KR101011903B1 - Method of manufacturing Anisotropic conductive sheet - Google Patents

Method of manufacturing Anisotropic conductive sheet Download PDF

Info

Publication number
KR101011903B1
KR101011903B1 KR1020080067863A KR20080067863A KR101011903B1 KR 101011903 B1 KR101011903 B1 KR 101011903B1 KR 1020080067863 A KR1020080067863 A KR 1020080067863A KR 20080067863 A KR20080067863 A KR 20080067863A KR 101011903 B1 KR101011903 B1 KR 101011903B1
Authority
KR
South Korea
Prior art keywords
sheet
thickness direction
anisotropic conductive
conductive
braiding
Prior art date
Application number
KR1020080067863A
Other languages
Korean (ko)
Other versions
KR20100007288A (en
Inventor
차용철
박상구
Original Assignee
박상구
차용철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박상구, 차용철 filed Critical 박상구
Priority to KR1020080067863A priority Critical patent/KR101011903B1/en
Publication of KR20100007288A publication Critical patent/KR20100007288A/en
Application granted granted Critical
Publication of KR101011903B1 publication Critical patent/KR101011903B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께방향으로의 전기적 흐름은 허용하고 상기 두께방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법에 있어서,The present invention has a plurality of insulating and elastically elastic elastomer sheet and the elastic sheet is arranged in a plurality of spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each extending in the thickness direction of the elastomeric sheet In the manufacturing method of the anisotropic conductive sheet having a plurality of conductive parts, the electrical flow in the thickness direction of the elastic polymer sheet is allowed, and the electrical flow in the direction perpendicular to the thickness direction can be blocked.

다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되는 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 것을 특징으로 한다.Braiding step in which a braided wire is formed by braiding with a plurality of electrically conductive fiber yarns 121, an arrangement step in which a plurality of conductive parts 120 are formed by the braided wire, and the plurality of conductive parts It is characterized in that it comprises a molding step of embedding the elastic polymer to maintain and elastic deformation, cutting the molded product to a predetermined thickness.

이방성 도전 시트, 전기전도성섬유 실, 편조선 Anisotropic conductive sheet, electrically conductive fiber thread, braided wire

Description

이방성 도전 시트 제조방법{Method of manufacturing Anisotropic conductive sheet}Method of manufacturing anisotropic conductive sheet

본 발명은 이방성 도전 시트의 제조방법에 관한 것으로, 더욱 상세하게는 시트의 두께 방향으로 충분히 압축될 수 있는 도전부를 가진 이방성 도전 시트의 제조방법에 관한 것이다.The present invention relates to a method for producing an anisotropic conductive sheet, and more particularly to a method for producing an anisotropic conductive sheet having a conductive portion that can be sufficiently compressed in the thickness direction of the sheet.

일반적으로 전자부품의 제조가 완료되면, 그 전자부품의 성능을 시험하기 위한 전기적 검사가 수행된다. 이러한 전기적 검사를 위하여 테스트 장비와 전자부품 사이에 이방성 도전 시트를 마련해 두고, 상기 테스트 장비와 전자부품의 단자를 서로 전기적으로 연결시킨다. 이후, 테스트 장비의 단자로부터 전류를 이방성 도전 시트를 통하여 전자부품의 리드 단자로 흘려보내고, 이후 각 전자부품의 단자로부터 출력되는 신호를 테스트 장치가 분석하여 전자부품의 이상 유무를 판별한다.In general, when the manufacture of an electronic component is completed, an electrical test is performed to test the performance of the electronic component. An anisotropic conductive sheet is provided between the test equipment and the electronic component for such electrical inspection, and the terminals of the test equipment and the electronic component are electrically connected to each other. Thereafter, a current flows from the terminal of the test equipment to the lead terminal of the electronic component through the anisotropic conductive sheet, and then the test apparatus analyzes the signal output from the terminal of each electronic component to determine whether the electronic component is abnormal.

이러한 이방성 도전 시트에 대한 종래의 기술로는 대한민국 특허 등록번호 10-0797406호 등이 있다. 이러한 이방성 도전 시트는 절연성을 가지며 탄성변형 가능한 탄성 고분자 시트와, 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부로 이루어진다.Conventional techniques for such an anisotropic conductive sheet include Korean Patent Registration No. 10-0797406. The anisotropic conductive sheet comprises an insulating elastically elastic elastomer sheet and a plurality of conductive portions extending in the elastic polymer sheet in the thickness direction of the elastic polymer sheet.

이때, 상기 다수의 도전부는 다수의 구형상, 섬유상, 침상, 플레이크상 등의 형태의 도전체로 이루어진다. 이러한 이방성 도전 시트는 두께 방향으로 가압되었을 때 상기 다수의 도전체 들이 서로 접촉함으로써, 두께 방향으로의 전기적 흐름을 허용한다.In this case, the plurality of conductive parts may include a plurality of conductors in the form of spherical, fibrous, needle, flake, and the like. This anisotropic conductive sheet allows the plurality of conductors to contact each other when pressed in the thickness direction, thereby allowing electrical flow in the thickness direction.

이러한 종래의 이방성 도전 시트는 다음과 같은 문제점이 있다.This conventional anisotropic conductive sheet has the following problems.

먼저, 상기 도전체들은 각각 수십 ㎛ 크기가 있다. 이러한 작은 지름을 갖는 도전체는 탄성 고분자와의 접촉면적이 작기 때문에 탄성 고분자에 의하여 충분한 지지를 받기 어렵다. 이에 따라 전자부품의 단자가 수 만회 이상 반복하여 상기 이방성 도전 시트를 가압하게 되면, 각각의 도전체가 탄성 고분자로부터 이탈하거나, 탄성 고분자에 함몰되는 경우가 발생한다.First, the conductors are each several tens of micrometers in size. The conductor having such a small diameter is difficult to be sufficiently supported by the elastomer because of its small contact area with the elastomer. As a result, when the terminal of the electronic component is repeatedly pressed tens of thousands of times, the anisotropic conductive sheet is pressurized, whereby each conductor is separated from the elastic polymer, or the elastic polymer is depressed.

이러한 문제를 해결하고자 직선형의 섬유상 도전체로 이루어져 이방성 도전 시트를 가압하여도 각각의 섬유상 도전체가 탄성 고분자로부터 이탈될 염려가 적으나, 상기 섬유상 도전체가 직선형으로 되어 있어 시트의 두께 방향으로 쉽게 구부려지지 않는다. 이에 따라 전자부품의 단자를 이용하여 이방성 도전 시트를 가압하면 상기 이방성 도전 시트가 쉽게 압축되지 않는다.In order to solve this problem, even when the anisotropic conductive sheet is made of a linear fibrous conductor, the fibrous conductor is less likely to be separated from the elastic polymer, but the fibrous conductor is straight so that it is not easily bent in the thickness direction of the sheet. . Accordingly, when the anisotropic conductive sheet is pressed using the terminal of the electronic component, the anisotropic conductive sheet is not easily compressed.

상기 이와 같은 문제점 들을 해결하고자 섬유상 도전체을 볼록한 곡선형인 "C" 또는 "S"의 형상으로 이루어져 있으나, 이 또한 계속적인 기계적인 응력으로 도전 입자 간의 접촉저항이 증가하여 상기 도전부의 도전 기능이 저하한다.In order to solve the above problems, the fibrous conductor has a convex curved shape of "C" or "S", but this also increases the contact resistance between the conductive particles due to continuous mechanical stress, thereby deteriorating the conductive function of the conductive portion. .

본 발명은 상기와 같은 문제점을 해결하고자, 다수회 반복하여 이방성 도전 시트를 가압하여도 도전체가 탄성 고분자로부터 이탈되지 않으며, 전자부품으로부터의 가압력에 따라 충분히 압축될 수 있고, 도전부의 접촉저항이 없는 이방성 도전 시트의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, even if the anisotropic conductive sheet is repeatedly pressed a plurality of times, the conductor is not released from the elastic polymer, can be sufficiently compressed according to the pressing force from the electronic component, and there is no contact resistance of the conductive portion. It aims at providing the manufacturing method of an anisotropic conductive sheet.

전기전도성섬유 실을 편조함으로써 연속적인 도전성 편조선으로 도전부를 구성하여 본 과제를 해결하고자 한다.By braiding an electrically conductive fiber thread, a conductive part is formed by a continuous conductive braided wire to solve the present problem.

상술한 바와 같이 본 발명에 의한 이방성 도전 시트는 다수회 반복하여 이방성 도전 시트를 가압하여도 도전체가 탄성 고분자로부터 이탈되지 않으며, 전자부품으로부터의 가압력에 따라 충분히 압축될 수 있고, 도전부의 접촉저항이 없는 효과가 있다. As described above, in the anisotropic conductive sheet according to the present invention, even if the anisotropic conductive sheet is repeatedly pressed a plurality of times, the conductor is not released from the elastic polymer and can be sufficiently compressed according to the pressing force from the electronic component. There is no effect.

본 발명은 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께방향으로의 전기적 흐름은 허용하고 상기 두께방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법에 있어서,The present invention has a plurality of insulating and elastically elastic elastomer sheet and the elastic sheet is arranged in a plurality of spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each extending in the thickness direction of the elastomeric sheet In the manufacturing method of the anisotropic conductive sheet having a plurality of conductive parts, the electrical flow in the thickness direction of the elastic polymer sheet is allowed, and the electrical flow in the direction perpendicular to the thickness direction can be blocked.

다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되는 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 것을 특징으로 한다.Braiding step in which a braided wire is formed by braiding with a plurality of electrically conductive fiber yarns 121, an arrangement step in which a plurality of conductive parts 120 are formed by the braided wire, and the plurality of conductive parts It is characterized in that it comprises a molding step of embedding the elastic polymer to maintain and elastic deformation, cutting the molded product to a predetermined thickness.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1을 참조하면, 본 발명에 따른 이방성 도전 시트를 나타내는 도면이다.1, it is a figure which shows the anisotropic conductive sheet which concerns on this invention.

본 발명은 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께방향으로의 전기적 흐름은 허용하고 상기 두께방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법에 있어서,The present invention has a plurality of insulating and elastically elastic elastomer sheet and the elastic sheet is arranged in a plurality of spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each extending in the thickness direction of the elastomeric sheet In the manufacturing method of the anisotropic conductive sheet having a plurality of conductive parts, the electrical flow in the thickness direction of the elastic polymer sheet is allowed, and the electrical flow in the direction perpendicular to the thickness direction can be blocked.

다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되는 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 것을 특징으로 한다.Braiding step in which a braided wire is formed by braiding with a plurality of electrically conductive fiber yarns 121, an arrangement step in which a plurality of conductive parts 120 are formed by the braided wire, and the plurality of conductive parts It is characterized in that it comprises a molding step of embedding the elastic polymer to maintain and elastic deformation, cutting the molded product to a predetermined thickness.

상기 전기전도성섬유 실은 금속섬유, 금속을 도금한 섬유, 도전성 고무를 코팅한 섬유, 탄소나노튜브, 탄소섬유 및 흑연섬유 중 어느 하나 이상인 것을 특징으로 한다.The electrically conductive fiber yarn is characterized in that any one or more of metal fibers, metal plated fibers, conductive rubber coated fibers, carbon nanotubes, carbon fibers and graphite fibers.

상기 금속을 도금한 섬유와 도전성 고무를 코팅한 섬유는 유리섬유나 유기합성섬유로 이루어지는 것을 특징으로 한다.The metal-plated fiber and the conductive rubber-coated fiber are made of glass fiber or organic synthetic fiber.

상기 편조선의 형상은 평판형 또는 환형인 것과 편조 각도가 15도에서 80도인 것을 특징으로 한다.The shape of the braid is characterized in that the flat or annular shape and the braid angle is 15 to 80 degrees.

상기 편조 각도가 15도 미만이나 80도를 초과하면 상기 이방성 도전 시트가 쉽게 압축되지 않게 된다.When the braid angle is less than 15 degrees or more than 80 degrees, the anisotropic conductive sheet is not easily compressed.

본 발명은 상기 도전성 편조선을 삽입(매립)하여 이방성 도전 시트를 구성함으로써, 도전성 향상 및 수명을 연장시킬 수 있는 특징이 있다. The present invention is characterized in that the anisotropic conductive sheet is formed by inserting (embedding) the conductive braided wire, thereby improving the conductivity and extending the life.

상기 전기전도성섬유 실을 금속섬유, 금속을 도금한 섬유, 도전성 고무를 코팅한 섬유, 탄소나노튜브, 탄소섬유 및 흑연섬유 중 어느 하나 이상인 것으로 조합해 사용함으로써 전자부품에서 복합기능을 발휘할 수 있다.By using the electrically conductive fiber yarn in combination with any one or more of metal fiber, metal plated fiber, conductive rubber coated fiber, carbon nanotube, carbon fiber and graphite fiber, a composite function can be exhibited in an electronic component.

한 예로서, 볼그리드어레이(Ball Grid Array) 반도체 패키징 기술의 핵심적인 부분은 PCB보드 상에 0.2~0.3mm 정도의 마이크로 볼을 붙이고 그 위에 칩 스케일의 볼그리드어레이(BGA)를 올려 놓게 되어 있다. As an example, a key part of the Ball Grid Array semiconductor packaging technology involves placing micro-balls of 0.2-0.3 mm on a PCB board and placing a chip-scale ball grid array (BGA) on it. .

BGA chip의 성능을 결정하는 가장 중요한 것은 ball size의 균일성, ball 높낮이의 균일성 등인데, 즉 ball grid array의 3차원 형상이 균일해야 한다. 이와 같은 형상의 균일성이 유지되지 않으면 접촉점(contact points)의 접촉불량 내지는 접촉저항의 증가로 반도체의 불량과 품질저하를 가져오게 된다.The most important factors in determining the performance of the BGA chip are the uniformity of ball size and uniformity of ball height. That is, the three-dimensional shape of the ball grid array must be uniform. If the uniformity of such a shape is not maintained, defects and deterioration of the semiconductor may be caused by poor contact or increase in contact resistance of contact points.

따라서 칩과 외부를 연결하는 chip connection의 기능에 본 발명인 이방성 도전 시트를 추가로 삽입해 해결할 수 있는 특징이 있다.Therefore, there is a feature that can be solved by additionally inserting the anisotropic conductive sheet of the present invention in the function of the chip connection for connecting the chip and the outside.

도 1은 본 발명에 따른 이방성 도전 시트를 나타내는 도면.1 is a view showing an anisotropic conductive sheet according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100: 이방성 도전 시트100: anisotropic conductive sheet

110: 탄성 고분자 시트110: elastomeric sheet

120: 도전부120: challenge

121: 전기전도성섬유(電氣傳導性纖維) 실121: electrically conductive fiber thread

Claims (3)

삭제delete 삭제delete 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께 방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께 방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께 방향으로의 전기적 흐름은 허용하고 상기 두께 방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법으로, 다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되어 형성되는 성형품의 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 이방성 도전 시트의 제조방법에 있어서,Insulating and elastically deformable elastic polymer sheet and the plurality of elastomeric sheets are arranged spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each of which is extended in the thickness direction of the elastomeric sheet The conductive part of the present invention provides a method for manufacturing an anisotropic conductive sheet that can allow electrical flow in the thickness direction of the elastic polymer sheet and block electrical flow in a direction perpendicular to the thickness direction. A braiding step of braiding a braided line by braiding the yarn 121, an arranging step of arranging a plurality of conductive portions 120 to be formed by the braided lines, and maintaining and elastic deformation of the plurality of conductive portions. It is filled with an elastic polymer molding step of a molded article to be formed, and cutting the shaped article to a predetermined thickness In the production method of the anisotropic conductive sheet comprising a cutting step, 상기 편조선의 형상은 평판형 또는 환형인 것과 상기 편조선의 편조 각도가 15도에서 80도인 것을 특징으로 하는 이방성 도전 시트의 제조방법.The shape of the braided wire is flat or annular, and the braided angle of the braided wire is 15 to 80 degrees.
KR1020080067863A 2008-07-14 2008-07-14 Method of manufacturing Anisotropic conductive sheet KR101011903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080067863A KR101011903B1 (en) 2008-07-14 2008-07-14 Method of manufacturing Anisotropic conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080067863A KR101011903B1 (en) 2008-07-14 2008-07-14 Method of manufacturing Anisotropic conductive sheet

Publications (2)

Publication Number Publication Date
KR20100007288A KR20100007288A (en) 2010-01-22
KR101011903B1 true KR101011903B1 (en) 2011-02-01

Family

ID=41816287

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080067863A KR101011903B1 (en) 2008-07-14 2008-07-14 Method of manufacturing Anisotropic conductive sheet

Country Status (1)

Country Link
KR (1) KR101011903B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890849B1 (en) * 2016-07-26 2018-10-01 한국화학연구원 High energy density polymer composite film via sandwich structure and the method for preparing thereof
KR102587764B1 (en) * 2018-11-21 2023-10-10 미쓰이 가가쿠 가부시키가이샤 Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electrical inspection device and electrical inspection method
CN114976022B (en) * 2022-07-27 2022-10-25 湖南金阳烯碳新材料股份有限公司 Graphene composite dry powder conductive agent and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176624A (en) * 1992-12-10 1994-06-24 Shin Etsu Polymer Co Ltd Adheive anisotropic conductive heet and connecting method for electric circuit member uing it
JP2001322139A (en) 2000-05-16 2001-11-20 Jsr Corp Method for producing composite sheet and composite sheet
JP2005116183A (en) * 2003-10-02 2005-04-28 Lintec Corp Forming method of anisotropic conductive film
KR100797406B1 (en) * 2007-02-12 2008-01-23 주식회사 아이에스시테크놀러지 Anisotropic conductive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176624A (en) * 1992-12-10 1994-06-24 Shin Etsu Polymer Co Ltd Adheive anisotropic conductive heet and connecting method for electric circuit member uing it
JP2001322139A (en) 2000-05-16 2001-11-20 Jsr Corp Method for producing composite sheet and composite sheet
JP2005116183A (en) * 2003-10-02 2005-04-28 Lintec Corp Forming method of anisotropic conductive film
KR100797406B1 (en) * 2007-02-12 2008-01-23 주식회사 아이에스시테크놀러지 Anisotropic conductive sheet

Also Published As

Publication number Publication date
KR20100007288A (en) 2010-01-22

Similar Documents

Publication Publication Date Title
TWI588493B (en) Test socket
US9488675B2 (en) Test socket having high-density conductive unit, and method for manufacturing same
CN105527472B (en) Test bench
CN105452877B (en) Elecrical connector and its manufacturing method
KR101339166B1 (en) Test socket with conductive powder having through-hole and fabrication method thereof
CN104285151B (en) Allow the test jack of simple alignment
JP4597602B2 (en) Multi-element connector
KR101606284B1 (en) Electrical connection device having porous insulating sheet with through hole and test socket
CN105008940A (en) Test socket with high density conduction section
KR101976701B1 (en) anisotropic conductive sheet
KR101151880B1 (en) Sheet type connector, the fabrication method therefor and test socket
TWI453438B (en) Semiconductor test socket
KR101011903B1 (en) Method of manufacturing Anisotropic conductive sheet
KR101506131B1 (en) Fabrication method of test sheet and test sheet
KR101624689B1 (en) Electrical connecting connector
KR100797406B1 (en) Anisotropic conductive sheet
KR20120037593A (en) Test socket
KR20100000680U (en) Anisotropic conductive sheet
TWI550980B (en) Connection connector and method of manufacturing the same
KR20170017951A (en) anisotropic conductive sheet
KR102043098B1 (en) Device for test socket having conducting fiber and method of manufacturing the same
KR20170108521A (en) Device and method for manufacturing conductive particle of test socket using wire bonding and press
CN206322886U (en) A kind of foam metal contact coaxial radio-frequency electric connector
TWI542086B (en) Anisotropic conductive connector, manufacturing and device thereof
KR102191699B1 (en) Electrically conductive pin and electrically conductive module using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180124

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190124

Year of fee payment: 9