% at maximum (entry 6 to entry 9), and no catalytic action was observed.
<試験例2>有機溶媒と水との混合比の検討
オキソンと2-IBを用いた1,3-ジメトキシベンゼンから2-メトキシ-1,4-ベンゾキノンの合成における有機溶媒と水との混合比(アセトニトリル/水;容積比)の検討
<Test Example 2> Examination of mixing ratio of organic solvent and water Mixing ratio of organic solvent and water in the synthesis of 2-methoxy-1,4-benzoquinone from 1,3-dimethoxybenzene using oxone and 2-IB Examination of (acetonitrile/water; volume ratio)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記反応工程式に従い、5 mLのサンプル管に1,3-ジメトキシベンゼン(4a)(0.1 mmol, 13.8 mg)、2-IB(0.1 mmol, 24.8 mg)及び標準物質としての1,4-ジニトロベンゼン(0.05 mmol, 8.4 mg)を入れ、これらにオキソン(0.3 mmol, 184 mg)と、所定体積比のアセトニトリル/水混合溶媒(1.0 mL)を加え磁気撹拌子で攪拌した。室温下で1.5時間攪拌後、重クロロホルム(1 mL)を加え激しく振とうし、得られた有機層において定量NMRを行った。測定条件を観測中心(6 ppm)、観測範囲(6 ppm)および緩和遅延時間(40秒)とし、2-メトキシ-1,4-ベンゾキノン(4b)のNMR収率を求めた。結果を図1に示す。
なお、混合溶媒の容積比(アセトニトリル/水)は次のとおりである。
  100/0,80/20,60/40,50/50,40/60,30/70,20/80,0/100
According to the above reaction process formula, 1,3-dimethoxybenzene (4a) (0.1 mmol, 13.8 mg), 2-IB (0.1 mmol, 24.8 mg) and 1,4-dinitrobenzene as a standard substance were added to a 5 mL sample tube. (0.05 mmol, 8.4 mg) was added, and oxone (0.3 mmol, 184 mg) and a predetermined volume ratio of acetonitrile/water mixed solvent (1.0 mL) were added thereto and stirred with a magnetic stir bar. After stirring at room temperature for 1.5 hours, deuterated chloroform (1 mL) was added and shaken vigorously, and the obtained organic layer was subjected to quantitative NMR. Under the measurement conditions of observation center (6 ppm), observation range (6 ppm) and relaxation delay time (40 seconds), the NMR yield of 2-methoxy-1,4-benzoquinone (4b) was determined. The results are shown in Figure 1.
The volume ratio (acetonitrile/water) of the mixed solvent is as follows.
100/0, 80/20, 60/40, 50/50, 40/60, 30/70, 20/80, 0/100
 図1より、溶媒がアセトニトリルのみでは製造できず、水又は水と有機溶媒との混合溶媒の存在下で2-メトキシ-1,4-ベンゾキノンの合成反応が進行することが確認された。また、水を含む溶媒(溶媒が水のみの場合を含む)を使用した場合では副生成物はほとんど生成していなかった。 From FIG. 1, it was confirmed that the solvent cannot be produced only by acetonitrile, and the synthetic reaction of 2-methoxy-1,4-benzoquinone proceeds in the presence of water or a mixed solvent of water and an organic solvent. Further, when a solvent containing water (including a case where the solvent is only water) was used, almost no by-products were formed.
<試験例3>基質の検討
 オキソンと2-IBを用いた、式(I)の化合物から式(II)の1,4-ベンゾキノンの合成
<Test Example 3> Examination of Substrate Synthesis of 1,4-benzoquinone of Formula (II) from Compound of Formula (I) Using Oxone and 2-IB
Figure JPOXMLDOC01-appb-C000016
[上記反応工程式中、R~Rは前記と同じ。]
Figure JPOXMLDOC01-appb-C000016
[In the above reaction scheme, R 1 to R 6 are the same as above. ]
 上記反応工程式にしたがい合成を行った。
 10 mLのナスフラスコに表3に示した式(I)の化合物(1.0 mmol)と2-IB(1.0 mmol, 248 mg)を入れ、これらをアセトニトリル(4 mL)で溶解させた後、オキソン(3.0 mmol, 1.844 g)と水(6 mL)を加え磁気撹拌子で攪拌した。室温下で1時間攪拌後、吸引濾過により固形物を除去し、ジクロロメタン(50 mLで2回)を用いて生成物を抽出した。有機層を飽和炭酸水素ナトリウム水溶液(100 mL)で洗浄後、自然濾過による脱水処理を行った。エバポレーターによる濃縮後、5bの化合物についてはメタノールを用いた吸引濾過により、6b,9b及び10bの化合物についてはジクロロメタンを用いたシリカゲルクロマトグラフィーにより、7b及び8bの化合物については混合溶媒(ジクロロメタン-ペンタン=1:1)を用いたシリカゲルクロマトグラフィーにより、式(II)の化合物を得た。収率を表3に示す。
Synthesis was performed according to the above reaction scheme.
A compound (1.0 mmol) of formula (I) shown in Table 3 and 2-IB (1.0 mmol, 248 mg) were placed in a 10 mL eggplant-shaped flask, and these were dissolved in acetonitrile (4 mL), followed by oxone ( 3.0 mmol, 1.844 g) and water (6 mL) were added, and the mixture was stirred with a magnetic stir bar. After stirring at room temperature for 1 hour, the solid matter was removed by suction filtration, and the product was extracted with dichloromethane (50 mL×2). The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (100 mL), and then dehydrated by natural filtration. After concentration by an evaporator, the compound of 5b was subjected to suction filtration using methanol, the compounds of 6b, 9b and 10b were subjected to silica gel chromatography using dichloromethane, and the compounds of 7b and 8b were mixed solvent (dichloromethane-pentane= Silica gel chromatography using 1:1) gave the compound of formula (II). The yield is shown in Table 3.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<試験例4>有機ヨウ素化合物の検討
オキソンと有機ヨウ素化合物を用いた、1-イソプロポキシ-2-メトキシベンゼン(11a)の酸化反応における2-メトキシ-[1,4]ベンゾキノン(4b)と2-イソプロポキシ-[1,4]ベンゾキノン(11b)の生成比および変換効率の検討
<Test Example 4> Investigation of organic iodine compound 2-methoxy-[1,4]benzoquinone (4b) and 2 in the oxidation reaction of 1-isopropoxy-2-methoxybenzene (11a) using oxone and an organic iodine compound Of isopropoxy-[1,4]benzoquinone (11b) formation ratio and conversion efficiency
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記反応工程式にしたがい、次の有機ヨウ素化合物(cat.)を使用して合成を行った。 According to the above reaction scheme, the following organic iodine compound (cat.) was used for the synthesis.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 5 mLのサンプル管に上記反応工程式中に示した化合物11a(0.1 mmol, 16.6 mg)、有機ヨウ素化合物(0.1 mmol)及び標準物質として1,4-ジニトロベンゼン(0.05 mmol, 8.4 mg)を入れ、これらをアセトニトリル(0.4 mL)で溶解させた後、オキソン(0.3 mmol, 184 mg)と水(0.6 mL)を加え磁気撹拌子で攪拌した。室温下で表4に示した時間(1.5時間又は3.0時間)で攪拌後、重クロロホルム(1 mL)を加え激しく振とうし、得られた有機層において定量NMRを行った。測定条件を観測中心(6 ppm)、観測範囲(6 ppm)および緩和遅延時間(40秒)とした。化合物4bと化合物11bのNMR収率と変換率を表4に示す。2-イソプロポキシ-[1,4]ベンゾキノン(11b)は、ジクロロメタンを用いたシリカゲルクロマトグラフィーにより容易に精製できた。
1H NMR (400 MHz, CDCl3) : δ 1.38 (6H, d, J = 6.0 Hz), 4.46 (1H, sep, J= 6.0 Hz), 5.89 (1H, d, J = 1.4 Hz), 6.66-6.69 (2H, m) ppm。
Put compound 11a (0.1 mmol, 16.6 mg) shown in the above reaction scheme, organic iodine compound (0.1 mmol) and 1,4-dinitrobenzene (0.05 mmol, 8.4 mg) as a standard substance into a 5 mL sample tube. , These were dissolved in acetonitrile (0.4 mL), oxone (0.3 mmol, 184 mg) and water (0.6 mL) were added, and the mixture was stirred with a magnetic stir bar. After stirring at room temperature for the time (1.5 hours or 3.0 hours) shown in Table 4, deuterated chloroform (1 mL) was added, and the mixture was vigorously shaken, and the obtained organic layer was subjected to quantitative NMR. The measurement conditions were the observation center (6 ppm), the observation range (6 ppm), and the relaxation delay time (40 seconds). Table 4 shows the NMR yields and conversion rates of compound 4b and compound 11b. 2-Isopropoxy-[1,4]benzoquinone (11b) could be easily purified by silica gel chromatography using dichloromethane.
1 H NMR (400 MHz, CDCl 3 ): δ 1.38 (6H, d, J = 6.0 Hz), 4.46 (1H, sep, J= 6.0 Hz), 5.89 (1H, d, J = 1.4 Hz), 6.66- 6.69 (2H, m) ppm.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 本試験例では、二級エーテル酸化生成体4bと一級エーテル酸化生成体11bの混合物が得られ、一級エーテル酸化生成体11bが主生成物であったことから、一級エーテル基の方が酸化されやすいことが確認された。また、本試験例では、IPAA、IPPA及びPhIも原料化合物をp-キノン体へ変換することが確認された。 In this test example, a mixture of the secondary ether oxidation product 4b and the primary ether oxidation product 11b was obtained, and since the primary ether oxidation product 11b was the main product, the primary ether group was more easily oxidized. It was confirmed. In addition, in this test example, it was confirmed that IPAA, IPPA and PhI also convert the raw material compounds into the p-quinone form.
 また、2-IBについては、5位にメチル基を導入した5-Me 2-IBを使用することにより収率及び11b選択性が向上した。2-ISMについては、5位にメチル基を導入した5-Me 2-ISMを使用することにより11b選択性が向上した。これらのことから有機ヨウ素化合物のヨウ素原子のパラ位にアルキルを導入することにより選択性が向上することが確認された。 Regarding 2-IB, the yield and 11b selectivity were improved by using 5-Me2-IB with a methyl group introduced at the 5-position. For 2-ISM, 11b selectivity was improved by using 5-Me2-ISM with a methyl group introduced at the 5-position. From these facts, it was confirmed that the selectivity was improved by introducing an alkyl into the para-position of the iodine atom of the organic iodine compound.
 p-キノンの総収率(Total yield)と11aの変換効率(Conversions)が近い値を示したものについてはそのことから副生成物がほとんど生じていないことがわかった。この場合、化合物11bの精製は、シリカゲルクロマトグラフィーを用いる簡便な方法で実施できた。 It was found that almost no by-products were generated from those that showed a value close to the total yield of p-quinone (Total yield) and the conversion efficiency (Conversions) of 11a. In this case, compound 11b could be purified by a simple method using silica gel chromatography.
<試験例5>リグニンモデル基質からのp-キノン変換の検討
オキソンと有機ヨウ素化合物を用いた、β-O-4構造を有するリグニンモデル基質、即ち1-(3,4-ジメトキシフェニル)-2-(2-メトキシフェノキシ)-1,3-プロパンジオール(12a)からの2-メトキシ-[1,4]ベンゾキノン(4b)の合成
<Test Example 5> Examination of p-quinone conversion from lignin model substrate A lignin model substrate having a β-O-4 structure using oxone and an organic iodine compound, namely 1-(3,4-dimethoxyphenyl)-2 Synthesis of 2-methoxy-[1,4]benzoquinone (4b) from -(2-methoxyphenoxy)-1,3-propanediol (12a)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記反応工程式にしたがい、次の有機ヨウ素化合物(cat.)を使用して合成を行った。 According to the above reaction scheme, the following organic iodine compound (cat.) was used for the synthesis.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 5 mLのサンプル管に12a(0.1 mmol, 33.4 mg)、有機ヨウ素化合物(0.1 mmol又は0.005 mmol)および標準物質として1,4-ジニトロベンゼン(0.05 mmol, 8.4 mg)を入れ、これらをアセトニトリル(0.4 mL)で溶解させた後、オキソン(0.3 mmol, 184 mg)と水(0.6 mL)を加え磁気撹拌子で攪拌した。室温下で3時間攪拌後、重クロロホルム(1 mL)を加え激しく振とうし、得られた有機層において定量NMRを行った。測定条件を観測中心(6ppm)、観測範囲(6ppm)および緩和遅延時間(40秒)とした。4bのNMR収率は、2-IBで45%、5-Me 2-IBで50%、2-ISM-Naで35%、5-Me 2-ISM-Kで41%であった。 Put 12a (0.1 mmol, 33.4 mg), organic iodine compound (0.1 mmol or 0.005 mmol) and 1,4-dinitrobenzene (0.05 mmol, 8.4 mg) as a standard substance into a 5 mL sample tube, and add them to acetonitrile (0.4 mg). After solubilizing with Oxone (0.3 mL, 184 mg) and water (0.6 mL), the mixture was stirred with a magnetic stir bar. After stirring at room temperature for 3 hours, deuterated chloroform (1 mL) was added and shaken vigorously, and the obtained organic layer was subjected to quantitative NMR. The measurement conditions were the observation center (6 ppm), the observation range (6 ppm), and the relaxation delay time (40 seconds). The NMR yield of 4b was 45% for 2-IB, 50% for 5-Me2-IB, 35% for 2-ISM-Na, and 41% for 5-Me2-ISM-K.
 本試験例により、ベンゼン環に結合したリグニン残基はメトキシ基よりp-キノン化されやすいことが確認された。本試験例では、リグニンモデル基質12aが有用な低分子化合物4bに変換された。リグニンモデル基質12aはβ-O-4構造を有している。β-O-4構造はリグニン内の全結合様式の約50%を占めるエーテル結合である。本試験例においてこの基質のβ-O-4構造が切断されて2-メトキシ-[1,4]ベンゾキノンが切り出されたことから、本発明の製造方法はリグニンを原料として、有用なp-キノン系の低分子化合物に変換しうることが確認された。 In this test example, it was confirmed that the lignin residue bonded to the benzene ring was more likely to be p-quinoneized than the methoxy group. In this test example, the lignin model substrate 12a was converted into a useful low molecular weight compound 4b. The lignin model substrate 12a has a β-O-4 structure. The β-O-4 structure is an ether bond that accounts for about 50% of the total bond mode in lignin. In the present test example, the β-O-4 structure of this substrate was cleaved to cleave 2-methoxy-[1,4]benzoquinone. Therefore, the production method of the present invention uses lignin as a raw material to produce useful p-quinone. It was confirmed that it can be converted into a low molecular weight compound of the system.
<試験例6>有機ヨウ素化合物を触媒量用いる反応の検討
 オキソンと触媒量の有機ヨウ素化合物を用いた、1,3,5-トリメトキシベンゼン(5a)からの2,6-ジメトキシ-[1,4]ベンゾキノン(5b)の合成、及び3,5-ジメトキシトルエン(10a)からの2-メトキシ-6-メチル-[1,4]ベンゾキノン(10b)の合成
<Test Example 6> Examination of Reaction Using Catalytic Amount of Organic Iodine Compound 2,6-Dimethoxy-[1, from 1,3,5-trimethoxybenzene (5a) using oxone and a catalytic amount of organic iodine compound Synthesis of 4]benzoquinone (5b) and synthesis of 2-methoxy-6-methyl-[1,4]benzoquinone (10b) from 3,5-dimethoxytoluene (10a)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記反応工程式にしたがい、触媒量の2-ヨード安息香酸(2-IB)を使用して合成を行った。 According to the above reaction scheme, synthesis was performed using a catalytic amount of 2-iodobenzoic acid (2-IB).
 5 mLのサンプル管に化合物5a(0.1 mmol, 16.8 mg)、2-IB(0.005 mmol,12.4 mg)を入れ、これらをアセトニトリル(0.4 mL)で溶解させた後、オキソン(0.3 mmol, 184 mg)と水(0.6 mL)を加え磁気撹拌子で攪拌した。室温下で3時間攪拌後、吸引濾過により固形物を除去し、ジクロロメタン(50 mLで2回)を用いて生成物を抽出した。有機層を飽和炭酸水素ナトリウム水溶液(100 mL)で洗浄後、自然濾過による脱水処理を行った。エバポレーターによる濃縮後、メタノールを用いた吸引濾過により、化合物5bを得た。5bの単離収率は62%であった。 Put compound 5a (0.1 mmol, 16.8 mg) and 2-IB (0.005 mmol, 12.4 mg) in a 5 mL sample tube, dissolve them with acetonitrile (0.4 mL), and then oxone (0.3 mmol, 184 mg). And water (0.6 mL) were added and stirred with a magnetic stir bar. After stirring at room temperature for 3 hours, the solid matter was removed by suction filtration, and the product was extracted with dichloromethane (50 mL twice). The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (100 mL) and then dehydrated by natural filtration. After concentration by an evaporator, compound 5b was obtained by suction filtration using methanol. The isolated yield of 5b was 62%.
 2-IBの量を0.02 mmol,49.6 mgに換え、攪拌時間を1時間に換えた他は、同様にして、化合物5bを得た。5bの単離収率は80%であった。 Compound 5b was obtained in the same manner except that the amount of 2-IB was changed to 0.02 mmol and 49.6 mg and the stirring time was changed to 1 hour. The isolated yield of 5b was 80%.
 化合物5a(0.1 mmol, 16.8 mg)を化合物10a(0.1 mmol, 15.2 mg)に換え、攪拌時間を2時間に換え、メタノールを用いた吸引濾過をジクロロメタンを用いたシリカゲルクロマトグラフィー処理に換えた他は、同様にして、化合物10bを得た。10bの単離収率は86%であった。 Compound 5a (0.1 mmol, 16.8 mg) was replaced with compound 10a (0.1 mmol, 15.2 mg), stirring time was changed to 2 hours, suction filtration using methanol was replaced with silica gel chromatography using dichloromethane. In the same manner, Compound 10b was obtained. The isolated yield of 10b was 86%.
 本試験例により、触媒量の2-IB(0.005 mmol)を使用しても良好な収率で、化合物5b及び10bが得られることが確認された。また、少量(0.02 mmol)の2-IBの使用でも80%の高い収率で化合物5bが得られた。 It was confirmed by this test example that the compounds 5b and 10b could be obtained in good yield even when a catalytic amount of 2-IB (0.005 mmol) was used. In addition, compound 5b was obtained in a high yield of 80% even when a small amount (0.02 mmol) of 2-IB was used.
 また、本試験例のいずれの合成においても、原料化合物5aおよび10aの変換効率(Conversions)は、p-キノン化合物5bおよび10bの収率(Yield)と近い値であった。このことから、有機ヨウ素化合物を触媒量使用した場合でも副生成物がほとんど生じていないことが確認された。そのため、化合物5bおよび10bの精製は、吸引濾過処理及びシリカゲルクロマトグラフィー処理の簡便な方法で実施できた。 Also, in all the syntheses of this test example, the conversion efficiencies (Conversions) of the raw material compounds 5a and 10a were close to the yields (Yield) of the p-quinone compounds 5b and 10b. From this, it was confirmed that even when a catalytic amount of the organic iodine compound was used, almost no by-products were generated. Therefore, the compounds 5b and 10b could be purified by a simple method such as suction filtration and silica gel chromatography.
 本発明は、水存在下で反応が進むことから、リグニンの中でも水溶性の高いリグニンの分解に適する。また、スルホン酸系の有機ヨウ素化合物(2-ISM-Na及び5-Me 2-ISM-K)であれば少量(触媒量)でリグニンの分解が可能であった。
 リグニンモデル基質からp-キノンへ変換する方法としては、ポルフィリン-オキソンの反応系を利用することで最高収率30%となることが知られている(New J. Chem., 1989, 13, 801)。本発明は、この方法に比べて、活性の面で優れていること、触媒の合成が容易であることから優位である。
INDUSTRIAL APPLICABILITY The present invention is suitable for decomposing lignin, which is highly water-soluble among lignins, because the reaction proceeds in the presence of water. In addition, sulfonic acid-based organic iodine compounds (2-ISM-Na and 5-Me 2-ISM-K) were able to decompose lignin with a small amount (catalytic amount).
As a method for converting a lignin model substrate into p-quinone, it is known that the maximum yield is 30% by using a porphyrin-oxone reaction system (New J. Chem., 1989, 13, 801). ). The present invention is superior to this method in terms of activity and ease of catalyst synthesis.

Claims (5)

  1. 式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    はアルキル又は1-(3,4-ジメトキシフェニル)-1,3-ジヒドロキシ-2-プロピルを示し、
    及びRは、同一に又は異なって、水素原子又は有機官能基を示し、RとRとは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。
    及びRは、同一に又は異なって、水素原子又は有機官能基を示し、RとRとは互いに結合して環を形成してもよく、該環は環上に置換基を有していてもよい。
    は、水素原子、ヒドロキシ、アミノ、アルコキシ、チオール又はハロゲンを示す。]で表される化合物又はリグニン類から、
    式(II)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R、R及びRは前記と同じ。]
    で表される化合物を製造する方法であって、
    式(I)で表される化合物又はリグニン類を、
    水及び水と有機溶媒との混合溶媒から選択される溶媒中、
    ペルオキソ一硫酸モノカリウム及びオキソンから選択される少なくとも1つの過硫酸塩、並びに
    2-ヨードキシ安息香酸(IBX)、2-ヨードソ安息香酸(IBA)、2-ヨード安息香酸(2-IB)、2-IBのアルカリ金属塩(2-IBM)、2-ヨードキシベンゼンスルホン酸(IBS)、2-ヨードソベンゼンスルホン酸(IBSA)、2-ヨードベンゼンスルホン酸(2-IS)、2-ISのアルカリ金属塩(2-ISM)、ヨードキシベンゼン(PhIO2)、ヨードベンゼン(PhI)、2-ヨードベンゼン酢酸(IPAA)、IPAAのアルカリ金属塩(IPAAM)、2-ヨードベンゼンプロパン酸(IPPA)、IPPAのアルカリ金属塩(IPPAM)、及びこれらのベンゼン環がハロゲン、アルコキシ、ヒドロキシ、アミノ、ニトロ、シアノ、カルボキシ、アシルオキシ又は低級アルキルで置換された置換体からなる群から選択される少なくとも1つの有機ヨウ素化合物、
    の存在下で酸化する工程を含む、方法。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    R 1 represents alkyl or 1-(3,4-dimethoxyphenyl)-1,3-dihydroxy-2-propyl,
    R 2 and R 3 are the same or different and each represents a hydrogen atom or an organic functional group, and R 2 and R 3 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
    R 4 and R 5 are the same or different and each represents a hydrogen atom or an organic functional group, and R 4 and R 5 may be bonded to each other to form a ring, and the ring has a substituent on the ring. You may have.
    R 6 represents a hydrogen atom, hydroxy, amino, alkoxy, thiol or halogen. ] From the compound or lignin represented by
    Formula (II)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 2 , R 3 , R 4 and R 5 are the same as defined above. ]
    A method for producing a compound represented by:
    A compound represented by the formula (I) or lignins,
    In a solvent selected from water and a mixed solvent of water and an organic solvent,
    At least one persulfate selected from monopotassium peroxomonosulfate and oxone, and 2-iodoxybenzoic acid (IBX), 2-iodosobenzoic acid (IBA), 2-iodobenzoic acid (2-IB), 2- Alkali metal salt of IB (2-IBM), 2-iodoxybenzenesulfonic acid (IBS), 2-iodosobenzenesulfonic acid (IBSA), 2-iodobenzenesulfonic acid (2-IS), 2-IS alkali Metal salt (2-ISM), iodooxybenzene (PhIO 2 ), iodobenzene (PhI), 2-iodobenzeneacetic acid (IPAA), IPAA alkali metal salt (IPAAM), 2-iodobenzenepropanoic acid (IPPA), Alkali metal salt of IPPA (IPPAM), and at least one organic compound selected from the group consisting of substituents in which these benzene rings are substituted with halogen, alkoxy, hydroxy, amino, nitro, cyano, carboxy, acyloxy or lower alkyl. Iodine compounds,
    A method comprising the step of oxidizing in the presence of
  2. 前記酸化工程が、過酸化水素、又は過酸化水素及び金属触媒がさらに存在する条件下で行われる請求項1に記載の方法。 The method according to claim 1, wherein the oxidizing step is performed under conditions in which hydrogen peroxide or hydrogen peroxide and a metal catalyst are further present.
  3. が水素原子である請求項1又は2に記載の方法。 The method according to claim 1, wherein R 6 is a hydrogen atom.
  4. が低級アルキルである請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein R 1 is lower alkyl.
  5. 及びRが、同一に又は異なって、水素原子、アルキル又はアルコキシであるか、或いはRとRとは互いに結合してベンゼン環を形成するものであり、
    及びRが、同一に又は異なって、水素原子、アルキル又はアルコキシであるか、或いはRとRとは互いに結合してベンゼン環を形成するものである、
    請求項1~4のいずれかに記載の方法。
    R 2 and R 3 are the same or different and are a hydrogen atom, alkyl or alkoxy, or R 2 and R 3 are bonded to each other to form a benzene ring,
    R 4 and R 5 are the same or different and are a hydrogen atom, alkyl or alkoxy, or R 4 and R 5 are bonded to each other to form a benzene ring,
    The method according to any one of claims 1 to 4.
PCT/JP2019/049847 2018-12-21 2019-12-19 Method for producing p-quinones WO2020130080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561511A JP7442826B2 (en) 2018-12-21 2019-12-19 Method for producing p-quinones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239812 2018-12-21
JP2018-239812 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130080A1 true WO2020130080A1 (en) 2020-06-25

Family

ID=71100865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049847 WO2020130080A1 (en) 2018-12-21 2019-12-19 Method for producing p-quinones

Country Status (2)

Country Link
JP (1) JP7442826B2 (en)
WO (1) WO2020130080A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALEKSANDRA A. ZAGULYAEVA, CHRISTOPHER T. BANEK, MEKHMAN S. YUSUBOV, VIKTOR V. ZHDANKIN: "Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in Situ from Iodobenzene and Oxone: Reaction Scope and Limitations", ORGANIC LETTERS, vol. 12, no. 20, 15 September 2010 (2010-09-15), pages 4644 - 4647, XP055721169, ISSN: 1523-7060, DOI: 10.1021/ol101993q *
HIDEYASU CHINA , KOKORO TANIHARA , HIROTAKA SASA , KOTARO KIKUSHIMA, TOSHIFUMI DOHI: "Regiodivergent oxidation of alkoxyarenes by hypervalent iodine/oxone system", CATALYSIS TODAY, vol. 348, 15 May 2019 (2019-05-15), pages 1 - 7, XP055721175, ISSN: 0920-5861, DOI: 10.1016/j.cattod.2019.08.060 *
S. L. COLLOM ,P. T. ANASTAS ,E. S. BEACH ,R. H. CRABTREE ,N. HAZARI ,T. J. SOMMER: "Differing selectivities in mechanochemical versus conventional solution oxidation using Oxone", TETRAHEDRON LETTERS, vol. 54, no. 19, 8 May 2013 (2013-05-08), pages 2344 - 2347, XP055721172, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2013.02.056 *
TAKAYUKI YAKURA, TATSUYA KONISHI: "A novel catalytic hypervalent iodine oxidation of para-alkoxyphenols to para-quinones using 4-iodophenoxyacetic acid and Oxone", SYNLETT, no. 5, 8 March 2007 (2007-03-08), pages 765 - 768, XP055721158, ISSN: 0936-5214, DOI: 10.1055/s-2007-970758 *
TAKAYUKI YAKURA, YUAN TIAN, YÛ YAMAUCHI, MASANORI OMOTO, TATSUYA KONISHI: "Catalytic hypervalent iodine oxidation using 4-iodophenoxyacetic acid and Oxone: oxidation of p-alkoxyphenols to p-benzoquinones", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 57, no. 3, 5 January 2009 (2009-01-05), pages 252 - 256, XP055721165, ISSN: 0009-2363, DOI: 10.1248/cpb.57.252 *
YAKURA T; OMOTO M; YAMAUCHI Y; TIAN Y; OZONO A: "Hypervalent iodine oxidation of phenol derivatives using a catalytic amount of 4-iodophenoxyacetic acid and Oxone as a co-oxidant", TETRAHEDRON, vol. 66, no. 31, 4 May 2010 (2010-05-04), pages 5833 - 5840, XP027122609, ISSN: 0040-4020, DOI: 10.1016/j.tet.2010.04.124 *

Also Published As

Publication number Publication date
JP7442826B2 (en) 2024-03-05
JPWO2020130080A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
Romanelli et al. Solvent-free catalytic preparation of 1, 1-diacetates from aldehydes using a Wells–Dawson acid (H6P2W18O62· 24H2O)
JP5207677B2 (en) Process for producing 2,5-furandicarboxylic acid
Sable et al. Carbon dioxide based methodologies for the synthesis of fine chemicals
JP5234901B2 (en) Method for producing asymmetric catalyst Michael reaction product
Ranjan et al. Employing Cu (II) complexes of N, O-donor ligand for catalysis in visible light driven cleavage of lignin CC bonds
Breslow et al. A selective intramolecular aldol condensation directed by a bifunctional enzyme mimic
CN111808023B (en) Method for preparing 3-aryl isoquinoline derivative
WO2020130080A1 (en) Method for producing p-quinones
Peng et al. A Facile Aqueous Synthesis of Bis (indol‐3‐yl) alkanes Catalyzed by Dodecylbenzenesulfonic Acid
KR101086730B1 (en) Mixed metal oxide catalyst for conversion of ethanol to acetaldehyde by dehydrogenation and Preparing method of the same
Phillips et al. Guanidine bases in synthesis: Extending the scope of the corey-chaykovsky epoxidation
CN108003123B (en) Synthetic method of coumarin compound
CN113149835B (en) Preparation method for rapidly generating alpha-ketoester by iodine-mediated oxidation of alpha-diazo ester
Zhu et al. Oxidant-dependent selective oxidation of alcohols utilizing multinuclear copper-triethanolamine complexes
JP7403835B2 (en) Method for producing 2-iodosobenzoic acids
Cottineau et al. New synthesis of 3-methoxy-4-substituted pyrazole derivatives
CN115466199B (en) Method for dehydrogenating and esterifying aldehyde and aryl phenol through light/nickel double-catalytic system
CN115504946B (en) Method for synthesizing alpha-ketoamide compound
JP2006523204A (en) Method for producing lactone or epoxide
JP2003299962A (en) Chiral zirconimu catalyst and anti-selective asymmetric aldol reaction method
CN116621802A (en) Method for synthesizing 3, 4-dibenzoisocoumarin and derivatives thereof through palladium-catalyzed cascade cyclization reaction
Zhang et al. Pd-catalyzed selective oxidation of allyl alcohols to access enones and enals
JP2002201156A (en) METHOD FOR PRODUCING beta-HYDROXYHYDROPEROXIDE COMPOUNDS AND CARBOXYLIC ACID COMPOUNDS AND CATALYST THEREFOR
Iwaoka et al. Sodium Hypochlorite Pentahydrate as a Chlorinating Reagent: Application to the Tandem Conversion of β, γ-Unsaturated Carboxylic Acids to α, β-Unsaturated Lactones
Singhal et al. Recent advances in synthetic application and functionalization of organohypervalent iodine reagents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901089

Country of ref document: EP

Kind code of ref document: A1