JP2003010684A - Catalyst for manufacturing hydrogen and hydrogen manufacturing method - Google Patents

Catalyst for manufacturing hydrogen and hydrogen manufacturing method

Info

Publication number
JP2003010684A
JP2003010684A JP2001194879A JP2001194879A JP2003010684A JP 2003010684 A JP2003010684 A JP 2003010684A JP 2001194879 A JP2001194879 A JP 2001194879A JP 2001194879 A JP2001194879 A JP 2001194879A JP 2003010684 A JP2003010684 A JP 2003010684A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
dimethyl ether
copper
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001194879A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mogi
康弘 茂木
Tsutomu Shikada
勉 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001194879A priority Critical patent/JP2003010684A/en
Publication of JP2003010684A publication Critical patent/JP2003010684A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst capable of manufacturing hydrogen in a high yield by a reduced amount of the catalyst, and to provide a hydrogen manufacturing method. SOLUTION: Hydrogen is manufactured by allowing the catalyst comprising a copper-containing substance and a solid acidic substance to act on mixed gas of dimethyl ether and steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素を製造するた
めの触媒、およびその触媒にジメチルエーテルと水蒸気
の混合ガスを流通させて水素を含むガスを製造する方法
に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst for producing hydrogen and a method for producing a gas containing hydrogen by allowing a mixed gas of dimethyl ether and water vapor to flow through the catalyst.

【0002】[0002]

【従来の技術】従来、触媒の存在下で、ジメチルエーテ
ルと水蒸気の混合ガスから水素を含むガスを製造する方
法、およびその触媒は、いくつか知られている。
2. Description of the Related Art Heretofore, there have been known some methods for producing a gas containing hydrogen from a mixed gas of dimethyl ether and steam in the presence of a catalyst, and catalysts therefor.

【0003】例えば、特許第3124035号公報に
は、少なくとも20%の銅を含みアルカリ金属を含んで
いない触媒を用いて、水素を含むガスを製造する方法が
開示されている。また、特開平9−118501号公報
には、固体酸類からなる群から選択されたエーテル水和
触媒、およびメタノール分解触媒の存在下に、ジメチル
エーテルと水蒸気を反応させ、水素を含むガスを製造す
る方法が開示されている。特開平10−174870号
公報には、銅を含有することを特徴とする、ジメチルエ
ーテルと水蒸気から水素を生成させる触媒が開示されて
いる。
For example, Japanese Patent No. 3124035 discloses a method for producing a gas containing hydrogen by using a catalyst containing at least 20% of copper and containing no alkali metal. Further, JP-A-9-118501 discloses a method for producing a gas containing hydrogen by reacting dimethyl ether with steam in the presence of an ether hydration catalyst selected from the group consisting of solid acids and a methanol decomposition catalyst. Is disclosed. Japanese Unexamined Patent Publication (Kokai) No. 10-174870 discloses a catalyst for producing hydrogen from dimethyl ether and steam, which contains copper.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特許第
3124035号公報に開示された方法では、350℃
以上の高温でないとジメチルエーテルの転化率が上がら
ない問題がある。また、特開平9−118501号公報
に開示された方法では、350℃以下の低温で反応が進
行しているが、反応原料であるジメチルエーテルの流量
あたりの触媒量をあらわすW/F(g−触媒*hr/m
ol−DME)が約86と非常に高い値であり、実用的
でない。
However, in the method disclosed in Japanese Patent No. 3124035, 350 ° C.
There is a problem that the conversion rate of dimethyl ether does not increase unless the temperature is higher than the above. Further, in the method disclosed in Japanese Patent Application Laid-Open No. 9-118501, the reaction proceeds at a low temperature of 350 ° C. or lower, but W / F (g-catalyst) showing the amount of catalyst per flow rate of dimethyl ether as a reaction raw material. * Hr / m
(ol-DME) is a very high value of about 86, which is not practical.

【0005】本発明は、上記従来の問題点を解決し、少
ない触媒量で高収率の水素を製造することができる触
媒、および水素の製造方法を提供することを目的とす
る。
It is an object of the present invention to solve the above conventional problems and provide a catalyst capable of producing a high yield of hydrogen with a small amount of catalyst, and a method for producing hydrogen.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決すべく鋭意検討の結果、ジメチルエーテルと水蒸気を
反応させて水素を生成させる触媒として、銅を含む物質
と固体酸性を有する物質とを物理的に混合してなるもの
が極めて有効であり、低温で効率よく水素を生成させ得
ることを見出して本発明を完成することができた。
Means for Solving the Problems As a result of extensive studies to solve the above-mentioned problems, the present invention proposes a substance containing copper and a substance having solid acidity as a catalyst for reacting dimethyl ether with water vapor to produce hydrogen. The present invention has been completed by finding that those physically mixed are extremely effective, and hydrogen can be efficiently produced at low temperature.

【0007】すなわち、本発明は、銅を含む物質と固体
酸性を有する物質の混合物よりなる、ジメチルエーテル
と水蒸気から水素を生成させる触媒と、ジメチルエーテ
ルと水蒸気を含有する混合ガスに上記の触媒を接触させ
ることを特徴とする水素の製造方法に関するものであ
る。
That is, according to the present invention, a catalyst comprising a mixture of a substance containing copper and a substance having solid acidity for producing hydrogen from dimethyl ether and steam, and the above catalyst are brought into contact with a mixed gas containing dimethyl ether and steam. The present invention relates to a method for producing hydrogen characterized by the above.

【0008】この本発明の特徴は、銅を含み亜鉛を含ま
ない物質と固体酸性を有する物質とを物理的に混合して
なるものを触媒として使用する点にある。これは、固体
酸性を有するアルミナと、銅元素を主成分とする触媒に
より、以下に述べる反応サイクルを速やかに進行させ、
水素の収率を向上させるためである。本発明の触媒によ
るジメチルエーテルと水蒸気から水素を生成させる反応
は次のように進行する。まず、ジメチルエーテルが固体
酸性を有するアルミナの存在下、下記の式に従い水和さ
れる。 CH3OCH3 + H2O → 2CH3OH (1)
A feature of the present invention is that a substance obtained by physically mixing a substance containing copper but not zinc and a substance having solid acidity is used as a catalyst. This is because alumina having solid acidity and a catalyst containing copper element as a main component cause the reaction cycle described below to proceed rapidly,
This is to improve the yield of hydrogen. The reaction of producing hydrogen from dimethyl ether and steam by the catalyst of the present invention proceeds as follows. First, dimethyl ether is hydrated in the presence of alumina having solid acidity according to the following formula. CH 3 OCH 3 + H 2 O → 2CH 3 OH (1)

【0009】次いで、メタノールが銅元素の存在下、下
記式に従い水蒸気と反応する。 2CH3OH + 2H2O → 2CO2 + 6H2 (2)
Next, methanol reacts with water vapor in the presence of elemental copper according to the following formula. 2CH 3 OH + 2H 2 O → 2CO 2 + 6H 2 (2)

【0010】全体の反応として、下記式となる。 CH3OCH3 + 3H2O → 2CO2 + 6H2 (3)The overall reaction is given by the following equation. CH 3 OCH 3 + 3H 2 O → 2CO 2 + 6H 2 (3)

【0011】ここで亜鉛を含む物質を使用すると、アル
ミナなどの固体酸性質に影響を及ぼすため、(1)の反
応が阻害されるため、ジメチルエーテルの転化率が低く
なると推測される。
When a substance containing zinc is used here, it affects the solid acid properties of alumina and the like, so that the reaction of (1) is hindered and the conversion rate of dimethyl ether is presumed to be low.

【0012】[0012]

【発明の実施の形態】本発明の触媒における銅を含む物
質は、銅の金属および/または化合物またはこれらを含
有するものである。銅の化合物としては銅の酸化物が好
ましく、銅の酸化物は酸化第一銅(Cu2O)、酸化第
二銅(CuO)またはその混合物である。
BEST MODE FOR CARRYING OUT THE INVENTION The substance containing copper in the catalyst of the present invention is a metal and / or compound of copper or those containing these. The copper compound is preferably a copper oxide, and the copper oxide is cuprous oxide (Cu 2 O), cupric oxide (CuO), or a mixture thereof.

【0013】この銅を含む物質は、触媒担体に担持させ
たものとすることができる。好ましい触媒担体として
は、アルミナ、シリカゲル、シリカ・アルミナ、ゼオラ
イト、チタニア、ジルコニアなどの酸化物であるが、な
かでもアルミナが水素収率が高いので好ましい。銅を含
む物質中の銅の含有率は約1〜50重量%、好ましくは
2〜30重量%である。銅の含有率が約1重量%未満お
よび50重量%以上であると、合成ガスの収率が低下す
る。銅を含む物質の粒径は平均粒径で0.001〜50
mm程度、好ましくは0.005〜30mm程度、特に
好ましくは0.010〜20mm程度である。
The substance containing copper may be supported on a catalyst carrier. Preferred catalyst carriers are oxides of alumina, silica gel, silica-alumina, zeolite, titania, zirconia, etc. Among them, alumina is preferable because of high hydrogen yield. The content of copper in the material containing copper is about 1 to 50% by weight, preferably 2 to 30% by weight. When the copper content is less than about 1% by weight and 50% by weight or more, the yield of synthesis gas decreases. The average particle size of the substance containing copper is 0.001 to 50.
mm, preferably about 0.005 to 30 mm, particularly preferably about 0.010 to 20 mm.

【0014】また、この物質は、亜鉛を含まないことを
大きな特徴とするものであり、亜鉛を含まないことで高
いジメチルエーテル転化率が得られる。そのため、この
物質における亜鉛の含有率は1.0重量%以下、好まし
くは0.5重量%以下、特に好ましくは0.1重量%以
下とするのがよい。
This material is characterized by the fact that it does not contain zinc, and a high dimethyl ether conversion rate can be obtained by not containing zinc. Therefore, the content of zinc in this substance is 1.0% by weight or less, preferably 0.5% by weight or less, and particularly preferably 0.1% by weight or less.

【0015】この銅を含む物質の製造には、一般的な触
媒の調製方法を適用できる。例えばこの物質の製造用原
料は、銅の化合物として、それぞれの硝酸塩、炭酸塩、
ハロゲン化物等の無機酸塩および酢酸銅、シュウ酸銅な
ど有機酸塩が使用される。また、触媒担体への銅の担持
操作には、通常の沈殿法、混練法、含浸法およびイオン
交換法などの技術が利用できる。このように調製された
触媒組成物は、必要があれば常法により焼成する。焼成
は、窒素中または空気中において、300〜800℃の
温度で1〜10時間加熱して行うのが好ましい。
A general catalyst preparation method can be applied to the production of the substance containing copper. For example, the raw material for the production of this substance, as the copper compound, each nitrate, carbonate,
Inorganic acid salts such as halides and organic acid salts such as copper acetate and copper oxalate are used. In addition, for the operation of supporting copper on the catalyst carrier, ordinary techniques such as a precipitation method, a kneading method, an impregnation method and an ion exchange method can be used. The catalyst composition thus prepared is calcined by a conventional method if necessary. The firing is preferably performed by heating in nitrogen or air at a temperature of 300 to 800 ° C. for 1 to 10 hours.

【0016】本発明の触媒を構成するもう一方の触媒成
分は、固体酸性を有する物質である。この固体酸性と
は、固体でありながらブレンステッド酸またはルイス酸
の特性を示すものであり、具体的には、アルミナ、シリ
カ・アルミナ、シリカ・チタニア、ゼオライト、燐酸ア
ルミニウム等である。なかでもアルミナが水素の収率が
高いので好ましい。固体酸性を有する物質の粒径は平均
粒径で0.001〜50mm程度、好ましくは0.00
5〜30mm程度、特に好ましくは0.010〜20m
m程度である。
The other catalyst component constituting the catalyst of the present invention is a substance having solid acidity. The solid acid is one that exhibits the characteristics of a Bronsted acid or a Lewis acid even though it is a solid, and specifically, it is alumina, silica-alumina, silica-titania, zeolite, aluminum phosphate or the like. Of these, alumina is preferable because it has a high hydrogen yield. The average particle size of the substance having solid acidity is about 0.001 to 50 mm, preferably 0.00
About 5 to 30 mm, particularly preferably 0.010 to 20 m
It is about m.

【0017】上記2種類の触媒成分の混合方法は、両成
分をそれぞれペレット化したのち物理的に混合してもよ
く、また、両成分を粉末にして物理的に混合したのち圧
縮成形してペレット化してもよい。両成分の混合割合
は、特に限定されることなく、各成分の種類あるいは反
応条件等に応じて適宜選定すればよいが、通常は銅を含
む物質と固体酸性を有する物質との比率が重量比で1:
20〜10:1程度であり、好ましくは1:10〜5:
1程度である。銅を含む物質と固体酸性を有する物質の
粒径は0.005〜30mm程度、好ましくは0.01
〜20mm程度である。
In the method of mixing the above two kinds of catalyst components, both components may be pelletized and then physically mixed, or both components may be made into powder and physically mixed and then compression-molded into pellets. May be turned into. The mixing ratio of both components is not particularly limited and may be appropriately selected according to the type of each component or reaction conditions, etc., but usually the ratio of the substance containing copper and the substance having solid acidity is the weight ratio. So 1:
It is about 20 to 10: 1, preferably 1:10 to 5:
It is about 1. The particle size of the substance containing copper and the substance having solid acidity is about 0.005 to 30 mm, preferably 0.01
It is about 20 mm.

【0018】このようにして調製された触媒にジメチル
エーテルと水蒸気の混合ガスを流通させることにより、
水素が高収率で得られる。
By passing a mixed gas of dimethyl ether and water vapor through the catalyst thus prepared,
Hydrogen is obtained in high yield.

【0019】本発明においては、原料のジメチルエーテ
ルとともに水蒸気を供給する。ジメチルエーテルと水蒸
気の混合割合は、量論としては上記(3)式より、水蒸
気がジメチルエーテルに対して3倍であるが、この量論
量または量論量より若干過剰とすることが好ましく、3
〜7モル倍、好ましくは3〜5モル倍である。この原料
ガスには、ジメチルエーテルと水蒸気以外の成分も含む
ことができる。その他の成分としては、反応に不活性な
ガス、例えば窒素、不活性ガス等を含むことができる。
これらの含有量は30容量%以下が適当であり、これよ
り多くなると反応速度の低下が問題になる。一方、空気
(酸素)はジメチルエーテルが燃焼してしまうのでなる
べく排除したほうがよく、許容含有量は空気として5%
以下である。
In the present invention, steam is supplied together with dimethyl ether as a raw material. In terms of stoichiometry, the mixing ratio of dimethyl ether and water vapor is three times that of dimethyl ether according to the above formula (3), but it is preferable that this stoichiometric amount or a slight excess of the stoichiometric amount be used.
It is ˜7 mol times, preferably 3˜5 mol times. The raw material gas may contain components other than dimethyl ether and water vapor. Other components may include a gas inert to the reaction, such as nitrogen or an inert gas.
It is appropriate that the content of these is 30% by volume or less, and if the content is more than 30% by volume, the decrease in reaction rate becomes a problem. On the other hand, since air (oxygen) burns dimethyl ether, it is better to remove it as much as possible, and the allowable content is 5% as air.
It is the following.

【0020】反応温度は、200〜350℃、好ましく
は200〜300℃である。反応温度が200℃より低
いと高いジメチルエーテル転化率が得られず、350℃
より高いとメタンの生成が多くなり水素の収率が低下
し、また得られた水素含有ガスを燃料電池などに使用す
る場合には、燃料電池の触媒を毒する一酸化炭素の生成
が増え、好ましくない。
The reaction temperature is 200 to 350 ° C, preferably 200 to 300 ° C. If the reaction temperature is lower than 200 ° C, a high dimethyl ether conversion cannot be obtained, and 350 ° C
If it is higher, the production of methane increases and the yield of hydrogen decreases, and when the obtained hydrogen-containing gas is used in a fuel cell or the like, the production of carbon monoxide that poisons the catalyst of the fuel cell increases, Not preferable.

【0021】反応圧力は常圧〜10kg/cm2が好ま
しい。反応圧力が10kg/cm2より高いとジメチル
エーテル転化率が低下する。
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 . When the reaction pressure is higher than 10 kg / cm 2 , the conversion rate of dimethyl ether decreases.

【0022】反応原料であるジメチルエーテルの流量あ
たりの触媒量をあらわすW/F(g触媒*hr/mol
−DME)は、0.1〜50g・hr/molが好まし
く、特に1〜20g・hr/molである。W/Fが
0.1g・hr/molより小さいと、ジメチルエーテ
ル転化率が低くなり、50g・hr/molより大きい
と使用触媒量が多く、また反応器が極端に大きくなり経
済的でない。
W / F (g catalyst * hr / mol) showing the amount of catalyst per flow rate of dimethyl ether as a reaction raw material
-DME) is preferably 0.1 to 50 g · hr / mol, particularly 1 to 20 g · hr / mol. When W / F is less than 0.1 g · hr / mol, the conversion rate of dimethyl ether is low, and when it is more than 50 g · hr / mol, the amount of catalyst used is large and the reactor becomes extremely large, which is not economical.

【0023】なお、本発明の方法においては、固定床、
流動床のいずれの装置を用いてもよい。
In the method of the present invention, a fixed bed,
Any device of the fluidized bed may be used.

【0024】[0024]

【実施例】I.触媒の調製 1)Cu−Al23触媒の調製 イオン交換水約200mlに酢酸銅(Cu(CH3CO
O)2・H2O)15.7gを溶解し、これにγ−アルミ
ナ(日揮化学製,『N612』)95gを投入した後、
蒸発乾固した。ついで、このものを空気中、120℃で
24時間乾燥した後、空気中450℃で4時間焼成し
た。さらに水蒸気流中、400℃で3時間処理して触媒
を得た。このものの組成はCu:Al23=5:95
(重量比)であった。
EXAMPLE I. Preparation of catalyst 1) Preparation of Cu-Al 2 O 3 catalyst About 200 ml of deionized water was added with copper acetate (Cu (CH 3 CO 3
After dissolving 15.7 g of O) 2 · H 2 O) and adding 95 g of γ-alumina (“N612” manufactured by JGC Chemical Co., Ltd.) to this,
Evaporated to dryness. Then, this was dried in air at 120 ° C. for 24 hours and then calcined in air at 450 ° C. for 4 hours. Further, it was treated at 400 ° C. for 3 hours in a steam flow to obtain a catalyst. The composition of this is Cu: Al 2 O 3 = 5: 95.
(Weight ratio).

【0025】2)CuO−ZnO−Al23触媒の調製 硝酸銅(Cu(NO32・3H2O)185g、硝酸亜
鉛(Zn(NO32・6H2O)117g、および硝酸
アルミニウム(Al(NO33・9H2O)52gをイ
オン交換水約1lに溶解した。この水溶液と、炭酸ナト
リウム(Na2CO3)約1.4kgをイオン交換水約1
lに溶解した水溶液とを、約60℃に保温したイオン交
換水約3lの入ったステンレス製容器中に、pHが7.
0±0.5に保持されるように調節しながら、約2時間
かけて滴下した。滴下終了後、そのまま約1時間保持し
て熟成を行った。なお、この間にpHが7.0±0.5
から外れるようであれば、約1mol/lの硝酸水溶液
または約1mol/lの炭酸ナトリウム水溶液を滴下し
て、pHを7.0±0.5にあわせた。次に、生成した
沈殿を濾過した後、洗浄液に硝酸イオンが検出されなく
なるまでイオン交換水を用いて洗浄した。得られたケー
キを120℃で24時間乾燥した後、さらに空気中35
0℃で5時間焼成して目的の触媒を得た。
[0025] 2) CuO-ZnO-Al 2 O 3 catalyst prepared copper nitrate (Cu (NO 3) 2 · 3H 2 O) 185g, zinc nitrate (Zn (NO 3) 2 · 6H 2 O) 117g, and nitric acid aluminum (Al (NO 3) 3 · 9H 2 O) 52g was dissolved in deionized water of about 1l. About 1.4 kg of this aqueous solution and sodium carbonate (Na 2 CO 3 ) was added to about 1 part of deionized water.
The pH of the solution prepared by dissolving the aqueous solution of 7.1 in a stainless steel container containing about 3 1 of ion-exchanged water kept at about 60 ° C.
The solution was added dropwise over about 2 hours while adjusting it so that it was maintained at 0 ± 0.5. After the completion of dropping, the mixture was kept for about 1 hour for aging. During this period, the pH is 7.0 ± 0.5.
If it comes out of the range, an about 1 mol / l nitric acid aqueous solution or an about 1 mol / l sodium carbonate aqueous solution was added dropwise to adjust the pH to 7.0 ± 0.5. Next, the generated precipitate was filtered and then washed with ion-exchanged water until nitrate ions were not detected in the washing liquid. The cake obtained was dried at 120 ° C. for 24 hours, and then dried in air 35
The target catalyst was obtained by calcination at 0 ° C. for 5 hours.

【0026】得られた触媒の組成はCuO:ZnO:A
23=61:32:7(重量比)であった。
The composition of the resulting catalyst was CuO: ZnO: A.
l 2 O 3 = 61: 32 : 7 was (weight ratio).

【0027】実施例1,2,3(触媒A) 0.5〜1mmに粉砕した上記のCuO−Al23触媒
と、0.5〜1mmに粉砕した市販のアルミナ(日揮化
学製,『N612』)を、重量比で1:2の割合で物理
的に混合して触媒Aを得た。
Examples 1, 2, 3 (Catalyst A) The above CuO-Al 2 O 3 catalyst crushed to 0.5 to 1 mm and commercially available alumina crushed to 0.5 to 1 mm (manufactured by JGC Chemicals, " N612 ″) was physically mixed in a weight ratio of 1: 2 to obtain a catalyst A.

【0028】実施例4,5,6(触媒B) 0.5〜1mmに粉砕した上記のCuO−Al23触媒
と、0.5〜1mmに粉砕した市販のアルミナ(日揮化
学製,『N612』)を、重量比で1:1の割合で物理
的に混合して触媒Bを得た。
Examples 4, 5, 6 (Catalyst B) The above CuO-Al 2 O 3 catalyst crushed to 0.5 to 1 mm and commercially available alumina crushed to 0.5 to 1 mm (manufactured by JGC Chemicals, " N612 ″) was physically mixed at a weight ratio of 1: 1 to obtain catalyst B.

【0029】比較例1,2,3(触媒C) 上記のCuO−Al23触媒のみを触媒Cとした。Comparative Examples 1, 2 and 3 (Catalyst C) Only the above-mentioned CuO-Al 2 O 3 catalyst was used as catalyst C.

【0030】比較例4,5,6(触媒D) 0.5〜1mmに粉砕した上記のCuO−ZnO−Al
23触媒と、0.5〜1mmに粉砕した市販のアルミナ
(日揮化学製,『N612』)を、重量比で1:2の割
合で物理的に混合して触媒Dを得た。
Comparative Examples 4, 5, 6 (Catalyst D) The above CuO-ZnO-Al crushed to 0.5 to 1 mm.
2 O 3 catalyst and commercially available alumina pulverized to 0.5 to 1 mm (“N612” manufactured by JGC Chemical Co., Ltd.) were physically mixed at a weight ratio of 1: 2 to obtain a catalyst D.

【0031】II.反応方法 内径20mmのステンレス製反応管に所定量の上記触媒
を充填した。この反応管にジメチルエーテルと水蒸気を
所定量供給して、所定の温度で反応させた。
II. Reaction Method A stainless steel reaction tube having an inner diameter of 20 mm was filled with a predetermined amount of the above catalyst. Dimethyl ether and water vapor were supplied to the reaction tube in predetermined amounts and reacted at a predetermined temperature.

【0032】以上の操作により得られた反応生成物、お
よび未反応物はガスクロマトグラフにより分析した。
The reaction products and unreacted products obtained by the above operation were analyzed by gas chromatography.

【0033】III.反応条件および実験結果 反応条件および実験結果を表1〜4に示す。III. Reaction conditions and experimental results The reaction conditions and experimental results are shown in Tables 1 to 4.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】水素収率(%)=(1/6×H2生成速度
/ジメチルエーテル供給速度)×100 CO2収率(%)=(1/2×CO2生成速度/ジメチル
エーテル供給速度)×100 CO収率(%)=(1/2×CO生成速度/ジメチルエ
ーテル供給速度)×100 CH4収率(%)=(1/2×CH4生成速度/ジメチル
エーテル供給速度)×100 各速度の単位は全て[mol/g−cat・h]
Hydrogen yield (%) = (1/6 × H 2 production rate / dimethyl ether feed rate) × 100 CO 2 yield (%) = (1/2 × CO 2 production rate / dimethyl ether feed rate) × 100 CO yield (%) = (1/2 × CO production rate / dimethyl ether supply rate) × 100 CH 4 yield (%) = (1/2 × CH 4 production rate / dimethyl ether supply rate) × 100 Unit of each rate Are all [mol / g-cat · h]

【0039】[0039]

【発明の効果】本発明の触媒を用いた水素の製造方法で
は、ジメチルエーテルと水蒸気の混合ガスを、200〜
350℃の低温で、銅を含む物質と固体酸性を有する物
質とを物理的に混合した触媒に接触させることによっ
て、高い水素収率を得ることができる効果を有する。
In the method for producing hydrogen using the catalyst of the present invention, the mixed gas of dimethyl ether and steam is mixed with 200 to
By contacting a catalyst in which a substance containing copper and a substance having solid acidity are physically mixed at a low temperature of 350 ° C., a high hydrogen yield can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA01 EA06 EC01 4G069 AA03 AA08 BA01B BC31A BC31B CC40 DA06 EA02Y EC22Y FA01 FA02 FB14 FB29    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G040 EA01 EA06 EC01                 4G069 AA03 AA08 BA01B BC31A                       BC31B CC40 DA06 EA02Y                       EC22Y FA01 FA02 FB14                       FB29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅を含む物質と固体酸性を有する物質の
混合物よりなる、ジメチルエーテルと水蒸気から水素を
生成させる触媒
1. A catalyst for producing hydrogen from dimethyl ether and steam comprising a mixture of a substance containing copper and a substance having solid acidity.
【請求項2】 ジメチルエーテルと水蒸気を含有する混
合ガスに請求項1記載の触媒を接触させることを特徴と
する水素の製造方法
2. A method for producing hydrogen, characterized in that the catalyst according to claim 1 is brought into contact with a mixed gas containing dimethyl ether and steam.
JP2001194879A 2001-06-27 2001-06-27 Catalyst for manufacturing hydrogen and hydrogen manufacturing method Pending JP2003010684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194879A JP2003010684A (en) 2001-06-27 2001-06-27 Catalyst for manufacturing hydrogen and hydrogen manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194879A JP2003010684A (en) 2001-06-27 2001-06-27 Catalyst for manufacturing hydrogen and hydrogen manufacturing method

Publications (1)

Publication Number Publication Date
JP2003010684A true JP2003010684A (en) 2003-01-14

Family

ID=19032934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194879A Pending JP2003010684A (en) 2001-06-27 2001-06-27 Catalyst for manufacturing hydrogen and hydrogen manufacturing method

Country Status (1)

Country Link
JP (1) JP2003010684A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038957A (en) * 2001-07-30 2003-02-12 Mitsubishi Gas Chem Co Inc Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008296076A (en) * 2007-05-29 2008-12-11 Mitsubishi Gas Chem Co Inc Catalyst for reforming dimethyl ether, method for manufacturing the catalyst and method for producing hydrogen-containing gas
JP2010069453A (en) * 2008-09-22 2010-04-02 Sumitomo Chemical Co Ltd Catalyst for reforming dimethyl ether

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038957A (en) * 2001-07-30 2003-02-12 Mitsubishi Gas Chem Co Inc Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
JP4724973B2 (en) * 2001-07-30 2011-07-13 三菱瓦斯化学株式会社 Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008296076A (en) * 2007-05-29 2008-12-11 Mitsubishi Gas Chem Co Inc Catalyst for reforming dimethyl ether, method for manufacturing the catalyst and method for producing hydrogen-containing gas
JP2010069453A (en) * 2008-09-22 2010-04-02 Sumitomo Chemical Co Ltd Catalyst for reforming dimethyl ether

Similar Documents

Publication Publication Date Title
JP4520036B2 (en) Chemical industry raw material and high-octane fuel synthesis method and high-octane fuel composition
KR101772249B1 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
JP5432434B2 (en) Method for producing catalyst for synthesis of dimethyl ether from synthesis gas containing carbon dioxide
EP0938446B1 (en) Method of hydrocarbon reforming and catalyst and catalyst precursor therefor
CN102105222A (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
CS219336B2 (en) Catalyser for preparation of the dimethylether
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
EP2616418B1 (en) Method for producing alcohol by guerbet reaction
IE52463B1 (en) Oxychlorination process and catalyst therefor
CN107073455B (en) Improved selective ammonia oxidation catalyst
CA2283137A1 (en) Use of ce/zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
US4092372A (en) Catalyst for the production of isoprene
JP2003010685A (en) Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
JP2020011228A (en) Catalyst for alcohol synthesis, and method for producing alcohol using the same
JP3837520B2 (en) Catalyst for CO shift reaction
JPH039772B2 (en)
EP0130068A2 (en) A process for producing formaldehyde
KR100812100B1 (en) Preparation method of catalyst for high conversion of co in dimethylether synthesis from syngas
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP2006239557A (en) Catalyst for water gas shift reaction
KR101525943B1 (en) Heterogeneous Cupper based catalysts for coproducing dimethyl ether and acetic acid from methanol
JP2003010699A (en) Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
KR100588948B1 (en) Catalyst for making dimethylether, method of preparing the same and method of preparing dimethylether using the same