JP2010069453A - Catalyst for reforming dimethyl ether - Google Patents

Catalyst for reforming dimethyl ether Download PDF

Info

Publication number
JP2010069453A
JP2010069453A JP2008242189A JP2008242189A JP2010069453A JP 2010069453 A JP2010069453 A JP 2010069453A JP 2008242189 A JP2008242189 A JP 2008242189A JP 2008242189 A JP2008242189 A JP 2008242189A JP 2010069453 A JP2010069453 A JP 2010069453A
Authority
JP
Japan
Prior art keywords
dimethyl ether
catalyst
reforming catalyst
steam reforming
methanol steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242189A
Other languages
Japanese (ja)
Inventor
Kaoru Takeishi
薫 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008242189A priority Critical patent/JP2010069453A/en
Publication of JP2010069453A publication Critical patent/JP2010069453A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for reforming dimethyl ether, which is used for obtaining hydrogen from dimethyl ether by a steam reforming method and exhibits higher activity. <P>SOLUTION: The catalyst for reforming dimethyl ether is obtained by dispersing a catalyst for steam-reforming methanol in a gel particle of a catalyst for hydrolyzing dimethyl ether. The gel particle of the catalyst for hydrolyzing dimethyl ether is normally an alumina-based particle. The catalyst for steam-reforming methanol is a catalyst fine particle which is based on a copper element and preferably contains an element selected from the group consisting of zinc, manganese, iron, chromium and cobalt or an element selected from the group consisting of cerium, praseodymium, terbium, zirconium, lanthanum, yttrium and neodymium. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ジメチルエーテル改質触媒に関する。 The present invention relates to a dimethyl ether reforming catalyst.

ジメチルエーテル〔CH3−O−CH3〕は、小出力の燃料電池システムにおいて水素〔H2〕を製造するための原料としての利用が期待されている。かかるジメチルエーテルから水素を製造する方法としては、ジメチルエーテルを気相でジメチルエーテル改質触媒の存在下に水蒸気〔H2O〕と反応させる水蒸気改質法が知られている。 Dimethyl ether [CH 3 —O—CH 3 ] is expected to be used as a raw material for producing hydrogen [H 2 ] in a low-power fuel cell system. As a method for producing hydrogen from such dimethyl ether, there is known a steam reforming method in which dimethyl ether is reacted in a gas phase with steam [H 2 O] in the presence of a dimethyl ether reforming catalyst.

ジメチルエーテル改質触媒として、特許文献1には、アルミナ粉末を成形したアルミナ粉末成形体に、含浸法により、銅元素を担持させたジメチルエーテル改質触媒が開示されている。 As a dimethyl ether reforming catalyst, Patent Document 1 discloses a dimethyl ether reforming catalyst in which a copper element is supported by an impregnation method on an alumina powder molded body obtained by molding an alumina powder.

かかるジメチルエーテル改質触媒としては、より高い活性を示すものが求められている。 As such a dimethyl ether reforming catalyst, a catalyst having higher activity is required.

特開2001−96159号公報JP 2001-96159 A

そこで本発明者は、より高い活性を示すジメチルエーテル改質触媒を開発するべく鋭意検討した結果、本発明に至った。 Therefore, the present inventors have intensively studied to develop a dimethyl ether reforming catalyst exhibiting higher activity, and as a result, have reached the present invention.

すなわち本発明は、ジメチルエーテルから水蒸気改質法により水素を得るために用いられるジメチルエーテル改質触媒であって、ジメチルエーテル加水分解触媒ゲル粒子に、メタノール水蒸気改質触媒が分散されてなることを特徴とするジメチルエーテル改質触媒を提供するものである。 That is, the present invention is a dimethyl ether reforming catalyst used for obtaining hydrogen from dimethyl ether by a steam reforming method, wherein the methanol steam reforming catalyst is dispersed in dimethyl ether hydrolysis catalyst gel particles. A dimethyl ether reforming catalyst is provided.

本発明のジメチルエーテル改質触媒は高活性であるので、高い水素生成速度で、ジメチルエーテルから水蒸気改質法により水素を製造することができる。 Since the dimethyl ether reforming catalyst of the present invention is highly active, hydrogen can be produced from dimethyl ether by a steam reforming method at a high hydrogen production rate.

〔ジメチルエーテル加水分解触媒ゲル粒子〕
本発明のジメチルエーテル改質触媒を構成するジメチルエーテル加水分解触媒ゲル粒子は、ジメチルエーテルを加水分解してメタノールを生成させる際に使用されるジメチルエーテル加水分解触媒のゲル粒子である。ジメチルエーテル改質触媒としては、例えばアルミナ、ゼオライト、シリカ−アルミナなどのような固体酸が挙げられ、高活性のジメチルエーテル改質触媒が容易に得られる点で、好ましくはアルミナである。
[Dimethyl ether hydrolysis catalyst gel particles]
The dimethyl ether hydrolysis catalyst gel particles constituting the dimethyl ether reforming catalyst of the present invention are gel particles of a dimethyl ether hydrolysis catalyst used when dimethyl ether is hydrolyzed to produce methanol. Examples of the dimethyl ether reforming catalyst include solid acids such as alumina, zeolite, silica-alumina and the like, and alumina is preferable because a highly active dimethyl ether reforming catalyst can be easily obtained.

〔メタノール水蒸気改質触媒〕
メタノール水蒸気改質触媒は、メタノールを水蒸気と反応させて水素を生成させる際に用いられる触媒であって、通常は銅元素を主成分とする触媒微粒子が用いられ、好ましくは銅元素を主成分とし、亜鉛、マンガン、鉄、クロムおよびコバルトからなる群から選ばれた元素を含むもの、銅元素を主成分とし、セリウム、プラセオジウム、テルビウム、ジルコニウム、ランタン、イットリウムおよびネオジウムからなる群から選ばれた元素を含むもの、さらに好ましくは銅元素を主成分とし、亜鉛を含む触媒微粒子、銅元素を主成分とし、セリウムを含む触媒微粒子であり、特に好ましくは銅元素を主成分とし、亜鉛およびセリウムを含む触媒微粒子である。触媒微粒子において、これらの元素は通常、酸化物として含まれている。
[Methanol steam reforming catalyst]
The methanol steam reforming catalyst is a catalyst used when hydrogen is produced by reacting methanol with steam, and usually catalyst fine particles mainly composed of copper element are used, and preferably copper element is mainly composed of copper element. Containing an element selected from the group consisting of zinc, manganese, iron, chromium and cobalt, an element selected from the group consisting of cerium, praseodymium, terbium, zirconium, lanthanum, yttrium and neodymium based on copper Catalyst fine particles containing copper as a main component and containing zinc, catalyst fine particles containing copper element as a main component and containing cerium, particularly preferably containing copper element as a main component and containing zinc and cerium Catalyst fine particles. In the catalyst fine particles, these elements are usually contained as oxides.

メタノール水蒸気改質触媒は、ジメチルエーテル加水分解触媒ゲル粒子の表面に分散されていてもよいし、内部に分散されていてもよく、表面および内部の両方に分散されていてもよい。 The methanol steam reforming catalyst may be dispersed on the surface of the dimethyl ether hydrolysis catalyst gel particles, may be dispersed inside, or may be dispersed both on the surface and inside.

〔ジメチルエーテル改質触媒〕
本発明のジメチルエーテル改質触媒の好ましい例としては、アルミナゲル粒子に、銅元素を主成分とする微粒子が担持されたものが挙げられる。かかる改質触媒における元素の組成は、質量比で通常、Al23が30質量%〜90質量%であり、Cuが70質量%〜10質量%である。さらに好ましいジメチルエーテル改質触媒の例として、アルミナゲル粒子に、銅元素を主成分とし、亜鉛元素またはセリウム元素を含む微粒子が担持されたものが挙げられ、その元素組成比は通常、Al23が30質量%〜90質量%であり、Cuが70質量%〜10質量%であり、ZnOが50質量%以下、CeO2が50質量%以下である。
[Dimethyl ether reforming catalyst]
Preferable examples of the dimethyl ether reforming catalyst of the present invention include those in which fine particles mainly containing copper element are supported on alumina gel particles. The composition of elements in such a reforming catalyst is usually 30% by mass to 90% by mass of Al 2 O 3 and 70% by mass to 10% by mass of Cu in terms of mass ratio. Examples of more preferred dimethylether reforming catalyst, an alumina gel particles, elemental copper as a main component include those particles containing zinc element or cerium element is supported, the element composition ratio is usually, Al 2 O 3 Is 30% by mass to 90% by mass, Cu is 70% by mass to 10% by mass, ZnO is 50% by mass or less, and CeO 2 is 50% by mass or less.

〔ジメチルエーテル改質触媒の製造方法〕
かかる本発明のジメチルエーテル改質触媒は、揮発性溶媒中にジメチルエーテル加水分解触媒ゲル粒子前駆体が分散され、メタノール水蒸気改質触媒前駆体が溶解した分散液を溶媒留去する方法により製造することができる。
[Method for producing dimethyl ether reforming catalyst]
Such a dimethyl ether reforming catalyst of the present invention can be produced by a method in which a dimethyl ether hydrolysis catalyst gel particle precursor is dispersed in a volatile solvent, and the dispersion in which the methanol steam reforming catalyst precursor is dissolved is distilled off. it can.

〔揮発性溶媒〕
揮発性溶媒としては通常、水を主成分とする水性媒体が用いられ、エチレングリコール、プロパノール、エタノールメタノールなどのアルコール類や、ジメチルホルムアミドなどのような、水溶性有機溶媒と水との混合溶媒であってもよい。
(Volatile solvent)
As the volatile solvent, an aqueous medium containing water as a main component is usually used. Alcohols such as ethylene glycol, propanol, and ethanolmethanol, and a mixed solvent of a water-soluble organic solvent such as dimethylformamide and water are used. There may be.

〔ジメチルエーテル加水分解触媒ゲル粒子前駆体〕
ジメチルエーテル加水分解触媒ゲル粒子前駆体としては、ジメチルエーテル加水分解触媒としてアルミナを用いる場合には、通常、加水分解性アルミナ化合物を水性媒体中で加水分解して得られるゾルが挙げられる。加水分解性アルミナ化合物として通常はアルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムブトキシドなどのアルミニウムアルコキシドが挙げられる。
[Dimethyl ether hydrolysis catalyst gel particle precursor]
Examples of the dimethyl ether hydrolysis catalyst gel particle precursor include a sol obtained by hydrolyzing a hydrolyzable alumina compound in an aqueous medium when alumina is used as the dimethyl ether hydrolysis catalyst. Examples of the hydrolyzable alumina compound include aluminum alkoxides such as aluminum isopropoxide, aluminum ethoxide, and aluminum butoxide.

加水分解性アルミナ化合物の加水分解は通常の方法、例えば加水分解性アルミニウム化合物としてアルミニウムアルコキシドを用いる場合には、これを含む水性媒体の水素イオン濃度を通常pH3以下、さらにはpH2以下、通常はpH0以上とすることにより行われる。水素イオン濃度を上記範囲とするには、例えば硝酸、塩酸、硫酸などの無機酸を水性媒体に加えればよい。また、水性媒体の水素イオン濃度を通常pH9以上、通常はpH14以下とする方法により、アルミニウムアルコキシドの加水分解を行ってもよい。水素イオン濃度を上記範囲とするには、例えばアンモニア水、炭酸ナトリウム、水酸化ナトリウムなどの無機塩基を水性媒体に加えればよい。好ましくは無機酸を加えることにより、水性媒体の水素イオン濃度を通常pH3以下とする方法である。 Hydrolysis of the hydrolyzable alumina compound is carried out by an ordinary method, for example, when aluminum alkoxide is used as the hydrolyzable aluminum compound, the hydrogen ion concentration of the aqueous medium containing this is usually pH 3 or less, further pH 2 or less, usually pH 0. This is done as described above. In order to set the hydrogen ion concentration within the above range, for example, an inorganic acid such as nitric acid, hydrochloric acid, or sulfuric acid may be added to the aqueous medium. Alternatively, the aluminum alkoxide may be hydrolyzed by a method in which the hydrogen ion concentration in the aqueous medium is usually pH 9 or higher, usually pH 14 or lower. In order to make the hydrogen ion concentration within the above range, for example, an inorganic base such as aqueous ammonia, sodium carbonate or sodium hydroxide may be added to the aqueous medium. Preferably, the method is such that the hydrogen ion concentration of the aqueous medium is usually adjusted to pH 3 or less by adding an inorganic acid.

かくして、加水分解性アルミナ化合物の加水分解物が水性媒体中に分散されたゾル状の分散液を得ることができる。 Thus, a sol-like dispersion in which the hydrolyzate of the hydrolyzable alumina compound is dispersed in the aqueous medium can be obtained.

〔メタノール水蒸気改質触媒前駆体〕
メタノール水蒸気改質触媒前駆体としては、例えば銅塩が挙げられ、具体的には硝酸銅、炭酸銅などの無機銅塩、酢酸銅などの有機銅塩およびアルコキシドなどが挙げられる。また、メタノール水蒸気改質触媒として、銅元素を主成分とし、亜鉛、マンガン、鉄、クロムおよびコバルトからなる群から選ばれた元素や、セリウム、プラセオジウム、テルビウム、ジルコニウム、ランタン、イットリウムおよびネオジウムからなる群から選ばれた元素を含むものを用いる場合には、亜鉛、マンガン、鉄、クロム、コバルト、セリウム、プラセオジウム、テルビウム、ジルコニウム、ランタン、イットリウム、ネオジウムの硝酸塩、炭酸塩、ハロゲン化物、硫酸塩などの無機塩、酢酸塩などの有機塩およびアルコキシドなども挙げられる。
[Methanol steam reforming catalyst precursor]
Examples of the methanol steam reforming catalyst precursor include copper salts, specifically, inorganic copper salts such as copper nitrate and copper carbonate, organic copper salts such as copper acetate, and alkoxides. Further, as a methanol steam reforming catalyst, an element selected from the group consisting of zinc, manganese, iron, chromium, and cobalt, and cerium, praseodymium, terbium, zirconium, lanthanum, yttrium, and neodymium are mainly composed of copper element. When using an element selected from the group, zinc, manganese, iron, chromium, cobalt, cerium, praseodymium, terbium, zirconium, lanthanum, yttrium, neodymium nitrate, carbonate, halide, sulfate, etc. Inorganic salts, organic salts such as acetates, and alkoxides are also included.

〔溶媒留去〕
かかる揮発性溶媒中にジメチルエーテル加水分解触媒ゲル粒子前駆体が分散され、メタノール水蒸気改質触媒前駆体が溶解した分散液を溶媒留去することにより、固形物を得る。得られた固形物は通常、焼成され、次いで還元処理が施される。
(Solvent distillation)
A dimethyl ether hydrolysis catalyst gel particle precursor is dispersed in such a volatile solvent, and the solid solution is obtained by distilling off the solvent in which the methanol steam reforming catalyst precursor is dissolved. The obtained solid is usually fired and then subjected to a reduction treatment.

〔焼成〕
溶媒留去により得られた固形物の焼成は通常、空気中で行われ、焼成温度は通常300℃〜700℃、焼成時間は通常3時間〜7時間である。
[Baking]
The solid obtained by distilling off the solvent is usually fired in air, the firing temperature is usually 300 ° C. to 700 ° C., and the firing time is usually 3 hours to 7 hours.

〔還元処理〕
還元処理は、例えば水素ガスなどの還元性ガス雰囲気中に250℃〜450℃で1時間以上、好ましくは3時間以上、通常は24時間以下保持することにより行われる。
[Reduction treatment]
The reduction treatment is performed, for example, by holding in a reducing gas atmosphere such as hydrogen gas at 250 ° C. to 450 ° C. for 1 hour or longer, preferably 3 hours or longer, usually 24 hours or shorter.

〔ジメチルエーテル改質触媒〕
かくして得られる本発明のジメチルエーテル改質触媒は粉末状であり、そのままジメチルエーテルの改質に用いてもよいが、通常は顆粒状、球状、円柱状、円筒状の形状に成形して用いられる。また、基材上に担持して用いてもよい。基材としては、改質の際に発生する反応熱を速やかに放散し得る点で、金属銅、ステンレスなどの金属材料、セラミックス材料などのような伝熱性に優れた伝熱性材料が好ましく用いられる。基材の形状としては、例えば板状、網状、ハニカム状が挙げられる。
[Dimethyl ether reforming catalyst]
The dimethyl ether reforming catalyst of the present invention thus obtained is in powder form and may be used as it is for reforming dimethyl ether, but is usually used after being molded into a granular, spherical, cylindrical or cylindrical shape. Moreover, you may carry | support and use on a base material. As the substrate, a heat transfer material having excellent heat transfer properties such as metal materials such as metallic copper and stainless steel and ceramic materials is preferably used in that the reaction heat generated during the modification can be quickly dissipated. . Examples of the shape of the substrate include a plate shape, a net shape, and a honeycomb shape.

〔水素の製造〕
本発明のジメチルエーテル改質触媒は、高い活性を示すので、本発明のジメチルエーテル改質触媒の存在下にジメチルエーテルを水蒸気と反応させることにより、高い生成速度で水素を製造することができる。反応は通常、気相中で行われ、反応温度は通常150℃〜450℃、反応圧力は通常0.1MPa〜10MPa(絶対圧)である。反応に用いる反応器としては、例えば固定床反応器、流動床反応器、移動床反応器が挙げられる。
[Production of hydrogen]
Since the dimethyl ether reforming catalyst of the present invention exhibits high activity, hydrogen can be produced at a high production rate by reacting dimethyl ether with steam in the presence of the dimethyl ether reforming catalyst of the present invention. The reaction is usually carried out in the gas phase, the reaction temperature is usually 150 ° C. to 450 ° C., and the reaction pressure is usually 0.1 MPa to 10 MPa (absolute pressure). Examples of the reactor used for the reaction include a fixed bed reactor, a fluidized bed reactor, and a moving bed reactor.

本発明のジメチルエーテル改質触媒によるジメチルエーテル〔CH3−O−CH3〕の改質の機構は必ずしも明確ではないが、ジメチルエーテル〔CH3−O−CH3〕は、改質触媒中のジメチルエーテル加水分解触媒ゲル粒子により化学反応式(1)
CH3−O−CH3 + H2O → 2CH3OH ・・・(1)
に従い水蒸気〔H2O〕による加水分解を起してメタノール〔CH3OH〕となり、この加水分解により生成したメタノールは、メタノール水蒸気改質触媒により化学反応式(2)
2CH3OH + H2O → 3H2 + CO2 ・・・(2)
に従い、さらに水蒸気〔H2O〕と反応して水素〔H2〕が生成するものと考えられる。
Although the mechanism of reforming of dimethyl ether [CH 3 —O—CH 3 ] by the dimethyl ether reforming catalyst of the present invention is not necessarily clear, dimethyl ether [CH 3 —O—CH 3 ] is used for hydrolysis of dimethyl ether in the reforming catalyst. Chemical reaction formula with catalyst gel particles (1)
CH 3 -O-CH 3 + H 2 O → 2CH 3 OH ··· (1)
In accordance with the above, hydrolysis with steam [H 2 O] is performed to form methanol [CH 3 OH]. Methanol generated by this hydrolysis is represented by the chemical reaction formula (2) by the methanol steam reforming catalyst.
2CH 3 OH + H 2 O → 3H 2 + CO 2 (2)
Accordingly, it is considered that hydrogen [H 2 ] is generated by further reacting with water vapor [H 2 O].

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

実施例1
〔ジメチルエーテル製造用触媒の製造〕
70℃の水100mLに、乳鉢で磨り潰したアルミニウムイソプロポキシド粉末〔Al[OCH(CH3)2]3、和光純薬工業社製、第一級、純度95%〕9.079gおよびエチレングリコール〔和光純薬工業社製、特級〕6.4mL(7.1g)を加え、同温度で15分以上撹拌して分散させた。次いで、希硝酸を少しずつ加えて水素イオン濃度pH1〜pH2に調整して、分散液(アルミナクリアゾル)を得た。この分散液に、硝酸銅3水和物〔和光純薬工業社製、特級、純度99%〕3.475g、硝酸亜鉛6水和物〔和光純薬工業社製、特級、純度99%〕0.143gおよび硝酸セリウム6水和物〔和光純薬工業社製、特級、純度98%〕0.080gを純水に溶解させた銅・亜鉛・セリウム水溶液〔20mL〕を加え、同温度でさらに15分間撹拌し、その後、エバポレーターにより溶媒留去を行って固形分〔ゲル〕を得た。この固形分を粉砕したのち、大気中、500℃で5時間の焼成を行い、得られた焼成物に、水素雰囲気中450℃で10時間の還元処理を施してジメチルエーテル改質触媒3.1gを得た。
Example 1
[Production of catalyst for dimethyl ether production]
Aluminum isopropoxide powder [Al [OCH (CH 3 ) 2 ] 3 , Wako Pure Chemical Industries, first grade, purity 95%] 9.079 g and ethylene glycol in 100 mL of water at 70 ° C. [Special grade of Wako Pure Chemical Industries, Ltd.] 6.4 mL (7.1 g) was added, and the mixture was stirred and dispersed at the same temperature for 15 minutes or more. Next, dilute nitric acid was added little by little to adjust the hydrogen ion concentration to pH 1 to pH 2 to obtain a dispersion (alumina clear sol). To this dispersion, copper nitrate trihydrate (manufactured by Wako Pure Chemical Industries, special grade, purity 99%) 3.475 g, zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, special grade, purity 99%) 0 .143 g and a cerium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade, purity 98%) 0.080 g of copper / zinc / cerium aqueous solution [20 mL] dissolved in pure water was added, and further 15 at the same temperature. After stirring for a minute, the solvent was distilled off with an evaporator to obtain a solid [gel]. After this solid content is pulverized, it is calcined at 500 ° C. for 5 hours in the air, and the obtained calcined product is subjected to reduction treatment at 450 ° C. for 10 hours in a hydrogen atmosphere to obtain 3.1 g of a dimethyl ether reforming catalyst. Obtained.

〔ジメチルエーテル製造用触媒〕
この改質触媒の元素の質量組成は、Al23が69質量%、Cuが29質量%、ZnOが1質量%、CeO2が1質量%である。この改質触媒にピリジンを吸着させ、赤外線分光光度計で赤外線吸収スペクトルを測定したところ、1450cm-1近傍に吸収ピークが見られたことから、Lewis酸などの酸が存在する固体酸であることを確認できた。
[Dimethyl ether production catalyst]
The mass composition of the elements of the reforming catalyst is 69% by mass for Al 2 O 3 , 29% by mass for Cu, 1% by mass for ZnO, and 1% by mass for CeO 2 . Pyridine was adsorbed on this reforming catalyst, and when an infrared absorption spectrum was measured with an infrared spectrophotometer, an absorption peak was observed in the vicinity of 1450 cm −1 . Therefore, the acid was a solid acid in which an acid such as Lewis acid was present. Was confirmed.

〔ジメチルエーテルの水蒸気改質〕
上記で得た改質触媒0.1gを反応管に充填し、反応温度300℃、325℃または350℃に保ちながら、この反応管に、モル比でガス状ジメチルエーテルおよび水蒸気を1:3で含み、アルゴンで希釈された原料ガスを供給した。原料ガスの供給量は、改質触媒1gあたり、1分あたり、ジメチルエーテル12ミリモルおよび水蒸気36ミリモルとした。反応管の出口から得られた反応ガス中に含まれる水素ガスの濃度から、水素生成速度を求めたところ、触媒1gあたり1時間あたり、反応温度300℃では0.100モル、325℃では0.109モル、350℃では0.111モルであった。また、供給したジメチルエーテルのうち、消費されたものの割合を示すジメチルエーテル転化率を求めたところ、反応温度300℃では81.4%、325℃では92.8%、350℃では98.0%であった。結果を第1表に示す。
[Steam reforming of dimethyl ether]
The reaction tube was filled with 0.1 g of the reforming catalyst obtained above, and the reaction tube contained gaseous dimethyl ether and water vapor at a molar ratio of 1: 3 while maintaining the reaction temperature at 300 ° C., 325 ° C. or 350 ° C. The raw material gas diluted with argon was supplied. The supply amount of the raw material gas was 12 mmol of dimethyl ether and 36 mmol of water vapor per minute per 1 g of the reforming catalyst. The hydrogen production rate was determined from the concentration of the hydrogen gas contained in the reaction gas obtained from the outlet of the reaction tube. It was 0.111 mol at 109 mol and 350 ° C. Further, when the conversion rate of dimethyl ether indicating the ratio of consumed dimethyl ether was calculated, it was 81.4% at a reaction temperature of 300 ° C, 92.8% at 325 ° C, and 98.0% at 350 ° C. It was. The results are shown in Table 1.

実施例2
〔ジメチルエーテル製造用触媒の製造〕
実施例1と同様に操作して得た分散液(アルミナクリアゾル)に、硝酸銅3水和物〔和光純薬工業社製、特級、純度99%〕3.475gおよび硝酸亜鉛6水和物〔和光純薬工業社製、特級、純度99%〕0.143gを純水に溶解させた銅・亜鉛水溶液〔20mL〕を加え、その後、実施例1と同様に操作して、固形分〔ゲル〕を得、焼成物を得、ジメチルエーテル改質触媒3.1gを得た。この改質触媒の元素の質量組成は、Al23が70質量%、Cuが29質量%、ZnOが1質量%である。実施例1と同様にして、この改質触媒はLewis酸などの酸が存在する固体酸であることを確認できた。
Example 2
[Production of catalyst for dimethyl ether production]
In a dispersion (alumina clear sol) obtained by operating in the same manner as in Example 1, copper nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade, purity 99%) 3.475 g and zinc nitrate hexahydrate [Wako Pure Chemical Industries, Ltd., special grade, purity 99%] A copper / zinc aqueous solution [20 mL] in which 0.143 g was dissolved in pure water was added. To obtain 3.1 g of a dimethyl ether reforming catalyst. The mass composition of the elements of the reforming catalyst is 70% by mass for Al 2 O 3 , 29% by mass for Cu, and 1% by mass for ZnO. In the same manner as in Example 1, it was confirmed that the reforming catalyst was a solid acid in which an acid such as Lewis acid was present.

〔ジメチルエーテルの水蒸気改質〕
実施例1で得たジメチルエーテル改質触媒に代えて、上記で得た改質触媒を用いた以外は実施例1と同様に操作して、ジメチルエーテルの改質を行った。結果を第1表に示す。
[Steam reforming of dimethyl ether]
The dimethyl ether was reformed in the same manner as in Example 1 except that the reforming catalyst obtained above was used instead of the dimethyl ether reforming catalyst obtained in Example 1. The results are shown in Table 1.

比較例1
〔ジメチルエーテル製造用触媒の製造〕
70℃の水100mLに、乳鉢で磨り潰したアルミニウムイソプロポキシド粉末〔Al[OCH(CH3)2]3、和光純薬工業社製、第一級、純度95%〕9.079gを加え、同温度で15分以上撹拌して分散させ、実施例1で用いたと同じ銅・亜鉛・セリウム水溶液〔20mL〕を加え、さらにエチレングリコール〔和光純薬工業社製、特級〕6.4mL(7.1g)を加え、次いで、希硝酸を少しずつ加えて水素イオン濃度pH1〜pH2に調整して、分散液(アルミナクリアゾル)を得た。その後、実施例1と同様に操作して固形分〔ゲル〕を得、焼成物を得、ジメチルエーテル改質触媒3.1gを得た。この改質触媒の元素の質量組成は、Al23が69質量%、Cuが29質量%、ZnOが1質量%、CeO2が1質量%である。
Comparative Example 1
[Production of catalyst for dimethyl ether production]
To 100 mL of water at 70 ° C., 9.079 g of aluminum isopropoxide powder [Al [OCH (CH 3 ) 2 ] 3 , manufactured by Wako Pure Chemical Industries, Ltd., first grade, purity 95%] ground in a mortar, The same copper / zinc / cerium aqueous solution [20 mL] used in Example 1 was added by stirring at the same temperature for 15 minutes or more, and ethylene glycol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 6.4 mL (7. 1 g) was added, and then dilute nitric acid was added little by little to adjust the hydrogen ion concentration to pH 1 to pH 2 to obtain a dispersion (alumina clear sol). Thereafter, the same operation as in Example 1 was performed to obtain a solid [gel], a fired product was obtained, and 3.1 g of a dimethyl ether reforming catalyst was obtained. The mass composition of the elements of the reforming catalyst is 69% by mass for Al 2 O 3 , 29% by mass for Cu, 1% by mass for ZnO, and 1% by mass for CeO 2 .

〔ジメチルエーテルの水蒸気改質〕
実施例1で得たジメチルエーテル改質触媒に代えて、上記で得た改質触媒を用いた以外は実施例1と同様に操作して、ジメチルエーテルの改質を行った。結果を第1表に示す。
[Steam reforming of dimethyl ether]
The dimethyl ether was reformed in the same manner as in Example 1 except that the reforming catalyst obtained above was used instead of the dimethyl ether reforming catalyst obtained in Example 1. The results are shown in Table 1.

比較例2
〔ジメチルエーテル製造用触媒の製造〕
銅・亜鉛・セリウム水溶液に代えて、実施例2で用いた銅・亜鉛水溶液〔20mL〕を用いた以外は比較例1と同様に操作して分散液(アルミナクリアゾル)を得、ジメチルエーテル改質触媒3.1gを得た。この改質触媒の元素の質量組成は、Al23が70質量%、Cuが29質量%、ZnOが1質量%である。
Comparative Example 2
[Production of catalyst for dimethyl ether production]
A dispersion (alumina clear sol) was obtained in the same manner as in Comparative Example 1 except that the copper / zinc aqueous solution [20 mL] used in Example 2 was used in place of the copper / zinc / cerium aqueous solution. 3.1 g of catalyst was obtained. The mass composition of the elements of the reforming catalyst is 70% by mass for Al 2 O 3 , 29% by mass for Cu, and 1% by mass for ZnO.

〔ジメチルエーテルの水蒸気改質〕
実施例1で得たジメチルエーテル改質触媒に代えて、上記で得た改質触媒を用いた以外は実施例1と同様に操作して、ジメチルエーテルの改質を行った。結果を第1表に示す。
[Steam reforming of dimethyl ether]
The dimethyl ether was reformed in the same manner as in Example 1 except that the reforming catalyst obtained above was used instead of the dimethyl ether reforming catalyst obtained in Example 1. The results are shown in Table 1.

第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
例 組成(質量%) 反応温度 水素生成速度 転化率
Al2O3 Cu ZnO CeO2 (℃) (モル/触媒g/時間) (%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 69 29 1 1 300 0.100 81.4
325 0.109 92.8
350 0.111 98.0
────────────────────────────────────────
実施例2 70 29 1 0 300 0.076 79.8
325 0.084 88.8
350 0.087 93.2
────────────────────────────────────────
比較例1 69 29 1 1 300 0.050 67.1
325 0.062 83.6
350 0.069 93.3
────────────────────────────────────────
比較例2 70 29 1 0 300 0.055 72.4
325 0.066 86.1
350 0.074 93.9
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example Composition (% by mass) Reaction temperature Hydrogen production rate Conversion
Al 2 O 3 Cu ZnO CeO 2 (° C) (mol / g catalyst / hour) (%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 1 69 29 1 1 300 0.100 81.4
325 0.109 92.8
350 0.111 98.0
────────────────────────────────────────
Example 2 70 29 1 0 300 0.076 79.8
325 0.084 88.8
350 0.087 93.2
────────────────────────────────────────
Comparative Example 1 69 29 1 1 300 0.050 67.1
325 0.062 83.6
350 0.069 93.3
────────────────────────────────────────
Comparative Example 2 70 29 1 0 300 0.055 72.4
325 0.066 86.1
350 0.074 93.9
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Claims (9)

ジメチルエーテルから水蒸気改質法により水素を得るために用いられるジメチルエーテル改質触媒であって、ジメチルエーテル加水分解触媒ゲル粒子に、メタノール水蒸気改質触媒が分散されてなることを特徴とするジメチルエーテル改質触媒。 A dimethyl ether reforming catalyst used for obtaining hydrogen from dimethyl ether by a steam reforming method, wherein a methanol steam reforming catalyst is dispersed in dimethyl ether hydrolysis catalyst gel particles. ジメチルエーテル加水分解触媒ゲル粒子がアルミナを主成分とする粒子であり、メタノール水蒸気改質触媒が、銅元素を主成分とする触媒微粒子である請求項1に記載のジメチルエーテル改質触媒。 The dimethyl ether reforming catalyst according to claim 1, wherein the dimethyl ether hydrolysis catalyst gel particles are particles mainly composed of alumina, and the methanol steam reforming catalyst is catalyst fine particles mainly composed of copper element. メタノール水蒸気改質触媒が、銅元素を主成分とし、亜鉛、マンガン、鉄、クロムおよびコバルトからなる群から選ばれた元素を含む触媒微粒子である請求項2に記載のジメチルエーテル改質触媒。 The dimethyl ether reforming catalyst according to claim 2, wherein the methanol steam reforming catalyst is a catalyst fine particle containing an element selected from the group consisting of zinc, manganese, iron, chromium, and cobalt containing copper as a main component. メタノール水蒸気改質触媒が、銅元素を主成分とし、セリウム、プラセオジウム、テルビウム、ジルコニウム、ランタン、イットリウムおよびネオジウムからなる群から選ばれた元素を含む触媒微粒子である請求項2または請求項3に記載のジメチルエーテル改質触媒。 The methanol steam reforming catalyst is a catalyst fine particle containing copper as a main component and containing an element selected from the group consisting of cerium, praseodymium, terbium, zirconium, lanthanum, yttrium and neodymium. Dimethyl ether reforming catalyst. 揮発性溶媒中にジメチルエーテル加水分解触媒ゲル粒子前駆体が分散され、メタノール水蒸気改質触媒前駆体が溶解した分散液を溶媒留去することを特徴とする請求項1に記載のジメチルエーテル改質触媒の製造方法。 2. The dimethyl ether reforming catalyst according to claim 1, wherein the dimethyl ether hydrolysis catalyst gel particle precursor is dispersed in a volatile solvent, and the dispersion in which the methanol steam reforming catalyst precursor is dissolved is distilled off. Production method. ジメチルエーテル加水分解触媒ゲル粒子前駆体がアルミナゲルであり、メタノール水蒸気改質触媒前駆体が銅塩を主成分とするものであり、溶媒留去により得られた固形物を焼成し、得られた焼成物に還元処理を施す請求項5に記載の製造方法。 The dimethyl ether hydrolysis catalyst gel particle precursor is alumina gel, the methanol steam reforming catalyst precursor is mainly composed of a copper salt, the solid obtained by distilling off the solvent is fired, and the fired obtained The production method according to claim 5, wherein the product is subjected to a reduction treatment. メタノール水蒸気改質触媒前駆体が、銅塩を主成分とし、亜鉛、マンガン、鉄、クロムおよびコバルトからなる群から選ばれた元素の塩を含むものである請求項6に記載の製造方法。 The method according to claim 6, wherein the methanol steam reforming catalyst precursor contains a salt of an element selected from the group consisting of zinc, manganese, iron, chromium and cobalt, the main component of which is a copper salt. メタノール水蒸気改質触媒前駆体が、銅塩を主成分とし、セリウム、プラセオジウム、テルビウム、ジルコニウム、ランタン、イットリウムおよびネオジウムからなる群から選ばれた元素の塩を含むものである請求項6または請求項7に記載の製造方法。 The methanol steam reforming catalyst precursor contains a salt of an element selected from the group consisting of cerium, praseodymium, terbium, zirconium, lanthanum, yttrium and neodymium as a main component. The manufacturing method as described. 請求項1〜請求項4に記載のジメチルエーテル改質触媒の存在下にジメチルエーテルを水蒸気と反応させることを特徴とする水素の製造方法。 A method for producing hydrogen, comprising reacting dimethyl ether with water vapor in the presence of the dimethyl ether reforming catalyst according to claim 1.
JP2008242189A 2008-09-22 2008-09-22 Catalyst for reforming dimethyl ether Pending JP2010069453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242189A JP2010069453A (en) 2008-09-22 2008-09-22 Catalyst for reforming dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242189A JP2010069453A (en) 2008-09-22 2008-09-22 Catalyst for reforming dimethyl ether

Publications (1)

Publication Number Publication Date
JP2010069453A true JP2010069453A (en) 2010-04-02

Family

ID=42201729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242189A Pending JP2010069453A (en) 2008-09-22 2008-09-22 Catalyst for reforming dimethyl ether

Country Status (1)

Country Link
JP (1) JP2010069453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
WO2022211334A1 (en) * 2021-03-29 2022-10-06 (주)바이오프랜즈 Hydrogen generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096159A (en) * 1999-09-29 2001-04-10 Daihatsu Motor Co Ltd Dimethyl ether reforming catalyst and fuel cell device
JP2003010684A (en) * 2001-06-27 2003-01-14 Nkk Corp Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JP2004081902A (en) * 2002-08-23 2004-03-18 Mitsubishi Heavy Ind Ltd Dimethyl ether reforming catalyst
JP2004261709A (en) * 2003-02-28 2004-09-24 Univ Shizuoka Steam reforming catalyst of dimethyl ether and method for manufacturing the same
JP2005066516A (en) * 2003-08-26 2005-03-17 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for reforming dimethyl ether and synthesizing method therefor
JP2007260511A (en) * 2006-03-27 2007-10-11 Toshiba Corp Catalyst for generation of hydrogen, manufacturing method and hydrogen generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096159A (en) * 1999-09-29 2001-04-10 Daihatsu Motor Co Ltd Dimethyl ether reforming catalyst and fuel cell device
JP2003010684A (en) * 2001-06-27 2003-01-14 Nkk Corp Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JP2004081902A (en) * 2002-08-23 2004-03-18 Mitsubishi Heavy Ind Ltd Dimethyl ether reforming catalyst
JP2004261709A (en) * 2003-02-28 2004-09-24 Univ Shizuoka Steam reforming catalyst of dimethyl ether and method for manufacturing the same
JP2005066516A (en) * 2003-08-26 2005-03-17 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for reforming dimethyl ether and synthesizing method therefor
JP2007260511A (en) * 2006-03-27 2007-10-11 Toshiba Corp Catalyst for generation of hydrogen, manufacturing method and hydrogen generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
WO2022211334A1 (en) * 2021-03-29 2022-10-06 (주)바이오프랜즈 Hydrogen generator

Similar Documents

Publication Publication Date Title
US11964260B2 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
US11772071B2 (en) Metal-decorated barium calcium aluminum oxide and related materials for NH3 catalysis
JP5303033B2 (en) Methanol synthesis catalyst from synthesis gas and method for producing the same
KR20000068593A (en) Method of hydrocarbon reforming and catalyst and catalyst precursor therefor
KR101579776B1 (en) Manufacturing method of perovskite-type nickel based catalysts
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP2010069453A (en) Catalyst for reforming dimethyl ether
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
WO2021172107A1 (en) Metal-loaded article containing typical element oxide, catalyst for ammonia synthesis and method for synthesizing ammonia
JP2008303131A (en) Method for producing partially substituted type calcium titanate fine particle and material obtained by using the same
JP4506729B2 (en) Catalyst for dimethyl ether production
WO2019156028A1 (en) Composite, method for manufacturing composite, catalyst, and method for manufacturing ammonia
JPH0635401B2 (en) Method for producing methanol from carbon dioxide
KR102067489B1 (en) Metal/support catalyst for conversion of carbon dioxide to methane
JP6650840B2 (en) Method for producing MgO-supported catalyst
WO2019156029A1 (en) Conjugate, catalyst and method for producing ammonia
JP6004396B2 (en) Catalyst for producing dimethyl ether, substrate-supported catalyst, and method for producing dimethyl ether
JP2006212557A (en) Catalyst for producing dimethyl ether
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same
KR20150055908A (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
CN102974354B (en) Catalyst for synthesizing 2,3,6-trimethylphenol and preparation method thereof
KR101469183B1 (en) method of prepering supported catalyst
KR101525943B1 (en) Heterogeneous Cupper based catalysts for coproducing dimethyl ether and acetic acid from methanol
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925