KR101055880B1 - 캐리어 잔류형 신호의 생성 방법 및 그 장치 - Google Patents
캐리어 잔류형 신호의 생성 방법 및 그 장치 Download PDFInfo
- Publication number
- KR101055880B1 KR101055880B1 KR1020117007939A KR20117007939A KR101055880B1 KR 101055880 B1 KR101055880 B1 KR 101055880B1 KR 1020117007939 A KR1020117007939 A KR 1020117007939A KR 20117007939 A KR20117007939 A KR 20117007939A KR 101055880 B1 KR101055880 B1 KR 101055880B1
- Authority
- KR
- South Korea
- Prior art keywords
- optical
- light
- ssb
- modulator
- signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
- H04B10/50575—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
- H04B10/25752—Optical arrangements for wireless networks
- H04B10/25758—Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
- H04B10/50572—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulating signal amplitude including amplitude distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
- H04B10/50577—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the phase of the modulating signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5165—Carrier suppressed; Single sideband; Double sideband or vestigial
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
광계측 분야나 광섬유 무선통신분야에서 이용되는 헤테로다인형 광신호를 간단한 구조로, 또한, 안정되게 생성시키는 것을 가능하게 하는 캐리어 잔류형 신호의 생성 방법 및 그 장치를 제공하는 것.
특정 파장을 가지는 광파를 발생하는 광원(51)과 SSB 광변조기(54)를 포함하는 광변조부를 가지며, 그 광변조부로부터 출사하는 광파를 그 광변조부에 입사하고, 그 광변조부로부터 출사하는 광파가 0차 베셀 함수에 관한 캐리어 성분과 특정의 고차 베셀 함수에 관한 특정 신호 성분을 포함하고, 그 특정의 고차 베셀 함수 이외의 신호 성분을 억압함과 함께, 그 캐리어 성분과 그 특정 신호 성분의 광강도의 비율이 거의 1로 설정되어 있는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치이다. 바람직하게, 그 광변조부는 SSB 광변조기(54)와, 그 SSB 광변조기의 입력부와 출력부를 연결하는 바이패스용 광도파로(56)를 가지는 것을 특징으로 한다.
특정 파장을 가지는 광파를 발생하는 광원(51)과 SSB 광변조기(54)를 포함하는 광변조부를 가지며, 그 광변조부로부터 출사하는 광파를 그 광변조부에 입사하고, 그 광변조부로부터 출사하는 광파가 0차 베셀 함수에 관한 캐리어 성분과 특정의 고차 베셀 함수에 관한 특정 신호 성분을 포함하고, 그 특정의 고차 베셀 함수 이외의 신호 성분을 억압함과 함께, 그 캐리어 성분과 그 특정 신호 성분의 광강도의 비율이 거의 1로 설정되어 있는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치이다. 바람직하게, 그 광변조부는 SSB 광변조기(54)와, 그 SSB 광변조기의 입력부와 출력부를 연결하는 바이패스용 광도파로(56)를 가지는 것을 특징으로 한다.
Description
본 발명은 캐리어 잔류형 신호의 생성 방법 및 그 장치에 관한 것이며, 특히 광계측 분야나 광섬유 무선통신 분야에서 이용되는 헤테로다인(heterodyne)형의 광신호를 얻기 위한 캐리어 잔류형 신호의 생성 방법 및 그 장치에 관한 것이다.
광통신이나 광계측의 분야에 있어서, 주파수가 약간 다른 2개의 광파를 겹쳐서 「비트(beat)」를 발생시켜 이 「비트」로부터 필요한 정보를 취출하는 헤테로다인법이 이용되고 있다.
근래에는, 동영상 배신(配信) 서비스에 의한 정보 대용량화와 정보 컨텐츠의 다양화에 수반하여 광대역 주파수 자원을 이용 가능하게 하기 위하여 밀리미터파대 (30 ~ 300GHz)의 전파를 이용하는 무선 시스템이 검토되고 있으며, 특히 밀리미터파는 전송거리가 짧기 때문에, 예를 들면, 특허 문헌 1과 같이 장거리의 전송 부분에서는 광섬유에 의한 광통신을 이용하고 무선 이용자나 수신기의 근방에서는 광통신의 신호를 무선통신으로 변환하여 이용하는 광섬유 무선통신 방식이 채용되고 있다. 또 밀리미터파는 전기적 발진기로 발생시키는 것은 매우 곤란하지만, 헤테로다인법에 의해 다른 주파수를 가지는 광신호를 광전기 변환기(O/E 변환기)로 입력하고, 출력되는 전기 신호를 증폭함으로써 용이하게 발생시킬 수 있다.
(특허 문헌 1) 일본 공개 특허 공보 2002-353897호
헤테로다인법에 이용되는 주파수가 약간 다른 2개의 광파를 발생시키는데는종래부터 제만 레이저나 한쪽의 광파를 주파수 시프터로 변경하는 방법 등이 있다. 그렇지만 제만 레이저는 He-Ne 레이저를 이용하는 등 장치가 커지고, 주파수 시프터를 이용하는 경우에는 복수의 광부품을 조합하여 구성하기 때문에 광원 회로가 복잡화되는데다가 온도 변화 등의 환경 변화에 의해 특성이 변화하는 등의 문제가 있다.
또, 복수의 반도체 레이저를 조합하는 경우라도 2개의 광파를 동일 광축 상으로 조정할 필요가 있는데다가 반도체 레이저가 온도 변화에 의해 출력 특성이 변화하기 때문에 2개 광파의 주파수의 차를 일정하게 유지하는 것이 어렵다고 하는 등의 결점을 가지고 있었다.
한편, 다른 주파수의 광파를 용이하게 얻는 방법으로서 본 출원인은 단측파대(Single Side-Band, SSB) 광변조기를 제안해 왔다.
SSB 광변조기의 일례는 이하의 비특허 문헌 1에도 기재되어 있다.
(비특허 문헌 1) 논문 「X컷 LiNb03를 이용한 광 SSB-SC 변조기」(히구마가오루 외 4명, P.17~21, 「스미토모 오사카 시멘트 테크니컬 리포트 2002년판」,스미토모 오사카 시멘트 주식회사 신규 기술 연구소 발행, 2001년 12월 8일)
SSB 광변조기의 동작 원리에 관하여 설명한다.
도 1은 캐리어 억압을 하지 않는 SSB 광변조기의 원리에 관하여 나타낸 것이다.
광변조기의 구조는 LiNbO3 등의 전기 광학 효과를 가지는 기판 상에 Ti 등이 확산되어 도 1과 같은 마하젠더형 광도파로를 형성시킨다. SSB 광변조기로서는 도 1과 같이 단일 마하젠더형 광도파로에 한정되지 않고, 후술하는 도 2와 같이 2개의 서브 MZ(Mach-Zehnder) 광도파로(MZA, MZB)가 메인 MZ 광도파로(MZc)의 각 아암에 병렬로 배치된 부시형의 MZ 구조를 가지는 것도 용도에 따라 이용 가능하다.
도 1 및 2에서는 마하젠더형 광도파로의 분기 도파로(分岐 導波路)에 변조 신호 또는 직류 바이어스 신호를 인가하는 전극을 간략화하여 도시하고 있고, RFA, RFB는 단일 마하젠더형 광도파로의 2개 분기 도파로 혹은 도 2에 나타내는 바와 같은 서브 MZ 광도파로(MZA, MZB)에 마이크로파의 변조 신호를 인가하기 위한 진행파형 코플레너(coplanar) 전극을 간략화하여 도시한 것이다. 또 DCA, DCB는 단일 마하젠더형 광도파로의 특정한 분기 도파로 혹은 서브 MZ 광도파로(MZA, MZB)에, 또한 DCC는 메인 MZ 광도파로(MZc)에 각각 소정의 위상차를 부여하기 위한 직류 바이어스 전압을 인가하는 위상 조정용 전극을 간략화하여 도시한 것이다.
SSB 광변조 기술에 있어서는 원신호와 힐베르트 변환된 원신호의 합을 내어 SSB 변조 신호가 얻어지는 것이 알려져 있다.
캐리어 억압을 하지 않는 광 SSB 변조를 실행하기 위해서는 도 1과 같은 듀얼 구동의 단독 MZ 변조기(Z컷 기판을 이용한 예를 도시함)를 이용하면 좋다.
입사광을 exp(jωt)로서 단일 주파 RF 신호 øcosΩt를 RFA 포트로부터 또 이 신호를 힐베르트 변환한 신호 H[øcosΩt]=øsinΩt를 RFB 포트로부터 각각 동시에 입력한다.
sinΩt=cos(Ωt-π/2)이기 때문에 마이크로파용 이상기(移相器)를 이용함으로써 2개의 신호를 동시에 공급할 수 있다. 단, ø는 변조도, ω, Ω는 각각 광파와 마이크로파(RF) 신호의 각 주파수를 나타낸다.
또한, DCA 포트로부터 적당한 바이어스를 가하여 MZ 광도파로의 양 아암을 투과하는 광파에 위상차 π/2를 부여한다.
이들에 의해 합파(合波) 지점에서의 광파의 위상항에 착안한 식은 이하의 식 (1)로 나타난다.
exp(jωt)*{exp(jøcosΩt)+exp(jøsinΩt)*exp(jπ/2)}=2*exp(jωt)*{J0(ø)+j*J1(ø)exp(jΩt)} …… (1)
여기에서, J0, J1은 0차, 1차 베셀(bessel) 함수이며, 2차 이후의 성분은 무시하고 있다.
식 (1)과 같이 0차와 1차의 스펙트럼 성분은 잔존하고 있지만, -1차 성분(J-1)은 소실되어 있다(이것을 모식적으로 나타내면, 도 1의 MZ 광도파로의 우측에 나타낸 바와 같은 스펙트럼 분포를 한 광파가 MZ 광도파로로부터 출사된다). 그리고 Jo로 표시되는 O차 스펙트럼광의 주파수는 입사광과 마찬가지로 ω이고, J1로 표시되는 1차 스펙트럼광의 주파수는 ω+Ω이며, 입사광의 주파수로부터 마이크로파의 주파수분만큼 주파수 시프트한 주파수가 된다.
또, -1차 성분(J-1)을 남기고 1차 성분(J1)을 소거시키기 위해서는 DCA 포트에 위상차 -π/2를 부여하는 바이어스를 인가함으로써 달성할 수 있다. 이 경우 -1차 스펙트럼광은 ω-Ω의 주파수를 가진다.
다음으로 캐리어 성분인 0차 베셀 함수를 억압하는 방법에 관하여 설명한다.
도 2는 캐리어 억압 광 단측파대(Single Side-Band with Suppressed Carrier, SSB-SC) 광변조기의 광도파로를 모식적으로 나타낸 도면이다. SSB-SC 광변조기의 경우에는, 도 2에 나타내는 바와 같이 단독 MZ 간섭계의 양 아암에 서브 MZ 간섭계를 구비한 설계로 되어 있다.
이 서브 MZ 광도파로에는 도 3에 나타내는 바와 같은 신호를 인가한다. 이것은 통상의 강도 변조를 바텀(bottom) 구동으로 실시하고 있는 경우와 같은 상황으로 생각해도 좋다.
이 때 출사광의 위상항에 착안한 식은 다음 식 (2)에 의해 나타난다.
exp(jωt)*{exp(jøsinΩt)+exp(-jøsinΩt)*exp(jπ)}=2*exp(jωt)*{J-1(ø)exp(-jΩt)+ J1(ø)exp(jΩt)} …… (2)
이것에 의해 캐리어 성분을 포함하는 짝수차의 스펙트럼 성분이 캔슬되어 있다는 것을 알 수 있다(이것을 모식적으로 나타내면, 도 3의 MZ 광도파로의 우측에 나타낸 바와 같은 스펙트럼 분포를 한 광파가 MZ 광도파로로부터 출사된다).
그리고 도 1 및 식 (1)로 나타낸 변조 방식(SSB 광변조)과 도 3 및 식 (2)로 나타낸 변조 방식(서브 MZ에서의 캐리어 억압 기법)을 조합함으로써 1차 스펙트럼(J1항), -1차 스펙트럼(J-1항) 중 어느 하나만을 선택적으로 발생시키는 것이 가능하게 된다.
이와 같이 도 1 및 도 2에 나타내는 바와 같은 각종 SSB 광변조기에 인가하는 변조 신호 및 직류 바이어스 신호 등을 적절히 조정함으로써 임의의 주파수 성분을 가지는 스펙트럼광을 출력하는 것이 가능하게 된다.
본 발명의 목적은 상기에 서술한 문제를 해결하고, 광계측 분야나 광섬유 무선통신 분야에서 이용되는 헤테로다인형의 광신호를 간단한 구조로 또한 안정되게 발생시키는 것을 가능하게 하는 캐리어 잔류형 신호의 생성 방법 및 그 장치를 제공하는 것이다.
<발명의 개시>
상기 과제를 해결하기 위해서, 청구범위 제1항에 관한 발명은, 특정 파장을 가지는 광파를 SSB 광변조기를 포함하는 광변조부에 입사하고, 그 광변조부로부터 출사하는 광파가 0차 베셀 함수에 관한 캐리어 성분과 특정의 고차 베셀 함수에 관한 특정 신호 성분을 포함하고, 그 특정의 고차 베셀 함수 이외의 신호 성분을 억압함과 함께, 그 캐리어 성분과 그 특정 신호 성분의 광강도의 비율이 거의 1로 설정되어 있는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 방법이다.
본 발명에 있어서 「거의 1」의 의미는 캐리어 성분과 특정 신호 성분의 광강도비가 1인 경우에는 특정한 전송 시스템(예를 들면, 자기 헤테로다인형 전송시스템)에 있어서 가장 효과적인 헤테로다인 효과가 기대되지만, 실제의 광계측 및 광섬유 무선통신에 있어서 본 발명을 이용하는 경우에 실용상 문제가 없는 범위에 있어서 캐리어 성분과 특정 신호 성분의 광강도비가 1에서 벗어나는 경우를 포함한다는 의미이다. 구체적으로, 캐리어 성분과 특정 신호의 비가 -10 ~ +12dB의 범위인 경우에는 실용적으로도 이용 가능하다.
또, 청구범위 제2항에 관한 발명에서는, 청구범위 제1항에 기재된 캐리어 잔류형 신호의 생성 방법에 있어서 그 SSB 광변조기는 2개의 서브ㆍ마하젠더형 광도파로를 메인ㆍ마하젠더형 광도파로의 분기 도파로에 부시형으로 장착하는 것을 특징으로 한다.
또, 청구범위 제3항에 관한 발명에서는, 청구범위 제2항에 기재된 캐리어 잔류형 신호의 생성 방법에 있어서 그 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로에 있어서 각 광변조의 위상 또는 강도를 조정하는 것을 특징으로 한다.
또, 청구범위 제4항에 관한 발명에서는, 청구범위 제1항 내지 제3항 중 어느 한 항에 기재된 캐리어 잔류형 신호의 생성 방법에 있어서 그 광변조부는 SSB 광변조기에 입력되는 광파의 일부 또는 그 광파와 같은 파장을 가지는 다른 광파를 그 SSB 광변조기가 출력하는 광파와 합파하는 것을 특징으로 한다.
또, 청구범위 제5항에 관한 발명은, 특정 파장을 가지는 광파를 발생하는 광원과 SSB 광변조기를 포함하는 광변조부를 가지며, 그 광원으로부터 출사하는 광파를 그 광변조부에 입사하고, 그 광변조부로부터 출사하는 광파가 O차 베셀 함수에 관한 캐리어 성분과 특정의 고차 베셀 함수에 관한 특정 신호 성분을 포함하고, 그 특정의 고차 베셀 함수 이외의 신호 성분을 억압함과 함께, 그 캐리어 성분과 그 특정 신호 성분의 광강도의 비율이 거의 1로 설정되어 있는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치이다.
또, 청구범위 제6항에 관한 발명에서는, 청구범위 제5항에 기재된 캐리어 잔류형 신호의 생성 방법에 있어서 그 SSB 광변조기는 2개의 서브ㆍ마하젠더형 광도파로를 메인ㆍ마하젠더형 광도파로의 분기 도파로에 부시형으로 장착하는 것을 특징으로 한다.
또, 청구범위 제7항에 관한 발명에서는, 청구범위 제6항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 SSB 광변조기를 구성하는 2개의 서브ㆍ 마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로 상에 막체(膜體)를 형성 또는 그 막체의 일부를 제거하는 것을 특징으로 한다.
또, 청구범위 제8항에 관한 발명에서는, 청구범위 제6항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로는 각 마하젠더형 광도파로내 2개의 분기 도파로와 그 분기 도파로에 변조 전계 또는 직류 바이어스 전계를 인가하는 전극과의 배치가 그 2개의 분기 도파로에 대하여 비대칭 구조를 가지는 부분을 구비하는 것을 특징으로 한다.
또, 청구범위 제9항에 관한 발명에서는, 청구범위 제6항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로는 각 마하젠더형 광도파로내 2개의 분기 도파로에 변조 전계 또는 직류 바이어스 전계를 인가하는 전극과 그 분기 도파로에 인가하는 전계를 조정하기 위한 조정용 전극을 가지는 것을 특징으로 한다.
또, 청구범위 제10항에 관한 발명에서는, 청구범위 제5항 내지 제9항 중 어느 한 항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 광변조부는 SSB 광변조기와 그 SSB 광변조기의 입력부와 출력부를 연결하는 바이패스용 광도파로를 가지는 것을 특징으로 한다.
또, 청구범위 제11항에 관한 발명에서는, 청구범위 제10항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 SSB 광변조기와 그 바이패스용 광도파로는 동일 기판 상에 형성되어 있는 것을 특징으로 한다.
또, 청구범위 제12항에 관한 발명에서는, 청구범위 제10항 또는 제11항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 바이패스용 광도파로의 도중에 그 바이패스용 광도파로내를 전반(傳搬)하는 광파의 강도를 조정하기 위한 광강도 조정수단을 배치하는 것을 특징으로 한다.
또, 청구범위 제13항에 관한 발명에서는, 청구범위 제5항 내지 제9항 중 어느 한 항에 기재된 캐리어 잔류형 신호의 생성 장치에 있어서 그 광변조부는 SSB 광변조기에 입력되는 광파와 같은 파장을 가지는 다른 광원의 광파를 그 SSB 광변조기의 출력부에 있어서 합파하는 구성을 가지는 것을 특징으로 한다.
청구범위 제1항에 관한 발명에 따라, SSB 광변조기를 이용하여 0차의 캐리어 성분과 고차의 특정 신호 성분을 간단한 구성이면서 용이하게 생성할 수 있다. 또한, SSB 광변조기는 그 광변조기에 인가되는 신호 주파수에 대응한 특정 신호 성분을 출력하므로, 캐리어 성분과 특정 신호 성분의 주파수의 차가 항상 일정하고, 안정된 2개의 다른 주파수를 가지는 광파를 출력하는 것이 가능하게 된다.
또한, 캐리어 성분과 특정 신호 성분과의 강도비를 거의 1로 함으로써 자기(自己) 헤테로다인형 전송 시스템에 있어서 헤테로다인 효과가 가장 현저해져서, 이 시스템을 이용한 광계측 응용이나 광섬유 무선통신에 있어서 특히 유용하게 활용하는 것이 가능하게 된다.
청구범위 제2항에 관한 발명에 따라, SSB 광변조기로서 2개의 서브ㆍ마하젠더형 광도파로를 메인ㆍ마하젠더형 광도파로의 분기 도파로에 부시형을 채용하고 있기 때문에, 특정 신호 성분으로서 고차 베셀 함수에 관한 신호 성분으로부터 임의의 신호 성분을 선택하는 것 및 특정 신호 성분 이외의 고차 신호 성분의 억압, 나아가서는 캐리어 성분과 특정 신호 성분의 광강도의 비율을 거의 1로 유지하는 등 다양한 제어가 가능하게 된다.
특히, 청구범위 제3항에 관한 발명과 같이, SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로에 있어서 각 광변조의 위상 또는 강도를 조정함으로써 용이하게 상기의 복잡한 제어를 실현하는 것이 가능하게 된다.
청구범위 제4항에 관한 발명에 따라, SSB 광변조기에 입력되는 광파의 일부 또는 그 광파와 같은 파장을 가지는 다른 광파를 그 SSB 광변조기가 출력하는 광파와 합파함으로써, SSB 광변조기에 있어서 저하되는 경향이 있는 캐리어 성분을 보상하기 때문에, 자기 헤테로다인형 전송 시스템에 있어서 헤테로다인 효과가 가장 높고 캐리어 성분과 특정 신호 성분의 광강도의 비율을 거의 1로 유지하는 것이 가능하게 된다.
청구범위 제5항에 관한 발명에 따라, 상기 청구범위 제1항에 관한 발명과 마찬가지로 SSB 광변조기를 이용하여 0차의 캐리어 성분과 고차의 특정 신호 성분이 간단한 구성이면서 용이하게 생성될 수 있다. 또한, SSB 광변조기에 의해 캐리어 성분과 특정 신호 성분의 주파수의 차를 항상 일정하게 유지할 수 있고, 안정된 2개의 다른 주파수를 가지는 광파를 출력하는 것이 가능하게 된다.
또한, 캐리어 성분과 특정 신호 성분의 강도비를 거의 1로 함으로써, 자기 헤테로다인형 전송 시스템에 있어서 헤테로다인 효과가 가장 현저해지고, 이 시스템을 이용한 광계측이나 광섬유 무선통신에 있어서 특히 유용하게 활용하는 것이 가능하게 된다.
또 청구범위 제6항에 관한 발명에 따라, 상기 청구범위 제2항에 관한 발명과 마찬가지로 특정 신호 성분으로서 고차 베셀 함수에 관한 신호 성분으로부터 임의의 신호 성분을 선택하는 것 및 특정 신호 성분 이외의 고차 신호 성분의 억압, 나아가서는 캐리어 성분과 특정 신호 성분과의 광강도의 비율을 거의 1로 유지하는 등 다양한 제어가 가능하게 된다.
청구범위 제7항에 관한 발명에 따라, SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로 상에 버퍼층(SiO2, Ta205 등) 등의 막체를 형성 또는 그 일부를 제거함으로써, 각 광도파로내를 전파(傳播)하는 광파의 위상을 조정하는 것이 가능하게 되기 때문에, 특정 신호 성분으로서 고차 베셀 함수에 관한 신호 성분으로부터 임의의 신호 성분을 선택하는 것 및 특정 신호 성분 이외의 고차 신호 성분의 억압, 나아가서는 캐리어 성분과 특정 신호 성분의 광강도의 비율을 거의 1로 유지하는 등 다양한 제어를 용이하게 실현하는 것이 가능하게 된다.
청구범위 제8항에 관한 발명에 따라, SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로는 각 마하젠더형 광도파로내 2개의 분기 도파로와 그 분기 도파로에 변조 전계 또는 직류 바이어스 전계를 인가하는 전극과의 배치가 그 2개의 분기 도파로에 대하여 비대칭구조를 가지는 부분을 구비함으로써, 각 광도파로내를 전파하는 광파의 위상 상태를 비대칭으로 조정하는 것이 가능하게 되기 때문에, 상기와 같은 다양한 제어를 용이하게 실현하는 것이 가능하게 된다.
청구범위 제9항에 관한 발명에 따라, SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로는 각 마하젠더형 광도파로내 2개의 분기 도파로로 변조 전계 또는 직류 바이어스 전계를 인가하는 전극에 추가로, 그 분기 도파로에 인가하는 전계를 조정하기 위한 조정용 전극을 형성하고 있기 때문에, 그 조정용 전극에 의해 그 분기 도파로내를 전파하는 광파의 위상을 조정하는 것이 가능하게 된다. 또한, 각 마하젠더형 광도파로에 설치된 변조 신호 또는 직류 바이어스 신호가 상호 연동하고 있는 경우에 있어서도 조정용 전극에 의해 개별적으로 위상 조정하는 것이 가능하게 된다.
청구범위 제10항에 관한 발명에 따라, 광변조부가 SSB 광변조기와 그 SSB 광변조기의 입력부와 출력부를 연결하는 바이패스용 광도파로를 가지고 있기 때문에, 상기 청구범위 제4항에 관한 발명과 마찬가지로 SSB 광변조기에 있어서 저하하는 경향이 있는 캐리어 성분을 보상하고, 자기 헤테로다인형 전송 시스템에 있어서 헤테로다인 효과가 가장 높은, 캐리어 성분과 특정 신호 성분의 광강도의 비율을 거의 1로 유지하는 것이 가능하게 된다.
청구범위 제11항에 관한 발명에 따라, 상기 청구범위 제10항에 관한 발명의 효과에 더해, SSB 광변조기와 바이패스용 광도파로가 동일 기판 상에 형성되어 있기 때문에 장치를 구성하는 부품을 삭감할 수 있음과 함께, 제조 비용의 삭감, 장치의 컴팩트화 등을 달성하는 것이 가능하게 된다.
청구범위 제12항에 관한 발명에 따라, 바이패스용 광도파로를 전반하는 광파의 광강도를 조정함으로써 캐리어 성분과 특정 신호 성분과의 광강도의 비율을 거의 1 등의 최적의 값으로 제어하는 것이 가능하게 된다.
청구범위 제13항에 관한 발명에 따라, 광변조부가 SSB 광변조기에 입력되는 광파와 같은 파장을 가지는 다른 광원의 광파를 그 SSB 광변조기의 출력부에 있어서 합파하는 구성을 가지고 있기 때문에, 상기 청구범위 제4항에 관한 발명과 마찬가지로 SSB 광변조기에 있어서 저하되는 경향이 있는 캐리어 성분을 보상하고, 자기 헤테로다인형 전송 시스템에 있어서 헤테로다인 효과가 가장 높은, 캐리어 성분과 특정 신호 성분의 광강도의 비율을 거의 1로 유지하는 것이 가능하게 된다.
도 1은 단독 MZ 광도파로에 있어서 SSB 광변조의 개략을 나타내는 도면이다.
도 2는 2개의 서브 MZ 광도파로와 하나의 메인 MZ 광도파로를 가지는 SSB 변조기의 개략을 나타내는 도면이다.
도 3은 SSB 변조기의 서브 MZ 광도파로의 역할을 나타내는 도면이다.
도 4는 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 이용한 광섬유 무선통신 시스템의 개략도이다.
도 5는 본 발명에 관한 제1 실시예를 나타내는 도면이다.
도 6은 본 발명에 관한 제1 실시예에 있어서 광스펙트럼 분포 상태를 나타내는 그래프이다.
도 7은 본 발명에 관한 제1 실시예에 있어서 P1과 Ps의 비 및 광 위상 변조 지수(m)에 관한 캐리어 성분 및 신호 성분의 출력 변화를 나타내는 그래프이다.
도 8은 캐리어 성분과 특정 신호 성분의 광강도비를 자동 조정하기 위한 구성을 나타내는 도면이다.
도 9는 본 발명에 관한 제2 실시예를 나타내는 도면이다.
도 10은 변조 전극과 광도파로의 배치 관계를 대칭(a) 또는 비대칭(b)으로 한 경우의 개략을 나타내는 도면이다.
도 11은 조정용 전극을 이용하는 경우 광도파로의 근방에 있어서 배치 상태를 나타내는 도면이다.
도 12는 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 이용한 광섬유 무선통신 시스템의 특성 평가방법의 개략을 나타내는 도면이다.
도 2는 2개의 서브 MZ 광도파로와 하나의 메인 MZ 광도파로를 가지는 SSB 변조기의 개략을 나타내는 도면이다.
도 3은 SSB 변조기의 서브 MZ 광도파로의 역할을 나타내는 도면이다.
도 4는 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 이용한 광섬유 무선통신 시스템의 개략도이다.
도 5는 본 발명에 관한 제1 실시예를 나타내는 도면이다.
도 6은 본 발명에 관한 제1 실시예에 있어서 광스펙트럼 분포 상태를 나타내는 그래프이다.
도 7은 본 발명에 관한 제1 실시예에 있어서 P1과 Ps의 비 및 광 위상 변조 지수(m)에 관한 캐리어 성분 및 신호 성분의 출력 변화를 나타내는 그래프이다.
도 8은 캐리어 성분과 특정 신호 성분의 광강도비를 자동 조정하기 위한 구성을 나타내는 도면이다.
도 9는 본 발명에 관한 제2 실시예를 나타내는 도면이다.
도 10은 변조 전극과 광도파로의 배치 관계를 대칭(a) 또는 비대칭(b)으로 한 경우의 개략을 나타내는 도면이다.
도 11은 조정용 전극을 이용하는 경우 광도파로의 근방에 있어서 배치 상태를 나타내는 도면이다.
도 12는 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 이용한 광섬유 무선통신 시스템의 특성 평가방법의 개략을 나타내는 도면이다.
<발명을 실시하기 위한 최선의 형태>
이하, 본 발명을 적합예를 이용하여 상세하게 설명한다.
도 4는 본 발명에 관한 캐리어 잔류형 신호의 생성 방법 및 그 장치가 적용되는 광섬유 무선통신 시스템의 개략을 나타내는 도면이다.
본 발명은 도 1과 같은 광섬유 무선통신 시스템에 한정되지 않고, 광 헤테로다인 간섭계 등 광계측 분야에 있어서도 적용 가능하다.
도 4의 광섬유 무선 시스템의 다운계 시스템에 있어서, 기지국(1)은 원하는 밀리미터파 주파수가 얻어지는 광 주파수차(fRF)로 동작시킨 2개의 광원(2, 3)과, IF(Intermediary Frequency)대(帶) 아날로그 변조 신호 발생기(5) 및 SSB 광변조기를 포함하는 광변조부(4)로 구성된다.
광변조부에 관해서는 후에 상세히 서술한다. 광변조부(4)에서는 광원(2)으로부터의 광파(주파수(f1))가 입사되고, IF대 아날로그 변조 신호 발생기(5)에 의해 인가되는 주파수(IF)의 마이크로파에 의한 광변조를 실시한다. 그 결과로서, 캐리어 성분(주파수(f1))과 신호 성분(주파수(f1+IF))을 포함하는 광파를 출사한다. 이 상태를 나타내는 것이 a점에 있어서 광스펙트럼이다. 또한, 캐리어 성분과 신호 성분의 광강도의 비는 거의 1로 되도록 설정되어 있다.
변조 주파수는 전기/광변환과 신호 생성이 용이한 IF대로 한다. 만약, 밀리미터파 신호로 변조(전기/광변환)를 실시하는 시스템 구성을 채용하면, 공진형 전극 구조나 역슬롯형 전극 구조를 가지는 밀리미터파대의 고효율 변조기가 필요하게 되는데다가, 이 경우에는 특정의 고차 베셀 함수에 관한 특정 신호 성분 이외의 신호 성분을 억압하는 것이 어렵기 때문에 섬유 전송 중에 분산 패널티의 영향을 강하게 받는 등의 과제가 생긴다.
또, 예를 들면, IF대를 변조 주파수에 이용해도 송신국측으로부터 국발광을 함께 송신하지 않고 섬유 전송시키는 시스템 구성에서는 발진기를 탑재한 복잡하면서 고가인 리모트 안테나국이 필요하게 된다고 하는 과제가 있다.
도 4에 나타내는 광섬유 무선통신 시스템에서는 리모트 안테나국에 발진기를 탑재하지 않고, 또한 변조광은 수 km에 걸쳐 분산 패널티의 영향을 받지 않고 저손실로 섬유 전송할 수 있다는 특징을 가지고 있다.
즉, 광원(1)의 주파수(f1)보다 밀리미터파 주파수에 상당하는 광 주파수차(fRF)만큼 낮은 주파수(f2(f1-fRF))의 광파가 광원(3)으로부터 출사되어 광섬유(7)를 전파한다. 광변조부(4)로부터 출사된 광파는 광섬유(6)를 전파하고 광결합부(8)에서 주파수(f2)의 광파와 합파된다. 합파된 광파는 3개의 스펙트럼을 가지는 광파이며 광섬유(9)에 의해 장거리의 전송이 가능하다. 광섬유(9)를 전파하는 광파의 광스펙트럼은 b점에 나타내는 분포를 구성한다.
리모트 안테나국(10)은 광/전기 변환부(11)과 증폭기(12)만의 간단한 구성으로 이루어진다. 종래의 시스템에서는 무선 신호에 있어서 주파수 이용 효율의 향상을 도모하기 위해 불필요한 고차 신호 성분을 제거하도록 설계된 RF 필터(BPF)를 리모트 안테나국내에 실장해야 했다.
그러나 도 4에 나타내는 광섬유 무선통신 시스템에서는 기지국(1)측에 충분히 불필요한 고차 신호 성분을 억압한 신호가 생성 가능하기 때문에 리모트 안테나국(10)을 RF 필터가 없는 저비용이면서 간결한 구성으로 하는 것이 가능하게 된다.
또 이와 같은 리모트 안테나국(10)이라면 송신국측에서 캐리어 주파수를 변경해도 즉시 대응할 수 있기 때문에 보다 자유도가 높은 리모트 안테나 시스템을 실현할 수 있다.
광/전기 변환부(11)에서 제곱 검파된 신호는 증폭기(12)에 의해 증폭되고 송신 안테나(13)로부터 캐리어 주파수(fRF)로 변조 주파수(IF)를 가지는 이미지 억압형 신호로서 무선 전송된다(도 4의 c점의 무선 신호 스펙트럼을 참조).
수신 단말(15)은 발진기를 포함하지 않는 저비용의 구성으로 이루어진다. 수신 안테나(14)로부터 수신된 전기 신호는 제곱 검파 회로(16)를 구성하는 증폭기, 밴드 패스 필터 및 제곱 검파기를 통해서 제곱 검파된 재생 신호를 생성한다. 원리상, 기지국측의 위상 잡음 성분이나 주파수 오프셋 성분을 전혀 포함하지 않고 검출하는 것이 가능하다. 즉, 광원(2, 3)이 출사하는 광파의 편차에 기인하는 광비트 주파수의 편차에 전혀 영향을 받지 않는 고안정된 IF 신호 성분을 재생할 수 있다.
검파된 IF 신호는 증폭기(17) 및 IF 복조 회로(18)에 의해 신호 데이터로서 출력된다.
실시예
1
이하에, 광변조부(4)에 있어서 캐리어 잔류형 신호의 생성 방법에 관하여 실시예를 기초로 설명한다.
도 5는 2개의 서브 MZ와 1개의 메인 MZ를 가지는 SSB 광변조기를 이용한 광변조부의 예이며, 특히 SSB 광변조기에 입사하는 광파와 같은 주파수를 가지는 광파를 SSB 광변조기의 출구측에서 합파시키는 구조를 가지고 있다.
도 5의 (a)에서는 레이저 광원(51)으로부터 출사된 특정 파장의 광파는 광섬유(52)를 전파하고, 광커플러 또는 Y자 형상 광도파로 등에 의한 광분기부(53)에 의해 광파를 2개로 나누고, 한 쪽을 SSB 광변조기(54)로 다른 쪽을 바이패스용 광도파로(56)로 유도한다. 그리고 SSB 광변조기(54)로부터 출사하는 광파와 바이패스용 광도파로(56)를 전파하는 광파는 광커플러 또는 Y자 형상 광도파로 등에 의한 광합파부(57)에 의해 합파되어 광섬유(58)를 전파하여 외부로 출사된다.
SSB 광변조기(54)에는 2개의 서브 MZ 광도파로(60, 61)와 1개의 메인 MZ 광도파로(62)가 부시형으로 형성되어 있으며, 도 2와 마찬가지로 서브 MZ 광도파로 상에 배치한 RF 전극(2포트) 및 각 서브 MZ 광도파로와 메인 MZ 광도파로의 위상 변화량을 조정하기 위한 직류 바이어스 전극(3포트)이 형성되어 있다.
RF 전극에 변조 신호를 가하면 서브 MZ의 각 분기 도파로 안의 위상 변조광은 제1종 베셀 함수 Jn(m)(n=1, 2,…, m은 광 위상 변조 지수)에 따르므로 변조 주파수의 n배 성분에 광파워가 분배된다.
만약, RF 포트에 (1+H)ㆍø(t)(H는 힐베르트 계수, ø(t)는 변조 신호. 「(1+H)ㆍø(t)」는 RF 포트의 한 쪽에 ø(t)의 신호를 인가하고 다른 쪽의 RF 포트에 H[ø(t)]를 인가하는 것을 의미함)를 만족하는 신호를 가하면 SSB 광변조기의 출력 Eout의 특성은
Eout=Ein/2*exp(jω0t)*{exp(jmcosΩt)+exp(jd1)*exp(-jmcosΩt)+exp(jd2)*exp(jmsinΩt)+exp(jd3)*exp(-jmsinΩt)} … (3)
로 표시된다. 여기서, Ein는 SSB 광변조기(54)로의 입력광의 진폭, ω0는 입력광의 각(角)주파수, Ω는 변조 신호의 각주파수, m은 광 위상 변조 지수, d1~d3은 각각 인가 전압량에 따라 주어지는 각 광도파로의 위상 변화량이다.
또한, 광 위상 변조 지수(m)는 다음 식으로 정의된다.
m = π*(V/Vπ)……(4)
여기에서, V는 변조 신호 RF의 진폭값이며, Vπ는 서브 MZ의 각 분기 도파로에 관해 위상 변조기로서의 반파장 전압이다(여기서, 각 분기 도파로는 모두 같은 Vπ로 가정하고 있음).
m과 동시에 d1 ~ d3을 조정하면, 합파 후, 각 광도파로에서 생성되는 Jn(ø)의 특정 성분이 동 위상일 때에는 서로 강합(强合)시키고, 역 위상일 때에는 서로 상쇄(캔슬) 등을 하여, 최종적으로 특정 성분의 추출이나 억압이 가능하게 된다.
본 발명에 관한 캐리어 잔류형 신호의 생성 방법 및 그 장치에서는, SSB 광변조기를 포함하는 광변조부에 있어서 이들의 광 위상 변조지수와 위상 변화량 등을 조정하고 캐리어 성분 및 특정한 신호 성분만을 추출함과 함께 양자의 광강도비가 거의 1로 되도록 설정함으로써 자기 헤테로다인 전송 방식의 조건을 만족하는 캐리어 잔류형 신호를 생성하고 있다.
도 5의 (a)의 SSB 광변조기(54)에 있어서, ω0=60GHz, Ω=1GHz로 하여, 상기에서 서술한 도 2의 SSB-SC 광변조기와 같이 1차 베셀 함수에 관한 신호 성분(J1)만을 추출하고 캐리어 성분(Jo) 및 다른 고차 성분을 억압하도록 제어하면, SSB 광변조기(54)로부터의 출사광은 도 6의 (a)에 나타내는 바와 같이 60GHz에서 1GHz만큼 주파수가 시프트하는 스펙트럼이 얻어진다.
여기에, 도 5의 (a)에 나타내는 바와 같이 바이패스용 광도파로(56)를 전파하는 캐리어 성분만을 가지는 광파를 합파하면, 광섬유(58)를 전파하는 광파의 광스펙트럼은 도 6의 (b)와 같이 형성된다.
캐리어 성분의 강도와 특정 신호 성분(J1)의 광강도의 비는 분기 도파로(53)의 광파의 분기비나 바이패스용 광도파로(56)에 있어서 광파의 광강도를 조정함으로써 실시하는 것이 가능하다.
또한, 바이패스용 광도파로(56) 안에 감쇠기(attenuator)를 설치하고, 바이패스용 광도파로(56) 내를 전파하는 광파의 광강도를 조정 가능하게 하는 것도 할 수 있다.
또 SSB 광변조기(54) 대신에 도 1과 같은 단독 MZ 광변조기를 이용하여 캐리어 성분 및 1차 베셀 함수에 관한 신호 성분만을 출력하도록 조정하고, SSB 광변조기로부터 출사하는 캐리어 성분과 바이패스용 광도파로(56)를 전파하는 광파(캐리어 성분과 같은 주파수)를 양자의 위상 및 광강도를 조정함으로써, 도 6의 (b)에 나타내는 바와 같은 캐리어 잔류형 신호를 생성하는 것도 가능하다.
도 5의 (a)에 있어서는 SSB 광변조기(54)의 외부에 광섬유 등에 의한 바이패스용 광도파로(56)를 설치했지만, 도 5의 (b)에 나타내는 바와 같이 SSB 광변조기를 형성하는 서브 MZ 광도파로(74, 75) 및 메인 MZ 광도파로(76)와 함께, 바이패스용 광도파로(72)를 동일 기판 상에 장착시켜 광변조부(70)를 구성하는 것도 가능하다.
이 경우에는 광분기부(71) 및 광합파부(73)도 마찬가지로 동일 기판 상에 형성하는 것이 가능하다.
광변조부(70)로부터의 출력광의 스펙트럼 분포를 조정할 때에는 도 5의 (a)와 마찬가지로 SSB 광변조부에 인가되는 광 위상 변조 지수나 위상 변화량을 조정하는 방법, 또 광분기부(71)의 광파의 분기비나 바이패스용 광도파로(72)에 있어서 광파의 광강도를 조정하는 방법 등이 있다.
또한, 도 5의 (c)에 나타내는 바와 같이 SSB 광변조기(54)로부터 출사하는 광파에 캐리어 성분에 상당하는 광파를 겹치는 방법으로서 레이저 광원(51)과 같은 파장을 가지는 다른 레이저 광원(80)을 설치하는 방법도 있다.
레이저 광원(80)으로부터 출사한 광파는 광도파로(81)를 전파하고 광합파부(82)에서 SSB 광변조기로부터 출사하는 광파와 합파된다. 그리고 합파 후의 광파는 광섬유(58)를 전파하여 외부로 출사된다.
광섬유(58)를 전파하는 광파의 스펙트럼 분포를 조정하는 것은 레이저 광원(51, 80)의 파워비를 조정하는 방법이나 SSB 광변조기에 인가되는 광 위상 변조 지수나 위상 변화량을 조정하는 방법, 또 광도파로(81)를 전파하는 광파의 강도를 조정하는 방법, 또한, 광합파부(82)에 있어서 광파의 결합비를 조정하는 방법 등이 있다.
도 7은 도 5의 (a)에 있어서 SSB 광변조기로의 입사광의 광강도(Ps)와 바이패스용 광도파로를 전파하는 광파의 광강도(P1) 및 광 위상 변조 지수(m)에 관한 캐리어 성분(Jo), 특정 신호 성분(J1), 그 외의 고차 신호 성분(J3)과의 광강도의 관계를 나타내는 그래프이다.
도 7의 (a)에 있어서는 m=0.2로 일정 상태로 유지한 경우 P1/Ps≒O.4에 있어서 캐리어 성분(Jo)과 특정 신호 성분(J1)의 광강도가 거의 1인 상태로 되는 것을 알 수 있다. 이에 따라 SSB 광변조기에 바이패스용 광도로파를 조합한 광변조부는 캐리어 잔류형 신호의 생성 방법으로서는 유효한 수단이며, 또한 P1과 Ps의 비율을 조정함으로써 용이하게 Jo와 J1의 강도비가 조정 가능하다는 것을 알 수 있다.
또, 도 7의 (b)는 광 위상 변조 지수(m)를 변화킨 경우 각 성분의 강도 변화를 나타낸 것이다. 특히, m=0.2인 경우, P1/Ps≒O.4에서 Jo와 J1의 강도비가 거의 1로 되는 경우에 있어서 P1/Ps≒2m이 되는 관계에서 m을 변화시킨 경우, 도 7의 (b)와 같이 Jo와 J1의 강도비가 거의 1인 관계를 유지하면서 변화하고 있다는 것을 알 수 있다. 이 때문에 Jo와 J1의 강도가 거의 1로 되는 관계를 만족하는 P1/Ps의 값 및 m의 값을 결정하고 P1/Ps=k×m(k는 비례 정수)을 만족하도록 m 및 P1과 Ps를 변화시킴으로써 광 위상 변조 지수(m)가 변화한 경우라도 항상 캐리어 성분(Jo)과 특정 신호 성분(J1)의 광강도가 거의 1인 상태로 유지하는 것이 가능하게 된다.
도 8은 도 5의 (a) 또는 (b)와 같이 바이패스용 광도파로를 이용한 경우에 있어서 캐리어 성분과 특정 신호 성분의 광강도비를 자동 조정하는 방법을 나타낸 도면이다.
도 5의 (a)와 마찬가지로 레이저 광원(51)으로부터 출사된 특정 파장의 광파는 광섬유를 전파하고, 광커플러 또는 Y자 형상 광도파로 등에 의한 광분기부(53)에 의해 광파를 2개로 나눠, 한 쪽을 SSB 광변조기(54)로 다른 쪽을 바이패스용 광도파로(56)로 유도한다. SSB 광변조기(54)에는 변조 회로(83)에 의해 소정의 변조 신호가 입력된다.
바이패스용 광도파로(56)의 도중에는 VOA(Variab1e Optical Attenuator) 등의 광파의 투과량을 가변 조정 가능한 광강도 조정 수단(84)을 배치한다.
그리고 SSB 광변조기(54)로부터 출사하는 광파와 바이패스용 광도파로(56)를 전파하는 광파는 광커플러 또는 Y자 형상 광도파로 등에 의한 광합파부(57)에 의해 합파되고, 광섬유(58)를 전파하여 외부로 출사된다.
만약, SSB 광변조기(54)로부터는 특정 신호 성분의 광파만 출력되고 캐리어 성분의 광파는 바이패스용 광도파로로부터 공급되는 경우에는, 도 8과 같이 광커플러(85, 87) 및 광검출기(86, 88)를 이용하여 광강도 조정 수단을 제어한다.
즉, 바이패스용 광도파로를 전반하는 광파의 일부를 광커플러(85)를 통해서 광검출기(86)로 도출하고, 또한 SSB 광변조기(54)가 출력하는 광파의 일부를 광커플러(87)를 통해서 광검출기(88)로 도출한다. 광검출기(86)의 출력은 캐리어 성분의 광강도에 대응하고 광검출기(88)의 출력은 특정 신호 성분의 광강도에 대응하기 때문에, 양자의 출력 신호를 비교기(89)로 도입하고 비교기(89)의 출력에 따라서 광강도 조정 수단(84)의 투과량을 조정한다.
이와 같은 구성에 의해 캐리어 성분과 특정 신호 성분의 광강도비를 자동조정하는 것이 가능하게 된다.
또, SSB 광변조기(54)가 캐리어 성분 및 특정 신호 성분을 포함하는 광파를 출력하고 있는 경우에는 광커플러(85)의 설치 위치를 광섬유(58) 상에서 광합파부 (57)보다 하류측에 설치한다. 그리고 광검출기(86)에는 캐리어 성분의 광파만 검출가능한 광검출기를, 광검출기(88)에는 특정 신호 성분의 광파만 검출 가능한 광검출기를 배치함으로써, 캐리어 성분과 특정 신호 성분의 광강도를 각각 검출하는 것이 가능하게 된다.
각 광검출기의 출력 신호는 상기와 마찬가지로 비교기(89)로 도입되고, 그 비교 결과에 기초하여 광강도 조정 수단이 제어된다.
실시예
2
다음에, 본 발명의 캐리어 잔류형 신호의 생성 방법 및 그 장치에 관한 제2 실시예에 관하여 설명한다.
도 9는 2개의 서브 MZ 광도파로(94, 95)와 1개의 메인 MZ 광도파로(96)를 가지는 SSB 광변조기(92)를 이용한 광변조부의 예이며, 특히 SSB 광변조기내의 광도파로 상에 버퍼층(SiO2, Ta205 등) 등의 막체(97)를 성막 혹은 그 일부를 트리밍함으로써 캐리어 성분과 특정 신호 성분의 추출 및 양자의 광강도비를 조정하는 것이다.
이와 같은 광변조부는 SSB 광변조기의 직류 바이어스 등을 최적으로 조정하는 것이 곤란한 경우라도 SSB 광변조기의 특성을 모니터하면서 광도파로 상에 형성된 성막 부분의 트리밍을 적절히 실시하여 최적인 설정값을 실현할 수 있다.
도 9의 (b) 및 (c)는 서브 MZ 광도파로에 관한 각 위상 상태를 이하와 같이 설정한 경우에 있어서, 막체(97)의 트리밍에 의해 캐리어 성분(Jo)과 특정 신호 성분(J1)의 광강도가 거의 1로 되도록 조정한 경우의 결과를 나타낸다.
서브 MZ 광도파로(94)의 제1아암(도 9의 (a)의 1st)을 기준으로 하여, 서브 MZ 광도파로(94)의 제2아암(2nd)의 위상차를 π, 서브 MZ 광도파로(95)의 제3아암(3rd)의 위상차를 1.1π, 그리고 서브 MZ 광도파로(95)의 제4아암(4th)의 위상차를 2.9π가 되도록 각 광도파로 인가되는 직류 바이어스 전극의 전압을 설정한다.
광 위상 변조 지수 m=0.15에 있어서 캐리어 성분(Jo)과 특정 신호 성분(J1)의 비가 거의 1로 되도록 서브 MZ 광도파로(94, 95)의 막체(97)를 트리밍하고, 그 후, 광 위상 변조 지수(m)를 변화시킨다. 도 9의 (c)는 m의 변화에 대한 캐리어 성분(Jo) 및 고차 신호 성분의 변화의 모습을 나타낸 것이다.
도 9의 (b) 및 (c)의 그래프로부터 SSB 광변조기로부터의 출력광의 스펙트럼 조정시에도 SSB 광변조기내의 각 광도파로 상에 막체를 성막 혹은 트리밍함으로써 캐리어 성분 및 특정 신호 성분의 추출 및 광강도비의 조정이 가능하게 되는 것을 알 수 있다.
실시예
3
다음에, 본 발명의 캐리어 잔류형 신호의 생성 방법 및 그 장치에 관한 다른 실시예에 관하여 설명한다.
도 1O은 SSB 광변조기내의 광도파로(114)와 변조 전극인 신호 전극(110) 및 접지 전극(111)의 배치 관계를 나타내는 도면이며, 도 10의 (a)와 같이 변조 전극과 광도파로의 배치 관계를 대칭으로 배치하는 경우와 도 10의 (b)와 같이 비대칭으로 하는 경우에서는 광도파로에 인가되는 전계 강도가 변화하기 때문에, 광 위상 변조 지수(m)나 각 광도파로를 전파하는 광파간의 위상차를 변화시키는 것이 가능하게 되고, SSB 광변조기로부터 출사하는 광스펙트럼을 조정하는 것이 가능하게 된다.
또한, 112는 전기 광학 효과를 가지는 기판, 113은 버퍼층을 나타낸다.
또, 도 11과 같이, 변조 전극을 구성하는 신호 전극(121) 및 접지 전극(122)의 사이에 분기 도파로(120)에 인가하는 전계를 조정하기 위한 조정용 전극(123, 124)을 형성하는 것도 가능하다. 이 조정용 전극에 의해 분기 도파로내를 전파하는 광파의 위상을 조정하는 것이 가능하게 된다.
예를 들면, 각 마하젠더형 광도파로에 설치된 변조 신호 또는 직류 바이어스 신호가 상호 연동하여 개별적으로 미조정하는 것이 곤란한 경우에 있어서도, 조정용 전극에 의해 각 광도파로에 대하여 개별적으로 위상을 조정하는 것이 가능하게 된다.
또한, 조정용 전극(123, 124)의 형상ㆍ배치에 대해서는 각 광도파로마다 다른 설정을 실시함으로써, 각 광도파로에 접합한 제어를 실시하는 것이 가능하게 된다.
다음에, 본 발명에 관한 캐리어 잔류형 신호의 생성 방법 및 그 장치를 광섬유 무선통신 시스템에 적용한 경우의 특성 평가방법에 관하여 설명한다.
도 12에 QPSK(Quadrature PhaseShift Keying) 신호를 이용한 전송 시험의 실험 구성예를 나타낸다.
광변조부(23)에는 상기에 서술한 도 5의 (a)의 광변조기를 이용하였다.
기지국(20)을 구성하는 광원(21, 22)에는 1.5㎛대의 파장 가변 광원을 2대 이용하였다. 광원(21 및 22)은 광스펙트럼 분석기로 60GHz대 캐리어가 얻어지도록 미리 파장차(O.48nm 정도)를 확인하면서 GP-IB(General Purpose Interface Bass)제어에 의해 각각 독립적으로 모드ㆍ록한다. 모드ㆍ록 후의 파장 안정도는 5×10-8, 선폭은 1MHz이다.
에러 분석기(42)로부터 출력되는 통신 속도 155.52Mbps의 의사 랜덤 펄스 패턴(PRBS:27-1)은 QPSK 송신기(26)에 의해 QPSK 변조(중심 주파수 700MHz)를 실시한 후, 증폭기(25)를 통해서 90도 하이브리드(24)로 입력된다. 여기에서, 변조 신호는 원신호와 힐베르트 변환된 신호로 분기되어 광변조부(23)에 삽입된 SSB 광변조기의 각 RF 포트로 입력된다.
그리고 2개의 서브 MZ 광도파로와 메인 MZ 광도파로를 가지는 SSB 광변조기에서, 3개소의 직류 바이어스 전압(27)을 조정함으로써, 특정의 고차 베셀 함수에 관한 특정 신호 성분을 제외한 신호 성분('신호 성분'을 '이미지 성분'이라고도 함)을 억압한 광신호가 생성된다. 본 실험에서는 특히 1차 베셀 함수에 관한 신호 성분을 남기기 때문에, 하측 파대 성분과 불필요한 고차 성분을 억압한 신호가 얻어지도록 바이어스 조정하고 있다.
광변조부(23)를 출사하는 광파는 광섬유(28)를 전파함과 함께 광원(22)으로부터 출사되어 광섬유(29)를 전파하고 있는 광파와 3dB 커플러(30)로 합파된다. 합파된 광캐리어 성분 및 신호 성분은 싱글ㆍ모드ㆍ섬유(SMF)(31)(섬유길이:2m, 5km, 10km) 안을 전송된다.
광/전기 변환부에는 응답 대역 50GHz의 단일 주행 캐리어ㆍ포토 다이오드(UTC-PD)(33)를 이용하였다. 또한, 이 전단(前段)에는 입력 파워를 조정하기 위한 가변광 감쇠기(32)를 삽입하였다.
송신 회로측과 수신 회로측은 도파관(35)에서 접속되어 있고, 포토 다이오드(33)의 출력은 증폭기(34)에 의해 증폭되어 도파관(35)을 전파한다. 도파관(35)의 도중에는 가변 RF 감쇠기(36)를 삽입하고, 파워 미터(38)로 모니터하면서 수신 회로로의 입력 RF 파워를 조정한다. 37은 도파관(35)을 전파하는 밀리미터파의 일부를 파워 미터(38)로 분기하는 분기 도파관이다.
수신 회로측에서는 제곱 검파 회로(39)는 GaAs를 베이스에 제작된 소형인 MMIC(Microwave Monolithic IC) 모듈이며, 증폭기와 밴드 패스 필터 및 제곱 검파기를 내장하고 있다. 얻어진 재생 신호는 증폭기(40)를 통해서 QPSK 복조기(41)로 복조된 후, 에러 분석기(42)에 의해 동기 검파되고, 송수신 신호를 비교하여 비트 오류율 특성이 취득된다. 또한, 본 실험에서는 에러 정정 처리는 동작시키지 않았다.
상기의 특성 평가방법에 의해 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 이용한 광섬유 무선통신 시스템의 특성을 조사하면 이하의 결과가 얻어진다.
(1) RF 신호의 생성과 검파 스펙트럼
생성 스펙트럼의 캐리어 주파수는 59.53GHz, IF 신호는 중심 주파수 700MHz 의 무변조파로 하였다.
광 위상 변조 지수(m)가 낮은 경우에, 이미지 성분은 충분히 억압되어 있는 것으로서 J1/Jo≒1로는 되지 않지만, 광 위상 변조 지수를 증대시켜서 m=O.6 부근으로 설정하면 이미지 억압비(J1/Jo과 J2/Jo와의 차)가 약 30dB를 확보할 수 있고, 또한 J1/Jo≒1이 되는 스펙트럼을 생성할 수 있었다.
또한, 광 위상 변조 지수를 0.6 이상으로 보다 높게 설정하면, 불필요한 하측파대(J1)나 고차 성분(J2, J3)이 발생하여 J+1 /Jo≠1이 되는 경향이 있다.
광 위상 변조 지수를 약 0.6으로 설정하여 이용하는 경우에는 안테나국에 있어서 RF 필터를 이용하지 않아도 60GHz대 기술 기준인 스프리어스-1OdBm 이하를 달성할 수 있는 것을 확인할 수 있었다.
또, 광비트 주파수에 의한 주파수 오프셋이기 때문에 생성 밀리미터파의 주파수도 불안정한 것이 되고, 오프셋량은 최대 20MHz(품질:334ppm)이 되는 것이 확인되었다. 그러나 송신된 무선 신호를 재생했을 때 재생 신호의 안정성은 높고, 자기 헤테로다인 전송 방식의 이점인 광비트 주파수의 편차에 영향을 받기 어려운 특성을 확인할 수 있었다.
이 때문에, 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 광 밀리미터파 비트 신호 생성법에 적용한 경우라도 통신 시스템으로 이용 가능한 안정된 신호를 재생할 수 있는 것을 확인할 수 있었다. 단, 생성 밀리미터파의 주파수 오프셋량은 60GHz대 무선의 품질 기준내(500ppm 이하)로 수렴시킬 필요가 있고, 이용하는 각 광원은 발진 파장에 대한 파장 안정도 8×10-8 이하인 것을 이용하는 것이 바람직하다.
(2) 신호 전송 특성
SSB 광변조기의 광 위상 변조 지수는 m=O.19π로 하고, UTC-PD에서의 입력 파워는 -2.6dBm으로 설정하고, 광섬유길이는 2m, 5km, 10km의 3종류를 측정하였다.
수신 RF 파워가 -60dBm 이하에서는 거의 섬유길이에 의존하지 않는 CN(캐리어 대 노이즈)비 특성이 얻어지고, 수신 RF 파워가 -60dBm 이상에서는 비선형인 CN비 특성을 나타냈다. 이는 검파기의 입력 상한 레벨이 가깝기 때문이라고 상정된다.
또 회선 설계값으로서 안테나 송신 전력 10mW, 신호 대역 100MHz, 안테나 이득 6dBi(송수), 공간 거리 5m를 이용한 경우, 산출되는 수신 RF 파워는 -60dBm이 된다. 동 실험 결과로부터 이 때에 얻어지는 CN비는 20dB였다.
수신 RF 파워에 대한 QPSK/155.52Mbps 신호(중심 주파수 700MHz)의 오류율 특성을 평가하였다. 실험계의 설정(광 위상 변조 지수, PD 입력 파워, 섬유길이)은 CN비 측정시와 동 조건으로 하였다.
실험 결과, 비트 오류율은 수신 RF 파워 -62dBm ~ -72dBm에 걸쳐서 섬유길이에 거의 의존하지 않고 -60dBm 이하에서 에러 프리가 되는 것을 알 수 있었다.
상기에서 서술한 바와 마찬가지로 회선 설정값으로 안테나 송신 전력 10mW, 안테나 이득 6dBi(송수)를 이용하면, 비트 오류율은 공간 거리 5mdpt에서 에러 프리, 12m에서 10-4이 되는 결과가 얻어졌다.
또, 8PSK 신호(중심 주파수 700MHz)를 10km에 걸쳐서 섬유 전송시켰을 때에, 얻어지는 수신 I-Q 배열(constelliation)을 조사한 바, 10km 섬유 전송시켜도 원신호와 비교하여 손색이 없는 양호한 배열이 얻어지는 것을 알 수 있었다. 또한, 광대역 변조 신호의 전송예로서 BS방송 신호(8PSK, 멀티 캐리어)의 전송을 시험하였다. 10km에 걸쳐 섬유 전송시켜 리모트 안테나국에서 무선 송신한 경우라도 BS방송 신호를 단말로 수신할 수 있는 것이 확인되었다.
이 결과에 의해, 광대역의 디지털 변조 신호라도 본 발명에 관한 캐리어 잔류형 신호의 생성 장치를 이용한 광섬유 무선통신 시스템에 있어서는 10km에 걸쳐 양호하게 전송할 수 있는 것을 확인하였다.
본 발명은 이상 설명한 것에 한정되는 것은 아니고 본 발명의 목적을 일탈하지 않는 범위에 있어서 당해 기술 분야에 있어서 공지된 기술을 부가한 것도 포함하는 것임은 말할 필요도 없다.
이상, 설명한 바와 같이, 본 발명에 따르면, 광계측 분야나 광섬유 무선통신분야에서 이용되는 헤테로다인형의 광신호를 간단한 구조에서로, 또한 안정하게 발생시키는 것을 가능하게 하는 캐리어 잔류형 신호의 생성 방법 및 그 장치를 제공할 수 있다.
1 기지국
2, 3 광원
4 광변조부
5 IF대 아날로그 변조 신호 발생기
9 광섬유
10 리모트 안테나국
11 광/전기 변환부
12 증폭기
54 SSB 광변조기
56 바이패스용 광도파로
57 광합파부
58 광섬유
60, 61 서브 MZ 광도파로
70 광변조부
71 광분기부
72 바이패스용 광도파로
73 광합파부
2, 3 광원
4 광변조부
5 IF대 아날로그 변조 신호 발생기
9 광섬유
10 리모트 안테나국
11 광/전기 변환부
12 증폭기
54 SSB 광변조기
56 바이패스용 광도파로
57 광합파부
58 광섬유
60, 61 서브 MZ 광도파로
70 광변조부
71 광분기부
72 바이패스용 광도파로
73 광합파부
Claims (9)
- 특정 파장을 가지는 광파를, SSB 광변조기와 그 SSB 광변조기의 입력부와 출력부를 연결하는 바이패스용 광도파로를 동일 기판 상에 형성한 광변조부에 입사하고, 그 광변조부로부터 출사하는 광파가, O차 베셀(bessel) 함수에 관한 캐리어 성분과 특정의 고차 베셀 함수에 관한 특정 신호 성분을 포함하고, 그 특정의 고차 베셀 함수 이외의 신호 성분을 억압함과 함께, 그 캐리어 성분과 그 특정 신호 성분의 광강도의 비율이 -10 ~ +12dB의 범위로 설정되어 있는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 방법.
- 청구항 1에 있어서,
상기 SSB 광변조기는 2개의 서브ㆍ마하젠더형 광도파로를 메인ㆍ마하젠더형 광도파로의 분기 도파로에 부시형(bushing)으로 장착하는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 방법. - 청구항 2에 있어서,
상기 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로에 있어서 각 광변조의 위상 또는 강도를 조정하는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 방법. - 특정 파장을 가지는 광파를 발생하는 광원과, SSB 광변조기와 그 SSB 광변조기의 입력부와 출력부를 연결하는 바이패스용 광도파로를 동일 기판 상에 형성한 광변조부를 가지며,
그 광원으로부터 출사하는 광파를 그 광변조부에 입사하고, 그 광변조부로부터 출사하는 광파가, O차 베셀 함수에 관한 캐리어 성분과 특정의 고차 베셀 함수에 관한 특정 신호 성분을 포함하고, 그 특정의 고차 베셀 함수 이외의 신호 성분을 억압함과 함께, 그 캐리어 성분과 그 특정 신호 성분의 광강도의 비율이 -10 ~ +12dB의 범위로 설정되어 있는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치. - 청구항 4에 있어서,
상기 SSB 광변조기는 2개의 서브ㆍ마하젠더형 광도파로를 메인ㆍ마하젠더형 광도파로의 분기 도파로에 부시형으로 장착하는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치. - 청구항 5에 있어서,
상기 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로 상에 막체(膜體)를 형성 또는 그 막체의 일부를 제거하는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치. - 청구항 5에 있어서,
상기 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인ㆍ마하젠더형 광도파로는, 각 마하젠더형 광도파로내 2개의 분기 도파로와 그 분기 도파로에 변조 전계 또는 직류 바이어스 전계를 인가하는 전극과의 배치가 상기 2개의 분기 도파로에 대하여 비대칭 구조를 가지는 부분을 구비하는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치. - 청구항 5에 있어서,
상기 SSB 광변조기를 구성하는 2개의 서브ㆍ마하젠더형 광도파로 또는 메인 ㆍ마하젠더형 광도파로는 각 마하젠더형 광도파로내 2개의 분기 도파로에 변조 전계 또는 직류 바이어스 전계를 인가하는 전극과 상기 분기 도파로에 인가하는 전계를 조정하기 위한 조정용 전극을 가지는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치. - 청구항 4 내지 청구항 8 중 어느 한 항에 있어서,
상기 바이패스용 광도파로의 도중에, 그 바이패스용 광도파로내를 전반(傳搬)하는 광파의 강도를 조정하기 위한 광강도 조정 수단을 배치하는 것을 특징으로 하는 캐리어 잔류형 신호의 생성 장치.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2004/003852 WO2005091532A1 (ja) | 2004-03-22 | 2004-03-22 | キャリア残留型信号の生成方法及びその装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067021739A Division KR20060133039A (ko) | 2006-10-19 | 2004-03-22 | 캐리어 잔류형 신호의 생성 방법 및 그 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110042390A KR20110042390A (ko) | 2011-04-26 |
KR101055880B1 true KR101055880B1 (ko) | 2011-08-09 |
Family
ID=34994049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020117007939A KR101055880B1 (ko) | 2004-03-22 | 2004-03-22 | 캐리어 잔류형 신호의 생성 방법 및 그 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7869668B2 (ko) |
JP (1) | JPWO2005091532A1 (ko) |
KR (1) | KR101055880B1 (ko) |
CN (1) | CN1926791B (ko) |
WO (1) | WO2005091532A1 (ko) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7634201B2 (en) * | 2006-09-05 | 2009-12-15 | Oewaves, Inc. | Wideband receiver based on photonics technology |
JP5168685B2 (ja) * | 2007-09-18 | 2013-03-21 | 独立行政法人情報通信研究機構 | 直交振幅変調信号発生装置 |
JP5137042B2 (ja) * | 2008-03-07 | 2013-02-06 | 独立行政法人情報通信研究機構 | 高精度マッハツェンダー干渉計を有する光変調器の特性評価方法 |
WO2009113128A1 (ja) * | 2008-03-13 | 2009-09-17 | 独立行政法人情報通信研究機構 | 複数マッハツェンダー干渉計を有する光変調器の特性評価方法 |
JP4991610B2 (ja) * | 2008-03-24 | 2012-08-01 | 住友大阪セメント株式会社 | 光変調器の半波長電圧の測定方法 |
JP4692601B2 (ja) * | 2008-09-26 | 2011-06-01 | 沖電気工業株式会社 | 光位相同期ループ回路 |
US8442361B1 (en) * | 2008-11-19 | 2013-05-14 | Lockheed Martin Corporation | Apparatus and method of linearization in an optical modulator |
EP2247004B1 (en) * | 2009-04-28 | 2015-06-03 | Alcatel Lucent | A method for data transmission using a LINC amplifier, a LINC amplifier, a transmitting device, a receiving device, and a communication network therefor |
JP5390972B2 (ja) * | 2009-07-16 | 2014-01-15 | 古河電気工業株式会社 | 光位相変調器および光位相変調装置 |
WO2011070448A2 (en) * | 2009-11-30 | 2011-06-16 | Graham Town | Radio-over-fiber communication system |
US8705972B2 (en) * | 2010-05-11 | 2014-04-22 | Hewlett-Packard Development Company, L.P. | Energy-efficient and fault-tolerant resonator-based modulation and wavelength division multiplexing systems |
CN102571207B (zh) * | 2010-10-29 | 2015-08-19 | 中兴通讯(美国)公司 | 用于光学无线架构的方法和装置 |
WO2013000511A1 (en) * | 2011-06-29 | 2013-01-03 | Telefonaktiebolaget L M Ericsson (Publ) | Individual information in lower and upper optical sidebands |
MY170566A (en) * | 2011-12-28 | 2019-08-19 | Telekom Malaysia Berhad | A communications system |
JP5640195B2 (ja) * | 2012-04-04 | 2014-12-17 | 独立行政法人情報通信研究機構 | 複数マッハツェンダー干渉計を有する光変調器の特性評価方法 |
JP5983256B2 (ja) * | 2012-09-28 | 2016-08-31 | 住友大阪セメント株式会社 | 光変調器 |
JP6383592B2 (ja) * | 2014-07-16 | 2018-08-29 | Kddi株式会社 | 光送信装置、無線送信装置及び無線受信装置 |
US10401655B2 (en) * | 2016-12-16 | 2019-09-03 | Elenion Technologies, Llc | Bias control of optical modulators |
WO2018145081A1 (en) * | 2017-02-06 | 2018-08-09 | Intel IP Corporation | Generation node-b (gnb), user equipment (ue) and methods of synchronization based on synchronization signal (ss) blocks in new radio (nr) systems |
CN110138456B (zh) | 2018-02-08 | 2021-07-09 | 华为技术有限公司 | 光器件及光信号处理方法 |
TWI761702B (zh) * | 2019-09-10 | 2022-04-21 | 緯創資通股份有限公司 | 無線相容認證自動頻道選擇方法及其通訊裝置 |
CN113253450B (zh) * | 2021-05-18 | 2022-06-21 | 浙江大学 | 一种低损耗集成弯曲光波导及其设计方法 |
US20210409122A1 (en) * | 2021-06-01 | 2021-12-30 | Intel Corporation | Method and apparatus for linear frequency modulation of large dynamic range with single side band iq modulator for coherent lidars |
US11223432B1 (en) | 2021-08-09 | 2022-01-11 | King Abdulaziz University | System and method for determining unknown radio frequencies |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000091999A (ja) | 1998-09-11 | 2000-03-31 | Matsushita Electric Ind Co Ltd | 光伝送システム |
JP2004080409A (ja) | 2002-08-19 | 2004-03-11 | Communication Research Laboratory | 無線光融合通信システムおよび無線光融合通信方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2824420B2 (ja) | 1996-06-25 | 1998-11-11 | 株式会社エイ・ティ・アール環境適応通信研究所 | 光変調装置 |
JP2001100163A (ja) * | 1999-09-30 | 2001-04-13 | Sumitomo Osaka Cement Co Ltd | 光導波路素子及び光導波路素子の位相制御方法 |
JP4646048B2 (ja) * | 2001-03-02 | 2011-03-09 | 日本電気株式会社 | 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路 |
JP3778813B2 (ja) | 2001-05-29 | 2006-05-24 | 日本電信電話株式会社 | 電磁波送信機 |
JP3764686B2 (ja) * | 2002-02-07 | 2006-04-12 | 日本電信電話株式会社 | 光送信回路 |
-
2004
- 2004-03-22 JP JP2006511103A patent/JPWO2005091532A1/ja active Pending
- 2004-03-22 KR KR1020117007939A patent/KR101055880B1/ko active IP Right Grant
- 2004-03-22 US US10/593,661 patent/US7869668B2/en not_active Expired - Fee Related
- 2004-03-22 WO PCT/JP2004/003852 patent/WO2005091532A1/ja active Application Filing
- 2004-03-22 CN CN2004800425326A patent/CN1926791B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000091999A (ja) | 1998-09-11 | 2000-03-31 | Matsushita Electric Ind Co Ltd | 光伝送システム |
JP2004080409A (ja) | 2002-08-19 | 2004-03-11 | Communication Research Laboratory | 無線光融合通信システムおよび無線光融合通信方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1926791B (zh) | 2013-08-07 |
KR20110042390A (ko) | 2011-04-26 |
CN1926791A (zh) | 2007-03-07 |
US7869668B2 (en) | 2011-01-11 |
JPWO2005091532A1 (ja) | 2008-02-07 |
WO2005091532A1 (ja) | 2005-09-29 |
US20070292142A1 (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101055880B1 (ko) | 캐리어 잔류형 신호의 생성 방법 및 그 장치 | |
US7945173B2 (en) | Control apparatus and control method for optical modulator | |
US7555223B2 (en) | UWB signal generator using optical FSK modulator | |
US6983085B2 (en) | Optical transmission circuit | |
US7761012B2 (en) | Optical communication system and method for generating dark return-to zero and DWDM optical MM-Wave generation for ROF downstream link using optical phase modulator and optical interleaver | |
Ikeda et al. | Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength | |
JP4092378B2 (ja) | 光ミリ波・マイクロ波信号生成方法及びその装置 | |
US7382986B2 (en) | Signal converter, optical transmitter and optical fiber transmission system | |
US20040028418A1 (en) | Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals | |
US20100014874A1 (en) | Phase control optical fsk modulator | |
CN101515828B (zh) | 光发射机、光发射方法及光传输系统 | |
CN112415829B (zh) | 基于马赫增德尔调制器的太赫兹波信号生成方法及装置 | |
WO2004005972A2 (en) | Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals | |
Lauermann et al. | Multi-channel, widely-tunable coherent transmitter and receiver PICs operating at 88Gbaud/16-QAM | |
Griffin et al. | Integrated DQPSK transmitter for dispersion-tolerant and dispersion-managed DWDM transmission | |
US20110164844A1 (en) | Optical modulator | |
EP1833179B1 (en) | Optical reception device | |
Fan et al. | RF self-interference cancellation and frequency downconversion with immunity to power fading based on optoelectronic oscillation | |
US7526209B2 (en) | Optical frequency shift keying modulator | |
Liu et al. | Generation of optical carrier suppression millimeter-wave signal using one dual-parallel MZM to overcome chromatic dispersion | |
Htet | Generation of optical carrier suppressed signal for radio-over-fiber (RoF) system using dual-drive Mach-Zehnder modulator | |
Rausch et al. | A performance comparison of single-ended-and differential driving scheme at 64 Gbit/s QPSK modulation for InP-based IQ-Mach-Zehnder modulators in serial-push-pull configuration | |
US20040184818A1 (en) | Apparatus for generating optical carrier suppressed return-to-zero | |
KR20060133039A (ko) | 캐리어 잔류형 신호의 생성 방법 및 그 장치 | |
US20080304827A1 (en) | Frequency Shift Keying Demodulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140625 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150724 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160722 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170721 Year of fee payment: 7 |