JP2004081902A - Dimethyl ether reforming catalyst - Google Patents

Dimethyl ether reforming catalyst Download PDF

Info

Publication number
JP2004081902A
JP2004081902A JP2002242755A JP2002242755A JP2004081902A JP 2004081902 A JP2004081902 A JP 2004081902A JP 2002242755 A JP2002242755 A JP 2002242755A JP 2002242755 A JP2002242755 A JP 2002242755A JP 2004081902 A JP2004081902 A JP 2004081902A
Authority
JP
Japan
Prior art keywords
dimethyl ether
powder
catalyst
solution
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242755A
Other languages
Japanese (ja)
Other versions
JP4380969B2 (en
Inventor
Masanao Yonemura
米村 将直
Shigeru Nojima
野島  繁
Satonobu Yasutake
安武 聡信
Satoru Watanabe
渡邊  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002242755A priority Critical patent/JP4380969B2/en
Publication of JP2004081902A publication Critical patent/JP2004081902A/en
Application granted granted Critical
Publication of JP4380969B2 publication Critical patent/JP4380969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimethyl ether reforming catalyst having high dimethyl ether reforming performance and a method of producing the same. <P>SOLUTION: The dimethyl ether reforming catalyst is obtained by supporting one or more noble metals selected from among Pt, Ru, Pd, Rh and Ir on a powder consisting of two or more elements including at least Cu and Zn. When the dimethyl ether reforming catalyst is used, decomposition of dimethyl ether and reforming of methanol are allowed to take place at the same time and an objective hydrogen-containing gas is efficiently obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、ジメチルエーテル改質触媒に関する。さらに詳しくは、本発明は、高効率でジメチルエーテルから、固体電解質型燃料電池の燃料となる水素含有ガスを得るジメチルエーテル改質触媒に関する。
【0002】
【従来技術】
固体電解質型燃料電池(以下、PEFCともいう)は、水素と酸素から水を得る電池反応によって起電力を得ている。原料の水素を得る方法の一つとしては、改質触媒の存在下で、ジメチルエーテルを原材料とする方法が挙げられる。
【0003】
ここで、ジメチルエーテルから水素を得る反応は、以下の式で表され、改質触媒としては、アルミナ担体に白金等の貴金属を担持したものが用いられてきた。
【0004】
【化1】

Figure 2004081902
【0005】
ジメチルエーテルから合成ガスを得る反応は、一つは式(1)で表されるジメチルエーテルの水蒸気改質反応と、式(2)で表される改質して生じたCOのシフト反応とからなり、もう一つは式(3)で表されるジメチルエーテルの加水分解反応と、式(4)で表される分解して生じたメタノールの改質反応とからなる。上述のアルミナ担体に貴金属を担持させた改質触媒を用いた場合、式(1)及び式(3)で表される反応しか進行しないため、得られるH量も少ないという問題があった。また、副生したCOは後流のPEFCを被毒させる為、改質触媒とPEFCとの間にCO変成器及びCO除去器を設けているが、それらには高いCO除去能力が要求される。
【0006】
【発明が解決しようとする課題】
従来よりも高いジメチルエーテルの改質性能が得られるジメチルエーテルの改質触媒が必要とされている。
【0007】
【課題を解決するための手段】
本発明は、上記課題に鑑みてなされたものである。すなわち、本発明はジメチルエーテル改質触媒であって、少なくともCuとZnとを含む2種類以上の元素からなる粉末に貴金属を担持させてなる。前記粉末が、Al元素をさらに含むことが好ましく、Al以外に、Cr、Mn、Fe、Co、Ni、Ca、Mg等のアルカリ土類金属、La等の希土類金属、Gaを含んでもよい。
【0008】
本発明はまた、別の側面においては、ジメチルエーテル改質触媒であって、CuとZnとを含む粉末と、無機担体に貴金属を担持させてなる粉末とを含んでなる。前記無機担体が、SiO、Al、ZrO、TiOから選択される少なくとも一種以上であることが好ましい。また、CuとZnとを含む粉末には、Alや、Cr、Mn、Fe、Co、Ni、Ca、Mg等のアルカリ土類金属、希土類金属を含んでもよい。
【0009】
前述のジメチルエーテル改質触媒においては、貴金属が、Pt、Ru、Pd、Rh、Irから選択される少なくとも一種以上であることが好ましい。
【0010】
本発明にかかるジメチルエーテル改質触媒によれば、従来よりも高いジメチルエーテルの改質活性が得られる。
【0011】
【発明の実施の態様】
以下に本発明を実施の形態を挙げて詳細に説明する。以下の説明は、本発明を限定するものではない。
【0012】
本発明の第一の実施形態によるジメチルエーテル改質触媒は、少なくともCuとZnを含む2種類以上の元素から構成される粉末に貴金属を担持させてなるものである。
【0013】
少なくともCuとZnとを含む2種類以上の元素からなる粉末とは、貴金属を担持する担体としての役割を果たすとともに、少なくともCuとZnとを含む2種類以上の元素からなる粉末が、(1)式で表されるジメチルエーテルの水蒸気改質反応及び、(2)(3)式で表される加水分解反応で生成したCO及びCHOHを、シフト反応及び水蒸気改質反応によりCOとする触媒としての役割をも果たすものである。
【0014】
【化2】
Figure 2004081902
【0015】
具体的には、少なくともCuとZnとを含む2種類以上の元素からなる粉末は、原子比でCuが100に対してZnが1〜1000、Alが0.1〜500、Mg、Ca等のアルカリ土類金属や、La等の希土類金属、Ga等がそれぞれ0.01〜100の範囲とすることが好ましく、原子比でCuが100に対してZnが10〜500、Alが1〜50、Mg、Ca等のアルカリ土類金属や、La等の希土類金属、Ga等がそれぞれ0.1〜10の範囲とすることがさらに好ましい。また、Alに替えて、Cr、Mn、Fe、Co、Ni等を用いてもよい。ここで、本実施の形態によるCuとZnとを含む粉末とは、粒径が0.01〜500μmのものをいい、CuとZnとその他の成分とが、ランダムに混合した状態である。
【0016】
貴金属とは、主にジメチルエーテルの水蒸気改質及び加水分解反応を促進する役割も果たすものであり、Pt、Ru、Pd、Rh、Irから選択される少なくとも一種以上を用いることができる。特に、Ptを貴金属として用いることが好ましい。
【0017】
貴金属は、少なくともCuとZnとを含む2種類以上の元素からなる粉末に対し、好ましくは、0.01〜30重量%、さらに好ましくは0.1〜5重量%で担持させる。ここで、担持させるとは、CuとZnとを含む粉末上に貴金属を吸着担持させる形態をいう。
【0018】
また、このジメチルエーテル改質触媒は粉末状であるため、それ自体を成形することもでき、適当な溶媒を用いてスラリーとして、ハニカム担体にコートしてジメチルエーテルの改質反応に用いることもできる。
【0019】
このような触媒の調製方法については、金属塩水溶液をアルカリにより共沈させ、得られた触媒前駆体を焼成する共沈法や、金属塩水溶液を混合しこれを蒸発乾固させ焼成する方法などがある。特に、共沈法が好ましい。共沈法は、触媒原料の混合溶液に沈殿剤を加え、各成分を同時に沈殿させる方法であり、微粒子を均質に混合することができるため、多成分系触媒の製造方法として広く行われるものである。
【0020】
共沈法により担体を調製するために、まず、沈殿剤溶液を、50〜70℃に保温する。沈殿剤溶液としては、アルカリ溶液を用いることができ、具体的には、NaCO、NaHCO、NaOH、KCO、NHOH等が挙げられるが、これらには限定されない。特に、アルカリ溶液として、NaCOを用いることが好ましい。これらのアルカリ溶液濃度は、0.1〜10mol/Lとすることが好ましい。
【0021】
保温した沈殿剤溶液を撹拌しながら、CuとZnとを含む金属塩水溶液を滴下して沈殿物を生成させる。触媒成分であるCuとZnの各金属塩は硝酸塩、塩化物、硫酸塩、酢酸塩の形で0.01〜1.0M濃度の水溶液として用い、特に硝酸塩として用いられるのが好ましい。その他に、アルミニウム、アルカリ土類金属、希土類金属等を含む粉末にする場合は、同様に、これらの金属の硝酸塩を順次適下させて沈殿物を生成させる。
【0022】
ここで金属塩の滴下順序については特に制限されるものではないが、銅を含む金属塩水溶液を最後に滴下するのが好ましい。なお、滴下終了時のpHが4以上で、滴下した金属イオンはほとんど全て沈殿物として析出する。全ての金属塩溶液を滴下した後、沈殿物を撹拌しながら熟成させる。
【0023】
また、滴下時間、熟成時間は、特に触媒活性には影響ないが、均一に金属イオンが分散し沈殿物が析出する条件であればよく、通常滴下時間は、30分〜24時間、熟成時間は、1〜24時間の範囲で実施される。得られた沈殿物は種々の結晶種を有するが、アルカリ金属イオンや陰イオンを十分洗浄除去した後、200〜500℃範囲で焼成される。
【0024】
次に、得られた少なくともCuとZnとを含む2種類以上の元素からなる粉末に、貴金属を担持させる。このとき、貴金属を担持させる方法として、貴金属溶液を、得られた少なくともCuとZnとを含む2種類以上の元素からなる粉末に含浸させる含浸法、上述と同様の共沈法、コロイド担持法等が挙げられる。特に、含浸法により、貴金属を担持させるのが好ましい。
【0025】
具体的には、貴金属塩を調製する。貴金属としては、Pt、Ru、Pd、Rh、Irのうちの一種、あるいはこれらの混合物を用いることができ、各金属塩は硝酸塩、塩化物、硫酸塩、酢酸塩の形で0.01〜1.0M濃度の水溶液として用い、特に硝酸塩として用いられることが好ましい。含浸法を用いる場合には、得られた少なくともCuとZnとを含む2種類以上の元素からなる粉末に対し、貴金属が0.001〜30重量%となるように、添加し、蒸発乾固することにより、貴金属をCuとZnとを含む粉末に担持させる。
【0026】
このようにして、少なくともCuとZnとを含む2種類以上の元素からなる粉末に貴金属を担持させた粉末を、200〜500℃の範囲で焼成することにより、本発明にかかるジメチルエーテル改質触媒を得る。得られた触媒粉末は、さらに、水、アルコール等の溶液を用いてスラリー化した後、ウオッシュコート法によりコート型ハニカム触媒に成形することもできる。
【0027】
次に、本実施形態に係るジメチルエーテル改質触媒による、ジメチルエーテルの改質反応について説明する。本実施の形態に係る触媒を用いて改質する対象となるのは、ジメチルエーテルである。ジメチルエーテルは、改質反応により、燃料電池の燃料として用いる水素を生成する。ジメチルエーテルは、1モルあたりの発熱量が高く、触媒毒となる不純物である硫黄分等を含まない。また、コスト的にも有利であるため、燃料電池における水素生成の原料として好ましく用いられる。このようなジメチルエーテルは、メタノールを用いて合成したものを用いることができるが、一定の合成方法により得られたものには限定されない。
【0028】
ここで、ジメチルエーテルは、本実施の形態にかかるジメチルエーテル改質触媒の作用により、前述の式(1)〜(4)に示すように反応すると考えられる。すなわち、式(1)で示されるように、ます、ジメチルエーテルが水蒸気によりHとCOに改質される。次に、式(2)で示されるように、COが、水素と二酸化炭素とを含む合成ガスにまで変成される。また、式(1)で示されるように、ジメチルエーテルがメタノールに分解する。次に、式(2)で示されるように、メタノールが、水素と一酸化炭素と二酸化炭素とを含む合成ガスにまで改質される。
【0029】
ここで、本実施の形態にかかるジメチルエーテル改質触媒のうち、担持される貴金属、特にはPtが、式(1)及び式(3)で示されるジメチルエーテル水蒸気改質及び加水分解反応を促進する。また、少なくともCuとZnとを含む2種類以上の元素からなる粉末が、式(2)及び式(4)で示されるCOシフト反応及びメタノール改質反応を促進する。これらの式(1)〜式(2)で示される反応は併発して進行する。本実施の形態にかかるジメチルエーテル改質触媒を用いることによって、反応温度が300〜500℃の範囲にて、高い反応効率で、ジメチルエーテルから水素と一酸化炭素と二酸化炭素とを含む合成ガスを得ることができる。
【0030】
本実施の形態によるジメチルエーテル改質触媒は、300〜500℃の温度条件下で、高い効率でジメチルエーテルを水素と二酸化炭素にまで改質することができる。さらには、かかる触媒反応においてCuとZnとを含む触媒成分が、貴金属の担体としての役割も同時に果たしうるため、担体成分となる金属の必要量を減らすことができ、コスト的に有利となる。
【0031】
本発明の第二の実施形態によるジメチルエーテル改質触媒は、少なくともCuとZnとを含む2種類以上の元素からなる粉末と、無機担体に貴金属を担持させてなる粉末とを含んでなるものである。
【0032】
無機担体に貴金属を担持させてなる粉末は、主にジメチルエーテルをメタノールに分解する触媒として働く。いっぽう、少なくともCuとZnとを含む2種類以上の元素からなる粉末は、ジメチルエーテルの改質生成物であるCOをHに変成し、さらにはジメチルエーテルの加水分解生成物であるメタノールを改質して水素含有ガスを生成する触媒として働く。
【0033】
ここで、無機担体とは、SiO、Al、ZrO、TiOから選択される少なくとも一種以上を含む担体である。貴金属としては、Pt、Ru、Pd、Rh、Irから選択される少なくとも一種以上を用いることができる。特に、Ptを貴金属として用いることが好ましい。
【0034】
貴金属は、無機担体の総重量に対し、好ましくは、0.01〜10重量%、さらに好ましくは0.1〜5重量%で担持させる。貴金属の担持は、第一の実施形態で説明したのと同様に、含浸法によって実施することができる。
【0035】
少なくともCuとZnとを含む2種類以上の元素からなる粉末は、原子比でCuが100に対してZnが1〜1000、Alが0.1〜500、Mg、Ca等のアルカリ土類金属や、La等の希土類金属、Ga等がそれぞれ0.01〜100の範囲とすることが好ましく、原子比でCuが100に対してZnが10〜500、Alが1〜50、Mg、Ca等のアルカリ土類金属や、La等の希土類金属、Ga等がそれぞれ0.1〜10の範囲とすることがさらに好ましい。また、Alに替えて、Cr、Mn、Fe、Co、Ni等を用いてもよい。このような触媒は、第一の実施形態と同様に、共沈法等により得ることができる。
【0036】
このようにして得られた無機担体に貴金属を担持させてなる粉末と、少なくともCuとZnとを含む2種類以上の元素からなる粉末との成分を、乳鉢等でよく混合することにより、ジメチルエーテル改質触媒を得る。これら二つの成分はランダムに混合されていてもよく、あるいは、一定の規則性を有するように配置されていてもよい。
【0037】
かかるジメチルエーテル改質触媒によれば、式(1)で示されるように、ます、ジメチルエーテルが水蒸気によりHとCOに改質される。次に、式(2)で示されるように、COが、水素と二酸化炭素とを含む合成ガスにまで変成される。また、式(3)で示されるように、ジメチルエーテルがメタノールに分解する。次に、式(4)で示されるように、メタノールが、水素と一酸化炭素と二酸化炭素とを含む合成ガスにまで改質され、効率的にジメチルエーテルから合成ガスを得ることができる。
【0038】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明する。以下の実施例は本発明を限定するものではない。
【0039】
[実施例1]
(触媒粉末の調製手順)
炭酸ナトリウム2.5mol%を水2Lに溶解させ、60℃に保温してこのアルカリ溶液をAとした。次に硝酸アルミニウム0.015mol及び硝酸亜鉛0.225molを水400mlに溶解させ、60℃に保温した酸性溶液を溶液Bとした。また、硝酸カルシウム0.006mol及び硝酸ガリウム0.012molを水300mlに溶かして60℃に保温した酸性溶液を溶液Cとした。さらに、硝酸銅0.3molを水400mlに溶かして60℃に保温した酸性溶液を溶液Dとした。
【0040】
まず、攪拌しながら溶液Aに溶液Bを30分にわたり均一に滴下し沈殿生成液Eを得た。次に、溶液Cを前記の沈殿生成液Eに30分にわたり均一に滴下し沈殿生成液Fを得た。さらに溶液Dを沈殿生成液Fに30分にわたり均一に滴下し、カルシウム、ガリウム、アルミニウム、亜鉛及び銅を含有した沈殿生成液Gを得た。
【0041】
沈殿生成液Gを、2時間そのまま攪拌することにより熟成を行い、次に沈殿生成液Gのろ液及びNaイオン、NOイオンが検出されないように、十分に洗浄した。さらに、100℃で24時間乾燥し、その後、300℃で3時間焼成することにより触媒粉末を得た。この触媒粉末を触媒粉末1−1とした。
【0042】
上記で得られた触媒粉末1−1に塩化第二白金酸溶液(HPtCl)を、得られる全粉末量に対してPtが0.5wt%で担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、300℃で5時間(昇温速度100℃/h)焼成を施すことにより粉末触媒1を得た。
【0043】
得られた触媒粉末1を30tonの加圧成形器で粉末を固定化させた後、粒径が2〜4mmの範囲となるように破砕後篩い分けして固形型触媒1を得た。
【0044】
[実施例2]
実施例1の触媒粉末の調製手順にて、硝酸カルシウムの代わりに硝酸ランタン0.03mol を用い、さらに硝酸ガリウムを0.03molに、硝酸アルミニウムを0.015molに、硝酸亜鉛を0.3molに代えた事以外は実施例1と同様の方法にて粉末触媒3を得た。次いで、粉末触媒3を用いる事以外は前述した実施例1と同様にして固形型触媒2を得た。
【0045】
[実施例3]
実施例1の触媒粉末の調製手順にて、硝酸カルシウムの代わりに硝酸マグネシウム0.003molを用い、さらに硝酸ガリウムを0.015molに硝酸アルミニウムを0.045molに、硝酸亜鉛を0.075molに代えた事以外は実施例1と同様の方法にて粉末触媒3を得た。次いで、粉末触媒3を用いる事以外は前述した実施例1と同様にして固形型触媒3を得た。
【0046】
[実施例4]
実施例1の触媒粉末の調製手順にて、硝酸アルミニウムの代わりに硝酸クロム、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケルを用いた事以外は実施例1と同様の方法にて粉末触媒4〜8を得た。次いで、粉末触媒4〜8を用いる事以外は前述した実施例1と同様にして固形型触媒4〜8を得た。
【0047】
[実施例5]
実施例1にて、Pt担持量を0.01、0.05、0.1、0.25、1.0、2.0、5.0、10.0wt%に代えた事以外は、前述した実施例1と同様にして粉末触媒9〜16を得た。
次いで、粉末触媒9〜16を用いること以外は前述した実施例1と同様にして固形型触媒9〜16を得た。
【0048】
[実施例6]
実施例1にて、塩化第二白金酸溶液(HPtCl)の代わりにジニトロジアミン白金溶液、Ptコロイド溶液、硝酸ルテニウム溶液、硝酸パラジウム溶液、塩化イリジウム酸溶液、硝酸ロジウム溶液を用いる事以外は、前述した実施例1と同様にして粉末触媒17〜22を得た。次いで、粉末触媒17〜22を用いること以外は前述した実施例1と同様にして固形型触媒17〜22を得た。
【0049】
[実施例7]
実施例1にて、Pt含浸時の焼成温度を200℃、400℃、500℃、600℃に代えた事以外は、前述した実施例1と同様にして粉末触媒23〜26を得た。
次いで、粉末触媒23〜26を用いること以外は前述した実施例1と同様にして固形型触媒23〜26を得た。
【0050】
[実施例8]
実施例1にて得られた触媒粉末1−1と、TiOに塩化第二白金酸溶液(HPtCl)を、Ptが0.5wt%となるように実施例1と同様の方法で担持させた粉末Aとを乳鉢にて粉末混合し、粉末触媒27を得た。次いで、粉末触媒27を用いること以外は前述した実施例1と同様にして固形型触媒27を得た。
【0051】
[実施例9]
実施例8にて、TiOの代わりにTiO・SiO、SiO、Al、ZrOを用いたこと以外は実施例8と同様にして粉末触媒28〜31を得た。次いで、粉末触媒28〜31を用いること以外は前述した実施例1と同様にして固形型触媒28〜31を得た。
【0052】
[実施例10]
実施例8にて、塩化第二白金酸溶液(HPtCl)の代わりにジニトロジアミン白金溶液、Ptコロイド溶液、硝酸ルテニウム溶液、硝酸パラジウム溶液、塩化イリジウム酸溶液、硝酸ロジウム溶液を用いる事以外は、前述した実施例8と同様にして粉末触媒32〜37を得た。次いで、粉末触媒32〜37を用いること以外は前述した実施例1と同様にして固形型触媒32〜37を得た。
【0053】
[実施例11]
実施例8にて、Pt含浸時の焼成温度を200℃、400℃、500℃、600℃に代えた事以外は、前述した実施例8と同様にして粉末触媒38〜41を得た。次いで、粉末触媒38〜41を用いること以外は前述した実施例1と同様にして固形型触媒38〜41を得た。
【0054】
[比較例1]
実施例1にて、触媒粉末1−1の代わりにAlを用いたこと以外は実施例と同様に比較固形型触媒1を得た。
【0055】
[実施例12]
固形型触媒1〜41及び比較固形型触媒1について、ジメチルエーテル改質試験を実施した。試験条件を表1に、試験結果を表2に示す。試験中、反応管出口から排出されたガスのH、CO及びCO濃度をガスクロマトグラフによって測定した後、その触媒のジメチルエーテル改質性能を算出した。
【0056】
【表1】
Figure 2004081902
【0057】
【表2】
Figure 2004081902
【0058】
結果は表2に示した通り、固形型触媒1〜41は、反応管入口温度が300℃〜500℃の温度域において比較固形型触媒1よりも高いジメチルエーテル改質性能を得たことが出来る。
【0059】
【発明の効果】
本発明にかかるジメチルエーテル改質触媒によれば、従来型の触媒と比較して、300〜500℃付近の温度条件下で、ジメチルエーテルの水蒸気改質及び加水分解反応及び上記反応で得られる一酸化炭素及びメタノールを二酸化炭素と水素にまで変成及び改質させることができる。
また、本発明にかかるジメチルエーテル改質触媒は、メタノール改質触媒活性を持つ少なくともCuとZnとを含む2種類以上の元素からなる粉末を、ジメチルエーテル分解能を有する貴金属の担体としても機能させることができる。
これにより、不純物が少なく、コスト的に有利なジメチルエーテルを出発原料として、燃料電池の燃料源である水素を効率的に得ることができるため、燃料電池の実用化に非常に有用である。[0001]
[Industrial applications]
The present invention relates to a dimethyl ether reforming catalyst. More specifically, the present invention relates to a dimethyl ether reforming catalyst for obtaining a hydrogen-containing gas as a fuel for a solid oxide fuel cell from dimethyl ether with high efficiency.
[0002]
[Prior art]
2. Description of the Related Art A solid oxide fuel cell (hereinafter, also referred to as PEFC) obtains an electromotive force by a cell reaction of obtaining water from hydrogen and oxygen. One method for obtaining hydrogen as a raw material is a method using dimethyl ether as a raw material in the presence of a reforming catalyst.
[0003]
Here, the reaction for obtaining hydrogen from dimethyl ether is represented by the following equation, and a reforming catalyst in which a noble metal such as platinum is supported on an alumina carrier has been used.
[0004]
Embedded image
Figure 2004081902
[0005]
One of the reactions for obtaining synthesis gas from dimethyl ether includes a steam reforming reaction of dimethyl ether represented by the formula (1) and a shift reaction of CO generated by reforming represented by the formula (2), The other consists of a hydrolysis reaction of dimethyl ether represented by the formula (3) and a reforming reaction of methanol generated by decomposition represented by the formula (4). When the above-mentioned reforming catalyst in which a noble metal is supported on an alumina carrier is used, only the reaction represented by the formulas (1) and (3) proceeds, so that there is a problem that the amount of H 2 obtained is small. In addition, a CO converter and a CO remover are provided between the reforming catalyst and the PEFC in order to poison the downstream PEFC with the by-produced CO, but they require a high CO removal ability. .
[0006]
[Problems to be solved by the invention]
There is a need for a dimethyl ether reforming catalyst that provides higher dimethyl ether reforming performance than before.
[0007]
[Means for Solving the Problems]
The present invention has been made in view of the above problems. That is, the present invention relates to a dimethyl ether reforming catalyst in which a noble metal is supported on a powder composed of two or more elements containing at least Cu and Zn. The powder preferably further contains an Al element, and in addition to Al, may contain an alkaline earth metal such as Cr, Mn, Fe, Co, Ni, Ca, Mg, a rare earth metal such as La, or Ga.
[0008]
According to another aspect of the present invention, there is provided a dimethyl ether reforming catalyst comprising a powder containing Cu and Zn, and a powder obtained by supporting a noble metal on an inorganic carrier. It is preferable that the inorganic carrier is at least one selected from SiO 2 , Al 2 O 3 , ZrO 2 , and TiO 2 . The powder containing Cu and Zn may contain Al, an alkaline earth metal such as Cr, Mn, Fe, Co, Ni, Ca, and Mg, or a rare earth metal.
[0009]
In the dimethyl ether reforming catalyst described above, the noble metal is preferably at least one selected from Pt, Ru, Pd, Rh, and Ir.
[0010]
ADVANTAGE OF THE INVENTION According to the dimethyl ether reforming catalyst concerning this invention, the dimethyl ether reforming activity higher than before is obtained.
[0011]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, the present invention will be described in detail with reference to embodiments. The following description does not limit the invention.
[0012]
The dimethyl ether reforming catalyst according to the first embodiment of the present invention is obtained by supporting a noble metal on a powder composed of two or more elements including at least Cu and Zn.
[0013]
The powder composed of two or more elements containing at least Cu and Zn serves as a carrier for supporting a noble metal, and the powder composed of two or more elements containing at least Cu and Zn is (1) Catalyst for converting CO and CH 3 OH generated by the steam reforming reaction of dimethyl ether represented by the formula and the hydrolysis reaction represented by formulas (2) and (3) into CO 2 by a shift reaction and a steam reforming reaction It also plays a role.
[0014]
Embedded image
Figure 2004081902
[0015]
Specifically, a powder composed of two or more elements containing at least Cu and Zn has an atomic ratio of Cu to 100, Zn is 1 to 1000, Al is 0.1 to 500, Mg, Ca, etc. Alkaline earth metals, rare earth metals such as La, Ga and the like are each preferably in the range of 0.01 to 100, and the atomic ratio of Cu is 100, Zn is 10 to 500, Al is 1 to 50, It is further preferable that the content of alkaline earth metals such as Mg and Ca, rare earth metals such as La, and Ga be in the range of 0.1 to 10, respectively. Further, Cr, Mn, Fe, Co, Ni, or the like may be used instead of Al. Here, the powder containing Cu and Zn according to the present embodiment refers to a powder having a particle size of 0.01 to 500 μm, and is in a state where Cu, Zn, and other components are randomly mixed.
[0016]
The noble metal mainly plays a role of promoting steam reforming and hydrolysis of dimethyl ether, and at least one selected from Pt, Ru, Pd, Rh, and Ir can be used. In particular, it is preferable to use Pt as a noble metal.
[0017]
The noble metal is supported at preferably 0.01 to 30% by weight, more preferably 0.1 to 5% by weight, based on at least two kinds of elements including Cu and Zn. Here, the term “support” refers to a form in which a noble metal is adsorbed and supported on a powder containing Cu and Zn.
[0018]
Further, since the dimethyl ether reforming catalyst is in a powder form, it can be formed as such, and can be used as a slurry in an appropriate solvent on a honeycomb carrier and used for a dimethyl ether reforming reaction.
[0019]
Examples of the method for preparing such a catalyst include a coprecipitation method in which an aqueous metal salt solution is coprecipitated with an alkali and the obtained catalyst precursor is calcined, and a method in which an aqueous metal salt solution is mixed and evaporated to dryness and calcined. There is. Particularly, the coprecipitation method is preferable. The coprecipitation method is a method in which a precipitant is added to a mixed solution of catalyst raw materials to precipitate each component simultaneously.Since fine particles can be homogeneously mixed, it is widely used as a method for producing a multi-component catalyst. is there.
[0020]
In order to prepare the carrier by the coprecipitation method, first, the precipitant solution is kept at 50 to 70 ° C. As the precipitant solution, an alkaline solution can be used, and specific examples thereof include, but are not limited to, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , NH 4 OH, and the like. In particular, it is preferable to use Na 2 CO 3 as the alkaline solution. The concentration of these alkaline solutions is preferably 0.1 to 10 mol / L.
[0021]
While stirring the kept precipitant solution, an aqueous solution of a metal salt containing Cu and Zn is dropped to generate a precipitate. The metal salts of Cu and Zn, which are catalyst components, are used in the form of nitrates, chlorides, sulfates, and acetates as aqueous solutions having a concentration of 0.01 to 1.0 M, and are particularly preferably used as nitrates. In addition, when a powder containing aluminum, an alkaline earth metal, a rare earth metal, or the like is used, similarly, nitrates of these metals are sequentially reduced to form a precipitate.
[0022]
Here, the order of dropping the metal salt is not particularly limited, but it is preferable to drop the metal salt aqueous solution containing copper last. When the pH at the end of dropping is 4 or more, almost all of the dropped metal ions are precipitated as precipitates. After dropping all the metal salt solutions, the precipitate is aged while stirring.
[0023]
The dropping time and the aging time do not particularly affect the catalytic activity, but may be any condition under which the metal ions are uniformly dispersed and the precipitate is deposited. Usually, the dropping time is 30 minutes to 24 hours, and the aging time is , For 1 to 24 hours. Although the obtained precipitate has various crystal seeds, it is calcined at 200 to 500 ° C. after sufficiently removing alkali metal ions and anions.
[0024]
Next, a noble metal is supported on the obtained powder composed of two or more elements containing at least Cu and Zn. At this time, as a method of supporting the noble metal, an impregnation method of impregnating the obtained powder of at least two kinds of elements containing at least Cu and Zn, a coprecipitation method similar to the above, a colloid supporting method, and the like. Is mentioned. In particular, it is preferable to support the noble metal by the impregnation method.
[0025]
Specifically, a noble metal salt is prepared. As the noble metal, one of Pt, Ru, Pd, Rh, and Ir, or a mixture thereof can be used, and each metal salt is 0.01 to 1 in the form of nitrate, chloride, sulfate, or acetate. It is preferably used as an aqueous solution having a concentration of 0.0M, particularly preferably as a nitrate. When the impregnation method is used, the noble metal is added to the obtained powder composed of two or more elements containing at least Cu and Zn so that the content of the noble metal is 0.001 to 30% by weight, and the mixture is evaporated to dryness. Thereby, the noble metal is supported on the powder containing Cu and Zn.
[0026]
Thus, the dimethyl ether reforming catalyst according to the present invention is obtained by calcining a powder in which a noble metal is supported on a powder composed of two or more elements containing at least Cu and Zn at a temperature in the range of 200 to 500 ° C. obtain. The obtained catalyst powder may be further slurried using a solution of water, alcohol, or the like, and then formed into a coated honeycomb catalyst by a wash coat method.
[0027]
Next, the dimethyl ether reforming reaction by the dimethyl ether reforming catalyst according to the present embodiment will be described. The target to be reformed using the catalyst according to the present embodiment is dimethyl ether. Dimethyl ether generates hydrogen used as fuel for a fuel cell by a reforming reaction. Dimethyl ether has a high calorific value per mole and does not contain sulfur, which is a catalyst poisoning impurity. Further, since it is advantageous in terms of cost, it is preferably used as a raw material for generating hydrogen in a fuel cell. As such dimethyl ether, those synthesized using methanol can be used, but are not limited to those obtained by a certain synthesis method.
[0028]
Here, it is considered that dimethyl ether reacts by the action of the dimethyl ether reforming catalyst according to the present embodiment as shown in the above formulas (1) to (4). That is, as shown in equation (1), dimethyl ether is first reformed into H 2 and CO by steam. Next, as shown in equation (2), CO is converted into a synthesis gas containing hydrogen and carbon dioxide. In addition, as shown in the formula (1), dimethyl ether is decomposed into methanol. Next, as shown in equation (2), methanol is reformed to a synthesis gas containing hydrogen, carbon monoxide, and carbon dioxide.
[0029]
Here, among the dimethyl ether reforming catalysts according to the present embodiment, the supported noble metal, particularly Pt, promotes the dimethyl ether steam reforming and hydrolysis reactions represented by the formulas (1) and (3). Further, a powder composed of two or more elements containing at least Cu and Zn promotes the CO shift reaction and the methanol reforming reaction represented by the formulas (2) and (4). The reactions represented by the formulas (1) and (2) proceed concurrently. By using the dimethyl ether reforming catalyst according to the present embodiment, it is possible to obtain a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide from dimethyl ether with a high reaction efficiency in a reaction temperature range of 300 to 500 ° C. Can be.
[0030]
The dimethyl ether reforming catalyst according to the present embodiment can reform dimethyl ether into hydrogen and carbon dioxide with high efficiency under a temperature condition of 300 to 500 ° C. Further, in such a catalytic reaction, the catalyst component containing Cu and Zn can simultaneously serve as a support for the noble metal, so that the required amount of the metal as the support component can be reduced, which is advantageous in cost.
[0031]
The dimethyl ether reforming catalyst according to the second embodiment of the present invention comprises a powder composed of two or more elements including at least Cu and Zn, and a powder obtained by supporting a noble metal on an inorganic carrier. .
[0032]
A powder obtained by supporting a noble metal on an inorganic carrier mainly functions as a catalyst for decomposing dimethyl ether into methanol. On the other hand, the powder consisting of two or more elements including at least Cu and Zn is to denature the CO is reformed product of dimethyl ether to H 2, further reformed methanol is the hydrolysis product of dimethyl ether And acts as a catalyst for generating a hydrogen-containing gas.
[0033]
Here, the inorganic carrier is a carrier containing at least one or more selected from SiO 2 , Al 2 O 3 , ZrO 2 , and TiO 2 . As the noble metal, at least one selected from Pt, Ru, Pd, Rh, and Ir can be used. In particular, it is preferable to use Pt as a noble metal.
[0034]
The noble metal is supported at preferably 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total weight of the inorganic carrier. The noble metal can be supported by the impregnation method as described in the first embodiment.
[0035]
Powder composed of two or more elements containing at least Cu and Zn has an atomic ratio of Cu to 100 and Zn of 1 to 1000, Al of 0.1 to 500, and alkaline earth metals such as Mg and Ca. , La and the like, rare earth metals, Ga and the like are each preferably in the range of 0.01 to 100, and the atomic ratio of Cu to 100 is Zn to 10 to 500, Al is 1 to 50, Mg, Ca, etc. It is more preferable that each of the alkaline earth metal, the rare earth metal such as La, Ga, and the like be in the range of 0.1 to 10. Further, Cr, Mn, Fe, Co, Ni, or the like may be used instead of Al. Such a catalyst can be obtained by a coprecipitation method or the like as in the first embodiment.
[0036]
By mixing the components of the powder obtained by supporting the noble metal on the inorganic carrier thus obtained and the powder of at least two types of elements including at least Cu and Zn in a mortar or the like, dimethyl ether conversion is performed. Quality catalyst. These two components may be mixed randomly or may be arranged to have a certain regularity.
[0037]
According to such a dimethyl ether reforming catalyst, as shown in the formula (1), dimethyl ether is first reformed into H 2 and CO by steam. Next, as shown in equation (2), CO is converted into a synthesis gas containing hydrogen and carbon dioxide. In addition, as shown in the formula (3), dimethyl ether is decomposed into methanol. Next, as shown by the formula (4), methanol is reformed to a synthesis gas containing hydrogen, carbon monoxide, and carbon dioxide, and a synthesis gas can be efficiently obtained from dimethyl ether.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The following examples do not limit the invention.
[0039]
[Example 1]
(Preparation procedure of catalyst powder)
2.5 mol% of sodium carbonate was dissolved in 2 L of water, and the temperature was maintained at 60 ° C., and this alkaline solution was designated as A. Next, 0.015 mol of aluminum nitrate and 0.225 mol of zinc nitrate were dissolved in 400 ml of water, and an acidic solution kept at 60 ° C. was used as solution B. An acidic solution prepared by dissolving 0.006 mol of calcium nitrate and 0.012 mol of gallium nitrate in 300 ml of water and keeping the temperature at 60 ° C. was designated as solution C. Further, an acidic solution in which 0.3 mol of copper nitrate was dissolved in 400 ml of water and kept at 60 ° C. was used as solution D.
[0040]
First, the solution B was uniformly dropped into the solution A over 30 minutes with stirring to obtain a precipitation product liquid E. Next, the solution C was uniformly dropped into the above-mentioned precipitation liquid E over 30 minutes to obtain a precipitation liquid F. Further, the solution D was dropped uniformly onto the precipitation liquid F over 30 minutes to obtain a precipitation liquid G containing calcium, gallium, aluminum, zinc and copper.
[0041]
The sedimentation solution G was aged by stirring for 2 hours, and then sufficiently washed so that the filtrate of the sedimentation solution G and Na ions and NO ions were not detected. Further, the powder was dried at 100 ° C. for 24 hours, and then calcined at 300 ° C. for 3 hours to obtain a catalyst powder. This catalyst powder was designated as catalyst powder 1-1.
[0042]
A chloroplatinic acid solution (H 2 PtCl 6 ) was added to the above-obtained catalyst powder 1-1 so that Pt was supported at 0.5 wt% with respect to the total amount of the obtained powder, and then the mixture was added to a porcelain powder. Evaporated to dryness on the dish. Then, the obtained powder was completely dried in a drier, and then calcined at 300 ° C. for 5 hours (heating rate 100 ° C./h) to obtain a powder catalyst 1.
[0043]
After the obtained catalyst powder 1 was immobilized with a 30-ton pressure molding machine, the powder was crushed and sieved so that the particle diameter was in the range of 2 to 4 mm, to obtain a solid catalyst 1.
[0044]
[Example 2]
In the preparation procedure of the catalyst powder of Example 1, lanthanum nitrate 0.03 mol was used instead of calcium nitrate, and further, gallium nitrate was changed to 0.03 mol, aluminum nitrate to 0.015 mol, and zinc nitrate to 0.3 mol. A powdered catalyst 3 was obtained in the same manner as in Example 1 except for the above. Next, a solid catalyst 2 was obtained in the same manner as in Example 1 except that the powder catalyst 3 was used.
[0045]
[Example 3]
In the preparation procedure of the catalyst powder of Example 1, 0.003 mol of magnesium nitrate was used instead of calcium nitrate, and further, gallium nitrate was changed to 0.015 mol, aluminum nitrate to 0.045 mol, and zinc nitrate to 0.075 mol. Except for the above, a powder catalyst 3 was obtained in the same manner as in Example 1. Next, a solid catalyst 3 was obtained in the same manner as in Example 1 except that the powder catalyst 3 was used.
[0046]
[Example 4]
Powder catalysts 4 to 8 were prepared in the same manner as in Example 1 except that chromium nitrate, manganese nitrate, iron nitrate, cobalt nitrate and nickel nitrate were used instead of aluminum nitrate in the preparation procedure of the catalyst powder of Example 1. Got. Next, solid catalysts 4 to 8 were obtained in the same manner as in Example 1 except that powder catalysts 4 to 8 were used.
[0047]
[Example 5]
Example 1 was the same as Example 1 except that the amount of supported Pt was changed to 0.01, 0.05, 0.1, 0.25, 1.0, 2.0, 5.0, 10.0 wt%. Powdered catalysts 9 to 16 were obtained in the same manner as in Example 1.
Next, solid catalysts 9 to 16 were obtained in the same manner as in Example 1 except that powder catalysts 9 to 16 were used.
[0048]
[Example 6]
Except that in Example 1, a dinitrodiamine platinum solution, a Pt colloid solution, a ruthenium nitrate solution, a palladium nitrate solution, a iridium chloride solution, and a rhodium nitrate solution were used instead of the chloroplatinic acid solution (H 2 PtCl 6 ). In the same manner as in Example 1, powder catalysts 17 to 22 were obtained. Next, solid catalysts 17 to 22 were obtained in the same manner as in Example 1 except that powder catalysts 17 to 22 were used.
[0049]
[Example 7]
Powdered catalysts 23 to 26 were obtained in the same manner as in Example 1 except that the firing temperature during the impregnation of Pt was changed to 200 ° C, 400 ° C, 500 ° C, and 600 ° C.
Next, solid catalysts 23 to 26 were obtained in the same manner as in Example 1 except that powder catalysts 23 to 26 were used.
[0050]
Example 8
The catalyst powder 1-1 obtained in Example 1 and chloroplatinic acid solution (H 2 PtCl 6 ) in TiO 2 were prepared in the same manner as in Example 1 so that Pt became 0.5 wt%. The supported powder A was powder-mixed in a mortar to obtain a powder catalyst 27. Next, a solid catalyst 27 was obtained in the same manner as in Example 1 except that the powder catalyst 27 was used.
[0051]
[Example 9]
In Example 8, it was except for using TiO 2 · SiO 2, SiO 2 , Al 2 O 3, ZrO 2 in place of TiO 2 in the same manner as in Example 8 to obtain a powder catalyst 28 to 31. Next, solid catalysts 28 to 31 were obtained in the same manner as in Example 1 except that powder catalysts 28 to 31 were used.
[0052]
[Example 10]
Except that in Example 8, a dinitrodiamine platinum solution, a Pt colloid solution, a ruthenium nitrate solution, a palladium nitrate solution, a iridium chloride solution, and a rhodium nitrate solution were used instead of the chloroplatinic acid solution (H 2 PtCl 6 ). In the same manner as in Example 8, powder catalysts 32 to 37 were obtained. Next, solid catalysts 32 to 37 were obtained in the same manner as in Example 1 except that powder catalysts 32 to 37 were used.
[0053]
[Example 11]
Powdered catalysts 38 to 41 were obtained in the same manner as in Example 8 except that the calcination temperature during the impregnation of Pt was changed to 200 ° C, 400 ° C, 500 ° C, and 600 ° C. Next, solid catalysts 38 to 41 were obtained in the same manner as in Example 1 except that the powder catalysts 38 to 41 were used.
[0054]
[Comparative Example 1]
Comparative solid catalyst 1 was obtained in the same manner as in Example 1 except that Al 2 O 3 was used instead of catalyst powder 1-1.
[0055]
[Example 12]
For the solid catalysts 1 to 41 and the comparative solid catalyst 1, a dimethyl ether reforming test was performed. Table 1 shows the test conditions, and Table 2 shows the test results. During the test, the H 2 , CO and CO 2 concentrations of the gas discharged from the outlet of the reaction tube were measured by gas chromatography, and then the dimethyl ether reforming performance of the catalyst was calculated.
[0056]
[Table 1]
Figure 2004081902
[0057]
[Table 2]
Figure 2004081902
[0058]
As shown in Table 2, the solid catalysts 1 to 41 can obtain higher dimethyl ether reforming performance than the comparative solid catalyst 1 in the temperature range where the reaction tube inlet temperature is 300 ° C to 500 ° C.
[0059]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the dimethyl ether reforming catalyst which concerns on this invention, the steam reforming and hydrolysis reaction of dimethyl ether and the carbon monoxide obtained by said reaction under the temperature conditions of about 300-500 degreeC compared with the conventional catalyst. And the conversion and reforming of methanol to carbon dioxide and hydrogen.
Further, the dimethyl ether reforming catalyst according to the present invention can make a powder composed of two or more elements containing at least Cu and Zn having a methanol reforming catalytic activity also function as a noble metal carrier having dimethyl ether decomposability. .
This makes it possible to efficiently obtain hydrogen, which is a fuel source for a fuel cell, using dimethyl ether, which has a small amount of impurities and is economically advantageous, as a starting material, which is very useful for practical use of a fuel cell.

Claims (5)

少なくともCuとZnを含む2種類以上の元素で構成された粉末に貴金属を担持させてなるジメチルエーテル改質触媒。A dimethyl ether reforming catalyst in which a noble metal is supported on a powder composed of two or more elements including at least Cu and Zn. 前記粉末に、さらにAl元素を含む請求項1に記載のジメチルエーテル改質触媒。The dimethyl ether reforming catalyst according to claim 1, wherein the powder further contains an Al element. 少なくともCuとZnを含む2種類以上の元素で構成された粉末と、無機担体に貴金属を担持させてなる粉末とを含んでなるジメチルエーテル改質触媒。A dimethyl ether reforming catalyst comprising: a powder composed of at least two kinds of elements including at least Cu and Zn; and a powder obtained by supporting a noble metal on an inorganic carrier. 前記無機担体が、SiO、Al、ZrO、TiOから選択される少なくとも一種以上である請求項3に記載のジメチルエーテル改質触媒。Wherein the inorganic carrier is, SiO 2, Al 2 O 3 , ZrO 2, at least one or more dimethyl ether reforming catalyst according to claim 3 which is selected from TiO 2. 前記貴金属が、Pt、Ru、Pd、Rh、Irから選択される少なくとも一種以上である請求項1〜4のいずれかに記載のジメチルエーテル改質触媒。The dimethyl ether reforming catalyst according to any one of claims 1 to 4, wherein the noble metal is at least one selected from Pt, Ru, Pd, Rh, and Ir.
JP2002242755A 2002-08-23 2002-08-23 Dimethyl ether reforming catalyst Expired - Fee Related JP4380969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242755A JP4380969B2 (en) 2002-08-23 2002-08-23 Dimethyl ether reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242755A JP4380969B2 (en) 2002-08-23 2002-08-23 Dimethyl ether reforming catalyst

Publications (2)

Publication Number Publication Date
JP2004081902A true JP2004081902A (en) 2004-03-18
JP4380969B2 JP4380969B2 (en) 2009-12-09

Family

ID=32051705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242755A Expired - Fee Related JP4380969B2 (en) 2002-08-23 2002-08-23 Dimethyl ether reforming catalyst

Country Status (1)

Country Link
JP (1) JP4380969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069453A (en) * 2008-09-22 2010-04-02 Sumitomo Chemical Co Ltd Catalyst for reforming dimethyl ether

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069453A (en) * 2008-09-22 2010-04-02 Sumitomo Chemical Co Ltd Catalyst for reforming dimethyl ether

Also Published As

Publication number Publication date
JP4380969B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US10857523B2 (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP5763890B2 (en) Hydrogen production catalyst and hydrogen production method using the same
US20070128100A1 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
US6677068B2 (en) Catalyst for selective oxidation of carbon monoxide present in hydrogen-containing gases, and elimination of carbon monoxide and solid polymer electrolyte fuel cell system which make use of the catalyst
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
US20180345255A1 (en) Steam reforming catalyst for hydrocarbons
JP5105709B2 (en) Water gas shift reaction catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP4380969B2 (en) Dimethyl ether reforming catalyst
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP4120862B2 (en) Catalyst for CO shift reaction
JP2003245554A (en) Hydrogen generating catalyst
JP2001232198A (en) Catalyst and manufacturing method of catalyst
JP4335505B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming system
JP3328684B2 (en) Catalyst for methanol synthesis and method for producing the same
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JP2001096158A (en) Methanol reforming catalyst system
JP2003024783A (en) Hydrogen generating catalyst
JP2004089908A (en) Noble metal-based catalyst and production method of the same
JP2011194362A (en) Method for producing catalyst for converting carbon monoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees