JPH08294627A - Catalyst for synthesizing methanol and its preparation - Google Patents

Catalyst for synthesizing methanol and its preparation

Info

Publication number
JPH08294627A
JPH08294627A JP7103275A JP10327595A JPH08294627A JP H08294627 A JPH08294627 A JP H08294627A JP 7103275 A JP7103275 A JP 7103275A JP 10327595 A JP10327595 A JP 10327595A JP H08294627 A JPH08294627 A JP H08294627A
Authority
JP
Japan
Prior art keywords
catalyst
silver
solution
metal oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7103275A
Other languages
Japanese (ja)
Other versions
JP3328684B2 (en
Inventor
Masaki Haruta
正毅 春田
Hiroaki Sakurai
宏昭 桜井
Shuji Ikegami
周司 池上
Kenkichi Kagawa
謙吉 香川
Teiichi Usami
禎一 宇佐見
Masanori Kawazoe
政宣 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daikin Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP10327595A priority Critical patent/JP3328684B2/en
Publication of JPH08294627A publication Critical patent/JPH08294627A/en
Application granted granted Critical
Publication of JP3328684B2 publication Critical patent/JP3328684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To prepare a silver-based catalyst for synthesizing methanol of high activity and high selectivity. CONSTITUTION: To prepare a silver-based catalyst for synthesizing methanol by using at least one kind of metallic oxide selected out of ceria (CeO2 ), zirconia (ZrO2 ), and a double oxide containing at least either Ce or Zr as a carrier, and causing the metallic oxide carrier to carry silver.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成ガスからメタノー
ルを合成するためのメタノール合成用銀触媒及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver catalyst for methanol synthesis for synthesizing methanol from synthesis gas and a method for producing the same.

【0002】[0002]

【従来の技術】水素と一酸化炭素との混合ガス(合成ガ
ス)の接触転化によってメタノールを製造する技術はか
なり以前から知られている。この反応における触媒とし
ては、銅を酸化亜鉛に担持させたものが代表的である
が、これに酸化クロム,酸化アルミニウムなどを加えた
ものや、さらにはパラジウム系のものなど種々のものが
提案されている。
2. Description of the Related Art A technique for producing methanol by catalytic conversion of a mixed gas (synthesis gas) of hydrogen and carbon monoxide has been known for a long time. As a catalyst in this reaction, a catalyst in which copper is supported on zinc oxide is typical, but various catalysts such as those to which chromium oxide, aluminum oxide and the like are added and further palladium catalysts have been proposed. ing.

【0003】例えば、特開昭58−79939号公報に
はシリカやアルミナ等の担体にロジウム、銀、ジルコニ
ウム及びモリブデンを担持させた触媒、特開昭60−1
90232号公報には銅、亜鉛及びアルミニウムを含む
酸化物触媒、並びに特開平4−122450号公報には
酸化銅、酸化亜鉛、酸化クロム、酸化アルミニウム、銀
を含浸担持させた酸化アルミニウムという5種の混合物
からなる触媒(但し、水素と二酸化炭素からメタノール
に富むガスを合成するためのもの)がそれぞれ記載され
ている。
For example, JP-A-58-79939 discloses a catalyst in which rhodium, silver, zirconium and molybdenum are supported on a carrier such as silica or alumina, and JP-A-60-1.
Japanese Patent No. 90232 discloses an oxide catalyst containing copper, zinc and aluminum, and Japanese Patent Application Laid-Open No. 4-122450 discloses five types of oxide catalysts: copper oxide, zinc oxide, chromium oxide, aluminum oxide, and aluminum oxide impregnated with silver oxide. Each is described as a catalyst consisting of a mixture, but for synthesizing a gas rich in methanol from hydrogen and carbon dioxide.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、メタ
ノール合成用触媒として新たな銀系触媒を提供すること
にある。すなわち、銀を含むメタノール合成用触媒につ
いては、水素と一酸化炭素とからメタノールを合成する
ための触媒としての報告は少なく、しかも、従来の銀系
触媒は活性及び選択性が低いという問題がある。
An object of the present invention is to provide a new silver-based catalyst as a catalyst for methanol synthesis. That is, as for the catalyst for synthesizing methanol containing silver, there are few reports as a catalyst for synthesizing methanol from hydrogen and carbon monoxide, and the conventional silver-based catalyst has a problem that the activity and the selectivity are low. .

【0005】[0005]

【課題を解決するための手段及び作用】本発明者は、こ
のような課題に対して、種々の実験・研究を進めた結
果、特定の種類の金属酸化物を担体とし、これに銀を担
持させた場合、高い活性及び選択性が得られることを見
出だし、本発明を完成するに至ったものである。以下、
各請求項に係る発明について具体的に説明する。
The inventors of the present invention have conducted various experiments and researches to solve the above problems, and as a result, have used a specific type of metal oxide as a carrier and supporting silver thereon. It was found that high activity and selectivity can be obtained in the case of being allowed to complete the present invention. Less than,
The invention according to each claim will be specifically described.

【0006】(請求項1に係る発明)この発明は、セリ
ア、ジルコニア、並びにCe及びZrの少なくとも一方
の金属を含む複酸化物のうちから選ばれた1種以上の金
属酸化物を担体とし、この金属酸化物系担体に銀が担持
されていることを特徴とするメタノール合成用触媒であ
る。
(Invention of Claim 1) The present invention uses, as a carrier, one or more metal oxides selected from the group consisting of ceria, zirconia, and multiple oxides containing at least one metal of Ce and Zr. A catalyst for methanol synthesis characterized in that silver is supported on this metal oxide-based carrier.

【0007】当該触媒においては、比較的高い活性(一
酸化炭素転化率)と選択性(メタノール収率)が得られ
る。その理由は明確ではないが、触媒金属としての銀と
担体であるCe又はZrの酸化物との相互作用による銀
の微細化ないしは高分散担持が考えられる。
The catalyst provides relatively high activity (carbon monoxide conversion) and selectivity (methanol yield). Although the reason is not clear, it is conceivable that the silver as a catalyst metal interacts with the oxide of Ce or Zr as a carrier to make the silver finer or to carry it in a highly dispersed state.

【0008】(請求項2に係る発明)この発明は、上記
請求項1に記載されているメタノール合成用触媒の製造
方法であって、上記金属酸化物系担体を形成するための
金属の化合物と銀化合物とを溶媒に溶かしてなる原料溶
液を調製し、上記原料溶液とアルカリ溶液とを混合する
ことによって、上記金属を上記金属酸化物系担体の前駆
体である水酸化物等として沈澱させると同時に、該金属
酸化物系担体の前駆体に上記銀を共沈させることを特徴
とする。
(Invention of Claim 2) The present invention is a method for producing the catalyst for synthesizing methanol according to claim 1, which comprises a metal compound for forming the metal oxide-based carrier. A raw material solution prepared by dissolving a silver compound in a solvent is prepared, and the raw material solution and an alkaline solution are mixed to precipitate the metal as a hydroxide or the like which is a precursor of the metal oxide-based carrier. At the same time, the silver is co-precipitated on the precursor of the metal oxide-based carrier.

【0009】当該発明は、上記メタノール合成用触媒の
調製に所謂共沈法を採用したものであるが、この方法の
場合、上記金属酸化物系担体における銀の分散性が高く
なり活性の向上に有利になる。
The present invention employs a so-called coprecipitation method for preparing the above-mentioned catalyst for synthesizing methanol. In this method, the dispersibility of silver in the above-mentioned metal oxide type carrier is increased and the activity is improved. Be advantageous

【0010】すなわち、上記金属酸化物系担体の前駆体
が水酸化物等として沈澱生成する過程で同時に銀も水酸
化物等として共沈担持されるから、金属酸化物系担体と
銀とが緊密に結合され、銀が該金属酸化物系担体に高分
散担持される。よって、比較的多量の銀を上記金属酸化
物系担体に担持させることが可能になる。
That is, since silver is also co-precipitated as hydroxide or the like at the same time when the precursor of the metal oxide-based carrier is precipitated as hydroxide or the like, the metal oxide-based carrier and silver are closely packed. And silver is highly dispersed and supported on the metal oxide-based carrier. Therefore, a relatively large amount of silver can be supported on the metal oxide-based carrier.

【0011】ここに、上記金属酸化物系担体を構成する
金属の化合物としては、酢酸塩、硝酸塩、硫酸塩などの
電解質、特に水溶性のものがよく、銀化合物も同様であ
る。上記沈澱試薬としては、NaOH、NH4 OH、N
2 CO3 等を用い、これによって上記原料溶液のpH
を調整することになる。また、得られた共沈物について
は、これを洗浄した後に乾燥し、300〜600℃程度
の温度で焼成すればよく、使用に際しては、例えば当該
触媒粉を固めてこれを粉砕することにより、適宜の大き
さの粒子とし、これをカラムに詰めればよい。
Here, as the metal compound constituting the above-mentioned metal oxide type carrier, electrolytes such as acetates, nitrates and sulfates, especially water-soluble ones are preferable, and silver compounds are also the same. Examples of the precipitation reagent include NaOH, NH 4 OH, N
a 2 CO 3 and the like, and the pH of the raw material solution
Will be adjusted. The obtained coprecipitate may be washed, dried, and fired at a temperature of about 300 to 600 ° C. In use, for example, by solidifying the catalyst powder and crushing it, Particles of appropriate size may be prepared and packed in a column.

【0012】(請求項3に係る発明)この発明は、上記
請求項1に記載されているメタノール合成用触媒の製造
方法であって、金属酸化物系担体に銀化合物の溶液を含
浸させた後、該銀化合物溶液の溶媒を蒸発させることに
よって金属酸化物系担体の上に銀を析出させることを特
徴とする。
(Invention of Claim 3) The present invention relates to a method for producing the catalyst for methanol synthesis described in claim 1, wherein the metal oxide-based carrier is impregnated with a solution of a silver compound. Characterized in that silver is deposited on the metal oxide-based carrier by evaporating the solvent of the silver compound solution.

【0013】すなわち、当該発明は、上記触媒の製造に
含浸法を採用したものである。本発明者は、種々の実験
等から一般に含浸法の場合は触媒金属の担持量を多くし
ても担体表面の付着し易い部位に触媒金属が塊になって
担持されていくだけで分散性は高くならず、触媒の比表
面積が大きく低下していくという知見を得て、上記請求
項2に係る発明を想到するに至った。しかし、担体とし
ての金属酸化物と触媒金属としての銀との組み合わせの
場合は必ずしもそうではないこと、特に担体がジルコニ
アである場合には、むしろ含浸法の方が触媒の活性及び
選択性の向上に有利であることを見出だし、当該発明を
完成するに至ったものである。
That is, the present invention employs the impregnation method for producing the above catalyst. According to various experiments and the like, in general, in the case of the impregnation method, even if the supported amount of the catalyst metal is increased, the catalyst metal is lumped and supported on a portion of the carrier surface where the catalyst metal is easily attached, and thus the dispersibility is high. Therefore, the knowledge that the specific surface area of the catalyst is greatly reduced was obtained, and the invention according to claim 2 was conceived. However, this is not always the case in the case of a combination of a metal oxide as a support and silver as a catalyst metal, especially when the support is zirconia, the impregnation method rather improves the activity and selectivity of the catalyst. Therefore, the present invention has been completed and the present invention has been completed.

【0014】[0014]

【発明の効果】請求項1に係る発明によれば、セリア、
ジルコニア、並びにCe及びZrの少なくとも一方の金
属を含む複酸化物のうちから選ばれた1種以上の金属酸
化物を担体とし、この金属酸化物系担体に銀を担持させ
てなるから、高い活性及び高い選択性が得られる。
According to the invention of claim 1, ceria,
Since one or more metal oxides selected from zirconia and multiple oxides containing at least one metal of Ce and Zr are used as a carrier and silver is supported on the metal oxide-based carrier, high activity is obtained. And high selectivity is obtained.

【0015】請求項2に係る発明によれば、上記金属酸
化物系担体を形成するための金属の化合物と銀化合物と
を溶媒に溶かしてなる原料溶液を調製し、該原料溶液と
アルカリ溶液とを混合することによって、上記金属を上
記金属酸化物系担体の前駆体である水酸化物等として沈
澱させると同時に、該金属酸化物系担体の前駆体に上記
銀を共沈させるようにしたから、銀を金属酸化物系担体
の上に高分散に担持させることができ、上記請求項1に
記載されている高活性・高選択性のメタノール合成用触
媒を得る上で有利になる。
According to the invention of claim 2, a raw material solution is prepared by dissolving a metal compound for forming the metal oxide-based carrier and a silver compound in a solvent, and the raw material solution and an alkaline solution are prepared. By precipitating the metal as a hydroxide or the like which is a precursor of the metal oxide-based carrier, the silver is co-precipitated on the precursor of the metal oxide-based carrier by mixing , Silver can be supported on a metal oxide-based carrier in a highly dispersed manner, which is advantageous in obtaining the catalyst for methanol synthesis with high activity and high selectivity described in claim 1.

【0016】請求項3に係る発明によれば、金属酸化物
系担体に銀化合物の溶液を含浸させた後、該銀化合物溶
液の溶媒を蒸発させることによって金属酸化物系担体の
上に銀を析出させるようにしたから、高活性及び高選択
性の触媒を得ることができる。
According to the third aspect of the invention, the metal oxide carrier is impregnated with the solution of the silver compound, and then the solvent of the silver compound solution is evaporated to deposit silver on the metal oxide carrier. Since it is made to precipitate, a catalyst with high activity and high selectivity can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0018】<触媒の調製> −実施例1;Ag/ZrO2 触媒− 硝酸銀(キシダ化学社製AgNO3 )と硝酸ジルコニウ
ムZrO(NO3 2・6H2 Oとをそれぞれ所定量秤
量し、これを蒸溜水に溶解させてA液とした。一方、中
和溶液(沈澱試薬)として炭酸ナトリウムの水溶液を調
製してこれをB液とした。
[0018] <Preparation of Catalyst> - Example 1; Ag / ZrO 2 catalyst - silver nitrate (Kishida Chemical Co., Ltd. AgNO 3) and zirconium nitrate ZrO (NO 3) 2 · 6H 2 O and were weighed predetermined amounts, which Was dissolved in distilled water to prepare a solution A. On the other hand, an aqueous solution of sodium carbonate was prepared as a neutralizing solution (precipitation reagent), and this was designated as solution B.

【0019】そして、上記A液を撹拌しながらこれにB
液を滴下していくことによって共沈物を生成させた。な
お、希釈したB液にA液を流しこむことによっても同様
の共沈物を得ることができる。このようにして得られた
共沈物を1時間撹拌した後、充分に水洗して乾燥し、5
00℃×5時間の焼成を行なった。
Then, while stirring the solution A, the solution B
A coprecipitate was formed by dropping the liquid. A similar coprecipitate can be obtained by pouring the solution A into the diluted solution B. The coprecipitate thus obtained was stirred for 1 hour, washed thoroughly with water and dried,
Firing was performed at 00 ° C. for 5 hours.

【0020】得られたAg/ZrO2 触媒は、ジルコニ
ア(ZrO2 )に銀が高分散に担持されたものであり、
この銀とジルコニウムとの原子比Ag/Zrは1/19
である。
The obtained Ag / ZrO 2 catalyst is one in which silver is supported in high dispersion on zirconia (ZrO 2 ),
The atomic ratio Ag / Zr of silver and zirconium is 1/19.
Is.

【0021】−実施例2;Ag/CeO2 触媒− 上記硝酸銀と硝酸セリウムCe(NO3 3 ・6H2
とをそれぞれ所定量秤量し、これを蒸溜水に溶解させて
A液とし、水酸化ナトリウムの水溶液をB液として、実
施例1と同じ方法によって、セリア(CeO2 )に銀が
担持されてなるAg/CeO2 触媒を得た。銀とセリウ
ムの原子比Ag/Ceは1/19である。
[0021] - Example 2; Ag / CeO 2 catalyst - the silver nitrate and cerium nitrate Ce (NO 3) 3 · 6H 2 O
In the same manner as in Example 1, ceria (CeO 2 ) was loaded with silver by weighing each of a predetermined amount and dissolving them in distilled water to obtain a liquid A and using an aqueous solution of sodium hydroxide as a liquid B. An Ag / CeO 2 catalyst was obtained. The atomic ratio Ag / Ce of silver and cerium is 1/19.

【0022】−比較例1;Ag/ZnO触媒− 上記硝酸銀と硝酸亜鉛Zn(NO3 2 ・6H2 Oとを
蒸溜水に溶解したものをA液として、実施例1と同じ方
法によって酸化亜鉛ZnOに銀が担持されてなるAg/
ZnO触媒を得た。銀と亜鉛の原子比Ag/Znは1/
19である。
[0022] - Comparative Example 1; Ag / ZnO catalyst - those between the silver nitrate and zinc nitrate Zn (NO 3) 2 · 6H 2 O was dissolved in distilled water as the A solution, zinc oxide by the same method as in Example 1 Ag / ZnO in which silver is supported
A ZnO catalyst was obtained. The atomic ratio Ag / Zn of silver and zinc is 1 /
It is 19.

【0023】−比較例2;Ag/Al2 3 触媒− 上記硝酸銀と硝酸アルミニウムAl(NO3 3 ・9H
2 Oとを蒸溜水に溶解したものをA液として、実施例2
と同じ方法によって酸化アルミニウムAl2 3 に銀が
担持されてなるAg/Al2 3 触媒を得た。銀とアル
ミニウムの原子比Ag/Alは1/19である。
[0023] - Comparative Example 2; Ag / Al 2 O 3 catalyst - the silver nitrate and aluminum nitrate Al (NO 3) 3 · 9H
Example 2 was prepared by dissolving 2 O and distilled water in solution A.
By the same method as described above, an Ag / Al 2 O 3 catalyst in which silver was supported on aluminum oxide Al 2 O 3 was obtained. The atomic ratio Ag / Al of silver and aluminum is 1/19.

【0024】−比較例3;Ag/MnO2 触媒− 上記硝酸銀と硝酸マンガンMn(NO3 2 ・6H2
とを蒸溜水に溶解したものをA液として、実施例1と同
じ方法によって酸化マンガンMnO2 に銀が担持されて
なるAg/MnO2 触媒を得た。銀とマンガンの原子比
Ag/Mnは1/19である。
[0024] - Comparative Example 3; Ag / MnO 2 catalyst - the silver nitrate and manganese nitrate Mn (NO 3) 2 · 6H 2 O
Using the solution of and dissolved in distilled water as solution A, an Ag / MnO 2 catalyst in which silver was supported on manganese oxide MnO 2 was obtained by the same method as in Example 1. The atomic ratio Ag / Mn of silver and manganese is 1/19.

【0025】−比較例4;Ag/Ga2 3 触媒− 上記硝酸銀と硝酸ガリウムGa(NO3 3 ・8H2
とを蒸溜水に溶解したものをA液として、実施例1と同
じ方法によって酸化ガリウムGa2 3 に銀Agが担持
されてなるAg/Ga2 3 触媒を得た。銀とガリウム
との原子比Ag/Gaは1/19である。
[0025] - Comparative Example 4; Ag / Ga 2 O 3 catalyst - the silver nitrate and gallium nitrate Ga (NO 3) 3 · 8H 2 O
Using a solution of and dissolved in distilled water as solution A, an Ag / Ga 2 O 3 catalyst in which silver Ag was supported on gallium oxide Ga 2 O 3 was obtained by the same method as in Example 1. The atomic ratio Ag / Ga between silver and gallium is 1/19.

【0026】−比較例5;Ag/Fe2 3 触媒− 上記硝酸銀と硝酸鉄Fe(NO3 3 ・9H2 Oとを蒸
溜水に溶解したものをA液として、実施例2と同じ方法
によって酸化鉄Fe2 3 に銀が担持されてなるAg/
Fe2 3 触媒を得た。銀と鉄の原子比はAg/Feは
1/19である。
[0026] - Comparative Example 5; Ag / Fe 2 O 3 catalyst - those of the above-mentioned silver nitrate and iron nitrate Fe (NO 3) 3 · 9H 2 O was dissolved in distilled water as the A solution, the same method as in Example 2 By means of iron oxide Fe 2 O 3 loaded with silver Ag /
An Fe 2 O 3 catalyst was obtained. The atomic ratio of silver to iron is 1/19 for Ag / Fe.

【0027】以上の実施例及び比較例の各触媒を表1に
まとめて示す。
Table 1 shows the respective catalysts of the above Examples and Comparative Examples.

【0028】[0028]

【表1】 [Table 1]

【0029】<触媒の評価>上記実施例及び比較例の各
触媒を用いて、合成ガス(水素及び一酸化炭素)からメ
タノールを合成する試験を行ない、CO転化率及びメタ
ノール収率の各温度特性を調べた。CO転化率について
は図1に、メタノール収率については図2に示す。
<Evaluation of Catalyst> Using each of the catalysts of the above-mentioned Examples and Comparative Examples, a test for synthesizing methanol from synthesis gas (hydrogen and carbon monoxide) was conducted, and each temperature characteristic of CO conversion and methanol yield was examined. I checked. The CO conversion is shown in FIG. 1 and the methanol yield is shown in FIG.

【0030】図1によれば、実施例1のAg/ZrO2
触媒及び実施例2のAg/CeO2触媒は、Ag/Zn
O触媒やAg/MnO2 触媒よりも当該転化率が高いも
のの、Ag/Al2 3 触媒とほぼ同じ転化率を示し、
Ag/Fe2 3 触媒やAg/Ga2 3 触媒よりは低
い転化率になっている。しかし、図2から明らかなよう
に、Ag/Fe2 3 触媒やAg/Ga2 3 触媒は実
施例1,2のAg/ZrO2 触媒やAg/CeO2 触媒
よりもメタノール収率が低くなっている。従って、以上
の結果から、銀系触媒において、担体としてジルコニア
(ZrO2 )やセリア(CeO2 )を採用すると、合成
ガスからのメタノールの合成に有利になることがわか
る。
According to FIG. 1, Ag / ZrO 2 of Example 1 was used.
The catalyst and the Ag / CeO 2 catalyst of Example 2 were Ag / Zn
Although the conversion rate is higher than O catalyst and Ag / MnO 2 catalyst, it shows almost the same conversion rate as Ag / Al 2 O 3 catalyst,
The conversion rate is lower than that of Ag / Fe 2 O 3 catalyst and Ag / Ga 2 O 3 catalyst. However, as is clear from FIG. 2, the Ag / Fe 2 O 3 catalyst and Ag / Ga 2 O 3 catalyst have lower methanol yields than the Ag / ZrO 2 catalyst and Ag / CeO 2 catalyst of Examples 1 and 2. Has become. Therefore, from the above results, it is found that the use of zirconia (ZrO 2 ) or ceria (CeO 2 ) as a carrier in the silver-based catalyst is advantageous for the synthesis of methanol from the synthesis gas.

【0031】<共沈法における中和溶液の影響について
>上記Ag/CeO2 触媒(実施例2)の調製において
は中和溶液として水酸化ナトリウムを用いたが、中和溶
液として炭酸ナトリウムNa2 CO3 水溶液を用い、先
と同様の共沈法によってAg/CeO2 触媒を調製し、
その比表面積及び300℃でのメタノール収率を調べ
た。その結果を中和溶液が水酸化ナトリウムである例と
併せて表2に示す。
<Influence of Neutralizing Solution in Coprecipitation Method> Although sodium hydroxide was used as the neutralizing solution in the preparation of the above Ag / CeO 2 catalyst (Example 2), sodium carbonate Na 2 was used as the neutralizing solution. An Ag / CeO 2 catalyst was prepared by the same coprecipitation method as above using an aqueous CO 3 solution,
The specific surface area and the methanol yield at 300 ° C. were examined. The results are shown in Table 2 together with an example in which the neutralizing solution is sodium hydroxide.

【0032】[0032]

【表2】 [Table 2]

【0033】同表によれば、Ag/CeO2 触媒に関し
ては、中和溶液に水酸化ナトリウム水溶液を用いた方が
炭酸ナトリウム水溶液を用いた場合よりも比表面積が大
きく且つメタノール収率も高い。
According to the table, regarding the Ag / CeO 2 catalyst, the specific surface area and the methanol yield are higher when the sodium hydroxide aqueous solution is used as the neutralizing solution than when the sodium carbonate aqueous solution is used.

【0034】上記水酸化ナトリウム水溶液を用いたAg
/CeO2 触媒の粉末X線回折結果は図3の通りであ
り、炭酸ナトリウム水溶液を用いたAg/CeO2 触媒
の同結果は図4に示す通りである。両図によれば、この
両触媒のセリア(CeO2 )の結晶構造は同じである。
しかし、図3の水酸化ナトリウム水溶液を用いたAg/
CeO2 触媒の方には銀のピークが認められないことか
ら、中和溶液として水酸化ナトリウムを用いた場合、炭
酸ナトリウムを用いた場合よりも得られる触媒の銀の粒
径が微細になっているということができ、このことが当
該両触媒の活性の差の一因になっていると考えられる。
Ag using the above aqueous sodium hydroxide solution
The powder X-ray diffraction result of the / CeO 2 catalyst is shown in FIG. 3, and the same result of the Ag / CeO 2 catalyst using the aqueous sodium carbonate solution is shown in FIG. According to both figures, the crystal structure of ceria (CeO 2 ) of both catalysts is the same.
However, the Ag /
Since no peak of silver was observed in the CeO 2 catalyst, when using sodium hydroxide as the neutralizing solution, the particle size of silver of the obtained catalyst was smaller than that when using sodium carbonate. It can be said that this is one of the reasons for the difference in activity between the two catalysts.

【0035】<触媒調製法の影響について>以上では触
媒の調製に共沈法を採用したが、含浸法を採用した場合
の上記転化率及びメタノール収率に及ぼす影響を調べ
た。
<Influence of catalyst preparation method> In the above, the coprecipitation method was adopted for the preparation of the catalyst, but the effect on the conversion rate and methanol yield when the impregnation method was adopted was investigated.

【0036】すなわち、第1稀元素化学工業社製のジル
コニア(ZrO2 )とセリア(CeO2 )とを準備し、
各々にキシダ化学社製の硝酸銀AgNO3 の水溶液を含
浸させ、乾燥・焼成を行なって、Ag/ZrO2 触媒
(原子比Ag/Zr=1/19)及びAg/CeO2
媒(原子比Ag/Ce=1/19)を得た。そして、こ
の両触媒について、CO転化率及びメタノール収率の温
度特性を調べた。結果を図5及び図6に先の共沈法の結
果と共に示す。
That is, zirconia (ZrO 2 ) and ceria (CeO 2 ) manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. were prepared,
Each of them was impregnated with an aqueous solution of silver nitrate AgNO 3 manufactured by Kishida Chemical Co., Ltd., dried and calcined to obtain an Ag / ZrO 2 catalyst (atomic ratio Ag / Zr = 1/19) and an Ag / CeO 2 catalyst (atomic ratio Ag / Ce = 1/19) was obtained. Then, the temperature characteristics of the CO conversion rate and the methanol yield of the both catalysts were examined. The results are shown in FIGS. 5 and 6 together with the results of the above coprecipitation method.

【0037】Ag/CeO2 触媒のCO転化率及びメタ
ノール収率については、含浸法の方が共沈法よりも低い
値を示したが、Ag/ZrO2 触媒のCO転化率及びメ
タノール収率については、含浸法の方が良い結果となっ
た。このことから、上記Ag/ZrO2 触媒については
その調製に含浸法を採用する方が好適であることがわか
る。
Regarding the CO conversion rate and the methanol yield of the Ag / CeO 2 catalyst, the impregnation method showed lower values than the coprecipitation method, but regarding the CO conversion rate and the methanol yield of the Ag / ZrO 2 catalyst, The impregnation method gave better results. From this, it is understood that it is preferable to adopt the impregnation method for the preparation of the above Ag / ZrO 2 catalyst.

【0038】−組成比の影響− 上記Ag/CeO2 触媒及びAg/ZrO2 触媒につい
て、表3に示す試験範囲で反応温度300℃でのメタノ
ール収率を調べた。結果を図7に示す。
-Effect of Composition Ratio-Methanol yield at the reaction temperature of 300 ° C. was examined in the test range shown in Table 3 for the above Ag / CeO 2 catalyst and Ag / ZrO 2 catalyst. FIG. 7 shows the results.

【0039】[0039]

【表3】 [Table 3]

【0040】図7によれば、Ag/CeO2 触媒及びA
g/ZrO2 触媒を共沈法によって調製した場合は、組
成比が高くなるにつれてメタノール収率が下がる傾向に
ある。一方、含浸法によって調製したAg/ZrO2
媒のメタノール収率は組成比にそれほど影響を受けてい
ない。以上のことはその他の反応温度225〜275℃
でも同様である。従って、上記各触媒を共沈法によって
調製する場合は組成比を3/7以下にすること、さらに
は1/9以下にすることが好適であることがわかる。一
方、Ag/ZrO2 触媒を含浸法によって調製する場合
は、銀の担持量を比較的多くしてもよいことがわかる。
According to FIG. 7, Ag / CeO 2 catalyst and A
When the g / ZrO 2 catalyst is prepared by the coprecipitation method, the methanol yield tends to decrease as the composition ratio increases. On the other hand, the methanol yield of the Ag / ZrO 2 catalyst prepared by the impregnation method is not so affected by the composition ratio. The above is other reaction temperature 225-275 degreeC.
But the same is true. Therefore, when the above catalysts are prepared by the coprecipitation method, it is preferable to set the composition ratio to 3/7 or less, and further to 1/9 or less. On the other hand, when the Ag / ZrO 2 catalyst is prepared by the impregnation method, the amount of silver supported may be relatively large.

【0041】−粉末X線回折結果− 上記調製法の違いが触媒活性に影響を及ぼす原因を調べ
るために、共沈法及び含浸法の各々によって調製したA
g/ZrO2 触媒の粉末X線回折を調べた結果、前者に
ついては図8に、後者については図9に示す通りになっ
た。両図から明らかなように、共沈法による触媒では含
浸法によるものとは全く異なる結晶構造をもつジルコニ
ア(ZrO2 )が生成している。従って、このことが共
沈法によって調製した触媒と含浸法によって調製した触
媒の特性の違いの一因になっているものと考えられる。
-Powder X-ray Diffraction Results-In order to investigate the reason why the difference in the above-mentioned preparation methods affects the catalytic activity, A prepared by each of the coprecipitation method and the impregnation method was used.
As a result of examining the powder X-ray diffraction of the g / ZrO 2 catalyst, the former was as shown in FIG. 8 and the latter was as shown in FIG. 9. As is clear from both figures, the catalyst obtained by the coprecipitation method produces zirconia (ZrO 2 ) having a crystal structure which is completely different from that obtained by the impregnation method. Therefore, it is considered that this contributes to the difference in the characteristics between the catalyst prepared by the coprecipitation method and the catalyst prepared by the impregnation method.

【図面の簡単な説明】[Brief description of drawings]

【図1】共沈法によって調製した各触媒のCO転化率の
温度特性を示すグラフ図
FIG. 1 is a graph showing the temperature characteristics of CO conversion of each catalyst prepared by the coprecipitation method.

【図2】共沈法によって調製した各触媒のメタノール収
率の温度特性を示すグラフ図
FIG. 2 is a graph showing temperature characteristics of methanol yield of each catalyst prepared by a coprecipitation method.

【図3】中和溶液としてNaOH水溶液を用いた共沈法
によるAg/CeO2 触媒のX線回折パターン図
FIG. 3 is an X-ray diffraction pattern diagram of an Ag / CeO 2 catalyst prepared by a coprecipitation method using an aqueous NaOH solution as a neutralizing solution.

【図4】中和溶液としてNa2 CO3 水溶液を用いた共
沈法によるAg/CeO2 触媒のX線回折パターン図
FIG. 4 is an X-ray diffraction pattern diagram of an Ag / CeO 2 catalyst by a coprecipitation method using an aqueous Na 2 CO 3 solution as a neutralizing solution.

【図5】Ag/ZrO2 触媒及びAg/CeO2 触媒の
CO転化率について共沈法と含浸法とを比較したグラフ
FIG. 5 is a graph comparing the CO conversion of Ag / ZrO 2 catalyst and Ag / CeO 2 catalyst between the coprecipitation method and the impregnation method.

【図6】Ag/ZrO2 触媒及びAg/CeO2 触媒の
メタノール収率について共沈法と含浸法とを比較したグ
ラフ図
FIG. 6 is a graph comparing the methanol yields of Ag / ZrO 2 catalyst and Ag / CeO 2 catalyst between the coprecipitation method and the impregnation method.

【図7】Ag/CeO2 触媒及びAg/ZrO2 触媒に
ついて組成比とメタノール収率との関係を示すグラフ図
FIG. 7 is a graph showing the relationship between composition ratio and methanol yield for Ag / CeO 2 catalyst and Ag / ZrO 2 catalyst.

【図8】共沈法によって調製したAg/ZrO2 触媒の
粉末X線回折パターン図
FIG. 8: Powder X-ray diffraction pattern diagram of Ag / ZrO 2 catalyst prepared by coprecipitation method

【図9】含浸法によって調製したAg/ZrO2 触媒の
粉末X線回折パターン図
FIG. 9: Powder X-ray diffraction pattern diagram of Ag / ZrO 2 catalyst prepared by impregnation method

【符号の説明】[Explanation of symbols]

なし None

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 宏昭 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 池上 周司 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 香川 謙吉 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 宇佐見 禎一 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 川添 政宣 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Sakurai 1-831 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Research Institute Osaka Institute of Industrial Technology (72) Inventor Shuji Ikegami, 1304 Kanaokacho, Sakai City, Osaka Daikin Industrial Co., Ltd.Kanaoka Plant, Sakai Works (72) Kenkichi Kagawa, 1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries, Ltd.Kanaoka Plant, Sakai Co., Ltd. (72) Sadakazu Usami, 1304, Kanaoka-cho, Sakai City, Osaka Daikin Industries Sakai Plant Kanaoka Plant (72) Inventor Masanobu Kawazoe 1304 Kanaoka Town, Sakai City, Osaka Prefecture Daikin Industries Ltd. Kanaoka Plant, Sakai Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セリア、ジルコニア、並びにCe及びZ
rの少なくとも一方の金属を含む複酸化物のうちから選
ばれた1種以上の金属酸化物を担体とし、この金属酸化
物系担体に銀が担持されていることを特徴とするメタノ
ール合成用触媒。
1. Ceria, zirconia, and Ce and Z
A catalyst for methanol synthesis characterized in that one or more metal oxides selected from complex oxides containing at least one metal of r are used as a carrier, and silver is supported on the metal oxide-based carrier. .
【請求項2】 請求項1に記載されているメタノール合
成用触媒の製造方法であって、 上記金属酸化物系担体を形成するための金属の化合物と
銀化合物とを溶媒に溶かしてなる原料溶液を調製し、 上記原料溶液とアルカリ溶液とを混合することによっ
て、上記金属を上記金属酸化物系担体の前駆体である水
酸化物等として沈澱させると同時に、該金属酸化物系担
体の前駆体に上記銀を共沈させることを特徴とするメタ
ノール合成用触媒の製造方法。
2. The method for producing a catalyst for methanol synthesis according to claim 1, wherein the raw material solution is obtained by dissolving a metal compound for forming the metal oxide-based carrier and a silver compound in a solvent. And by mixing the raw material solution with an alkaline solution to precipitate the metal as a hydroxide, which is a precursor of the metal oxide-based carrier, and at the same time, a precursor of the metal oxide-based carrier. A method for producing a catalyst for methanol synthesis, which comprises coprecipitating the above silver with.
【請求項3】 請求項1に記載されているメタノール合
成用触媒の製造方法であって、 上記金属酸化物系担体に銀化合物の溶液を含浸させた
後、該銀化合物溶液の溶媒を蒸発させることによって上
記金属酸化物系担体の上に銀を析出させることを特徴と
するメタノール合成用触媒の製造方法。
3. The method for producing a catalyst for methanol synthesis according to claim 1, wherein the metal oxide-based carrier is impregnated with a solution of a silver compound, and then the solvent of the silver compound solution is evaporated. By so doing, silver is deposited on the above-mentioned metal oxide-based carrier, and a method for producing a catalyst for synthesizing methanol.
JP10327595A 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same Expired - Lifetime JP3328684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10327595A JP3328684B2 (en) 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10327595A JP3328684B2 (en) 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08294627A true JPH08294627A (en) 1996-11-12
JP3328684B2 JP3328684B2 (en) 2002-09-30

Family

ID=14349825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10327595A Expired - Lifetime JP3328684B2 (en) 1995-04-27 1995-04-27 Catalyst for methanol synthesis and method for producing the same

Country Status (1)

Country Link
JP (1) JP3328684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146258A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Carbon dioxide reduction catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146258A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Carbon dioxide reduction catalyst

Also Published As

Publication number Publication date
JP3328684B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US6114279A (en) Catalyst for methanol synthesis and reforming
US5134109A (en) Catalyst for reforming hydrocarbon with steam
JP5821973B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
US11666891B2 (en) Highly active metal oxide supported atomically dispersed platinum group metal catalysts
JP2006511425A (en) Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
KR0166148B1 (en) Preparing method of high dispersed-mixed metal oxide supported catalyst
JP2005288307A (en) High heat resistant catalyst, its production method and catalyst for cleaning exhaust gas
JP3260148B2 (en) Exhaust gas purification catalyst
EA014214B1 (en) Supported cobalt catalysts for the fischer tropsch synthesis
JPH05154383A (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
CA2691763C (en) Process for the preparation of a cobalt-zinc oxide fischer-tropsch catalyst
JP2005111336A (en) Heat-resistant catalyst and manufacturing method therefor
US10722870B2 (en) Exhaust gas purification catalyst
WO2000027527A1 (en) Preparation of nanocrystalline and dispersible supported metal catalysts
JPH10216522A (en) Catalyst for methanol synthesis
KR970001520B1 (en) Carrier material for a catalyst and a process for making such a carrier material
US20200122129A1 (en) Delafossite-type oxide for exhaust gas purification catalyst, and exhaust gas purification catalyst using same
JP2005262126A (en) Catalyst carrier, its preparation method and preparation method of catalyst
JPH08294627A (en) Catalyst for synthesizing methanol and its preparation
JP2003080072A (en) Co shift catalyst and method for producing the same
JP3390777B2 (en) Methanol decomposition catalyst and method for producing the same
JP2003080070A (en) Hydrocarbon reforming catalyst and method for producing the same
JP3510406B2 (en) Methanol synthesis catalyst
JPH06134305A (en) Heat resistant catalyst and method for using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350