상기와 같은 과제를 해결하기 위해서 안출된 본 발명의 반도체 소자의 열처리 시스템은 상기 반도체 소자와 상기 반도체 소자가 안착되는 지지판을 예열하여 이송하는 장입부와, 열처리 온도까지 단계적으로 유지 온도가 각각 설정되어 독립적으로 제어되는 적어도 두 개의 가열로를 포함하며, 상기 장입부에서 이송되는 상 기 반도체 소자 및 지지판을 소정의 열처리 온도로 가열하는 가열부와, 열처리 온도부터 소정의 냉각온도까지 단계적으로 유지 온도가 각각 설정되어 독립적으로 제어되는 적어도 두 개의 가열로를 포함하며, 열처리 공정이 수행되어 상기 가열부로부터 이송되는 반도체 소자와 지지판을 소정의 냉각 온도까지 냉각하는 냉각부 및 소정의 냉각온도까지 냉각된 상기 반도체 소자와 지지판이 배출되는 배출부를 구비하며, 상기 가열부와 냉각부는 내부의 열처리 공간에 외부의 공기가 유입되는 것이 방지되도록 설치되는 것을 특징으로 한다. 또한, 상기 반도체 소자의 열처리 시스템은 상기 가열부와 냉각부 사이에 설치되며, 상기 반도체 소자를 유도 가열수단에 의하여 소정 온도로 급속 가열하여 열처리하는 공정부를 더 포함하여 형성될 수 있다.
또한, 상기 장입부는 상기 지지판이 안착되며, 상면 중앙의 소정 영역에 단열홈이 형성되는 서스셉터와, 상기 서스셉터를 가열하는 가열수단과, 상기 서스셉터를 상하로 이송하는 상하이송수단과, 상기 지지판을 수평으로 이송하는 수평이송수단을 포함하여 형성될 수 있다. 이때, 상기 서스셉터는 알루미늄 금속 또는 합금, 알루미늄 산화물, 알루미늄 나이트라이드, 보론 나이트라이드, 흑연을 포함하는 재질 중 어느 하나로 형성되며, 상기 지지판의 면적보다 큰 면적으로 형성될 수 있다. 또한, 상기 단열홈은 상기 지지판이 상기 서스셉터의 상면에 안착될 때, 상기 지지판 면적의 20% 내지 70%의 면적을 갖도록 형성될 수 있다. 또한, 상기 단열홈은 트렌치 형상이 다수 개 배열되어 형성되며, 트렌치 폭이 트렌치 형성간격과 같거나 작게 형성될 수 있다. 또한, 상기 단열홈은 트렌치 중앙부의 폭이 양측단의 폭보다 크게 되도록 형성될 수 있다. 또한, 상기 단열홈은 수평 단면이 다각형 형상인 홈이 다수 개 배열되어 형성될 수 있다.
또한, 상기 가열수단은 상기 서스셉터의 내부에 내장되거나 또는 하부에 장착되어 형성될 수 있으며, 저항히터 또는 램프히터로 형성될 수 있다.
또한, 상기 상하이송수단은 상기 서스셉터의 하부에 설치되는 공압실린더 또는 볼스크류 이송기구 또는 타이밍벨트로 형성될 수 있다.
또한, 상기 수평이송수단은 롤러와 이를 회전시키는 모터를 포함하여 형성되며, 상기 롤러는 상기 서스셉터의 상면에 소정 길이로 형성되는 롤러홈에 삽입되어 상부에 소정 폭으로 접촉되며 안착되는 지지판을 이송하도록 형성될 수 있다.
또한, 상기 반도체 소자는 유리기판에 형성되는 비정질실리콘 박막, 유리기판에 형성된 다결정실리콘 박막, 반도체 소자가 형성되는 유리기판을 포함하는 반도체 소자 중 어느 하나일 수 있으며, 상기 반도체 소자는 액정디스플레이 또는 유기발광 디스플레이 장치에 사용되는 박막트랜지스터일 수 있다. 또한, 상기 열처리는 비정질실리콘 박막의 고상결정화, 금속유도결정화, 금속유도측면결정화, 이온 주입된 다결정실리콘 박막의 활성화, 유리기판의 프리컴팩션 처리 중의 어느 하나일 수 있으며, 400℃ 내지 1000℃ 사이의 온도에서 수행될 수 있다.
또한, 상기 지지판은 3mm 내지 10mm 두께의 석영으로 형성되며, 상기 반도체 소자보다 그 폭과 길이가 적어도 10mm 크게 형성될 수 있다.
또한 본 발명에 따른 반도체 소자의 열처리 시스템은 지지판에 안착되어 이송되는 반도체 소자를 열처리하는 반도체 소자의 열처리 시스템에 있어서, 상기 반 도체 소자와 상기 반도체 소자가 안착되는 지지판을 이송하여 장입하는 장입부는 상기 지지판이 안착되며, 상면 중앙의 소정 영역에 단열홈이 형성되는 서스셉터와, 상기 서스셉터를 가열하는 가열수단과, 상기 서스셉터를 상하로 이송하는 상하이송수단과, 상기 지지판을 수평으로 이송하는 수평이송수단을 포함하는 것을 특징으로 한다.
이하에서, 첨부된 도면을 참조하여 본 발명의 실시예를 통하여 본 발명을 보다 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 반도체 소자의 열처리 시스템의 구성도를 나타낸다. 도 2는 반도체 소자의 열처리 시스템을 구성하는 장입부의 정면도를 나타낸다. 도 3a는 장입부를 구성하는 서스셉터의 평면도를 나타낸다. 도 3b는 도 3a의 A-A 단면도를 나타낸다. 도 4는 본 발명의 다른 실시예에 따른 서스셉터의 평면도를 나타낸다. 도 5는 본 발명의 또 다른 실시예에 따른 서스셉터의 평면도를 나타낸다. 도 6a는 가열부를 구성하는 가열로의 단면 사시도를 나타낸다. 도 6b는 도 6a의 가열로가 서로 연결되는 부위에 대한 단면 사시도를 나타낸다. 도 7은 본 발명의 실시예에 따른 반도체 소자의 열처리 시스템에서 실시되는 열처리의 공정 조건을 나타내는 그래프이다.
본 발명의 실시예에 따른 반도체 소자의 열처리 시스템은, 도 1을 참조하면, 장입부(100)와 가열부(200)와 공정부(300)와 냉각부(400) 및 배출부(500)를 포함하 여 형성된다. 상기 반도체 소자의 열처리 시스템은 장입부(100)부터 배출부(500)가 서로 접하여 연속적으로 설치되어 가열부(200)와 공정부(300)와 냉각부(400)내의 열처리 공간에 외부의 공기가 유입되는 것을 방지하게 된다. 또한, 상기 반도체 소자의 열처리 시스템은 각 구성부가 독립적으로 제어되는 온도 제어 모듈과 독립적으로 구동되는 수평이송수단을 구비하여 형성되므로 각 구성부 별로 단계적으로 온도를 올리거나 내리면서 열처리를 수행할 수 있다. 또한, 상기 반도체 소자의 열처리 시스템은 열처리되는 반도체 소자의 변형이 발생되지 않도록 반도체 소자를 별도의 지지판(setter)에 안착시켜 이송하면서 열처리를 수행하게 된다. 따라서, 상기 반도체 소자의 열처리 시스템은 단계적으로 반도체 소자의 온도를 상승시키면서 반도체 소자의 변형 또는 손상을 방지할 수 있게 되므로 보다 빠른 시간 내에 반도체 소자의 열처리를 수행할 수 있게 된다. 또한, 상기 반도체 소자의 열처리 시스템은 반도체 소자의 변형을 방지하면서 빠른 시간 내에 열처리를 수행하게 되므로 보다 높은 온도, 즉 600 ℃이상의 온도에서도 유리기판을 포함하는 반도체 소자의 열처리가 가능하게 된다. 상기 반도체 소자의 열처리 시스템에 의하여 열처리되는 반도체 소자(10)는 열처리가 필요한 다양한 반도체 소자를 의미하며, 상부에 비정질실리콘 박막이 형성된 유리기판, 다결정실리콘 TFT가 형성된 유리기판을 포함한다. 또한, 반도체 소자는 상면에 반도체 박막을 형성하기 위하여 예비수축(pre-compaction)이 필요한 유리기판을 포함한다. 이하에서는 반도체 소자가 비정질실리콘 박막이 형성된 유리기판인 경우에 대하여 설명한다.
먼저, 반도체 소자의 열처리 시스템의 전체적인 구성을 설명한다.
상기 장입부(100)는 열처리되는 반도체 소자를 소정 온도로 예열 하여 상기 가열부(200)로 이송하게 된다. 상기 장입부(100)는 반도체 소자 즉, 비정질실리콘 박막이 형성된 유리기판이 변형되지 않도록 지지하면서 소정온도(예를 들면 200 ℃)까지 균일하게 예열 하게 된다.
상기 가열부(200)는 이송되는 반도체 소자를 소정의 온도로 가열하여 상기 공정부(300)로 이송하게 된다. 상기 가열부(200)는 독립적으로 온도가 제어되는 적어도 2개의 가열로(furnace)로 구성되며, 열처리 온도를 고려하여 적정한 수로 구성된다. 따라서, 상기 가열부(200)는 각 가열로가 각각 단계별로 적정한 온도로 설정되어 유지되며, 바람직하게는 마지막 가열로는 설정온도를 열처리 온도로 설정하여 가열부(200)에서 일부 열처리가 진행될 수 있도록 한다. 예를 들면, 반도체 소자의 열처리 온도가 600 ℃이면, 상기 가열부(200)는 바람직하게는 3개의 가열로를 포함하여 구성되며, 상기 장입부(100)에 연결된 첫 번째 가열로는 장입부(100)의 예열온도를 고려하여 300 ℃이상으로 유지되며, 두 번째 로와 세 번째 로는 열처리 온도인 600 ℃이상으로 유지하게 된다. 즉, 반도체 소자는 저온에서는 빠르게 가열온도를 상승시켜도 변형이 방지될 수 있으나, 고온에서는 변형이 발생할 가능성이 있으므로 서서히 가열온도를 상승시키는 것이 바람직하게 된다. 따라서, 상기 가열부(200)는 가열로의 유지 온도를 저온에서는 빠르게 가열되고, 고온에서는 서서히 가열되도록 설정하는 것이 바람직하게 된다.
상기 공정부(300)는 이송된 반도체 소자를 소정의 열처리 온도에서 열처리하 게 되며, 열처리가 종료되면 소정 온도로 유지되는 상기 냉각부(400)로 이송하게 된다. 상기 공정부(300)는 상기 가열부(200)에 접하여 설치되는 가열로를 포함하며, 상기 가열부(200)에서 전송되는 반도체 소자를 순간적으로 높은 온도로 가열하게 된다. 따라서, 상기 공정부(300)는 반도체 소자를 순간적으로 높은 온도로 가열할 수 있도록 가열수단을 구비하며, 바람직하게는 유도가열(induction heating)방식 가열수단을 포함한다.
상기 냉각부(400)는 이송된 반도체 소자를 단계별로 소정 온도로 냉각시킨 후 상기 배출부(500)로 이송하게 된다. 상기 냉각부(400)는, 가열부(200)와 마찬가지로, 독립적으로 온도가 제어되는 적어도 2개의 로(furnace)로 구성되며, 열처리 온도를 고려하여 적정한 수로 구성된다. 예를 들면, 반도체 소자의 열처리 온도가 600 ℃이면, 상기 냉각부(400)는 바람직하게는 3개의 로를 포함하여 구성되며, 상기 공정부(300)에 연결된 첫 번째 로는 공정부(300)의 열처리 온도로 유지되며, 두 번째 로는 500 ℃정도로 유지하며, 세 번째 로는 배출 온도를 고려하여 300 ℃이하로 유지하게 된다. 따라서, 상기 냉각부(400)는 보다 빠른 시간 내에 반도체 소자를 냉각시키는 것이 가능하게 된다.
상기 배출부(500)는 이송된 반도체 소자의 변형이 발생되지 않는 소정 온도까지 반도체 소자가 변형되지 않도록 균일하게 냉각시켜 다음 공정으로 이송하게 된다. 따라서, 상기 냉각부(400)는 이송되는 반도체 소자가 균일하게 냉각될 수 있도록 하는 다양한 냉각수단을 포함하여 형성될 수 있다. 또한, 상기 배출부(500)는 반도체 소자의 균일한 냉각을 위하여 반도체 소자를 가열할 수 있는 가열수단을 구 비할 수 있다.
다음은 반도체 소자의 열처리 시스템의 각 구성부에 대하여 설명한다.
상기 장입부(100)는, 도 2를 참조하면, 반도체 소자(10) 및 지지판(20)이 안착되어 예열 되는 서스셉터(susceptor)(110)와 상기 서스셉터(110)를 상하로 이송하는 상하이송수단(130) 및 상기 지지판(20)을 좌우로 이송하는 수평이송수단(140)을 포함하여 형성된다. 또한, 상기 장입부(100)는 상기 서스셉터(110)의 상부에 설치되어 상기 반도체 소자(10)를 추가적으로 예열 하는 보조예열수단(150)이 포함되어 형성될 수 있다. 상기 장입부(100)는 반도체 소자(10)가 상온 보다 높은 소정 온도로 유지되는 가열부(200) 내부로 이송되면서 급격한 온도변화와 국부적 온도차에 의하여 변형 또는 손상되는 것을 방지하기 위해서, 반도체 소자를 소정 온도로 예열하여 이송하게 된다. 한편, 상기 장입부(100)는, 도 2에서 보는 바와 같이, 대기 상태에서 반도체 소자를 예열하도록 형성되었으나, 필요한 경우에는 서스셉터(110)를 외부와 차단하는 별도의 케이스(도면에 표시하지 않음)가 장착될 수 있으며, 케이스 내부에 특정한 가스를 공급하여 분위기를 형성할 수 있도록 할 수 있음은 물론이다.
상기 지지판(20)은 바람직하게는 3mm ∼ 10mm 두께의 석영(quartz) 재질로 형성되며, 열처리 과정에서 상면에 반도체 소자(10)를 안착시켜 이송하게 된다. 상기 지지판(20)은 두께가 3mm보다 얇게 되면 열처리 과정 중에 변형될 우려가 있으며, 10mm보다 두껍게 되면 가열되는데 시간이 많이 소요되어 반도체 소자의 열처리 속도가 저하되는 문제가 있다. 또한, 상기 지지판(20)은 반도체 소자를 지지하는 동시에 전도된 열로 반도체 소자(10)를 가열하게 되므로 반도체 소자(10)의 균일한 예열을 위해서는 그 폭과 길이가 상부에 안착되는 반도체 소자(10)의 폭과 길이보다 크게 형성되며, 바람직하게는 적어도 10mm이상 크게 형성된다. 상기 지지판(20)은 바람직하게는 석영 재질로 형성되나 여기서 그 재질을 한정하는 것은 아니며, 알루미나 나이트라이드, 보론 나이트라이드와 같은 세라믹 재질을 포함하는 다양한 재질로 형성될 수 있으며, 여기서 그 재질을 한정하는 것은 아니다.
상기 서스셉터(110)는 상면(111)에 안착되는 지지판(20)보다 큰 면적을 갖는 대략 수평인 판상으로, 서스셉터(110)를 가열하는 가열수단(114)과 지지판(20)이 균일하게 가열되도록 하는 단열홈(116)을 포함하여 형성된다. 상기 서스셉터(110)는 상기 가열부(200)의 입구에 상응하는 높이로 형성된다. 또한, 상기 서스셉터(110)는 상기 지지판(20)의 수평이송수단의 하나인 롤러가 수용되는 롤러홈(118)을 포함하여 형성될 수 있다. 상기 서스셉터(110)는 열전도성이 큰 재질로 이루어지며, 가열수단으로부터 전도되는 열을 지지판(20)에 효율적으로 전달하게 된다. 상기 서스셉터(110)는 알루미늄 금속 또는 합금, 흑연(graphite), 알루미늄 산화물(Aluminium Oxide), 알루미늄 나이트라이드(Aluminium Nitride), 보론 나이트라이드(Boron Nitride) 중 어느 하나로 형성될 수 있으며, 다만 여기서 서스셉터(110)의 재질을 한정하는 것은 아니다.
상기 가열수단(114)은 열선 또는 램프와 같은 발열체를 구비하며, 바람직하게는 서스셉터(110) 상면(111)의 온도를 전체적으로 균일하게 상승시킬 수 있도록 서스셉터(110)의 내부에 설치된다. 즉, 상기 가열수단(114)은 발열체가 상기 서스셉터(110)의 내부에 일정간격으로 설치되어 형성되며, 서스셉터(110)와 일체로 형성되거나 서스셉터(110)의 내부에 형성되는 홀에 삽입되어 형성될 수 있다. 한편, 상기 내부가열수단(114)은 상기 서스셉터(110)의 하면(112)에 설치되어 형성될 수 있음은 물론이다. 상기 내부가열수단(114)은 바람직하게는 상기 서스셉터(110)를 200 ℃이상으로 가열할 수 있는 용량을 갖도록 형성된다.
상기 단열홈(116)은, 도 3a와 도 3b를 참조하면, 서스셉터(110)의 상면(111)의 중앙 영역에 소정 형상으로 형성된다. 상기 단열홈(116)은 상기 서스셉터(110)와 지지판(116)의 접촉면적을 감소시켜 서스셉터(110)로부터 지지판(20)의 중앙 영역으로 전도되는 열의 양을 조절하게 된다. 따라서, 상기 서스셉터(110)의 상면(111)에 안착되는 지지판(116)은 단열홈(116)이 형성된 영역에 접촉되는 중앙 부분과 단열홈(116)이 형성되지 않은 영역에 접촉되는 외측부분은 전도되는 열의 차이가 발생하게 되어 지지판(116)은 전체적으로 균일하게 온도가 균일하게 상승된다. 이를 보다 상세히 설명하면, 상기 서스셉터(110)는 상기 내부가열수단(114)에 의하여 상면(111)이 전체적으로 대략 균일한 온도로 가열되며, 상기 지지판(20)은 상기 서스셉터(110)의 상면에 물리적으로 접촉되어 서스셉터(110)로부터 열이 전도되어 예열 된다. 그러나, 상기 지지판(20)은 전체적으로 대기 중에 노출되는 상태로 가열되므로, 지지판(20)으로 전달되는 열은 그 일부가 지지판(20)의 외측으로부터 대기 중으로 방열된다. 따라서, 지지판(20)은 중앙과 외측 사이에 전도되는 열은 동일한 반면 방열 되는 열의 차이가 있어 중앙과 외측 사이에 온도 편차가 발생되며, 중앙의 온도가 외측의 온도보다 높게 된다. 이러한 경우에 상기 지지판(20)의 상면에 안착된 반도체 소자(10)도 지지판(20)의 온도 편차에 따라 중앙과 외측 사이에 온도편차가 발생되어 반도체 소자의 변형을 초래하게 된다. 그러나, 상기 서스셉터 상면(111)의 중앙 영역에 단열홈(116)이 형성되면, 지지판(116)은 단열홈(116)이 형성된 영역과 접촉되는 중앙 부분에 전도되는 열이 단열홈(116)이 형성되지 않은 영역과 접촉되는 외측부분에 전도되는 열보다 작게 된다. 따라서, 상기 지지판(20)은 외측부분에 전도되는 열의 일부가 방열되어도 중앙 부분에 전도되는 열과 대략 동일하게 되어 전체적으로 균일하게 가열된다. 또한, 상기 지지판(20)의 상면에 안착되는 반도체 소자(10)도 전체적으로 균일하게 가열된다.
상기 단열홈(116)은 지지판(20) 및 반도체 소자(10)의 크기와 예열온도에 따라 서스셉터(110)의 중앙 영역에 소정의 면적과 형상으로 형성된다. 상기 단열홈(116)은, 도 3a에서 보는 바와 같이 서스셉터 상면(111)의 중앙영역에서 소정 깊이와 좌우 방향으로 연장되는 소정 길이의 트렌치(trench) 형상으로 형성될 수 있으며, 전후 방향으로 형성될 수 있음은 물론이다. 또한, 상기 단열홈(116)은 트렌치 형상이 소정 간격으로 형성될 있다. 상기 단열홈(116)은 서스셉터(110)의 중앙 부분에서 서스셉터(110)의 상면에 안착되는 지지판(20) 면적의 20% 내지 70% 영역, 바람직하게는 20% 내지 50%의 영역에 형성된다. 상기 단열홈(116)이 형성되는 영역이 지지판(20) 면적의 20%보다 작게 되면 지지판(20)의 중앙 영역에 전도되는 열을 차단하는 정도가 작게 되어 지지판(20)의 중앙 영역의 온도 상승이 크게되어 지지판(20)을 전체적으로 균일하게 예열 하는 것이 어렵게 된다. 또한, 상기 단열홈 (116)이 형성되는 영역이 지지판(20) 면적의 70%보다 크게 되면 지지판(20)의 외측부분에 전도되는 열을 차단하는 정도가 크게되어 외측부분의 온도 상승이 상대적으로 작게되며 지지판(20)을 전체적으로 균일하게 예열 하는 것이 어렵게 된다.
또한, 상기 지지판(20) 및 반도체 소자(10)의 예열온도가 상대적으로 작게 되면 즉, 상온과의 차이가 작게되면, 상기 지지판(20)의 측부로부터 방열되는 열의 양이 상대적으로 작게 된다. 따라서, 상기 서스셉터(110)는 단열홈(116)이 상대적으로 작은 영역에 형성되어도, 상기 지지판(20)의 예열 온도를 전체적으로 균일하게 할 수 있다.
또한, 상기 단열홈(116)은 트렌치 폭과 형성 간격이 적정하게 조정되어 형성될 수 있다. 다만, 상기 단열홈(116)은 트렌치 폭을 너무 크게 하면 지지판(20)의 중앙부분에 열이 전도되지 않은 영역과 열이 전도되는 영역이 크게 구별되어 형성되면서 오히려 지지판(20)의 중앙영역에서 온도의 불균일이 초래될 수 있다. 이러한 경우에는 지지판(20)의 상부에 안착되어 있는 반도체 소자도 중앙부분에서 예열 온도의 불균일이 초래되어 변형 또는 손상이 발생될 수 있다. 따라서, 상기 단열홈(116)은 트렌치 폭을 작게 하면서 트렌치의 수를 증가시켜 형성하는 것이 바람직하다. 또한, 상기 단열홈(116)은 트렌치 폭이 트렌치 형성 간격과 같거나 작게 되도록 형성되며 바람직하게는 0.5배보다 작게 되도록 형성된다. 상기 단열홈(116)은 트렌치 폭이 트렌치의 형성간격보다 크게 되면 지지판(20)에 전도되는 열이 차단되는 정도가 크게 되어 오히려 단열홈(116)이 형성된 내측 부분의 온도가 낮게 될 수 있다. 예를 들면, 상기 단열홈(116)은 트렌치 폭은 1 내지 3mm, 트렌치의 형 성간격은 3 mm 내지 6 mm가 되도록 형성될 수 있다.
또한, 상기 단열홈(116)은 지지판(20)과 서스셉터(110)가 직접 접촉되지 않도록 소정 깊이로 형성된다. 다만, 상기 단열홈(116)의 깊이가 너무 깊게 되면 내부에 설치되는 가열수단(114)의 설치 위치가 서스셉터(110)의 상면에서 멀어지게 되므로 적정한 깊이로 형성하는 것이 필요하다.
상기 롤러홈(118)은 서스셉터(110)의 전 후측에 소정 간격으로 형성되며, 서스셉터(110)의 상면에 안착되는 지지판(20)의 전 후측 일부가 접촉될 수 있는 길이로 형성된다. 또한, 상기 롤러홈(118)은 서스셉터(110)가 지지판(20)의 지지와 예열을 위하여 상승되었을 때, 롤러가 상면으로 돌출 되지 않도록 소정 깊이로 형성된다. 따라서, 상기 지지판(20)은 예열 과정에서는 서스셉터(110)의 상면(111)에 균일하게 접촉되며, 예열이 종료된 후에는 서스셉터(110)가 하강되면서 상기 롤러홈(118)에 삽입되어 있는 롤러(140)에 의하여 지지되어 좌우로 이송된다. 다만, 상기 롤러홈(118)은 지지판(20)을 좌우로 이송하는 수평이송수단(140)으로 롤러가 사용되는 경우에 형성된다.
상기 상하이송수단(130)은, 도 2를 참조하면, 상기 서스셉터(110)의 하면(112)에 결합되어 서스셉터(110)를 상하로 이송하게 된다. 상기 서스셉터(110)는 상하이송수단(130)에 의하여 상승되어 지지판(20)을 지지하여 예열하며, 예열이 종료된 후에는 하강되면서 지지판(20)이 롤러에 지지되도록 한다. 상기 상하이송수단(130)은 공압실린더, 볼스크류 이송기구, 타이밍벨트 등이 사용될 수 있으며, 바람 직하게는 공압실린더가 사용된다. 다만 여기서 상하이송수단(130)의 종류를 한정하는 것은 아니며, 서스셉터(110)를 상하로 이송하는 다양한 이송기구가 사용될 수 있음은 물론이다. 또한, 상기 상하이송수단(130)은 서스셉터(110)의 무게, 면적에 따라 소정 개수로 형성될 수 있다.
상기 수평이송수단(140)은 상기 지지판(20)을 수평으로 이송하여 상기 가열부(200)의 내부로 이송하게 된다. 상기 수평이송수단(140)은 바람직하게는 서스셉터(110)의 롤러홈(118)에 삽입되어 회전하는 롤러(140)로 형성되며, 롤러(140)는 이송되는 지지판(20)의 크기를 고려하여 적정간격으로 형성된다. 상기 롤러(140)는 별도의 지지수단(도면에 표시하지 않음)에 의하여 회전 가능하게 지지되며, 별도의 구동수단(도면에 표시하지 않음)에 의하여 회전된다. 따라서, 상기 롤러(140)는 다수 개가 수평 방향으로 소정 간격을 두고 설치되며, 회전하면서 상부에 안착되어 있는 지지판(20)을 수평 방향으로 이송하게 된다.
한편, 상기 수평이송수단(140)은 롤러 외에도 공압실린더, 볼스크류 이송기구 등이 사용될 수 있으며, 여기서 그 종류를 한정하는 것은 아니다. 예를 들면 공압실린더가 수평이송수단으로 사용되는 경우에, 도 2를 참조하면, 공압실린더는 서스셉터(110)의 외측에 별도의 지지수단에 의하여 지지되면서, 지지판(20)을 좌측에서 우측으로 밀어 수평으로 이송하게 된다. 상기 수평이송수단으로 이러한 이송기구가 사용되는 경우에는 서스셉터(110)의 상면에는 롤러홈(118)이 형성되지 않아도 됨은 물론이다.
도 4는 본 발명의 다른 실시예에 따른 서스셉터(110a)의 평면도를 나타낸다.
본 발명의 다른 실시예에 따른 서스셉터(110a)는, 도 4를 참조하면, 상면에 형성되는 단열홈(116a)이 트렌치 형상으로 형성되면서, 중앙부의 폭이 양측단부의 폭보다 크게 되도록 형성된다. 따라서, 상기 지지판(20)은 서스셉터(110a)의 상면에 안착될 때 단열홈(116a)이 형성된 영역 내에서 접촉되는 면적과 이에 따른 열 전도가 다르게 되며, 보다 균일하게 지지판(20)을 예열할 수 있게 된다. 다만. 이때, 상기 단열홈(116a)중에서 전후측에 형성되는 단열홈은 중앙부와 양측단부의 폭을 동일하게 하는 것이 바람직하다.
도 5는 본 발명의 또 다른 실시예에 따른 서스셉터(110b)의 평면도를 나타낸다.
본 발명의 또 다른 실시예에 따른 서스셉터(110b)는, 도 5를 참조하면, 상면에 형성되는 단열홈(116b)이 단면 형상이 원형인 홈이 중앙의 소정 영역에 다수 개 배열되어 형성된다. 또한, 상기 단열홈(116b)은 단면이 사각형 또는 삼각형 등 다각형 형상으로 형성될 수 있으며, 여기서 단열홈(116b)의 단면 형상을 한정하는 것은 아니다. 또한, 상기 단열홈(116b)은 중앙에 형성되는 홈을 기준으로 방사상으로 점점 홈의 크기가 작아지도록 형성될 수 있게 된다. 따라서, 상기 서스셉터(110)는 단열홈(116b)이 형성된 영역 내에서도 지지판(20)과 서스셉터(110)의 접촉면적 및 이에 따른 열 전도 량을 다르게 조정할 수 있어 보다 균일하게 지지판(20)을 예열할 수 있게 된다.
상기 가열부(200)는, 도 1을 참조하면, 열처리 온도를 고려하여 적정한 수의 가열로(210)로 구성되며, 적어도 2개의 가열로(210)를 포함하여 형성된다. 상기 가열부(200)는 각 가열로(210)가 열처리 온도에 따라 각각 단계별로 적정한 온도로 유지되며 독립적으로 제어된다. 또한, 바람직하게는 상기 가열부(200)는 마지막 가열로(210)의 설정온도를 열처리 온도로 설정하여 가열부(200)에서 일부 열처리가 진행될 수 있도록 한다.
상기 가열로(210)는, 도 6a를 참조하면, 몸체를 이루는 몸체부(220)와 몸체부(220) 내부에서 열을 발생시키는 가열수단(230) 및 반도체 소자(10)와 지지판(20)을 수평으로 이송시키는 롤러(240)를 포함하여 형성된다. 상기 가열로(210)는 일측에 지지판(20)과 반도체 소자(10)가 장입되는 입구(212)와 타측에 지지판(20)과 반도체 소자(10)가 배출되는 출구(214)가 소정 높이로 형성된다. 또한, 상기 가열로(210)는 내부에 지지판(20)이 이송되어 가열되는 위치를 감지하는 위치센서(도면에 표시하지 않음)를 포함하여 형성될 수 있다. 또한, 상기 가열로(210)는 내부에 질소 가스와 같은 불활성 가스를 일정하게 공급하는 가스 공급수단(도면에 표시하지 않음)을 구비할 수 있다. 상기 가열로(210)는 공급되는 가스에 의하여 내부가 일정한 분위기의 양압으로 유지될 수 있으며, 외부의 공기가 유입되는 것이 방지되어 내부 온도가 보다 균일하게 유지될 수 있다. 상기 가스 공급수단은 바람직하게는 가스가 가열로(210)의 상부에서 내부로 공급되고 가열로(210)의 하부로 배출되도록 구성된다.
상기 몸체부(220)는 가열로(210)의 외관을 이루는 외부하우징(222)과, 상기 외부하우징의 내부에서 상하로 소정 공간이 이격되어 설치되는 단열재(223a, 223b)와 상기 단열재(223a, 223b)의 내측으로 소정간격 이격되어 상부와 하부에 설치되며 가열로(210)의 열처리 공간을 형성하는 내부하우징(224a, 224b)을 포함하여 형성된다. 상기 내부하우징(224a, 224b)은 바람직하게는 석영으로 형성되어 내부의 열처리 공간이 오염되는 것을 방지하게 된다.
상기 가열수단(230)은 발열체(232)와 열전대(236)를 포함하여 형성된다. 또한 상기 가열수단(230)은 가열로(210)의 입구(212)와 출구(214)의 상부와 하부에 설치되는 제2발열체(234)를 포함하여 형성될 수 있다. 또한, 상기 가열수단(230)은 내부하우징(224a, 224b)과 발열체(232) 사이에서 내부하우징(224a, 224b)에 인접하여 형성되는 전도판(238)을 포함하여 형성될 수 있다.
상기 발열체(232)는 상기 내부하우징(224a, 224b)과 단열재(232a, 232b) 사이에 소정 간격으로 설치되며, 열처리 공간을 소정 온도로 가열하게 된다. 상기 발열체(232)는 가열로(210)의 상부에만 설치될 수 있으며, 상부와 하부 모두에 설치될 수 있음은 물론이다. 상기 발열체(232)는 가열로(210)의 설정온도에 따라 적정한 수량으로 형성될 수 있다. 상기 발열체(232)는 전체적으로 하나의 발열체로 형성되기보다는 독립적으로 제어되는 소정 개수로 형성되며, 가열로(210)의 수평면을 기준으로 구분되는 소정 영역에 각각 설치되어 제어되는 것이 바람직하다. 예를 들면, 상기 가열로(210)를 9개의 영역으로 구분하여 각각의 영역에 발열체(232)를 설치하여 가열로(210)의 내부 온도를 제어할 수 있다. 상기 가열로(210)의 내부는 수 평면을 기준으로 영역별로 온도 편차가 발생될 수 있으므로, 이러한 편차를 보정하기 위해서 각각의 영역의 발열체(232)를 독립적으로 제어하게 되면 보다 균일하게 온도를 제어할 수 있게 된다. 상기 발열체(232)는 저항히터 또는 램프히터가 사용될 수 있으며, 여기서 그 종류를 한정하는 것은 아니다.
상기 제2발열체(234)는 가열로(210)의 입구(212)와 출구(214)의 상부와 하부에 설치되어 입구(212)와 출구(214)의 온도가 내측보다 낮게 되는 것을 방지하게 된다. 즉, 상기 가열로(210)의 입구(212)와 출구(214)는 외부로 열이 누출되므로 상대적으로 온도가 낮게 되므로 별도의 발열체를 설치하여 온도를 내측과 동일하게 되도록 유지할 수 있다. 상기 제2발열체(234)는 상기 발열체(232)와 마찬가지로 저항히터 또는 램프히터가 사용될 수 있으며, 여기서 그 종류를 한정하는 것은 아니다.
상기 열전대(236)는 상부의 내부하우징(224a)에 근접한 위치에 설치되어 가열로의 온도를 측정하게 된다. 상기 열전대(236)의 온도 측정 결과를 근거로 상기 발열체(232)를 제어하게 된다. 한편, 상기 발열체(232)가 영역별로 독립적으로 설치되는 경우에는 열전대(236) 또한 발열체(232)에 대응되어 독립적으로 설치된다. 또한, 상기 열전대(236)는 열처리 공간 내에도 설치되어 열처리 공간 내의 온도를 정확하게 측정할 수 있도록 형성될 수 있다.
상기 전도판(238)은 상기 발열체(232)와 내부하우징(224a, 224b)의 사이에 열처리 공간의 수평면적에 상응하는 면적으로 설치되며, 발열체(232)의 열이 내부하우징(224a, 224b)으로 균일하게 전달되도록 한다. 즉, 상기 발열체(232)는 소정 간격으로 형성되므로 내부하우징(224a, 224b)은 국부적으로 온도 차이가 있을 수 있으며, 내부의 열처리 공간에서도 이러한 차이가 발생할 수 있다. 따라서, 상기 전도판(238)은 발열체(232)의 열이 보다 균일하게 내부하우징(224a, 224b)으로 전달될 수 있도록 하여 준다. 상기 전도판(238)은 열전도성이 우수한 금속 또는 세라믹 재질로 형성될 수 있다. 예를 들면, 상기 전도판(238)은 스테인레스 스틸, 구리, 알루미늄, 알루미나와 같은 재질로 형성될 수 있다.
상기 롤러(240)는 대략 원기둥 형상으로 형성되며, 가열로(210)의 내부하우징(224a, 224b)의 내측에 소정 간격으로 다수 개가 설치된다. 상기 롤러(240)는 가열로(210)의 크기와 이송되는 지지판(20)의 크기에 따라 소정 간격으로 형성된다. 상기 롤러(240)는 지지판(20)의 이송방향, 입구(212)와 출구(214)의 방향에 수직한 방향으로 설치되며 외부하우징(222)의 외부로 연장되어 별도의 회전수단(도면에 표시하지 않음)에 의하여 회전된다. 상기 롤러(240)는 내부하우징(224a, 224b)의 내부에서 소정 높이로 형성되며, 바람직하게는 상기 가열로(210)의 입구(212)와 출구(214)의 바닥면보다 높은 위치로 형성되어 이송되는 지지판(20)의 하면이 입구(212)와 출구(214)의 바닥면에 접촉되지 않도록 한다. 상기 롤러(240)는, 바람직하게는 내부하우징(224a, 224b)과 동일한 재질인 석영(quartz)으로 형성되어 지지판(20)의 이송과정에서 마찰에 따른 오염물질의 발생이 최소화되도록 한다.
상기 가열부(200)는, 도 6b를 참조하면, 각각의 가열로(210)가 연결될 때 내부하우징이 서로 결합되도록 하여 외부의 공기가 유입되거나 내부의 공기가 외부로 유출되는 것을 최대한 방지하게 된다.
상기 공정부(300)는 외부하우징과 내부하우징과 롤러 및 유도가열수단을 포함하는 하나의 공정로를 포함하여 형성되며, 상기 가열로(210)와 유사한 구조와 형상으로 형성된다. 상기 외부하우징과 내부하우징은 공정로의 외관과 내부 공간을 형성하며, 내부하우징이 형성하는 내부 공간에는 지지판를 이송하기 위한 롤러가 소정 간격으로 형성된다. 또한, 상기 유도가열수단은 유도 코일과 자성 코어를 포함하여 상기 외부하우징과 내부하우징 사이에서 내부하우징에 근접하여 수평 방향으로 설치된다. 상기 유도가열수단은 이송되는 지지판과 반도체 소자를 유도가열 방식에 의하여 가열하게 된다. 따라서, 상기 공정부(300)는 유도가열 방식에 의하여 지지판과 반도체 소자의 온도를 빠르게 고온으로 상승시켜 열처리를 함으로써, 반도체 소자의 변형과 손상을 방지할 수 있게 된다. 한편, 상기 공정부(300)는 반도체 소자의 열처리 온도가 낮은 경우에 반도체 소자의 열처리 시스템에 포함되지 않을 수 있음은 물론이다. 즉, 상기 반도체 소자의 열처리 온도가 상기 가열부(200)가 유지할 수 있는 온도에서 실시되면, 상기 공정부(300)는 구비되지 않게 된다.
상기 냉각부(400)는 상기 가열부(200)와 마찬가지로 적어도 2개의 가열로(410)를 포함하여 형성되며, 상기 가열부(200) 또는 공정부(300)에서 가열된 지지판(20)과 반도체 소자(10)를 유리기판이 변형되지 않는 소정 온도 이하로 냉각하게 된다. 상기 냉각부(400)는 지지판(20)과 반도체 소자(10)를 단계적으로 충분히 낮은 온도로 냉각시키는 경우에 가열로(410)의 수가 증가되어 설치될 수 있다. 상기 냉각부(400)의 가열로(410)는 열처리 온도보다 낮은 온도로 단계적으로 설정되어 유지되며, 이송되는 지지판(20) 및 반도체 소자(10)를 소정 온도로 냉각하여 유지하게 된다. 또한, 상기 냉각부(400)의 가열로(410)도 외부에서 가스가 공급하는 가스공급수단(도면에 표시하지 않음)이 구비될 수 있으며, 소정 온도로 냉각된 가스를 공급하여 지지판(20)과 반도체 소자(10)를 보다 효과적으로 균일하게 냉각할 수 있게 된다. 상기 냉각부(400)의 가열로(410)는 상기 가열부(200)의 가열로(210)와 동일 또는 유사하므로 여기서 자세한 설명은 생략한다.
상기 배출부(500)는 상기 냉각부(400)에서 배출되는 지지판(20)이 이송되어 안착되는 서스셉터(susceptor)를 포함하여 형성된다. 상기 서스셉터는 상기 장입부(100)의 서스셉터(110)와 같이 소정 크기의 평평한 판으로 형성되며 양측에 롤러가 형성되어 지지판을 이송하게 된다. 상기 서스셉터는 상하를 관통하는 관통홀이 전체적으로 형성될 수 있으며, 상기 관통홀을 통하여 질소와 같은 냉각가스를 분사하여 이송되는 지지판 및 반도체 소자가 보다 빠르고 균일하게 냉각되도록 할 수 있다. 또한, 상기 배출부(500)는 지지판에 소정각도로 가스를 분사하여 지지판과 반도체 소자가 균일하게 냉각되도록 하는 가스 분사수단 및 상기 서스셉터의 상부에 설치되어 배출되는 지지판과 반도체 소자를 상부에서 소정 온도로 가열하는 램프히터를 포함하여 형성될 수 있다. 상기 가스분사수단과 램프히터는 지지판이 상기 냉각부(400)로에서 반도체 소자의 변형이 거의 없는 100 ℃ 이하로 냉각되어 이송되는 경우에는 설치되지 않을 수 있음은 물론이다.
다음은 본 발명의 실시예에 따른 반도체 소자의 열처리 시스템의 작용에 대 하여 설명한다.
상기 장입부(100)의 서스셉터(110)가 상하이송수단(130)에 의하여 상승되면 상면에 지지판(20)과 반도체 소자(10)가 안착된다. 상기 지지판(20)과 반도체 소자(10)는 상기 서스셉터(110)의 내부가열수단(114)에 의하여 소정 온도로 예열 되며, 이때 서스셉터(110)의 중앙영역에 형성된 단열홈(116)에 의하여 지지판(20)과 반도체 소자(10)는 중앙 영역과 외측부분에 차등적으로 열이 전도되면서 전체적으로 균일하게 예열된다. 상기 지지판(20)과 반도체 소자(10)가 소정 온도로 예열되면, 상기 서스셉터(110)는 상하이송수단(130)에 의하여 아래로 하강되며, 지지판(20)과 반도체 소자(10)는 롤러(140)의 회전에 의하여 가열부(200)의 가열로(210) 내부로 이송된다. 상기 가열부(200)의 각 가열로(210)는 각각 단계별로 소정 온도로 설정되어, 이송되는 지지판(20)과 반도체 소자(10)를 소정 온도로 가열하게 된다. 이때, 상기 가열부(200)는 마지막 가열로(210)의 설정온도를 열처리 온도로 설정하여 가열부(200)에서 일부 열처리가 진행될 수 있도록 한다. 상기 공정부(300)는 이송된 반도체 소자(10)를 소정 온도에서 열처리하게 되며, 열처리가 종료되면 소정 온도로 유지되는 상기 냉각부(400)로 이송하게 된다. 상기 냉각부(400)는 각 가열로(410)가 각각 단계별로 소정 온도로 설정되어, 이송된 반도체 소자(10)를 단계별로 냉각시켜 소정 온도로 냉각시킨 후 상기 배출부(500)로 이송하게 된다. 상기 배출부(500)는 이송된 반도체 소자를 상온으로 완전히 냉각시켜 다음 공정으로 이송하게 된다.
도 7은 본 발명의 실시예에 따른 반도체 소자의 열처리 시스템에서 실시되는 열처리의 공정 조건을 나타내는 그래프이다. 도 7에서 공정 1은 유리기판에 증착된 비정질 실리콘 박막의 내부에 존재하는 수소를 제거하기 위한 공정 또는 유리기판에 증착된 다결정 실리콘 박막의 내부에 수소를 공급하기 위한 공정으로 500 ℃ 정도의 비교적 저온에서 이루어진다. 공정 2는 유리기판에 형성된 비정질실리콘 박막의 결정화, 또는 결정질실리콘 박막에 형성된 도펀트의 활성화, MIC, MILC 공정으로 대략 600 ℃이상에서 이루어진다. 공정 3은 유리기판의 pre-compaction 또는 결함제거(defect annealing) 공정으로 대략 700 ℃이상에서 이루어진다. 상기의 공정은 반도체 소자의 열처리 시스템이 적용될 수 있는 공정에 대한 예이며, 보다 다양한 공정에 적용될 수 있음은 물론이다.
상기 반도체 소자의 열처리 시스템은 도 7의 공정 조건을 수행하는 경우에 장입부(100)에서 지지판(20)과 반도체 소자(10)를 대략 200 ℃까지 예열한 후 가열부(200)로 이송하게 된다. 상기 가열부(200)는 각 가열로(210)에서 처리 공정에 따라 열처리 온도까지 3단계로 나누어 지지판(20)과 반도체 소자(10)를 가열하게 된다. 상기 공정부(300)는 이송된 지지판(20)과 반도체 소자(10)를 열처리 온도까지 빠른 시간에 가열하고 냉각시키게 된다. 물론 도 7의 공정 1에서 보는 바와 같이, 열처리 종류에 따라서는 공정부(300)가 필요하지 않은 경우가 있음은 물론이다. 상기 냉각부(400)는 각 가열로(410)에서 열처리 온도로부터 대략 300 ℃까지 단계적으로 냉각하게 된다. 상기 배출부(500)는 이송된 지지판(20)과 반도체 소자(10)를 상온에 가까운 온도까지 냉각시키게 된다. 이때, 상기에서 언급한 바와 같이 상기 배출부(400)는 지지판(20)과 반도체 소자(10)를 균일하게 냉각할 수 있는 냉각수단 을 구비하여 반도체 소자가 변형되지 않도록 균일하게 냉각하게 된다.
따라서, 본 발명에 따른 반도체 소자의 열처리 시스템은 대략 400 ℃에서 1000 ℃에서 반도체 소자의 열처리를 수행하는 것이 가능하게 된다. 특히 본 발명에 따른 반도체 소자의 열처리 시스템은 유리기판의 변형온도인 600 ℃이상의 온도를 필요로 하는 열처리를 보다 효과적으로 수행할 수 있게 된다.
이상 설명한 바와 같이, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형의 실시가 가능한 것은 물론이고, 그와 같은 변경은 특허청구범위 기재의 범위 내에 있게 된다.