KR101015250B1 - 양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법 - Google Patents

양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법 Download PDF

Info

Publication number
KR101015250B1
KR101015250B1 KR1020080035984A KR20080035984A KR101015250B1 KR 101015250 B1 KR101015250 B1 KR 101015250B1 KR 1020080035984 A KR1020080035984 A KR 1020080035984A KR 20080035984 A KR20080035984 A KR 20080035984A KR 101015250 B1 KR101015250 B1 KR 101015250B1
Authority
KR
South Korea
Prior art keywords
catalyst
pcs
polycarbosilane
anodized
polydimethylsilane
Prior art date
Application number
KR1020080035984A
Other languages
English (en)
Other versions
KR20090110465A (ko
Inventor
류도형
허승헌
신동근
진은주
조광연
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020080035984A priority Critical patent/KR101015250B1/ko
Publication of KR20090110465A publication Critical patent/KR20090110465A/ko
Application granted granted Critical
Publication of KR101015250B1 publication Critical patent/KR101015250B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)

Abstract

양극산화된 나노다공성 금속산화물을 촉매로 하여 폴리디메틸실란(polydimethylsilane: PDMS)으로부터 폴리카보실란 (polycarbosilane: PCS)을 합성하는 방법이 개시된다. 본 발명은 PCS 합성 후 촉매 정제과정을 거칠 필요가 없어 양산 공정시 시간적, 금전적 부담을 덜 수 있으며, 획기적인 공정 기간 단축을 이룰 수 있다.
양극산화, 폴리디메틸실란(PDMS), 폴리카보실란(PCS), 실리콘 카바이드(SiC)

Description

양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란 합성 방법{A simple synthetic route of polycarbosilane using catalytic anodized metalic oxides}
본 발명은 폴리카보실란을 제조하는 방법에 관한 것으로, 보다 상세하게는 폴리디메틸실란으로부터 촉매 전환 공정을 거친 후 촉매를 분리하는 별도의 과정이 필요없는 폴리카보실란 제조 방법에 관한 것이다.
폴리카보실란(polycarbosilane; PCS)은 폴리실란(polysilane; PS)의 한 종류로 실리콘과 탄소원자가 주쇄를 이루고 있는 구조로 되어있으며 실리콘 카바이드(SiC)계 연속 섬유의 전구체 또는 내산화성, 내열성을 증진시키기 위한 SiC 코팅, SiC분말, SiC 복합재료의 전구체 등으로 널리 이용되고 있다. 그러나 기존 PCS 전구체의 제조과정이 복잡하여 이의 개발 및 양산화가 더디게 진행되고 있으며 이로 인해 다양한 분야에서의 SiC상용화가 지연되고 있는 실정이다. 특히 방사가 가 능한 PCS 폴리머 합성을 통한 SiC 섬유 제조는 최근 탄소섬유가 할 수 없는 초고온 극한 환경에 매우 적합하여 우주, 항공, 핵융합의 극한 소재로 각광 받고 있다.
방사성이 우수한 (spinnable) PCS 제조는 매우 복잡하며 다음과 같은 방법으로 제조 된다: (1) 나트륨 등 알칼리금속의 탈염반응을 이용하여 디메틸클로로실란(dimethyldichlorosilane; DMDS)으로부터 폴리디메틸실란(polydimethylsilane; PDMS) 합성, (2) 촉매 공정을 이용하여 PDMS로부터 PCS 합성, (3) 열중합을 통하여 방사성이 우수한 PCS 제조 (분자량 늘리기).
특히 (2)단계인 PCS 제조는 매우 중요한데, "Si-Si-Si-Si" 백본 결합을 갖는 PDMS을 촉매를 이용 Si-Si 사이에 메틸그룹 (-CH2-)이 들어가게 한다(Kumada rearangement). 촉매공정이 끝난후 PCS의 메인 백본은 "Si-C-Si-C"가 되며 이를 열처리함으로써 균일한 SiC를 얻을 수 있게 된다.
이와 같이, 방사성이 우수한 PCS 합성을 위해서는 전체 공정 중 PDMS-PCS 촉매 전환공정이 가장 중요한 것으로 여겨지고 있다.
야지마(Yajima)는 폴리보로디페닐실록산을 촉매로 사용하여 상압에서 폴리카보실란 제조법을 보고하였으며(Nature Vol. 273 No. 15, 525-527), 구로사키 리프랙토리즈(Kurosaki Refractories Co. Ltd.)에서는 AlCl3, ZrCl2, VCl3, SbCl3 등의 고체산을 촉매로 사용하여 상압, 320℃~370℃에서 폴리카보실란을 합성하는 방법을 보고한 바 있다(미국 특허US 4,590,253 , 일본 특허 JP 87-79228).
또, 최근 효율이 높고 안정적인 방법으로서 폴리카보실란을 합성하기 위해 제올라이트를 촉매로 사용하는 방법이 보고되었다(한국특허 10-0515239). 그러나 이 방법은 촉매의 가격이 비싸고 촉매로 나노파우더를 사용할 때, 합성물로부터의 촉매를 분리하는 것이 용이하지 않다는 단점이 있다.
이와 같이, 종래의 촉매전환 공정은 대부분 분말형 촉매를 사용하여 촉매 성분이 제조된 PCS에 남아 있기 때문에 이를 여과하는 과정을 거쳐 촉매를 분리하여야 하는데, 여과 과정은 생각보다 복잡하다. 통상 다공성 필터 여과지를 사용할 경우 촉매들이 여과지의 구멍을 막게 되어 필터 효율이 떨어지며 막대한 시간낭비가 발생한다. 또한 폴리머 점도가 클 경우 용매를 이용하여 적당히 희석해야 하며 촉매 여과 과정이 끝난 후에는 용매를 제거하는 공정이 필요하다.
한편, 이와 달리 촉매를 원심분리하여 제거하는 기술이 소개된 바 있으나, 원심분리를 이용한 촉매 제거 기술은 현재까지는 완전하지 못하다. 결국 기존의 촉매들은 반응이 끝난 후 이를 제거해야 하는 문제 때문에 PCS 양산 및 상용화에 걸림돌이 되어 왔다.
상기한 종래 기술의 문제점을 해결하기 위해 본 발명은, 촉매의 제거를 위한 복잡한 공정이 필요 없는 PCS 제조 공정을 제공하는 것을 목적으로 한다.
또한, 본 발명은 촉매 반응을 위한 넓은 비표면적을 제공하여 효율적인 전환이 가능한 PCS 제조 공정을 제공하는 것을 목적으로 한다.
또한, 본 발명은 전술한 방법에 의해 제조된 PCS로부터 SiC를 제조하는 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 전술한 방법에 의해 제조된 PCS를 이용하여 표면에 SiC가 코팅된 부재를 제공하는 것을 목적으로 한다.
상기 기술적 과제를 달성하기 위해 본 발명은, 폴리디메틸실란으로부터 양극산화된 다공성 금속산화물을 촉매로 하여 폴리카보실란을 합성하는 방법을 제공한다. 본 발명에서 상기 촉매는 벌크형인 것이 바람직하다.
또한, 상기 벌크형 촉매는 스터러 형태로 성형되어 상기 폴리디메틸실란과 접촉하는 것일 수 있다. 또한, 상기 촉매는 원통형으로 성형되어 상기 폴리디메틸실란과 접촉하는 것일 수 있다. 또한, 상기 촉매는 스프링 형태로 성형되어 상기 폴리디메틸실란과 접촉하는 것일 수 있다. 또한, 상기 폴리디메틸실란과 접촉하는 반응기의 내벽이 양극산화된 금속 산화물을 포함하는 것일 수 있다.
본 발명에서 양극 산화된 다공성 금속 산화물은 Ti, Al, Nb 및 W으로 이루어진 그룹 중에서 선택된 1종 이상의 금속의 양극 산화물일 수 있다.
또한, 본 발명은, 상술한 방법에 의해 제조된 PCS를 방사하여 PCS 섬유를 제조하는 단계; 및 상기 PCS 섬유를 열처리를 하여 SiC 섬유를 제조하는 방법을 제공한다.
또한, 본 발명은 상술한 방법에 의해 제조된 PCS를 모재상에 코팅하는 단계; 및 상기 모재를 열처리 하여 상기 모재 표면에 SiC 피막을 제조하는 단계를 포함하는 SiC 코팅된 모재의 제조 방법을 제공한다.
차세대 신소재로서 주목 받고 있는 SiC 섬유는 국방, 우주, 항공, 핵융합 등 에 사용되고 있는 첨단 재료이다. SiC 제조방법 특히 폴리카보실란 전구체로부터 열처리하여 제조되는 SiC 섬유는 국가간 전략물질로서 통제를 받고 있는 주요한 소재이다. 그러나 폴리카본실란을 제조하는 방법은 상당히 난해한 기술로서 그 제조방법이 극히 일부에 머무르고 있으며 좋은 생성물을 얻기 위하여 촉매 공정을 꼭 필요로 한다. 그러나 기존 촉매 공정들은 화합물형 혹은 분말형촉매를 이용함으로써 순수한 PCS를 얻어내기가 극히 힘들며 추가적인 촉매 여과 공정은 비용 발생을 증진시켜 양산화에 큰 걸림돌이 되었다.
이에 본 발명은 새로운 촉매 즉 다공성 AMO (AAO 포함)를 이용함으로써 기존 촉매효과와 비슷하며 촉매 여과 과정이 필요 없는 공정을 개발하였다. 이는 점차 늘고 있는 SiC 시장을 활성화 시킬 것이며 나아가 분말형, 섬유형 SiC 등이 다양한 산업분야에 응용화가 기대 된다.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상술한다.
PDMS에서 PCS로의 전환에는 종래 분말형 제올라이트 촉매(고체산 촉매)의 표면 산도가 큰 역할을 한다. 즉, 표면 금속이온 싸이트가 루이스 산과 같은 역할을 할 때 촉매 전환 공정이 효과적으로 일어난다. 본 발명자들은 양극산화된 금속산화물들은 고체산으로 훌륭한 작용을 하므로, 양극산화된 금속 산화물이 PDMS-PCS 촉매 전환 공정에 적합하다는 사실을 발견하였다. 양극 산화된 금속 산화물은 다양한 형상으로 제조 가능하므로, 벌크 형태의 양극산화된 금속 산화물 촉매를 반응에 제 공하는 경우 추후 촉매 제거에 특별한 노력이 필요치 않게 된다.
도 1은 본 발명의 일 실시예로서, 스프링 타입의 AMO로 PCS를 합성하는 과정을 개략적으로 도시한 도면이다.
도시된 도면을 참조하면, Al 금속을 스프링 형태로 성형하고, 이를 예컨대 0.3M 옥살산(Oxalic acid), DC 40V에서 양극산화처리를 하여 양극 산화된 알루미나 다공체를 얻을 수 있다.
도 2는 도 1에서 Al의 양극 산화에 의해 얻어진 알루미나 다공체(Anodized Aluminium Oxide; AAO)의 표면을 촬영한 사진이다. 도시된 바와 같이, 표면에 다수의 나노 세공이 형성된 알루미나 나노 다공체 스프링이 제작될 수 있음을 알 수 있다. 여기서, 나노세공의 크기는 40-100 nm 정도였다. 본 발명에서 '나노 다공체'란 기공의 직경이 1㎛ 이하이고 복수의 기공이 형성된 다공성 물질을 지칭한다.
다시 도 1을 참조하면, 이와 같이 제조된 나노 다공체 스프링을 스테인레스 튜브와 같은 반응기에 넣고 PDMS와 접촉 반응시킴으로써 PCS를 제조할 수 있다.
도 3은 이와 같은 방법으로 얻어진 PCS의 분석 결과로서, 각각 실리콘 NMR과 GPC 데이터 그래프이다. 이 때, 반응기는 350-400도의 로(Furnace) 내부에 넣고 반응을 진행하였으며, 본 발명과의 비교를 위해, AAO 스프링을 사용한 경우를 분말형 ZSM-5 제올라이트를 사용한 경우 및 촉매를 사용하지 않은 경우의 3가지 샘플에 대해 같은 양의 PDMS를 넣은 후 실험을 실시하였다.
도3의 (a)의 NMR 사진에서 보듯 3샘플 모두 PDMS에서 PCS로 전환되었음을 보여준다. 그러나 GPC 결과에서 보듯 촉매가 없는 경우의 PCS는 대부분 저분자량 형 태를 갖는다. 이는 촉매를 사용하지 않은 경우 바람직하지 않은 PCS가 만들어짐을 보여준다. 그러나 제올라이트와 AAO의 경우는 거의 똑같은 분자량 분포 (평균 분자량: 950)를 보인다. 앞서 설명한 바와 같이, ZSM-5는 PCS 전환 공정에서 훌륭한 촉매로 알려져 있으며, 이와 대비할 때, 스프링형태의 AAO촉매는 기존의 제올라이트 촉매(ZSM-5)만큼 좋은 효과를 갖는다는 것을 알 수 있다. 그러나, 본 발명에서는 AAO 스프링을 반응기로부터 제거하면 PCS가 얻어지므로 촉매의 분리를 위한 별도의 여과 과정이 불필요하게 된다.
도 4는 본 발명의 다른 실시예를 도시하는 도면이다.
도 4를 참조하면, Al을 스터러 형상으로 성형한 후, 이를 양극산화하여 AAO 스터러를 제작하였다. 제작된 AAO 스터러를 반응기에 장착하였다. 또, 원통형 알루미늄을 양극산화하여 AAO 원통을 제조한 후 이를 반응기의 벽면에 장착하였다. 본 실시예에서 반응기는 온도 및 압력 컨트롤러가 컴퓨터에 의하여 제어 되며 모니터링된다. 또한 가스상을 응축시키는 콘덴서와 질소 또는 아르곤 가스 환류 시스템이 구비되어 있다.
1Kg의 PDMS를 반응기에 채운 후 반응기 벽면의 히터(heater)로 반응용기를 350도의 온도로 승온하고 반응기 내부를 불활성 분위기로 유지한 상태에서 10시간동안 반응시켰다. 이 때, 반응은 AAO 스터러를 회전시키면서 수행되었다. 본 실시예에서 PDMS에서 PCS로의 촉매 고정은 회전되는 AAO 스터러 및 원통형 AAO 벽면에서 일어난다.
반응이 끝난 후 반응챔버의 하부 드레인으로 액상 PCS를 뽑아내었다. 마찬가지로 본 실시예에서도 촉매의 제거를 위한 별도의 촉매 여과 공정은 필요 없다.
이어서, 액상 PCS를 400도 10 시간 열중합을 통하여 방사 가능한 PCS (분자량 1500정도)로 제작한 후 전기방사법(electrospinning)을 이용하여 PCS를 방사하였다. 도 6의 (a)는 AAO를 이용하여 제조된 방사가능한 PCS 사진을 보여주고 있다. 도의 6(b)-(d)는 전기방사하여 방사된 PCS 섬유 사진을 보여주고 있다. 방사된 PCS 섬유는 연속적이고 수 마니크로미터 직경범위 내에서 매우 균일하다.
이상의 과정을 통해 제조된 방사 PCS는 열처리 및 소결 과정을 거쳐 SiC 섬유로 제조될 수 있다.
예컨대, 상기 실시예에서 제조된 PCS 섬유를 지름 10 mm의 알루미나 도가니에 넣고 개방형 전기로에서 200도까지 시간당 30도로 승온하여 1~4시간 산화 안정화 한 후 다시 아르곤 분위기가 유지되는 알루미나 관상로에서 1200℃까지 12시간 동안 승온하여 1시간 유지하여 실리콘카바이드로 전환시킨 후 상온에서 회수하였다. 얻어진 실리콘카바이드를 고배율 전자현미경으로 이미지 관찰한 결과 치밀한 구조를 보였으며 촉매 성분들은 관찰되지 않았다.
이상 AAO를 양극산화된 금속 산화물의 일례로 설명하였지만, 본 발명은 양극산화 가능한 금속산화물(AMO)에 모두 적용될 수 있다. 예컨대, 양극 산화 가능한 Ti, W, Nb 등의 산화이 본 발명의 촉매로 사용될 수 있다.
또, 이상 본 발명의 벌크형 촉매 물질의 형상으로 스프링, 스터러, 원통형 실린더를 예시하였지만, 본 발명은 이에 한정되는 것은 아니다. 당업자라면 반응기 의 내벽의 최소한 일부를 양극 처리하여 이를 촉매로 이용할 수도 있을 것이다. 물론, 이외에도 당업자라면 전술한 실시예를 변경 또는 변형함으로써 다양한 예를 착안할 수 있을 것이며, 이러한 예는 벌크형 촉매를 이용하는 본 발명의 기술 사상의 범주 내에 포함되는 한 본 발명의 권리범위에 포함될 것이라는 것은 당업자라면 누구나 알 수 있을 것이다.
도 1은 본 발명의 일실시예로서, 양극 산화된 금속 촉매를 이용하여 PCS를 합성하는 방법을 모식적으로 도시한 도면이다.
도 2는 도 1에서 얻어진 양극산화된 AAO 촉매 표면의 전자현미경 사진이다.
도 3은 본 발명의 일실시예에 따라 도 1의 장치를 이용하여 합성된 PCS들의 GPC 데이터와 NMR 데이터를 나타낸 그래프이다.
도 4는 본 발명의 다른 실시예로서 양극 산화된 금속 산화물 촉매를 이용하는 PCS 합성 방법을 모식적으로 도시한 도면이다.
도 5는 도 4에서 얻어진 액상 PCS로부터 얻어진 PCS 섬유를 촬영한 전자현미경 사진이다.

Claims (9)

  1. 폴리디메틸실란으로부터 양극산화된 다공성 알루미늄 산화물을 촉매로 하여 폴리카보실란을 합성하는 방법.
  2. 제1항에 있어서,
    상기 촉매는 벌크형인 것을 특징으로 하는 폴리카보실란 합성 방법.
  3. 제2항 있어서,
    상기 촉매는 스터러 형태로 성형되어 상기 폴리디메틸실란과 접촉하는 것을 특징으로 하는 폴리카보실란 합성 방법.
  4. 제2항 있어서,
    상기 촉매는 원통형으로 성형되어 상기 폴리디메틸실란과 접촉하는 것을 특징으로 하는 폴리카보실란 합성 방법.
  5. 제1항 있어서,
    상기 촉매는 스프링 형태로 성형되어 상기 폴리디메틸실란과 접촉하는 것을 특징으로 하는 폴리카보실란 합성 방법.
  6. 제2항 있어서,
    상기 합성 방법은 반응기 내에서 이루어지고,
    상기 벌크형 촉매는 양극산화된 알루미늄 산화물로 된 상기 반응기의 내벽인 것을 특징으로 하는 폴리카보실란 합성 방법.
  7. 삭제
  8. 제 1항에 기재된 방법에 의해 제조된 PCS를 방사하여 PCS 섬유를 제조하는 단계; 및
    상기 PCS 섬유를 열처리를 하여 SiC 섬유를 제조하는 방법.
  9. 제 1항에 기재된 방법에 의해 제조된 PCS를 모재상에 코팅하는 단계; 및
    상기 모재를 열처리 하여 상기 모재 표면에 SiC 피막을 제조하는 단계를 포함하는 SiC 코팅된 모재의 제조 방법.
KR1020080035984A 2008-04-18 2008-04-18 양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법 KR101015250B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080035984A KR101015250B1 (ko) 2008-04-18 2008-04-18 양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080035984A KR101015250B1 (ko) 2008-04-18 2008-04-18 양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법

Publications (2)

Publication Number Publication Date
KR20090110465A KR20090110465A (ko) 2009-10-22
KR101015250B1 true KR101015250B1 (ko) 2011-02-18

Family

ID=41538311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080035984A KR101015250B1 (ko) 2008-04-18 2008-04-18 양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법

Country Status (1)

Country Link
KR (1) KR101015250B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333644B1 (en) 2009-11-16 2014-12-10 Samsung Display Co., Ltd. Energy-efficient display apparatus with object-sensing capability
KR20220073955A (ko) 2020-11-27 2022-06-03 한국세라믹기술원 금속 원소 도핑 pcs 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515239B1 (ko) * 2003-05-22 2005-09-21 주식회사 데크 제올라이트를 촉매로 사용한 폴리카보실란의 제조 방법
KR100684648B1 (ko) * 2006-02-03 2007-02-22 요업기술원 폴리카보실란으로부터 반결정형 실리콘 카바이드 섬유를제조하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515239B1 (ko) * 2003-05-22 2005-09-21 주식회사 데크 제올라이트를 촉매로 사용한 폴리카보실란의 제조 방법
KR100684648B1 (ko) * 2006-02-03 2007-02-22 요업기술원 폴리카보실란으로부터 반결정형 실리콘 카바이드 섬유를제조하는 방법

Also Published As

Publication number Publication date
KR20090110465A (ko) 2009-10-22

Similar Documents

Publication Publication Date Title
Shcherban Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide
Schlienger et al. Micro-, mesoporous boron nitride-based materials templated from zeolites
Liu et al. The effect of zirconium incorporation on the thermal stability and carbonized product of phenol–formaldehyde resin
JP4612287B2 (ja) 実質的にウイスカのない炭化ケイ素繊維およびその製造方法
JP5046122B2 (ja) 自立メソポーラスカーボン薄膜。
WO2009140791A1 (en) Process for producing silicon carbide
US11104989B2 (en) Chemical vapor deposition process to build 3D foam-like structures
KR20100056998A (ko) β-SiC 필름 상의 나노튜브 또는 나노섬유로 된 복합체
Keller et al. Preparation and characterization of SiC microtubes
KR101015250B1 (ko) 양극산화된 다공성 금속산화물을 촉매로 한 폴리카보실란합성 방법
Riedel et al. Polymer-derived mullite–SiC-based nanocomposites
Yang et al. Template synthesis of highly ordered hydroxyapatite nanowire arrays
Xie et al. Synthesis and characterization of molybdenum‐modified polycarbosilane for SiC (Mo) ceramics
CN108752037B (zh) 一种基于聚碳硅烷制备的多孔碳化硅块体及其制备方法与应用
KR101442197B1 (ko) 다공성 탄소 입자, 및 이의 제조 방법
WO2019021963A1 (ja) 流体分離膜
KR20090073201A (ko) 실리카기 복합 광촉매 및 그 제조 방법
Elyassi et al. Effect of polystyrene on the morphology and physical properties of silicon carbide nanofibers
RU2427673C1 (ru) Прядильный раствор для электроформования, способ получения волокон электроформованием и волокна карбида кремния
Ahmed et al. Influence of the pH on the Morphology of Sol–Gel‐Derived Nanostructured SiC
KR101031225B1 (ko) 반응기 일체형 촉매 제조 기술
KR101071282B1 (ko) 메조포러스 실리카로부터 제조된 탄화규소 분말 및 그 제조방법
KR100942186B1 (ko) 알루미나 분말 촉매를 이용한 폴리카보실란의 제조 방법 및이를 열분해하여 실리콘카바이드를 제조하는 방법
JP6442927B2 (ja) 多孔質炭素材料
Centofanti et al. Preparation of Silicon Polymer-Derived Ceramics Upon Chemical Treatment to Obtain Materials with Highly Improved Capacitive Current

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140113

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee