KR100910569B1 - 결정화용 구조물 및 이를 이용한 결정화 방법 - Google Patents

결정화용 구조물 및 이를 이용한 결정화 방법 Download PDF

Info

Publication number
KR100910569B1
KR100910569B1 KR1020080009792A KR20080009792A KR100910569B1 KR 100910569 B1 KR100910569 B1 KR 100910569B1 KR 1020080009792 A KR1020080009792 A KR 1020080009792A KR 20080009792 A KR20080009792 A KR 20080009792A KR 100910569 B1 KR100910569 B1 KR 100910569B1
Authority
KR
South Korea
Prior art keywords
resistor
amorphous silicon
crystallization
silicon layer
temperature
Prior art date
Application number
KR1020080009792A
Other languages
English (en)
Inventor
김현재
김도경
정태훈
이승민
이충희
Original Assignee
연세대학교 산학협력단
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단, 삼성전자주식회사 filed Critical 연세대학교 산학협력단
Priority to KR1020080009792A priority Critical patent/KR100910569B1/ko
Application granted granted Critical
Publication of KR100910569B1 publication Critical patent/KR100910569B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • H01L21/2022
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

본 발명은 결정화용 구조물 및 이를 이용한 결정화 방법에 관한 것으로, 결정화용 구조물에 있어서, 하부에 판 형상을 가지는 지지체와 상기 지지체의 판 형상에는 편평한 하부면 및 서로 다른 두 개의 저항을 가지는 돌출부가 복수개 서로 소정 간격으로 이격되어 구비되되, 상기 돌출부는 상기 지지체의 하면 상에 돌출 형성된 제1 저항을 갖는 제1 저항체와, 상기 제1 저항체의 말단부에 돌출 형성된 제2 저항을 갖는 제2 저항체로 이루어지며, 상기 제2 저항체의 하부면에 온도가 인가되어 대상물에 접근하여 가열할 때, 상기 제2 저항을 제1 저항보다 크게 하여 상기 제2 저항체에서의 온도는 상기 제1 저항체의 온도보다 높게 설정함으로써 상기 돌출부의 하부면에서만 원하는 온도가 인가되도록 할 수 있다.
비정질 실리콘층, 결정화, 마스크

Description

결정화용 구조물 및 이를 이용한 결정화 방법{Structure For Crystallization and Method of Crystallization Using the Same}
본 발명은 결정화용 구조물 및 이를 이용한 결정화 방법에 관한 것으로, 보다 상세하게는, 비정질 실리콘층을 형성하고, 비정질 실리콘층의 국부적인 영역의 열처리에 의한 결정화 공정 시, 기판이 온도에 의한 변형을 받지 않도록 하면서 결정화를 수행할 수 있도록 하는 결정화용 구조물 및 이를 이용한 결정화 방법에 관한 것이다.
최근 정보화 사회로 시대가 급발전함에 따라 박형화, 경량화, 저 소비전력화 등의 우수한 특성을 가지는 평판 표시장치(flat panel display)의 필요성이 대두되었는데, 액정표시장치(liquid crystal display), 유기발광 다이오드(Organic Light Emitting Diode) 및 전자 종이 디스플레이 등이 활발하게 개발되고 있다.
일반적으로 액정표시장치는 전계 생성 전극이 각각 형성되어 있는 두 기판을 두 전극이 형성되어 있는 면이 마주 대하도록 배치하고 두 기판 사이에 액정 물질 을 삽입한 다음, 두 전극에 전압을 인가하여 생성되는 전기장에 의해 액정 분자를 움직임으로써 액정 분자의 움직임에 따라 달라지는 빛의 투과율에 의해 화상을 표현하는 장치이다.
전술한 액정표시장치로는, 화면을 표시하는 최소 단위인 화소별로 전압을 온/오프(on/off)하는 스위칭 소자인 박막트랜지스터가 구비되는 액티브 매트릭스형(active matrix type) 액정표시장치가 주류를 이루고 있는데, 최근에는 폴리실리콘(poly-Si)을 이용한 박막트랜지스터를 채용하는 액정표시장치가 널리 연구 및 개발되고 있다.
폴리실리콘을 이용한 액정표시장치에서는 박막트랜지스터와 구동 회로를 동일 기판 상에 형성할 수 있으며, 박막트랜지스터와 구동 회로를 연결하는 과정이 불필요하므로 공정이 간단해진다. 또한, 폴리실리콘은 비정질 실리콘에 비해 전계효과 이동도가 100 내지 200배정도 더 크므로 응답 속도가 빠르고, 온도와 빛에 대한 안정성도 우수한 장점이 있다.
일반적으로 폴리실리콘은 비정질 실리콘을 이용하여 이를 결정화함으로써 형성하는 방법을 널리 이용하고 있는데, 이러한 결정화 방법으로는 고상결정방법(Solid phase crystallization; SPC), 금속유도결정화 방법(Metal induced crystallization; MIC) 및 엑시머 레이저 어닐링법(Excimer laser annealing method; ELA) 등이 있다.
고상결정방법(SPC)은 고온(600℃)에서 비정질 실리콘을 결정화하는 방법이다. 이 방법은 고상에서 결정화가 이루어지기 때문에 결정립 내에 결함이 많아서 결정도가 떨어지며, 이를 보완하기 위하여 고온(~1000℃)의 열산화막을 게이트 절연막으로 사용한다. 따라서, 1000℃ 이상에서 견딜 수 있는 수정과 같은 고 가격대의 소재를 사용해야만 하는 단점이 있다.
금속유도결정화 방법(MIC)은 비정질 실리콘층 위에 금속을 증착하여 열을 가해 줌으로서 결정화하는 방법이다. 이 때, 금속은 결정화되는 비정질 실리콘의 엔탈피를 낮추어 주는 역할을 한다. 따라서, 500℃정도의 저온공정처리가 가능하나, 표면의 상태가 좋지 않고 금속에 의한 전기적인 특성 저하를 보인다. 또한, 이 방법도 고상 결정화이므로 결정립 내의 결함이 다수 존재한다.
엑시머 레이저 어닐링법(ELA)은 가장 널리 사용되는 방법으로, 엑시머 레이저(Excimer Laser)라는 펄스화된 자외선(UV Beam)을 사용하는 어닐링 방법이다. 레이저를 이용한 어닐링(Annealing)은 1976년 Khaibullin이 처음 개발한 이후로 대규모 집적회로(Large Scale Integration; LSI) 공정에서 불순물 이온을 주입한 실리콘의 어닐링을 목적으로 개발되어 오다가, 대면적의 표시소자 개발에 적용되면서 비교적 근래에 와서 중소형 저온 다결정 실리콘 TFT-LCD 제품의 제조에 응용되기 시작하였다.
비정질 실리콘층을 레이저를 사용하여 어닐링함으로써 양질의 폴리실리콘층으로 제작하는 방법은, 녹는 온도가 높음에도 불구하고 짧은 시간에 열처리되기 때문에 기판에 손상을 주지 않는 장점을 가지고 있고, 제조된 박막트랜지스터의 이동도도 100㎠/Vsec 이상을 획득할 수 있으므로 가장 촉망받는 결정화방법이다.
그러나, 엑시머 레이저 어닐링 방법(ELA)은 큰 그레인을 얻기 위해서 조금씩 이동하면서 약 20번이나 중복하게끔 레이저를 조사하기 때문에 공정시간이 장기간 소요되는 문제점이 있었다. 이런 문제점을 해결하고 더 빠르고 큰 그레인을 얻기 위해서 순차측면 고상화(Sequential Lateral Solidification; SLS) 기술이 개발되었다. 순차측면고상화(SLS) 기술은 슬릿 마스크를 이용하여 측면성장을 이용하는 기술이다.
이와 같은 종래 기술에 의한 방식들에 의해서도 여전히 다양한 문제점들을 가지고 있기 때문에 비정질 실리콘층을 폴리실리콘층으로 결정화하는 방법을 효과적으로 수행하기 위한 다양한 시도가 계속되고 있다.
이러한 다양한 시도 중에서는 예를 들어, 실리콘 이온을 임플란테이션하여 결정화 씨드를 형성하는 방법, 금속을 소정 크기로 비정질 실리콘층에 심어 결정화 씨드를 형성하는 방법 등이 종래에 개시되어 있다.
그러나, 이러한 방식들은 결정성에 문제가 있거나, 공정이 지나치게 복잡하거나, 후속공정이 필요해지거나, 특별히 고안된 설비가 필요하다거나 등 여전히 많은 문제점이 산재되어 있는 실정이다.
또한, 고상결정방법(SPC), 금속유도결정화 방법(MIC)은 근본적으로 최저 400℃ 정도의 온도가 기판에 가해지게 된다. 이 경우, 유리 기판의 변형 문제가 심각해지고, 유리 기판 보다 더 온도에 취약한 기판, 예컨대, 플라스틱 기판 등을 이용하는 것은 실제적으로 어렵게 되는 것이다.
또한, 가장 널리 이용되고 있는 엑시머 레이저 어닐링법(ELA)도 짧은 시간에 열처리되어 기판에 손상을 주지 않는 것으로 알려져 있지만, 이 역시 일정한 열은 기판에 전달되는 것으로 알려져 있어 플라스틱 기판 등을 이용하는 것은 어려운 문제점이 있고, 레이저 어닐링법이 기본적으로 고가의 비용이 드는 공정이므로 설사 기판 변형 문제가 없다 하더라도 보다 저가의 공정 비용으로 소자를 제조하지 못하는 문제점을 여전히 안고 있다.
상술한 문제점으로 인해, 여전히 새로운 기술의 개발이 절실히 요구되고 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 선택적 영역에 반도체층을 형성하는 방법 및 장치를 제공하는 것이다.
본 발명의 다른 목적은 기판 상에 활성층으로 이용가능한 반도체층을 형성하되, 기판의 변형을 최소화하는 것이다.
본 발명의 또 다른 목적은 저온, 저비용으로 반도체층을 형성할 수 있도록 하는 것이다.
본 발명의 또 다른 목적은 저온 공정으로 비정질 실리콘 층을 결정화 하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 플라스틱 기판 또는 유리 기판위에 성장 된 비정질 실리콘층을 결정화시키기 위해 국부적인 영역에만 열을 가하는 방법에 관한 것이다.
상술한 문제점을 해결하기 위한 기술적 수단으로서, 본 발명의 제 1측면은 결정화용 구조물에 있어서, 하부에 판 형상을 가지는 지지체; 및 상기 지지체의 판 형상에는 편평한 하부면 및 서로 다른 두 개의 저항을 가지는 돌출부가 복수개 서로 소정 간격으로 이격되어 구비되되, 상기 돌출부는 상기 지지체의 하면 상에 돌출 형성된 제1 저항을 갖는 제1 저항체와, 상기 제1 저항체의 말단부에 돌출 형성 된 제2 저항을 갖는 제2 저항체로 이루어지며, 상기 제2 저항체의 하부면에 온도가 인가되어 대상물에 접근하여 가열할 때, 상기 제2 저항을 제1 저항보다 크게 하여 상기 제2 저항체에서의 온도는 상기 제1 저항체의 온도보다 높게 설정되는 것을 특징으로 하는 결정화용 구조물을 제공한다.
여기서, 상기 제2 저항체의 하부면에 인가되는 온도는 200 내지 1500℃인 것이 바람직하다.
바람직하게는, 상기 제1 저항체의 단면은 마름모꼴 형태일 수 있다.
바람직하게는, 상기 제2 저항체의 하부면 이외의 다른 영역의 온도를 차단하기 위한 차단부를 더 구비할 수 있다.
바람직하게는, 상기 차단부는 상기 지지체와 공간을 두고 지지되어 열전달을 감소할 수 있다.
바람직하게는, 상기 돌출부는 상기 지지체의 판을 기준으로 수직 왕복가능할 수 있다.
본 발명의 제2 측면은 결정화용 구조물에 있어서, 하부에 판 형상을 가지는 지지체; 및 상기 지지체의 판 형상에는 제1 저항을 갖는 매트릭스 형상의 배선과 상기 배선을 단선하는 방식으로 일부 배선에 요홈이 형성되도록 삽입되고 편평한 하부면 및 제2 저항을 가지며 소정간격으로 이격되어 구비되는 복수개의 저항체를 구비하되, 상기 배선에 전압을 인가함에 따라 상기 저항체가 발열하여 대상물에 소정 간격으로 집중되는 열을 인가하고, 상기 제2 저항은 제1 저항 보다 큰 것을 특 징으로 하는 결정화용 구조물을 제공하는 것이다.
상기 저항체에 인가되는 온도는 200 내지 1500℃인 것을 특징으로 하는 결정화용 구조물.
여기서, 상기 소정 영역 편평한 하부면은 10㎛2 내지 500㎛2 인 것이 바람직하다.
바람직하게는, 상기 편평한 하부면의 영역과 이외의 영역의 비율은 0.2% 내지 10%일 수 있다.
바람직하게는, 상기 지지체는 투명한 부위를 구비하고 상기 투명한 부위에는 정렬키가 구비될 수 있다.
본 발명의 제3 측면은 (a) 상부에 비정질 실리콘층이 증착된 기판을 준비하는 단계; (b) 상기 기판의 하부에 냉각장치를 구비하는 단계; (c) 상기 비정질 실리콘층의 상부에는, 하부에 판 형상을 가지는 지지체 및 상기 지지체의 판 형상에 편평한 하부면을 가지는 복수개의 돌출부가 서로 소정 간격으로 이격되어 구비되는 결정화용 구조물을 구비하는 단계; 및 (d) 상기 비정질 실리콘층 상부에 상기 결정화용 구조물이 일정 간격을 유지하여 배치되도록 상기 비정질 실리콘층 및 상기 결정화용 구조물 사이에 상기 돌출부가 삽입될 수 있는 구조의 복수개의 오픈된 영역을 갖는 마스크를 구비하는 단계를 포함하되, 상기 결정화용 구조물을 상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식으로, 상기 소정 면적을 갖는 비정질 실리콘층의 특성이 변경되도록 하여 상기 비정질 실리콘층을 결정화하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법을 제공한다.
여기서, 상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식은, 상기 단계(c)에서, 상기 돌출부는 서로 다른 두 개의 저항을 가지며 상기 지지체의 하면 상에 돌출 형성된 제1 저항을 갖는 제1 저항체와, 상기 제1 저항체의 말단부에 돌출 형성된 제2 저항을 갖는 제2 저항체를 구비하는 상기 결정화용 구조물을 이용하되, 상기 제2 저항체의 하부면에 온도가 인가되어 대상물에 접근하여 가열할 때, 상기 제2 저항을 제1 저항보다 크게 하여 상기 제2 저항체에서의 온도는 상기 제1 저항체의 온도보다 높게 설정하는 것이 바람직하다.
바람직하게는, 상기 마스크는 상기 돌출부의 하부면 이외의 다른 영역의 온도를 차단할 수 있다.
바람직하게는, 상기 제2 저항체의 온도는 200 내지 1500℃일 수 있다.
본 발명의 제4 측면은 (a') 상부에 비정질 실리콘층이 증착된 기판을 준비하는 단계; (b') 상기 기판의 하부에 냉각장치를 구비하는 단계; (c') 상기 비정질 실리콘층의 상부에는, 하부에 판 형상을 가지는 지지체 및 상기 지지체의 판 형상에는 제1 저항을 갖는 매트릭스 형상의 배선과 상기 배선을 단선하는 방식으로 일부 배선에 요홈이 형성되도록 삽입되고 편평한 하부면 및 상기 제1 저항보다 큰 제 2 저항을 가지며 소정간격으로 이격되어 구비되는 복수개의 저항체를 포함하는 결정화용 구조물을 접촉하여 배치하는 단계; 및 (d') 상기 결정화용 구조물을 상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식으로, 상기 소정 면적을 갖는 비정질 실리콘층의 특성이 변경되도록 하여 상기 비정질 실리콘층을 결정화하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법을 제공한다.
여기서, 상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식은, 상기 단계(c')에서, 상기 결정화용 구조물의 상기 배선에 전압을 인가함에 따라 상기 저항체가 발열하여 대상물에 소정 간격으로 집중되는 열을 인가하는 것이 바람직하다.
바람직하게는, 상기 저항체에 인가되는 온도는 200 내지 1500℃일 수 있다.
바람직하게는, 상기 단계(a) 또는 단계(a') 이후에, 상기 결정화용 구조물을 상기 비정질 실리콘층과 정렬하는 단계를 더 포함할 수 있다.
바람직하게는, 상기 단계(c) 또는 단계(c')에서, 상기 비정질 실리콘층의 상부에 상기 결정화용 구조물을 일정 간격을 유지하거나 또는 접촉하여 배치하는 단계는, 상기 비정질 실리콘층 상부에서 복수회 이동하면서 수행할 수 있다.
바람직하게는, 상기 비정질 실리콘층 상부 또는 하부에는 버퍼층을 형성하는 단계를 더 포함할 수 있다.
바람직하게는, 상기 비정질 실리콘층을 결정화하는 단계에서, 결정화를 촉진시키기 위해 전기장 또는 자기장을 인가하는 단계를 더 포함할 수 있다.
바람직하게는, 상기 소정 영역 편평한 하부면은 10㎛2 내지 500㎛2 일 수 있다.
바람직하게는, 상기 편평한 하부면의 영역과 이외의 영역의 비율은 0.2% 내지 10%일 수 있다.
본 발명은 플렉스블 기판 상부에 증착된 반도체층(예컨대, 비정질 실리콘층)에 국부영역에 열처리를 하여 결정화시키는 것에 관한 것으로, 기판의 변형이 없이 채널 영역을 결정화 할 수 있는 효과가 있다.
기존 비정질 실리콘의 결정화 온도는 기판의 영향을 주로 받았다. 그러나 국부영역에 가해지는 열로 인해 기판의 선택에는 제한이 없어지며 더욱이 flexible 기판의 형태를 유지한 채 결정화시킬 수 있다. 즉, 향후 대두될 차세대 디스플레이로 유기 발광 소자의 적용 및 전자 종이제작에도 응용 가능하게 되는 효과가 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 한편, 도면상에서 동일 부호는 동일한 요소를 지칭하며, 중복되는 요소에 대해서는 설명을 생략하기로 한다.
(제1 실시예)
도 1은 본 발명의 제1 실시예에 따른 결정화용 구조물의 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 결정화용 구조물의 단면도의 일 예이다.
도 1 및 도 2를 참조하면, 결정화용 구조물은 하부에 판 형상을 가지는 지지체(110)와 지지체(110)의 판 형상에는 편평한 하부면(S)을 가지는 돌출부(120)가 복수개 서로 소정 간격으로 이격되어 구비되어 있다. 선택적으로는, 결정화용 구조물에는 부분적으로 투명한 영역을 구비하고 그 투명 영역에는 정렬키(130)가 형성될 수 있다.
도 1은 돌출부(120)의 하부면(S) 이외의 다른 영역의 온도를 차단하기 위한 열전달 차단부(140)를 더 구비하는 것으로 도시되어 있는데 열전달 차단부(140)의 구성은 선택적으로 추가될 수 있다.
본 결정화용 구조물에 의하면, 대상물에 접근하여 하부면(S)이 가열될 때, 하부면(S)의 온도는 주변의 온도 보다 높게 설정된다. 따라서, 기판에 근접하여 가열할 때 하부면(S)의 온도만 국부적으로 가열될 수 있게 된다.
이는, 상기 결정화용 구조물을 이용하여 예컨대, 기판 상에 형성된 비정질 실리콘층을 결정화시키는 공정을 수행하는 경우 전체 기판에 전달되는 열의 양을 줄이고 하부면(S)의 면적에만 국부적으로 열을 가할 수 있게 되어 기판의 전체적인 변형을 획기적으로 줄일 수 있게 된다.
이와 같은 효과를 실현하기 위하여 본 발명의 제1 실시예에 의하면, 하부면(S)의 온도는 가능한 높게 형성하면서도 그 이외의 다른 영역에서의 온도가 하부면(S) 이외의 영역으로 전달되는 것을 효과적으로 막는 것이 중요하다.
따라서, 도 2에서와 같이 제1 실시예에 따른 결정화용 구조물의 돌출부(120)는 서로 다른 두 개의 저항 즉, 제1 및 제2 저항을 가지는 물질로 이루어진 제1 및 제2 저항체(121 및 122)를 포함하여 구성되는 것이 바람직하다.
이때, 제1 저항체(121)는 지지체(110)의 하면 상에서 돌출 형성되며, 제2 저항체(122)는 제1 저항체(121)의 말단부에서 돌출 형성되는데, 상기 제2 저항을 제1 저항보다 크게 함으로써 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S)에 열을 가할 때, 제2 저항체(122)에 인가되는 온도가 제1 저항체(121)에 인가되는 온도보다 높게 설정함으로써 상기 결정화용 구조물에 의한 발열부위가 최소화 되도록 할 수 있다.
즉, 제2 저항체(122)에 비하여 상대적으로 제1 저항체(121)의 온도를 낮게 함으로써 제1 저항체(121)에 의한 방사열을 최소화할 수 있게 되는 것이다.
한편, 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S)에 인가되는 열의 온도는 약 200 내지 1500℃로 하는 것이 바람직하고, 대상물에 하부면(S)이 근접하였을 때 하부면(S) 이외의 다른 영역은 200℃ 이하, 바람직하게는 100℃ 이하, 더욱 바람직하게는 상온을 유지하도록 한다.
또한, 본 발명의 효과를 보다 유리하게 달성하기 위해서는 하부면(S)의 면적과 그 이외의 다른 영역의 비율을 설정하는 방식이 필요한데, 먼저, 하부면(S)의 면적은 기판 상에 예컨대, 박막트랜지스터의 채널이 형성될 면적 정도를 채택하는 것이 바람직하다. 예를 들어, 하나의 픽셀이 100㎛ X 200㎛인 경우 하부면(S)의 면적은 채널의 크기(예컨대, 5㎛ X 20㎛)를 반드시 포함하고, 선택적으로 소스/드레인 컨택 면적을 포함하는 정도로 구성할 수 있다.
이 경우 하부면(S)의 면적이 예컨대, 20㎛ X 20㎛정도로 책정되면 픽셀이 형성되는 영역(주변 회로부 영역이 아닌)의 경우 전체 기판에 대한 하부면(S)의 면적 비율은 약 400/20000 즉, 2% 정도가 된다. 따라서, 전체 기판에 대하여 가열되는 부분의 면적이 현저히 작게 되므로 국부적인 면적에 대한 가열로 인해 기판 전체의 변형을 막을 수 있게 된다. 또한, 이러한 이유로 국부적인 면적에 더욱 높은 온도를 인가할 수 있게 된다.
한편, 하부면(S)의 면적은 상기 채널의 크기를 포함하므로, 약 10㎛2 내지 2000㎛2인 것이 바람직하고, 더욱 바람직하게는, 약 10㎛2 내지 500㎛2이다. 예컨대, 10㎛2이하이면 일반적으로 채널로 사용할 수 있는 크기가 되지 못하고 2000㎛2이상이면 기판 전체에 변형이 다소 발생할 수 있다.
즉, 기판의 변형을 최소화하기 위해서 하부면(S)의 면적은 가능한 작게 하는 것이 타당하고 채널영역을 포함하기 위한 최소 영역을 확보하는 것이 바람직하다.
이때, 기판의 변형을 줄일 수 있도록 전체 기판에 대한 하부면(S)의 면적 비 율을 적당히 선택하는 것이 가능하다. 하부면(S)의 영역과 이외의 다른 영역의 비율은 약 0.2% 내지 10%인 것이 바람직하다. 이 비율의 하한선은 하부면(S)의 최소면적에 좌우되고 상한선은 기판의 변형을 유발하지 않는 비율에 해당한다.
한편, 지지체(110) 및 제1 저항체(121)를 구성하는 물질은 특별히 한정되지 않으며 기판으로 열전달을 필요 이상으로 하지 않는 물질이면 가능하다. 또한, 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S)에 열을 공급하는 방법으로는 다양한 방식이 가능하나, 바람직하게는, 니크롬과 같은 금속의 저항체에 전류를 흘려보냄으로써 하부면(S)에서만 열을 발생하도록 할 수 있다. 또한, 하부면(S)에서 열을 공급하는 정도나 열을 공급하는 시간 등은 조절이 가능하며, 하부면(S)으로 사용되는 금속은 니크롬과 같은 저항 가열체를 사용하는 것 외에도 다양한 금속을 사용할 수 있다.
열전달 차단부(140)는 하부면(S)을 가지는 돌출부(120)의 부위에만 열을 가하기 위해 돌출부(120)의 주위에 열전도율이 낮은 유전체 층을 둘러싼다. 열전달 차단부(140)는 지지체(110)와 공간을 두고 지지되어 열전달을 감소하는 것이 바람직하다.
통상적으로 본 공정은 진공 챔버 내에서 실시될 것이므로, 열전달 차단부(140)가 지지체(110)와 공간을 두고 지지되면, 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S)이외의 다른 영역에는 열 전달이 효과적으로 차단될 수 있다. 또한, 열전달 차단부(140)를 여러장의 시트 형태로 그 각각의 사이에 공간을 구비하도록 형성하는 것이 더욱 효과적일 수도 있다.
한편, 지지체(110)를 투명한 물질을 이용하여 제작하는 경우는 정렬키(미도시)를 생성함에 있어서 더욱 용이할 수 있으며, 일부만 투명하게 제작하여 그 투명한 부위에 정렬키(미도시)를 형성하는 것도 가능하다.
다른 한편, 상기 결정화용 구조물은 도장과 같이 찍어내는 스탬프(Stamp) 공정에 적용이 가능하며, 둥글게 말아서 Roll-to-Roll 공정으로도 적용이 가능하다. 즉, 대량 생산이 가능하도록 할 수 있다.
도 3은 본 발명의 제1 실시예에 따른 결정화용 구조물의 단면도의 다른 예이다.
도 3을 참조하면, 상기 결정화용 구조물은 돌출부(120)에서의 발열을 최소화하기 위해 제1 저항체(121)의 형태를 다양한 형태로 변형할 수 있는데, 예컨대, 제1 저항체(121)의 단면을 마름모꼴로 함으로써 돌출부(120)의 발열을 최소화할 수 있으며 이에 국한하지는 않는다.
도 4는 본 발명의 제1 실시예에 따른 결정화용 구조물을 이용한 결정화 방법을 설명하기 위한 단면도의 일 예로서 비정질 실리콘층의 결정화를 일 예로 구현하였지만, 이에 국한하지는 않으며, 도 5는 본 발명의 제1 실시예에 따른 결정화용 마스크를 나타내는 도면이다.
도 4 및 도 5를 참조하면, 준비된 기판(210)의 상부에 버퍼층(220) 및 비정질 실리콘층(230)을 순차적으로 적층하여 비정질 실리콘층(230)을 결정화하기 위한 준비를 한다. 여기서, 기판(210)의 종류는 특별히 한정하지 않으며, 플라스틱 기판이나 유리 기판, 필요에 따라서는 실리콘 기판이나, 투명한 재질의 석영 또는 사파이어 기판 등도 사용 가능하다. 다만, 본 실시예는 기판(210)에 열적 변형을 최소화하는 특징적 효과를 가지고 있으므로 이를 효과적으로 이용하기 위해서 플라스틱 기판 등 저온 공정이 필요한 기판(210)을 이용하는 것이 바람직하다.
버퍼층(220)은 후속되는 공정에서 상면에 증착된 비정질 실리콘층(230)을 결정화하여 예컨대, 다결정 실리콘층으로 형성하는 경우, 상기 기판(210)에 함유된 불순물에 의해 결정화된 실리콘이 오염되는 현상을 방지하는 역할을 한다. 따라서, 필요에 따라서는 버퍼층(220)을 생략하는 것도 가능하다.
또한, 버퍼층(220)은 절연층으로 형성될 수 있으며 예컨대, 실리콘 산화막 또는 실리콘 질화막 등 당업계에 알려진 절연 물질이 모두 채용가능하고 플라즈마 증강 화학 기상 증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)법을 이용하여 증착할 수 있다. 버퍼층(220)의 두께는 예컨대, 약 1000 내지 10000Å이 가능하며, 바람직하게는 약 2000 내지 5000Å이다.
비정질 실리콘층(230)은 수 ㎛의 막 두께를 가지며, 화학기상법, 물리기상법 또는 유기용매를 이용한 방법 등 그 증착 방법에 제한을 두지 않고 형성할 수 있다.
한편, 기판(210)의 하부 면에는 냉각장치(Cooling System)(240)를 선택적으로 구비할 수 있는데, 이는 예컨대, 열처리에 의한 결정화 공정 시, 열이 기판(210)의 하부로 전달되도록 하여 기판(210)의 온도를 일정하게 유지함과 함께, 비정질 실리콘층(230)의 특정 영역 즉, 비정질 실리콘층(230)을 결정화하기 위한 국부적인 영역에 대해서만 열처리가 되도록 하기 위함이다.
이후, 비정질 실리콘층(230)의 상부에는 본 발명의 제1 실시예에 따른 결정화용 구조물을 구비하게 되는데, 이때, 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S)에 열을 인가하여 비정질 실리콘층(230)에 일정 시간 근접시킴으로써 원하는 영역에 대한 결정화를 실시할 수 있게 된다. 즉, 비정질 실리콘층(230)을 국부적으로 열처리하여 원하는 영역에 대한 특성을 변경함으로써 결정화할 수 있게 된다.
이때, 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S)은 비정질 실리콘층(230)과 비접촉 하여 즉, 비접촉식으로 결정화하는 것이 바람직한데, 이는 제2 저항체(122)의 하부면(S)과 비정질 실리콘층(230)이 접촉함으로써 야기되는 결정화 영역의 오염을 최소화하고, 접촉 시 압력에 의한 기판(210)의 손상을 방지하며, 보다 좋은 성질의 결정화를 수행하기 위함이다.
이에 따라, 본 발명의 제1 실시예에서는 상기 결정화용 구조물이 비정질 실리콘층(230)과 일정 간격을 유지하여 배치될 수 있도록 비정질 실리콘층(230)의 상면에 결정화용 마스크(250)를 구비하여, 상기 결정화용 구조물과 비정질 실리콘층(230)과의 간격을 용이하게 제어할 수 있도록 할 수 있다.
결정화용 마스크(250)는 상기 결정화용 구조물의 돌출부(120)가 삽입될 수 있는 구조로 하여 복수개의 오픈된 영역(251)을 갖는다. 결정화용 마스크(250) 의 오픈된 영역(251) 즉, 뚫어진 구멍의 크기 및 모양은 자유롭게 디자인하는 것이 가 능하며, 결정화용 마스크(250)의 재료는 열에 강한 물질을 이용하는 것이 바람직하다.
결정화용 마스크(250)의 재료를 열에 강한 물질을 이용함으로써 상기 결정화용 구조물의 돌출부(120)에서 인가된 열이 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S) 이외의 다른 영역 예컨대, 기판(210) 등으로 방사되는 것을 최소화할 수 있다.
또한, 결정화용 마스크(250)를 하부 기판(210)과 정렬하여 사용하기 위해 정렬키(252)를 제조하는 것이 유리한데 금속 마스크의 경우 직접 마스크 키를 뚫어 주는 방법이 있고 결정화용 마스크(250)를 투명한 물질로 제작할 경우 불투명한 마스크 키를 칠하는 방법을 사용할 수 도 있다. 물론, 부분적으로 정렬키(252)가 형성된 부위만 투명하게 하는 것도 가능하다.
도 6a 내지 도 6c는 본 발명의 제1 실시예에 따른 결정화용 구조물을 이용한 결정화 방법을 설명하기 위한 단면도의 다른 예로서, 결정화용 마스크의 다양한 형태를 나타내고 있다.
도 6a 내지 도 6c를 참조하면, 결정화용 마스크(250)는 전술한 도 4의 형태로 국한되지 않고 다양한 형태를 가질 수 있는데, 그 형태는 상기 결정화용 구조물과 비정질 실리콘층(230)이 일정 간격을 유지하여 배치되도록 할 수 있으며, 상기 결정화용 구조물의 돌출부(120)에서 인가된 열이 돌출부(120)의 하부면(S) 즉, 제2 저항체(122)의 하부면(S) 이외의 다른 영역으로 방사되는 것을 최소화할 수 있다면 형태상에 제한을 두지 않고 형성할 수 있다.
즉, 예컨대, 도 6a 및 도 6b 에서와 같이 결정화용 마스크(250)의 두께를 조절함으로써 상기 결정화용 구조물과 비정질 실리콘층(230)이 일정 간격을 유지하여 배치되도록 할 수 있으며, 도 6c에서와 같이 결정화용 마스크(250)의 두께와는 관계없이 오픈된 영역(251)의 형태를 특정하여 상기 결정화용 구조물과 비정질 실리콘층(230)이 일정 간격을 유지하여 배치되도록 할 수 있다.
도 7은 본 발명의 제1 실시예에 따른 결정화용 구조물을 이용하여 샘플에 부분적으로 열을 인가하는 과정을 나타낸 도면이다.
도 7을 참조하면, 준비된 기판(210)의 상부에 버퍼층(220) 및 예컨대, 비정질 실리콘층(230)을 순차적으로 적층하여 비정질 실리콘층(230)을 결정화하기 위한 소정의 샘플을 준비를 한다. 여기서, 기판(210)의 종류는 특별히 한정하지 않으며, 플라스틱 기판이나 유리 기판, 필요에 따라서는 실리콘 기판이나, 투명한 재질의 석영 또는 사파이어 기판 등도 사용 가능하다. 다만, 본 실시예는 기판(210)에 열적 변형을 최소화하는 특징적 효과를 가지고 있으므로 이를 효과적으로 이용하기 위해서 플라스틱 기판 등 저온 공정이 필요한 기판(210)을 이용하는 것이 바람직하다.
버퍼층(220)은 후속되는 공정에서 상면에 증착된 비정질 실리콘층(230)을 결정화하여 예컨대, 다결정 실리콘층으로 형성하는 경우, 상기 기판(210)에 함유된 불순물에 의해 결정화된 실리콘이 오염되는 현상을 방지하는 역할을 한다. 따라서, 필요에 따라서는 버퍼층(220)을 생략하는 것도 가능하다.
또한, 버퍼층(220)은 절연층으로 형성될 수 있으며 예컨대, 실리콘 산화막 또는 실리콘 질화막 등 당업계에 알려진 절연 물질이 모두 채용가능하고 플라즈마 증강 화학 기상 증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)법을 이용하여 증착할 수 있다. 버퍼층(220)의 두께는 예컨대, 약 1000 내지 10000Å이 가능하며, 바람직하게는 약 2000 내지 5000Å이다.
비정질 실리콘층(230)은 수 ㎛의 막 두께를 가지며, 화학기상법, 물리기상법 또는 유기용매를 이용한 방법 등 그 증착 방법에 제한을 두지 않고 형성할 수 있다.
한편, 기판(210)의 하부면에는 냉각장치(Cooling System)(240)를 선택적으로 구비할 수 있는데, 이는 예컨대, 열처리에 의한 결정화 공정 시, 열이 기판(210)의 하부로 전달 되도록 하여 기판(210)의 온도를 일정하게 유지함과 함께, 비정질 실리콘층(230)의 특정 영역 즉, 비정질 실리콘층(230)을 결정화하기 위한 국부적인 영역에 대해서만 열처리가 되도록 하기 위함이다.
이후, 열이 가해지고 있는 돌출부(120)의 하부면(S)을 비정질 실리콘층(230)에 일정시간 소정 간격의 거리를 두고 근접시킨 뒤, 비정질 실리콘층(230)을 국부적으로 결정화될 수 있도록 한다. 이때, 비정질 실리콘층(230) 및 상기 결정화용 구조물의 사이에는 결정화용 마스크(250)를 구비하여 비정질 실리콘층(230) 및 상기 결정화용 구조물이 일정 간격을 유지하여 근접할 수 있도록 함과 함께, 상기 간격의 제어가 용이하도록 할 수 있다.
한편, 비정질 실리콘층(230)에 대한 결정화 공정은 진공 챔버(310)에서 진행함으로써 불순물과의 반응을 억제해 주는 것이 바람직하며, 필요에 따라 가스 주입부(320)를 통하여 원하는 가스를 공급하는 것도 가능하다. 비정질 실리콘층(230)이 결정화되는 것은 실리콘의 위상을 실시간으로 체크 할 수 있는 센서(330)를 장착하는 것이 바람직하며, 경우에 따라서는 결정화 공정이 이루어지는 측면을 직접 모니터링 할 수 있도록 장비를 꾸미는 것 또한 가능하다.
이때, 상기 결정화용 구조물의 돌출부(120)는 지지체(110)의 판을 기준으로 예컨대, 피스톤(340)에 의한 수직방향의 왕복 이동이 가능하며, 이에 따라 비정질 실리콘층(230)에 대한 반복적인 결정화 공정을 수행할 수 있다.
한편, 본 발명의 제1 실시예에서는 결정화를 촉진시키기 위한 다양한 방식을 적용할 수 있다. 예컨대, 전기장 또는 자기장을 인가하는 방식이나 소정 온도로 기판을 가열하면서 결정화를 수행하는 방식 등이다. 이 경우, 특히 자기장을 인가하면서 결정화를 촉진시키는 방식에 있어서는 자기장의 특성상 균일한 자기장을 인가하는 것이 가능하여 기판 전체적으로 균일하게 결정화를 촉진시킬 수 있게 되는 장점을 가지고 있으므로 앞서 설명한 본 발명의 제1 실시예에 의한 결정화 방법 이전 또는 이후에 자기장의 인가를 통해서 결정화를 수행하거나, 자기장의 인가와 병행하여 다른 결정화방식으로 결정화를 수행하는 방식을 통해서 더욱 효과적으로 결정화를 수행할 수 있다.
(제2 실시예)
도 8a는 본 발명의 제2 실시예에 따른 결정화용 구조물을 설명하기 위한 도면이며, 도 8b는 도 8a의 배선과 저항체를 크게 도시한 도면이다.
도 8a 및 도 8b를 참조하면, 본 발명의 제2 실시예에 따른 결정화용 구조물은 하부에 판 형상을 가지는 지지체(410)를 구비하고, 지지체(410)의 판 형상에 제1 저항을 갖는 매트릭스 형상의 배선(420)을 구비하여, 배선(420)을 단선하는 방식으로 일부 배선(420)에 요홈이 형성되도록 배선(420)에 삽입되고, 편평한 하부면 및 제2 저항을 가지며 소정간격으로 이격되어 구비되는 복수개의 저항체(430)를 구비한다.
이러한 구조에 의해, 배선(420)에 전압을 인가함에 따라 저항체(430)가 발열하여 대상물에 소정 간격으로 집중되는 열을 인가하게 되는데, 이 때 상기 제2 저항은 제1 저항 보다 크게 구성함으로써 저항체(430)가 발열하도록 한다.
또한, 상기 결정화용 구조물에는 부분적으로 투명한 영역을 구비하고 그 투명 영역에는 정렬키(440)가 선택적으로 형성될 수 있다.
한편, 배선(420)에 전압을 인가할 때 Joule Heating에 의해 저항체(430)에 열이 인가되고 배선(420)에는 거의 열이 인가되지 않는다. 그 원리를 설명하면, 오옴의 법칙
Figure 112008007968215-pat00001
에 의해 저항체(430)를 예컨대, 큰 저항을 갖는 SiC로 이용하고, 반응성 이온 식각(Reactive Ion Etching; RIE)에 의해(SiC 200nm/min의 etching rate을 가짐) SiC 한 개의 저항을 예를 들어 계산하면 아래 식과 같다.
Figure 112008007968215-pat00002
따라서, 배선(420)에 전압을 인가하면, 대부분의 전압은 저항체(430)에 인가되어 저항체(430)를 가열하게 된다. 이때, 저항체(430)는 SiC 이외에도 W, WSi2, Ti, TiSi2, Ta, TaSi2, Mo, MoSi2, CoSi2 또는 Pt 등을 이용하는 것이 가능하다. 또한 배선(420)에 해당하는 물질은 특별히 한정되지 않으며 열에 강하고, 저항체(430)에 비해 방사되는 열을 최소화할 수 있는 저저항 물질을 이용하는 것이 바람직하다.
한편, 상기 결정화용 구조물은 도장과 같이 찍어내는 스탬프(Stamp) 공정에 적용이 가능하며, 둥글게 말아서 Roll-to-Roll 공정으로도 적용이 가능하다. 즉, 대량 생산이 가능하도록 할 수 있다.
도 9는 본 발명의 제2 실시예에 따른 결정화용 구조물을 이용한 결정화 방법을 설명하기 위한 단면도로서 비정질 실리콘층의 결정화를 일 예로 구현하였지만, 이에 국한하지는 않는다.
도 9를 참조하면, 준비된 기판(210)의 상부에 버퍼층(220) 및 비정질 실리콘층(230)을 순차적으로 적층하여 비정질 실리콘층(230)을 결정화하기 위한 준비를 한다. 여기서, 기판(210)의 종류는 특별히 한정하지 않고, 플라스틱 기판이나 유리 기판, 필요에 따라서는 실리콘 기판이나, 투명한 재질의 석영 또는 사파이어 기판 등도 사용 가능하다. 다만, 본 실시예는 기판(210)에 열적 변형을 최소화하는 특징 적 효과를 가지고 있으므로 이를 효과적으로 이용하기 위해서는 플라스틱 기판 등 저온 공정이 필요한 기판(210)이 바람직하다.
버퍼층(220)은 후속되는 공정에서 상면에 증착된 비정질 실리콘층(230)을 결정화하여 예컨대, 다결정 실리콘층으로 형성하는 경우, 상기 기판(210)에 함유된 불순물에 의해 결정화된 실리콘이 오염되는 현상을 방지하는 역할을 한다. 따라서, 필요에 따라서는 버퍼층(220)을 생략하는 것도 가능하다.
또한, 버퍼층(220)은 절연층으로 형성될 수 있으며, 예를 들어 실리콘 산화막, 실리콘 질화막 등 당 업계에 알려진 절연 물질이 모두 채용가능하고 플라즈마 증강 화학 기상 증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)법을 이용하여 증착할 수 있다. 버퍼층(220)의 두께는 예컨대, 약 1000 내지 10000Å이 가능하며, 바람직하게는 약 2000 내지 5000Å이다.
비정질 실리콘층(230)은 수 ㎛의 막 두께를 가지며, 화학기상법, 물리기상법 또는 유기용매를 이용한 방법 등 그 증착 방법에 제한을 두지 않고 형성할 수 있다.
한편, 기판(210)의 하부 면에는 냉각장치(Cooling System)(240)를 선택적으로 구비할 수 있는데, 이는 예컨대, 열처리에 의한 결정화 공정 시, 열이 기판(210)의 하부로 전달 되도록 하여 기판(210)의 온도를 일정하게 유지함과 함께, 비정질 실리콘층(230)의 특정 영역 즉, 비정질 실리콘층(230)을 결정화하기 위한 국부적인 영역에 대해서만 열처리가 되도록 하기 위함이다.
이후, 비정질 실리콘층(230) 상부에는 본 발명의 제2 실시예에 따른 결정화 용 구조물을 구비하게 되는데, 이때, 비정질 실리콘층(230)의 상면에 상기 결정화용 구조물을 일정 시간 접촉하게 되면, 상기 결정화용 구조물의 배선(420)에 전압을 인가함에 따라 저항체(430)가 발열하여 비정질 실리콘층(230)에 열을 가함으로써 원하는 영역에 대한 결정화를 실시할 수 있게 된다. 즉, 비정질 실리콘층(230)을 국부적으로 열처리하여 원하는 영역에 대한 비정질 실리콘층(230)의 특성을 변경함으로써 결정화할 수 있게 된다.
이때, 비정질 실리콘층(230)에 대한 결정화 공정은 전술한 제1 실시예에서와 같이 비접촉에 의해 즉, 비접촉식으로 실행하는 것이 바람직한데, 본 발명의 제2 실시예에 따른 결정화용 구조물은 비정질 실리콘층(230) 상에 열을 인가하는 저항체(430)가 배선에 요홈을 형성하여 삽입되는 형태이기 때문에 저항체와 비정질 실리콘층 사이에 일정한 높이가 유지되므로 비접촉에 의한 결정화 공정이 가능하도록 할 수 있다.
따라서, 비정질 실리콘층의 결정화되는 영역에 대한 오염을 최소화할 수 있으며, 보다 좋은 성질의 결정화를 얻을 수 있게 된다. 또한 압력에 의한 기판의 손상을 방지할 수 있다.
한편, 본 발명의 제2 실시예에서도 결정화를 촉진시키기 위한 다양한 방식을 적용할 수 있는데 예컨대, 전기장, 자기장을 인가하는 방식, 소정 온도로 기판을 가열하면서 결정화를 수행하는 방식 등이다. 이 경우, 특히 자기장을 인가하면서 결정화를 촉진시키는 방식에 있어서는 자기장의 특성상 균일한 자기장을 인가하는 것이 가능하여 기판 전체적으로 균일하게 결정화를 촉진시킬 수 있게 되는 장점을 가지고 있으므로 앞서 설명한 본 실시예에 의한 결정화 방법 이전 또는 이후에 자기장 인가를 통해서 결정화를 수행하거나, 자기장 인가와 병행하여 다른 결정화방식으로 결정화를 수행하는 방식을 통해서 더욱 효과적으로 결정화를 수행할 수 있다.
전술한 본 발명에 따른 결정화용 구조물 및 이를 이용한 결정화 방법에 대한 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.
도 1은 본 발명의 제1 실시예에 따른 결정화용 구조물의 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 결정화용 구조물의 단면도의 일예이다.
도 3은 본 발명의 제1 실시예에 따른 결정화용 구조물의 단면도의 다른 예이다.
도 4는 본 발명의 제1 실시예에 따른 결정화용 구조물을 이용한 결정화 방법을 설명하기 위한 단면도의 일 예이다.
도 5는 본 발명의 제1 실시예에 따른 결정화용 마스크를 나타내는 도면이다.
도 6a 내지 도 6c는 본 발명의 제1 실시예에 따른 결정화용 구조물을 이용한 결정화 방법을 설명하기 위한 단면도의 다른 예이다.
도 7은 본 발명의 제1 실시예에 따른 결정화용 구조물을 이용하여 샘플에 부분적으로 열을 인가하는 과정을 나타낸 도면이다.
도 8a는 본 발명의 제2 실시예에 따른 결정화용 구조물을 설명하기 위한 도면이며, 도 8b는 도 8a의 배선과 저항체를 크게 도시한 도면이다.
도 9는 본 발명의 제2 실시예에 따른 결정화용 구조물을 이용한 결정화 방법을 설명하기 위한 단면도이다.

Claims (11)

  1. 결정화용 구조물에 있어서,
    하부에 판 형상을 가지는 지지체; 및
    상기 지지체의 판 형상에는 편평한 하부면 및 서로 다른 두 개의 저항을 가지는 돌출부가 복수개 서로 소정 간격으로 이격되어 구비되되, 상기 돌출부는 상기 지지체의 하면 상에 돌출 형성된 제1 저항을 갖는 제1 저항체와, 상기 제1 저항체의 말단부에 돌출 형성된 제2 저항을 갖는 제2 저항체로 이루어지며,
    상기 제2 저항체의 하부면에 온도가 인가되어 대상물에 접근하여 가열할 때, 상기 제2 저항을 제1 저항보다 크게 하여 상기 제2 저항체에서의 온도는 상기 제1 저항체의 온도보다 높게 설정되는 것을 특징으로 하는 결정화용 구조물.
  2. 제1 항에 있어서,
    상기 제1 저항체의 단면은 마름모꼴 형태인 것을 특징으로 하는 결정화용 구조물.
  3. 제1 항에 있어서,
    상기 돌출부는 상기 지지체의 판을 기준으로 수직 왕복 가능한 것을 특징으 로 하는 결정화용 구조물.
  4. 결정화용 구조물에 있어서,
    하부에 판 형상을 가지는 지지체; 및
    상기 지지체의 판 형상에는 제1 저항을 갖는 매트릭스 형상의 배선과 상기 배선을 단선하는 방식으로 일부 배선에 요홈이 형성되도록 삽입되고 편평한 하부면 및 제2 저항을 가지며 소정간격으로 이격되어 구비되는 복수개의 저항체를 구비하되,
    상기 배선에 전압을 인가함에 따라 상기 저항체가 발열하여 대상물에 소정 간격으로 집중되는 열을 인가하고,
    상기 제2 저항은 제1 저항 보다 큰 것을 특징으로 하는 결정화용 구조물.
  5. 제1 항 또는 제4 항에 있어서,
    상기 편평한 하부면의 영역은 상기 지지체 면적의 0.2% 내지 10%인 것을 특징으로 하는 결정화용 구조물.
  6. 제1 항 또는 제4 항에 있어서,
    상기 지지체는 투명한 부위를 구비하고 상기 투명한 부위에는 정렬키가 구비되는 것을 특징으로 하는 결정화용 구조물.
  7. (a) 상부에 비정질 실리콘층이 증착된 기판을 준비하는 단계;
    (b) 상기 기판의 하부에 냉각장치를 구비하는 단계;
    (c) 상기 비정질 실리콘층의 상부에는, 하부에 판 형상을 가지는 지지체 및 상기 지지체의 판 형상에 편평한 하부면을 가지는 복수개의 돌출부가 서로 소정 간격으로 이격되어 구비되는 결정화용 구조물을 구비하는 단계; 및
    (d) 상기 비정질 실리콘층 상부에 상기 결정화용 구조물이 일정 간격을 유지하여 배치되도록 상기 비정질 실리콘층 및 상기 결정화용 구조물 사이에 상기 돌출부가 삽입될 수 있는 구조의 복수개의 오픈된 영역을 갖는 마스크를 구비하는 단계를 포함하되,
    상기 결정화용 구조물을 상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식으로, 상기 소정 면적을 갖는 비정질 실리콘층의 특성이 변경되도록 하여 상기 비정질 실리콘층을 결정화하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법.
  8. 제7 항에 있어서,
    상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식은,
    상기 단계(c)에서, 상기 돌출부는 서로 다른 두 개의 저항을 가지며 상기 지지체의 하면 상에 돌출 형성된 제1 저항을 갖는 제1 저항체와, 상기 제1 저항체의 말단부에 돌출 형성된 제2 저항을 갖는 제2 저항체를 구비하는 상기 결정화용 구조물을 이용하되,
    상기 제2 저항체의 하부면에 온도가 인가되어 대상물에 접근하여 가열할 때, 상기 제2 저항을 제1 저항보다 크게 하여 상기 제2 저항체에서의 온도는 상기 제1 저항체의 온도보다 높게 설정하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법.
  9. (a') 상부에 비정질 실리콘층이 증착된 기판을 준비하는 단계;
    (b') 상기 기판의 하부에 냉각장치를 구비하는 단계;
    (c') 상기 비정질 실리콘층의 상부에는, 하부에 판 형상을 가지는 지지체 및 상기 지지체의 판 형상에는 제1 저항을 갖는 매트릭스 형상의 배선과 상기 배선을 단선하는 방식으로 일부 배선에 요홈이 형성되도록 삽입되고 편평한 하부면 및 상기 제1 저항보다 큰 제2 저항을 가지며 소정간격으로 이격되어 구비되는 복수개의 저항체를 포함하는 결정화용 구조물을 접촉하여 배치하는 단계; 및
    (d') 상기 결정화용 구조물을 상기 비정질 실리콘층에 소정 면적을 갖는 복 수개의 영역들의 온도가 주위 보다 높게 가열하는 방식으로, 상기 소정 면적을 갖는 비정질 실리콘층의 특성이 변경되도록 하여 상기 비정질 실리콘층을 결정화하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법.
  10. 제9 항에 있어서,
    상기 비정질 실리콘층에 소정 면적을 갖는 복수개의 영역들의 온도가 주위 보다 높게 가열하는 방식은,
    상기 단계(c')에서, 상기 결정화용 구조물의 상기 배선에 전압을 인가함에 따라 상기 저항체가 발열하여 대상물에 소정 간격으로 집중되는 열을 인가하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법.
  11. 제7 항 또는 제9 항에 있어서,
    상기 비정질 실리콘층 상부 또는 하부에는 버퍼층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 비정질 실리콘층의 결정화방법.
KR1020080009792A 2008-01-30 2008-01-30 결정화용 구조물 및 이를 이용한 결정화 방법 KR100910569B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080009792A KR100910569B1 (ko) 2008-01-30 2008-01-30 결정화용 구조물 및 이를 이용한 결정화 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080009792A KR100910569B1 (ko) 2008-01-30 2008-01-30 결정화용 구조물 및 이를 이용한 결정화 방법

Publications (1)

Publication Number Publication Date
KR100910569B1 true KR100910569B1 (ko) 2009-08-03

Family

ID=41209444

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080009792A KR100910569B1 (ko) 2008-01-30 2008-01-30 결정화용 구조물 및 이를 이용한 결정화 방법

Country Status (1)

Country Link
KR (1) KR100910569B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000027496A (ko) * 1998-10-28 2000-05-15 김영환 반도체 소자의 제조방법
KR20060095370A (ko) * 2005-02-28 2006-08-31 주식회사 비아트론 반도체 소자의 열처리 시스템
KR20070098062A (ko) * 2006-03-30 2007-10-05 엘지전자 주식회사 반도체막 열처리 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000027496A (ko) * 1998-10-28 2000-05-15 김영환 반도체 소자의 제조방법
KR20060095370A (ko) * 2005-02-28 2006-08-31 주식회사 비아트론 반도체 소자의 열처리 시스템
KR20070098062A (ko) * 2006-03-30 2007-10-05 엘지전자 주식회사 반도체막 열처리 장치

Similar Documents

Publication Publication Date Title
TW278220B (ko)
KR100729942B1 (ko) 도전층을 이용한 실리콘 박막의 어닐링 방법 및 그로부터제조된 다결정 실리콘 박막
KR100836744B1 (ko) 비정질 실리콘의 주울 가열 결정화 방법
KR100653263B1 (ko) 실리콘막의 결정화 방법
KR100543717B1 (ko) 실리콘 박막의 어닐링 방법 및 그로부터 제조된 다결정실리콘 박막
CN104157700B (zh) 低温多晶硅薄膜晶体管及其制备方法
KR100946808B1 (ko) 다결정 실리콘 박막의 제조 방법, 이를 이용하여 제조된다결정 실리콘 박막, 및 이를 포함하는 박막트랜지스터
US20040134417A1 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
US6297080B1 (en) Method of crystallizing a silicon film and a method of manufacturing a liquid crystal display apparatus
CN103730336B (zh) 定义多晶硅生长方向的方法
US7682950B2 (en) Method of manufacturing laterally crystallized semiconductor layer and method of manufacturing thin film transistor using the same method
KR100910569B1 (ko) 결정화용 구조물 및 이를 이용한 결정화 방법
KR100623693B1 (ko) 박막트랜지스터 제조 방법
KR20110067932A (ko) 비정질 실리콘 결정화 장치
KR101009429B1 (ko) 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의제조방법
KR101336455B1 (ko) 결정화용 구조물, 이를 이용한 결정화 방법, 반도체 활성층형성방법 및 박막트랜지스터 형성방법 이를 이용한 박막트랜지스터의 제조방법
KR100803867B1 (ko) 비정질 실리콘층의 결정화 방법 및 이를 이용한 박막트랜지스터의 제조방법
KR100294971B1 (ko) 실리콘 박막을 결정화하는 방법
KR20090084237A (ko) 다결정 실리콘 박막 제조장치 및 방법
KR101075261B1 (ko) 다결정 실리콘 박막의 제조방법
KR100976593B1 (ko) 박막트랜지스터 및 이의 제조방법
KR100579178B1 (ko) 박막트랜지스터 및 그 제조 방법
KR101031882B1 (ko) 다결정 실리콘 박막 제조장치 및 방법
US20100313397A1 (en) Apparatus for manufacturing polycrystalline silicon thin film
KR20090084239A (ko) 다결정 실리콘 박막 제조장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 11