JP3328684B2 - Catalyst for methanol synthesis and method for producing the same - Google Patents

Catalyst for methanol synthesis and method for producing the same

Info

Publication number
JP3328684B2
JP3328684B2 JP10327595A JP10327595A JP3328684B2 JP 3328684 B2 JP3328684 B2 JP 3328684B2 JP 10327595 A JP10327595 A JP 10327595A JP 10327595 A JP10327595 A JP 10327595A JP 3328684 B2 JP3328684 B2 JP 3328684B2
Authority
JP
Japan
Prior art keywords
catalyst
silver
solution
metal oxide
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10327595A
Other languages
Japanese (ja)
Other versions
JPH08294627A (en
Inventor
正毅 春田
宏昭 桜井
周司 池上
謙吉 香川
禎一 宇佐見
政宣 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Daikin Industries Ltd
Priority to JP10327595A priority Critical patent/JP3328684B2/en
Publication of JPH08294627A publication Critical patent/JPH08294627A/en
Application granted granted Critical
Publication of JP3328684B2 publication Critical patent/JP3328684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、合成ガスからメタノー
ルを合成するためのメタノール合成用銀触媒及びその製
造方法に関する。
The present invention relates to a silver catalyst for methanol synthesis for synthesizing methanol from synthesis gas and a method for producing the same.

【0002】[0002]

【従来の技術】水素と一酸化炭素との混合ガス(合成ガ
ス)の接触転化によってメタノールを製造する技術はか
なり以前から知られている。この反応における触媒とし
ては、銅を酸化亜鉛に担持させたものが代表的である
が、これに酸化クロム,酸化アルミニウムなどを加えた
ものや、さらにはパラジウム系のものなど種々のものが
提案されている。
2. Description of the Related Art A technique for producing methanol by catalytic conversion of a mixed gas (synthesis gas) of hydrogen and carbon monoxide has been known for a long time. As a catalyst in this reaction, a catalyst in which copper is supported on zinc oxide is typical, and various catalysts such as a catalyst obtained by adding chromium oxide, aluminum oxide, and the like, and a palladium catalyst have been proposed. ing.

【0003】例えば、特開昭58−79939号公報に
はシリカやアルミナ等の担体にロジウム、銀、ジルコニ
ウム及びモリブデンを担持させた触媒、特開昭60−1
90232号公報には銅、亜鉛及びアルミニウムを含む
酸化物触媒、並びに特開平4−122450号公報には
酸化銅、酸化亜鉛、酸化クロム、酸化アルミニウム、銀
を含浸担持させた酸化アルミニウムという5種の混合物
からなる触媒(但し、水素と二酸化炭素からメタノール
に富むガスを合成するためのもの)がそれぞれ記載され
ている。
[0003] For example, JP-A-58-79939 discloses a catalyst in which rhodium, silver, zirconium and molybdenum are supported on a carrier such as silica or alumina.
Japanese Patent No. 90232 discloses an oxide catalyst containing copper, zinc and aluminum, and Japanese Patent Application Laid-Open No. Hei 4-122450 discloses five kinds of oxides: copper oxide, zinc oxide, chromium oxide, aluminum oxide, and aluminum oxide impregnated with silver. A catalyst consisting of a mixture, but for synthesizing a gas rich in methanol from hydrogen and carbon dioxide, is described respectively.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、メタ
ノール合成用触媒として新たな銀系触媒を提供すること
にある。すなわち、銀を含むメタノール合成用触媒につ
いては、水素と一酸化炭素とからメタノールを合成する
ための触媒としての報告は少なく、しかも、従来の銀系
触媒は活性及び選択性が低いという問題がある。
An object of the present invention is to provide a new silver catalyst as a catalyst for methanol synthesis. In other words, there are few reports of a catalyst for synthesizing methanol containing silver as a catalyst for synthesizing methanol from hydrogen and carbon monoxide, and the conventional silver-based catalyst has a problem of low activity and selectivity. .

【0005】[0005]

【課題を解決するための手段及び作用】本発明者は、こ
のような課題に対して、種々の実験・研究を進めた結
果、特定の種類の金属酸化物を担体とし、これに銀を担
持させた場合、高い活性及び選択性が得られることを見
出だし、本発明を完成するに至ったものである。以下、
各請求項に係る発明について具体的に説明する。
The inventor of the present invention has conducted various experiments and studies on such a problem, and as a result, has determined that a specific type of metal oxide is used as a carrier and silver is supported on the carrier. It has been found that high activity and selectivity can be obtained in such a case, and the present invention has been completed. Less than,
The invention according to each claim will be specifically described.

【0006】(請求項1に係る発明) この発明は、水素と一酸化炭素とからメタノールを合成
するためのメタノール合成用触媒であって、セリア、ジ
ルコニア、並びにCe及びZr含む複酸化物のうちか
ら選ばれた1種以上の金属酸化物を担体とし、この金属
酸化物系担体に銀が担持されていることを特徴とする。
(Invention of Claim 1) The present invention provides a method for synthesizing methanol from hydrogen and carbon monoxide.
A catalyst for synthesizing methanol, comprising ceria, zirconia, and at least one metal oxide selected from multiple oxides containing Ce and Zr as a carrier, wherein silver is contained in the metal oxide-based carrier. it characterized in that it is carried.

【0007】当該触媒においては、比較的高い活性(一
酸化炭素転化率)と選択性(メタノール収率)が得られ
る。その理由は明確ではないが、触媒金属としての銀と
担体であるCe又はZrの酸化物、又はCe及びZrを
含む複酸化物との相互作用による銀の微細化ないしは高
分散担持が考えられる。
The catalyst provides relatively high activity (conversion rate of carbon monoxide) and selectivity (yield of methanol). Although the reason is not clear, silver as a catalyst metal and an oxide of Ce or Zr as a carrier , or Ce and Zr
It is conceivable that silver is made finer or highly dispersed and supported by interaction with the contained double oxide .

【0008】(請求項2に係る発明) この発明は、上記請求項1に記載されているメタノール
合成用触媒の製造方法であって、上記金属酸化物系担体
を形成するための金属の化合物と銀化合物とを溶媒に溶
かしてなる原料溶液を調製し、上記原料溶液とアルカリ
溶液とを混合することによって、上記金属を上記金属酸
化物系担体の前駆体である水酸化物等として沈澱させる
と同時に、該金属酸化物系担体の前駆体に上記銀を共沈
させることを特徴とする。
(Invention according to claim 2) The present invention relates to the method for producing a catalyst for methanol synthesis according to claim 1, wherein a metal compound for forming the metal oxide-based support is used. A raw material solution prepared by dissolving a silver compound in a solvent is prepared, and by mixing the raw material solution and an alkaline solution, the metal is precipitated as a hydroxide or the like which is a precursor of the metal oxide-based carrier. At the same time, the silver is co-precipitated in the precursor of the metal oxide carrier.

【0009】当該発明は、上記メタノール合成用触媒の
調製に所謂共沈法を採用したものであるが、この方法の
場合、上記金属酸化物系担体における銀の分散性が高く
なり活性の向上に有利になる。
In the present invention, a so-called coprecipitation method is employed for the preparation of the catalyst for methanol synthesis. In this method, the dispersibility of silver in the metal oxide-based carrier is increased and the activity is improved. It will be advantageous.

【0010】すなわち、上記金属酸化物系担体の前駆体
が水酸化物等として沈澱生成する過程で同時に銀も水酸
化物等として共沈担持されるから、金属酸化物系担体と
銀とが緊密に結合され、銀が該金属酸化物系担体に高分
散担持される。よって、比較的多量の銀を上記金属酸化
物系担体に担持させることが可能になる。
That is, silver is co-precipitated and supported as a hydroxide or the like at the same time that the precursor of the metal oxide-based carrier precipitates as a hydroxide or the like. And silver is highly dispersed and supported on the metal oxide carrier. Therefore, a relatively large amount of silver can be supported on the metal oxide-based carrier.

【0011】ここに、上記金属酸化物系担体を構成する
金属の化合物としては、酢酸塩、硝酸塩、硫酸塩などの
電解質、特に水溶性のものがよく、銀化合物も同様であ
る。上記沈澱試薬としては、NaOH、NH4 OH、N
a2 CO3 等を用い、これによって上記原料溶液のpH
を調整することになる。また、得られた共沈物について
は、これを洗浄した後に乾燥し、300〜600℃程度
の温度で焼成すればよく、使用に際しては、例えば当該
触媒粉を固めてこれを粉砕することにより、適宜の大き
さの粒子とし、これをカラムに詰めればよい。
The metal compound constituting the metal oxide-based carrier is preferably an electrolyte such as acetate, nitrate, sulfate, etc., especially a water-soluble one, and the same applies to a silver compound. Examples of the precipitation reagent include NaOH, NH4 OH, N
a2 CO3, etc., to thereby adjust the pH of the raw material solution
Will be adjusted. In addition, the obtained coprecipitate may be washed and dried, and then calcined at a temperature of about 300 to 600 ° C. In use, for example, by solidifying the catalyst powder and pulverizing it, Particles of an appropriate size may be packed in a column.

【0012】(請求項3に係る発明) この発明は、上記請求項1に記載されているメタノール
合成用触媒の製造方法であって、金属酸化物系担体に銀
化合物の溶液を含浸させた後、該銀化合物溶液の溶媒を
蒸発させることによって金属酸化物系担体の上に銀を析
出させることを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing a catalyst for methanol synthesis according to the first aspect, wherein the metal oxide-based support is impregnated with a solution of a silver compound. Silver is deposited on the metal oxide-based carrier by evaporating the solvent of the silver compound solution.

【0013】すなわち、当該発明は、上記触媒の製造に
含浸法を採用したものである。本発明者は、種々の実験
等から一般に含浸法の場合は触媒金属の担持量を多くし
ても担体表面の付着し易い部位に触媒金属が塊になって
担持されていくだけで分散性は高くならず、触媒の比表
面積が大きく低下していくという知見を得て、上記請求
項2に係る発明を想到するに至った。しかし、担体とし
ての金属酸化物と触媒金属としての銀との組み合わせの
場合は必ずしもそうではないこと、特に担体がジルコニ
アである場合には、むしろ含浸法の方が触媒の活性及び
選択性の向上に有利であることを見出だし、当該発明を
完成するに至ったものである。
That is, the present invention employs an impregnation method for the production of the catalyst. The present inventor has found that, in general, in the case of the impregnation method from various experiments and the like, even if the amount of the supported catalyst metal is increased, the dispersibility is high only by supporting the catalyst metal in a lump at a site where the carrier surface easily adheres. Instead, the inventors have found that the specific surface area of the catalyst is greatly reduced, and have come to the invention according to claim 2. However, this is not always the case in the case of a combination of a metal oxide as a carrier and silver as a catalyst metal, especially when the carrier is zirconia, the impregnation method rather improves the activity and selectivity of the catalyst. The present invention has been found to be advantageous, and the present invention has been completed.

【0014】[0014]

【発明の効果】請求項1に係る発明によれば、水素と一
酸化炭素とからメタノールを合成するためのメタノール
合成用触媒であって、セリア、ジルコニア、並びにCe
及びZr含む複酸化物のうちから選ばれた1種以上の
金属酸化物を担体とし、この金属酸化物系担体に銀を担
持させてなるから、高い活性及び高い選択性が得られ
る。
According to the first aspect of the present invention, hydrogen and hydrogen
Methanol for synthesizing methanol from carbon oxide
A catalyst for synthesis, comprising ceria, zirconia, and Ce
Since one or more metal oxides selected from multiple oxides containing Zr and Zr are used as a carrier and silver is carried on the metal oxide-based carrier, high activity and high selectivity can be obtained.

【0015】請求項2に係る発明によれば、上記金属酸
化物系担体を形成するための金属の化合物と銀化合物と
を溶媒に溶かしてなる原料溶液を調製し、該原料溶液と
アルカリ溶液とを混合することによって、上記金属を上
記金属酸化物系担体の前駆体である水酸化物等として沈
澱させると同時に、該金属酸化物系担体の前駆体に上記
銀を共沈させるようにしたから、銀を金属酸化物系担体
の上に高分散に担持させることができ、上記請求項1に
記載されている高活性・高選択性のメタノール合成用触
媒を得る上で有利になる。
According to the second aspect of the present invention, a raw material solution is prepared by dissolving a metal compound and a silver compound for forming the metal oxide-based carrier in a solvent, and the raw material solution and the alkali solution are prepared. Is mixed, thereby precipitating the metal as a hydroxide or the like which is a precursor of the metal oxide carrier, and simultaneously co-precipitating the silver with the precursor of the metal oxide carrier. And silver can be supported on the metal oxide carrier in a highly dispersed state, which is advantageous for obtaining the highly active and highly selective catalyst for methanol synthesis according to the first aspect.

【0016】請求項3に係る発明によれば、金属酸化物
系担体に銀化合物の溶液を含浸させた後、該銀化合物溶
液の溶媒を蒸発させることによって金属酸化物系担体の
上に銀を析出させるようにしたから、高活性及び高選択
性の触媒を得ることができる。
According to the third aspect of the present invention, after the metal oxide carrier is impregnated with the solution of the silver compound, the solvent of the silver compound solution is evaporated, whereby silver is deposited on the metal oxide carrier. Since the catalyst is deposited, a catalyst having high activity and high selectivity can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0018】<触媒の調製> −実施例1;Ag/ZrO2 触媒− 硝酸銀(キシダ化学社製AgNO3 )と硝酸ジルコニウ
ムZrO(NO3 )2・6H2 Oとをそれぞれ所定量秤
量し、これを蒸溜水に溶解させてA液とした。一方、中
和溶液(沈澱試薬)として炭酸ナトリウムの水溶液を調
製してこれをB液とした。
<Preparation of Catalyst> Example 1: Ag / ZrO2 catalyst- A predetermined amount of each of silver nitrate (AgNO3 manufactured by Kishida Chemical Co., Ltd.) and zirconium nitrate ZrO (NO3) 2.6H2O was weighed, and this was distilled water. This was dissolved to obtain solution A. On the other hand, an aqueous solution of sodium carbonate was prepared as a neutralizing solution (precipitation reagent), and this was used as solution B.

【0019】そして、上記A液を撹拌しながらこれにB
液を滴下していくことによって共沈物を生成させた。な
お、希釈したB液にA液を流しこむことによっても同様
の共沈物を得ることができる。このようにして得られた
共沈物を1時間撹拌した後、充分に水洗して乾燥し、5
00℃×5時間の焼成を行なった。
Then, while stirring the solution A, add B
A coprecipitate was generated by dropping the liquid. A similar coprecipitate can be obtained by pouring the solution A into the diluted solution B. After stirring the coprecipitate thus obtained for 1 hour, it was thoroughly washed with water and dried,
The firing was performed at 00 ° C. × 5 hours.

【0020】得られたAg/ZrO2 触媒は、ジルコニ
ア(ZrO2 )に銀が高分散に担持されたものであり、
この銀とジルコニウムとの原子比Ag/Zrは1/19
である。
The obtained Ag / ZrO 2 catalyst is obtained by highly dispersing silver on zirconia (ZrO 2).
The atomic ratio Ag / Zr between silver and zirconium is 1/19.
It is.

【0021】−実施例2;Ag/CeO2 触媒− 上記硝酸銀と硝酸セリウムCe(NO3 )3 ・6H2 O
とをそれぞれ所定量秤量し、これを蒸溜水に溶解させて
A液とし、水酸化ナトリウムの水溶液をB液として、実
施例1と同じ方法によって、セリア(CeO2 )に銀が
担持されてなるAg/CeO2 触媒を得た。銀とセリウ
ムの原子比Ag/Ceは1/19である。
Example 2 Ag / CeO2 catalyst- Silver nitrate and cerium nitrate Ce (NO3) 3.6H2O
Are weighed in predetermined amounts, and are dissolved in distilled water to obtain a solution A, and an aqueous solution of sodium hydroxide is used as a solution B, and Ag in which silver is supported on ceria (CeO2) is obtained in the same manner as in Example 1. / CeO2 catalyst was obtained. The atomic ratio Ag / Ce of silver and cerium is 1/19.

【0022】−比較例1;Ag/ZnO触媒− 上記硝酸銀と硝酸亜鉛Zn(NO3 )2 ・6H2 Oとを
蒸溜水に溶解したものをA液として、実施例1と同じ方
法によって酸化亜鉛ZnOに銀が担持されてなるAg/
ZnO触媒を得た。銀と亜鉛の原子比Ag/Znは1/
19である。
Comparative Example 1 Ag / ZnO Catalyst-- A solution prepared by dissolving the above silver nitrate and zinc nitrate Zn (NO 3) 2 .6H 2 O in distilled water was used as solution A, and zinc oxide ZnO was prepared in the same manner as in Example 1. Ag / silver supported
A ZnO catalyst was obtained. The atomic ratio Ag / Zn of silver and zinc is 1 /
19

【0023】−比較例2;Ag/Al2 O3 触媒− 上記硝酸銀と硝酸アルミニウムAl(NO3 )3 ・9H
2 Oとを蒸溜水に溶解したものをA液として、実施例2
と同じ方法によって酸化アルミニウムAl2 O3 に銀が
担持されてなるAg/Al2 O3 触媒を得た。銀とアル
ミニウムの原子比Ag/Alは1/19である。
Comparative Example 2: Ag / Al2 O3 catalyst-Silver nitrate and aluminum nitrate Al (NO3) 3.9H
Example 2 was prepared by dissolving 2 O in distilled water as solution A.
An Ag / Al2 O3 catalyst in which silver was supported on aluminum oxide Al2 O3 was obtained in the same manner as described above. The atomic ratio Ag / Al between silver and aluminum is 1/19.

【0024】−比較例3;Ag/MnO2 触媒− 上記硝酸銀と硝酸マンガンMn(NO3 )2 ・6H2 O
とを蒸溜水に溶解したものをA液として、実施例1と同
じ方法によって酸化マンガンMnO2 に銀が担持されて
なるAg/MnO2 触媒を得た。銀とマンガンの原子比
Ag/Mnは1/19である。
Comparative Example 3 Ag / MnO2 Catalyst- The above silver nitrate and manganese nitrate Mn (NO3) 2.6H2O
Was dissolved in distilled water as solution A, and an Ag / MnO2 catalyst comprising manganese oxide MnO2 carrying silver was obtained in the same manner as in Example 1. The atomic ratio Ag / Mn of silver and manganese is 1/19.

【0025】−比較例4;Ag/Ga2 O3 触媒− 上記硝酸銀と硝酸ガリウムGa(NO3 )3 ・8H2 O
とを蒸溜水に溶解したものをA液として、実施例1と同
じ方法によって酸化ガリウムGa2 O3 に銀Agが担持
されてなるAg/Ga2 O3 触媒を得た。銀とガリウム
との原子比Ag/Gaは1/19である。
Comparative Example 4 Ag / Ga 2 O 3 Catalyst— The above silver nitrate and gallium nitrate Ga (NO 3) 3 .8H 2 O
By dissolving these in distilled water as solution A, an Ag / Ga2 O3 catalyst comprising gallium oxide Ga2 O3 carrying silver Ag was obtained in the same manner as in Example 1. The atomic ratio Ag / Ga between silver and gallium is 1/19.

【0026】−比較例5;Ag/Fe2 O3 触媒− 上記硝酸銀と硝酸鉄Fe(NO3 )3 ・9H2 Oとを蒸
溜水に溶解したものをA液として、実施例2と同じ方法
によって酸化鉄Fe2 O3 に銀が担持されてなるAg/
Fe2 O3 触媒を得た。銀と鉄の原子比はAg/Feは
1/19である。
Comparative Example 5: Ag / Fe2 O3 Catalyst-A solution prepared by dissolving the above silver nitrate and iron nitrate Fe (NO3) 3.9H2 O in distilled water was used as solution A, and iron oxide Fe2 was prepared in the same manner as in Example 2. Ag / silver supported on O3 /
An Fe2 O3 catalyst was obtained. The atomic ratio of silver to iron is 1/19 for Ag / Fe.

【0027】以上の実施例及び比較例の各触媒を表1に
まとめて示す。
Table 1 summarizes the catalysts of the above Examples and Comparative Examples.

【0028】[0028]

【表1】 [Table 1]

【0029】<触媒の評価> 上記実施例及び比較例の各触媒を用いて、合成ガス(水
素及び一酸化炭素)からメタノールを合成する試験を行
ない、CO転化率及びメタノール収率の各温度特性を調
べた。CO転化率については図1に、メタノール収率に
ついては図2に示す。
<Evaluation of Catalyst> A test was conducted to synthesize methanol from synthesis gas (hydrogen and carbon monoxide) using each of the catalysts of the above Examples and Comparative Examples, and the temperature characteristics of CO conversion and methanol yield were measured. Was examined. FIG. 1 shows the CO conversion and FIG. 2 shows the methanol yield.

【0030】図1によれば、実施例1のAg/ZrO2
触媒及び実施例2のAg/CeO2触媒は、Ag/Zn
O触媒やAg/MnO2 触媒よりも当該転化率が高いも
のの、Ag/Al2 O3 触媒とほぼ同じ転化率を示し、
Ag/Fe2 O3 触媒やAg/Ga2 O3 触媒よりは低
い転化率になっている。しかし、図2から明らかなよう
に、Ag/Fe2 O3 触媒やAg/Ga2 O3 触媒は実
施例1,2のAg/ZrO2 触媒やAg/CeO2 触媒
よりもメタノール収率が低くなっている。従って、以上
の結果から、銀系触媒において、担体としてジルコニア
(ZrO2 )やセリア(CeO2 )を採用すると、合成
ガスからのメタノールの合成に有利になることがわか
る。
According to FIG. 1, the Ag / ZrO 2 of Example 1 was used.
The catalyst and the Ag / CeO2 catalyst of Example 2 were Ag / Zn
Although the conversion is higher than that of the O catalyst or the Ag / MnO2 catalyst, the conversion is almost the same as that of the Ag / Al2 O3 catalyst.
The conversion is lower than that of the Ag / Fe2 O3 catalyst or the Ag / Ga2 O3 catalyst. However, as is apparent from FIG. 2, the Ag / Fe2 O3 catalyst and the Ag / Ga2 O3 catalyst have lower methanol yields than the Ag / ZrO2 catalyst and the Ag / CeO2 catalyst of Examples 1 and 2. Therefore, it can be seen from the above results that the use of zirconia (ZrO2) or ceria (CeO2) as a carrier in a silver-based catalyst is advantageous for the synthesis of methanol from synthesis gas.

【0031】<共沈法における中和溶液の影響について
> 上記Ag/CeO2 触媒(実施例2)の調製においては
中和溶液として水酸化ナトリウムを用いたが、中和溶液
として炭酸ナトリウムNa2 CO3 水溶液を用い、先と
同様の共沈法によってAg/CeO2 触媒を調製し、そ
の比表面積及び300℃でのメタノール収率を調べた。
その結果を中和溶液が水酸化ナトリウムである例と併せ
て表2に示す。
<Effect of Neutralizing Solution in Coprecipitation Method> In the preparation of the above Ag / CeO2 catalyst (Example 2), sodium hydroxide was used as a neutralizing solution, but a sodium carbonate aqueous solution of Na2 CO3 was used as a neutralizing solution. Was used to prepare an Ag / CeO2 catalyst by the same coprecipitation method, and its specific surface area and methanol yield at 300 DEG C. were examined.
The results are shown in Table 2 together with examples in which the neutralizing solution is sodium hydroxide.

【0032】[0032]

【表2】 [Table 2]

【0033】同表によれば、Ag/CeO2 触媒に関し
ては、中和溶液に水酸化ナトリウム水溶液を用いた方が
炭酸ナトリウム水溶液を用いた場合よりも比表面積が大
きく且つメタノール収率も高い。
According to the table, with respect to the Ag / CeO2 catalyst, the specific surface area and the methanol yield are higher when the aqueous solution of sodium hydroxide is used as the neutralizing solution than when the aqueous solution of sodium carbonate is used.

【0034】上記水酸化ナトリウム水溶液を用いたAg
/CeO2 触媒の粉末X線回折結果は図3の通りであ
り、炭酸ナトリウム水溶液を用いたAg/CeO2 触媒
の同結果は図4に示す通りである。両図によれば、この
両触媒のセリア(CeO2 )の結晶構造は同じである。
しかし、図3の水酸化ナトリウム水溶液を用いたAg/
CeO2 触媒の方には銀のピークが認められないことか
ら、中和溶液として水酸化ナトリウムを用いた場合、炭
酸ナトリウムを用いた場合よりも得られる触媒の銀の粒
径が微細になっているということができ、このことが当
該両触媒の活性の差の一因になっていると考えられる。
Ag using the above sodium hydroxide aqueous solution
The powder X-ray diffraction results of the / CeO2 catalyst are as shown in FIG. 3, and the results of the Ag / CeO2 catalyst using the aqueous sodium carbonate solution are as shown in FIG. According to both figures, the crystal structures of ceria (CeO2) of both catalysts are the same.
However, Ag / Ag using the aqueous sodium hydroxide solution of FIG.
Since no peak of silver is observed in the case of the CeO2 catalyst, when the sodium hydroxide is used as a neutralization solution, the silver particle size of the obtained catalyst is finer than when sodium carbonate is used. It can be said that this contributes to the difference between the activities of the two catalysts.

【0035】<触媒調製法の影響について> 以上では触媒の調製に共沈法を採用したが、含浸法を採
用した場合の上記転化率及びメタノール収率に及ぼす影
響を調べた。
<Effects of Catalyst Preparation Method> In the above, the coprecipitation method was used for the preparation of the catalyst. The effect of the impregnation method on the above conversion and methanol yield was examined.

【0036】すなわち、第1稀元素化学工業社製のジル
コニア(ZrO2 )とセリア(CeO2 )とを準備し、
各々にキシダ化学社製の硝酸銀AgNO3 の水溶液を含
浸させ、乾燥・焼成を行なって、Ag/ZrO2 触媒
(原子比Ag/Zr=1/19)及びAg/CeO2 触
媒(原子比Ag/Ce=1/19)を得た。そして、こ
の両触媒について、CO転化率及びメタノール収率の温
度特性を調べた。結果を図5及び図6に先の共沈法の結
果と共に示す。
That is, zirconia (ZrO2) and ceria (CeO2) manufactured by Daiichi Kagaku Kagaku Kogyo Co., Ltd. were prepared.
Each was impregnated with an aqueous solution of silver nitrate AgNO3 manufactured by Kishida Chemical Co., Ltd., dried and calcined to obtain an Ag / ZrO2 catalyst (Ag / Zr = 1/19) and an Ag / CeO2 catalyst (Ag / Ce = 1). / 19). The temperature characteristics of the CO conversion and the methanol yield were examined for both catalysts. The results are shown in FIGS. 5 and 6 together with the results of the above-mentioned coprecipitation method.

【0037】Ag/CeO2 触媒のCO転化率及びメタ
ノール収率については、含浸法の方が共沈法よりも低い
値を示したが、Ag/ZrO2 触媒のCO転化率及びメ
タノール収率については、含浸法の方が良い結果となっ
た。このことから、上記Ag/ZrO2 触媒については
その調製に含浸法を採用する方が好適であることがわか
る。
Regarding the CO conversion and the methanol yield of the Ag / CeO2 catalyst, the impregnation method showed lower values than the coprecipitation method, but the CO conversion and the methanol yield of the Ag / ZrO2 catalyst were as follows: The impregnation method gave better results. From this, it can be seen that it is preferable to use the impregnation method for the preparation of the above Ag / ZrO2 catalyst.

【0038】−組成比の影響− 上記Ag/CeO2 触媒及びAg/ZrO2 触媒につい
て、表3に示す試験範囲で反応温度300℃でのメタノ
ール収率を調べた。結果を図7に示す。
-Effect of Composition Ratio- For the above Ag / CeO2 catalyst and Ag / ZrO2 catalyst, the methanol yield at a reaction temperature of 300 ° C. was examined in the test range shown in Table 3. FIG. 7 shows the results.

【0039】[0039]

【表3】 [Table 3]

【0040】図7によれば、Ag/CeO2 触媒及びA
g/ZrO2 触媒を共沈法によって調製した場合は、組
成比が高くなるにつれてメタノール収率が下がる傾向に
ある。一方、含浸法によって調製したAg/ZrO2 触
媒のメタノール収率は組成比にそれほど影響を受けてい
ない。以上のことはその他の反応温度225〜275℃
でも同様である。従って、上記各触媒を共沈法によって
調製する場合は組成比を3/7以下にすること、さらに
は1/9以下にすることが好適であることがわかる。一
方、Ag/ZrO2 触媒を含浸法によって調製する場合
は、銀の担持量を比較的多くしてもよいことがわかる。
According to FIG. 7, the Ag / CeO 2 catalyst and A
When the g / ZrO2 catalyst is prepared by a coprecipitation method, the methanol yield tends to decrease as the composition ratio increases. On the other hand, the methanol yield of the Ag / ZrO2 catalyst prepared by the impregnation method is not so affected by the composition ratio. The above is for other reaction temperatures of 225 to 275 ° C.
But the same is true. Therefore, when each of the above catalysts is prepared by the coprecipitation method, it is understood that the composition ratio is preferably set to 3/7 or less, more preferably 1/9 or less. On the other hand, when the Ag / ZrO2 catalyst is prepared by the impregnation method, it can be seen that the supported amount of silver may be relatively large.

【0041】−粉末X線回折結果− 上記調製法の違いが触媒活性に影響を及ぼす原因を調べ
るために、共沈法及び含浸法の各々によって調製したA
g/ZrO2 触媒の粉末X線回折を調べた結果、前者に
ついては図8に、後者については図9に示す通りになっ
た。両図から明らかなように、共沈法による触媒では含
浸法によるものとは全く異なる結晶構造をもつジルコニ
ア(ZrO2 )が生成している。従って、このことが共
沈法によって調製した触媒と含浸法によって調製した触
媒の特性の違いの一因になっているものと考えられる。
-Results of powder X-ray diffraction- In order to investigate the cause of the above-mentioned difference in the preparation method affecting the catalytic activity, A prepared by each of the coprecipitation method and the impregnation method was used.
As a result of examining the powder X-ray diffraction of the g / ZrO2 catalyst, the former was as shown in FIG. 8 and the latter was as shown in FIG. As is clear from both figures, the zirconia (ZrO2) having a crystal structure completely different from that obtained by the impregnation method is generated in the catalyst by the coprecipitation method. Therefore, it is considered that this contributes to the difference in characteristics between the catalyst prepared by the coprecipitation method and the catalyst prepared by the impregnation method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】共沈法によって調製した各触媒のCO転化率の
温度特性を示すグラフ図
FIG. 1 is a graph showing temperature characteristics of CO conversion of each catalyst prepared by a coprecipitation method.

【図2】共沈法によって調製した各触媒のメタノール収
率の温度特性を示すグラフ図
FIG. 2 is a graph showing temperature characteristics of methanol yield of each catalyst prepared by a coprecipitation method.

【図3】中和溶液としてNaOH水溶液を用いた共沈法
によるAg/CeO2 触媒のX線回折パターン図
FIG. 3 is an X-ray diffraction pattern diagram of an Ag / CeO2 catalyst by a coprecipitation method using an aqueous NaOH solution as a neutralizing solution.

【図4】中和溶液としてNa2 CO3 水溶液を用いた共
沈法によるAg/CeO2 触媒のX線回折パターン図
FIG. 4 is an X-ray diffraction pattern diagram of an Ag / CeO2 catalyst by a coprecipitation method using an aqueous solution of Na2 CO3 as a neutralizing solution.

【図5】Ag/ZrO2 触媒及びAg/CeO2 触媒の
CO転化率について共沈法と含浸法とを比較したグラフ
FIG. 5 is a graph showing a comparison between the coprecipitation method and the impregnation method regarding the CO conversion of the Ag / ZrO2 catalyst and the Ag / CeO2 catalyst.

【図6】Ag/ZrO2 触媒及びAg/CeO2 触媒の
メタノール収率について共沈法と含浸法とを比較したグ
ラフ図
FIG. 6 is a graph comparing the methanol precipitation of the Ag / ZrO2 catalyst and the Ag / CeO2 catalyst with the coprecipitation method and the impregnation method.

【図7】Ag/CeO2 触媒及びAg/ZrO2 触媒に
ついて組成比とメタノール収率との関係を示すグラフ図
FIG. 7 is a graph showing the relationship between the composition ratio and the methanol yield for Ag / CeO2 catalyst and Ag / ZrO2 catalyst.

【図8】共沈法によって調製したAg/ZrO2 触媒の
粉末X線回折パターン図
FIG. 8 is a powder X-ray diffraction pattern diagram of an Ag / ZrO2 catalyst prepared by a coprecipitation method.

【図9】含浸法によって調製したAg/ZrO2 触媒の
粉末X線回折パターン図
FIG. 9 is a powder X-ray diffraction pattern diagram of an Ag / ZrO2 catalyst prepared by an impregnation method.

【符号の説明】[Explanation of symbols]

なし None

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池上 周司 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (72)発明者 香川 謙吉 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (72)発明者 宇佐見 禎一 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 (72)発明者 川添 政宣 大阪府堺市金岡町1304番地 ダイキン工 業株式会社 堺製作所 金岡工場内 審査官 繁田 えい子 (56)参考文献 特開 平8−215576(JP,A) Baiker A,Hydrogen ation of CO2 over copper,silver and gold/zirconia cata lyst:comparative s tudy of catalyst p r,Studies in Surfa ce Sience and Cata lysis,75(New Fronti ers in Catalysis), 1257−1272 (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 JICSTファイル(JOIS) WPI(DIALOG)──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shuji Ikegami 1304 Kanaokacho, Sakai City, Osaka Daikin Industries, Ltd.Sakai Factory Kanaoka Factory (72) Inventor Kenkichi Kagawa 1304, Kanaokacho, Sakai City, Osaka Daikin Industries Sakai Seisakusho Kanaoka Plant (72) Inventor Seiichi Usami 1304 Kanaokacho, Sakai City, Osaka Daikin Industries Co., Ltd.Sakai Seisakusho Kanaoka Plant (72) Inventor Masanobu Kawazoe 1304 Kanaokacho, Sakai City, Osaka Daikin Kogyo Investigator, Eiko Shigeta, Sakai Works Kanaoka Factory (56) References JP-A-8-215576 (JP, A) Baiker A, Hydrogenation of CO2 over copper, silver and gold / zirconia catalog: rative s tudy of catalyst p r, Studies in Surfa ce Sience and Cata lysis, 75 (New Fronti ers in Catalysis), 1257-1272 (58) investigated the field (Int.Cl. 7, DB name) B01J 21/00 - 37/36 JICST File (JOIS) WPI (DIALOG)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素と一酸化炭素とからメタノールを合
成するためのメタノール合成用触媒であって、 セリア、ジルコニア、並びにCe及びZr含む複酸化
物のうちから選ばれた1種以上の金属酸化物を担体と
し、この金属酸化物系担体に銀が担持されていることを
特徴とするメタノール合成用触媒。
1. A method for synthesizing methanol from hydrogen and carbon monoxide.
A catalyst for synthesizing methanol , comprising at least one metal oxide selected from the group consisting of ceria, zirconia, and a complex oxide containing Ce and Zr. A catalyst for methanol synthesis, characterized in that is supported.
【請求項2】 請求項1に記載されているメタノール合
成用触媒の製造方法であって、 上記金属酸化物系担体を形成するための金属の化合物と
銀化合物とを溶媒に溶かしてなる原料溶液を調製し、 上記原料溶液とアルカリ溶液とを混合することによっ
て、上記金属を上記金属酸化物系担体の前駆体である水
酸化物等として沈澱させると同時に、該金属酸化物系担
体の前駆体に上記銀を共沈させることを特徴とするメタ
ノール合成用触媒の製造方法。
2. The method for producing a catalyst for methanol synthesis according to claim 1, wherein a metal compound and a silver compound for forming the metal oxide-based support are dissolved in a solvent. By mixing the raw material solution and the alkali solution, thereby precipitating the metal as a hydroxide or the like which is a precursor of the metal oxide-based carrier, and at the same time, a precursor of the metal oxide-based carrier. A method for producing a catalyst for methanol synthesis, comprising co-precipitating the above-mentioned silver into the mixture.
【請求項3】 請求項1に記載されているメタノール合
成用触媒の製造方法であって、 上記金属酸化物系担体に銀化合物の溶液を含浸させた
後、該銀化合物溶液の溶媒を蒸発させることによって上
記金属酸化物系担体の上に銀を析出させることを特徴と
するメタノール合成用触媒の製造方法。
3. The method for producing a catalyst for methanol synthesis according to claim 1, wherein the metal oxide-based carrier is impregnated with a solution of a silver compound, and then the solvent of the silver compound solution is evaporated. A method for producing a catalyst for methanol synthesis, comprising depositing silver on the metal oxide-based support by the above method.
JP10327595A 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same Expired - Lifetime JP3328684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10327595A JP3328684B2 (en) 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10327595A JP3328684B2 (en) 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08294627A JPH08294627A (en) 1996-11-12
JP3328684B2 true JP3328684B2 (en) 2002-09-30

Family

ID=14349825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10327595A Expired - Lifetime JP3328684B2 (en) 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same

Country Status (1)

Country Link
JP (1) JP3328684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092814B2 (en) * 2020-03-18 2022-06-28 本田技研工業株式会社 Carbon dioxide reduction catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Baiker A,Hydrogenation of CO2 over copper,silver and gold/zirconia catalyst:comparative study of catalyst pr,Studies in Surface Sience and Catalysis,75(New Frontiers in Catalysis),1257−1272

Also Published As

Publication number Publication date
JPH08294627A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
EP0868943B1 (en) Copper, zinc and aluminium based catalyst for methanol synthesis and reforming
US5134109A (en) Catalyst for reforming hydrocarbon with steam
JP4062647B2 (en) Catalyst for steam reforming of methanol
US4220559A (en) High temperature-stable catalyst composition
RU2136364C1 (en) Metal oxide-based catalyst for oxidative ammonolysis of ethylenically unsaturated compounds, method of preparation thereof, and method of oxidative ammonolysis of ethylenically unsaturated compounds
KR100460249B1 (en) A Process for the Oxidation of Ammonia
US11666891B2 (en) Highly active metal oxide supported atomically dispersed platinum group metal catalysts
US4788174A (en) Heat resistant catalyst and method of producing the same
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
KR0166148B1 (en) Preparing method of high dispersed-mixed metal oxide supported catalyst
JPH064137B2 (en) Catalyst preparation method
US6054497A (en) Process for producing methanol and catalyst therefor
JPH10216522A (en) Catalyst for methanol synthesis
JP2005111336A (en) Heat-resistant catalyst and manufacturing method therefor
JPH05154383A (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
KR970001520B1 (en) Carrier material for a catalyst and a process for making such a carrier material
JP2005144402A (en) Catalyst for partial oxidation of hydrocarbon and method of producing synthetic gas using the same
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
JP3328684B2 (en) Catalyst for methanol synthesis and method for producing the same
JP2005262126A (en) Catalyst carrier, its preparation method and preparation method of catalyst
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JPS615036A (en) Production of alcohol
JP3390777B2 (en) Methanol decomposition catalyst and method for producing the same
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
EP0395022A2 (en) Process for producing perovskite-type oxide catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350