KR101011903B1 - Method of manufacturing Anisotropic conductive sheet - Google Patents
Method of manufacturing Anisotropic conductive sheet Download PDFInfo
- Publication number
- KR101011903B1 KR101011903B1 KR1020080067863A KR20080067863A KR101011903B1 KR 101011903 B1 KR101011903 B1 KR 101011903B1 KR 1020080067863 A KR1020080067863 A KR 1020080067863A KR 20080067863 A KR20080067863 A KR 20080067863A KR 101011903 B1 KR101011903 B1 KR 101011903B1
- Authority
- KR
- South Korea
- Prior art keywords
- sheet
- thickness direction
- anisotropic conductive
- conductive
- braiding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/16—Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Non-Insulated Conductors (AREA)
Abstract
본 발명은 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께방향으로의 전기적 흐름은 허용하고 상기 두께방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법에 있어서,The present invention has a plurality of insulating and elastically elastic elastomer sheet and the elastic sheet is arranged in a plurality of spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each extending in the thickness direction of the elastomeric sheet In the manufacturing method of the anisotropic conductive sheet having a plurality of conductive parts, the electrical flow in the thickness direction of the elastic polymer sheet is allowed, and the electrical flow in the direction perpendicular to the thickness direction can be blocked.
다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되는 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 것을 특징으로 한다.Braiding step in which a braided wire is formed by braiding with a plurality of electrically conductive fiber yarns 121, an arrangement step in which a plurality of conductive parts 120 are formed by the braided wire, and the plurality of conductive parts It is characterized in that it comprises a molding step of embedding the elastic polymer to maintain and elastic deformation, cutting the molded product to a predetermined thickness.
이방성 도전 시트, 전기전도성섬유 실, 편조선 Anisotropic conductive sheet, electrically conductive fiber thread, braided wire
Description
본 발명은 이방성 도전 시트의 제조방법에 관한 것으로, 더욱 상세하게는 시트의 두께 방향으로 충분히 압축될 수 있는 도전부를 가진 이방성 도전 시트의 제조방법에 관한 것이다.The present invention relates to a method for producing an anisotropic conductive sheet, and more particularly to a method for producing an anisotropic conductive sheet having a conductive portion that can be sufficiently compressed in the thickness direction of the sheet.
일반적으로 전자부품의 제조가 완료되면, 그 전자부품의 성능을 시험하기 위한 전기적 검사가 수행된다. 이러한 전기적 검사를 위하여 테스트 장비와 전자부품 사이에 이방성 도전 시트를 마련해 두고, 상기 테스트 장비와 전자부품의 단자를 서로 전기적으로 연결시킨다. 이후, 테스트 장비의 단자로부터 전류를 이방성 도전 시트를 통하여 전자부품의 리드 단자로 흘려보내고, 이후 각 전자부품의 단자로부터 출력되는 신호를 테스트 장치가 분석하여 전자부품의 이상 유무를 판별한다.In general, when the manufacture of an electronic component is completed, an electrical test is performed to test the performance of the electronic component. An anisotropic conductive sheet is provided between the test equipment and the electronic component for such electrical inspection, and the terminals of the test equipment and the electronic component are electrically connected to each other. Thereafter, a current flows from the terminal of the test equipment to the lead terminal of the electronic component through the anisotropic conductive sheet, and then the test apparatus analyzes the signal output from the terminal of each electronic component to determine whether the electronic component is abnormal.
이러한 이방성 도전 시트에 대한 종래의 기술로는 대한민국 특허 등록번호 10-0797406호 등이 있다. 이러한 이방성 도전 시트는 절연성을 가지며 탄성변형 가능한 탄성 고분자 시트와, 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부로 이루어진다.Conventional techniques for such an anisotropic conductive sheet include Korean Patent Registration No. 10-0797406. The anisotropic conductive sheet comprises an insulating elastically elastic elastomer sheet and a plurality of conductive portions extending in the elastic polymer sheet in the thickness direction of the elastic polymer sheet.
이때, 상기 다수의 도전부는 다수의 구형상, 섬유상, 침상, 플레이크상 등의 형태의 도전체로 이루어진다. 이러한 이방성 도전 시트는 두께 방향으로 가압되었을 때 상기 다수의 도전체 들이 서로 접촉함으로써, 두께 방향으로의 전기적 흐름을 허용한다.In this case, the plurality of conductive parts may include a plurality of conductors in the form of spherical, fibrous, needle, flake, and the like. This anisotropic conductive sheet allows the plurality of conductors to contact each other when pressed in the thickness direction, thereby allowing electrical flow in the thickness direction.
이러한 종래의 이방성 도전 시트는 다음과 같은 문제점이 있다.This conventional anisotropic conductive sheet has the following problems.
먼저, 상기 도전체들은 각각 수십 ㎛ 크기가 있다. 이러한 작은 지름을 갖는 도전체는 탄성 고분자와의 접촉면적이 작기 때문에 탄성 고분자에 의하여 충분한 지지를 받기 어렵다. 이에 따라 전자부품의 단자가 수 만회 이상 반복하여 상기 이방성 도전 시트를 가압하게 되면, 각각의 도전체가 탄성 고분자로부터 이탈하거나, 탄성 고분자에 함몰되는 경우가 발생한다.First, the conductors are each several tens of micrometers in size. The conductor having such a small diameter is difficult to be sufficiently supported by the elastomer because of its small contact area with the elastomer. As a result, when the terminal of the electronic component is repeatedly pressed tens of thousands of times, the anisotropic conductive sheet is pressurized, whereby each conductor is separated from the elastic polymer, or the elastic polymer is depressed.
이러한 문제를 해결하고자 직선형의 섬유상 도전체로 이루어져 이방성 도전 시트를 가압하여도 각각의 섬유상 도전체가 탄성 고분자로부터 이탈될 염려가 적으나, 상기 섬유상 도전체가 직선형으로 되어 있어 시트의 두께 방향으로 쉽게 구부려지지 않는다. 이에 따라 전자부품의 단자를 이용하여 이방성 도전 시트를 가압하면 상기 이방성 도전 시트가 쉽게 압축되지 않는다.In order to solve this problem, even when the anisotropic conductive sheet is made of a linear fibrous conductor, the fibrous conductor is less likely to be separated from the elastic polymer, but the fibrous conductor is straight so that it is not easily bent in the thickness direction of the sheet. . Accordingly, when the anisotropic conductive sheet is pressed using the terminal of the electronic component, the anisotropic conductive sheet is not easily compressed.
상기 이와 같은 문제점 들을 해결하고자 섬유상 도전체을 볼록한 곡선형인 "C" 또는 "S"의 형상으로 이루어져 있으나, 이 또한 계속적인 기계적인 응력으로 도전 입자 간의 접촉저항이 증가하여 상기 도전부의 도전 기능이 저하한다.In order to solve the above problems, the fibrous conductor has a convex curved shape of "C" or "S", but this also increases the contact resistance between the conductive particles due to continuous mechanical stress, thereby deteriorating the conductive function of the conductive portion. .
본 발명은 상기와 같은 문제점을 해결하고자, 다수회 반복하여 이방성 도전 시트를 가압하여도 도전체가 탄성 고분자로부터 이탈되지 않으며, 전자부품으로부터의 가압력에 따라 충분히 압축될 수 있고, 도전부의 접촉저항이 없는 이방성 도전 시트의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, even if the anisotropic conductive sheet is repeatedly pressed a plurality of times, the conductor is not released from the elastic polymer, can be sufficiently compressed according to the pressing force from the electronic component, and there is no contact resistance of the conductive portion. It aims at providing the manufacturing method of an anisotropic conductive sheet.
전기전도성섬유 실을 편조함으로써 연속적인 도전성 편조선으로 도전부를 구성하여 본 과제를 해결하고자 한다.By braiding an electrically conductive fiber thread, a conductive part is formed by a continuous conductive braided wire to solve the present problem.
상술한 바와 같이 본 발명에 의한 이방성 도전 시트는 다수회 반복하여 이방성 도전 시트를 가압하여도 도전체가 탄성 고분자로부터 이탈되지 않으며, 전자부품으로부터의 가압력에 따라 충분히 압축될 수 있고, 도전부의 접촉저항이 없는 효과가 있다. As described above, in the anisotropic conductive sheet according to the present invention, even if the anisotropic conductive sheet is repeatedly pressed a plurality of times, the conductor is not released from the elastic polymer and can be sufficiently compressed according to the pressing force from the electronic component. There is no effect.
본 발명은 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께방향으로의 전기적 흐름은 허용하고 상기 두께방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법에 있어서,The present invention has a plurality of insulating and elastically elastic elastomer sheet and the elastic sheet is arranged in a plurality of spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each extending in the thickness direction of the elastomeric sheet In the manufacturing method of the anisotropic conductive sheet having a plurality of conductive parts, the electrical flow in the thickness direction of the elastic polymer sheet is allowed, and the electrical flow in the direction perpendicular to the thickness direction can be blocked.
다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되는 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 것을 특징으로 한다.Braiding step in which a braided wire is formed by braiding with a plurality of electrically
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1을 참조하면, 본 발명에 따른 이방성 도전 시트를 나타내는 도면이다.1, it is a figure which shows the anisotropic conductive sheet which concerns on this invention.
본 발명은 절연성을 가지며 탄성 변형이 가능한 탄성 고분자 시트와 상기 탄성 고분자 시트 내에 그 탄성 고분자 시트의 두께방향에 대해 수직인 방향으로 상호 이격되게 다수 배치되며 그 각각은 상기 탄성 고분자 시트의 두께방향으로 연장되어 있는 다수의 도전부를 구비하여, 상기 탄성 고분자 시트의 두께방향으로의 전기적 흐름은 허용하고 상기 두께방향과 수직인 방향으로의 전기적 흐름은 차단할 수 있는 이방성 도전 시트의 제조방법에 있어서,The present invention has a plurality of insulating and elastically elastic elastomer sheet and the elastic sheet is arranged in a plurality of spaced apart from each other in a direction perpendicular to the thickness direction of the elastomeric sheet, each extending in the thickness direction of the elastomeric sheet In the manufacturing method of the anisotropic conductive sheet having a plurality of conductive parts, the electrical flow in the thickness direction of the elastic polymer sheet is allowed, and the electrical flow in the direction perpendicular to the thickness direction can be blocked.
다수의 전기전도성섬유(電氣傳導性纖維) 실(121)로 편조하여 편조선이 이루어지는 편조단계, 상기 편조선으로 다수의 도전부(120)가 형성되게 배치 구성되는 배치단계, 상기 다수의 도전부가 유지 및 탄성 변형이 가능하게 탄성 고분자로 매립되는 성형단계, 상기 성형품을 일정 두께로 절단하는 절단단계를 포함하는 것을 특징으로 한다.Braiding step in which a braided wire is formed by braiding with a plurality of electrically
상기 전기전도성섬유 실은 금속섬유, 금속을 도금한 섬유, 도전성 고무를 코팅한 섬유, 탄소나노튜브, 탄소섬유 및 흑연섬유 중 어느 하나 이상인 것을 특징으로 한다.The electrically conductive fiber yarn is characterized in that any one or more of metal fibers, metal plated fibers, conductive rubber coated fibers, carbon nanotubes, carbon fibers and graphite fibers.
상기 금속을 도금한 섬유와 도전성 고무를 코팅한 섬유는 유리섬유나 유기합성섬유로 이루어지는 것을 특징으로 한다.The metal-plated fiber and the conductive rubber-coated fiber are made of glass fiber or organic synthetic fiber.
상기 편조선의 형상은 평판형 또는 환형인 것과 편조 각도가 15도에서 80도인 것을 특징으로 한다.The shape of the braid is characterized in that the flat or annular shape and the braid angle is 15 to 80 degrees.
상기 편조 각도가 15도 미만이나 80도를 초과하면 상기 이방성 도전 시트가 쉽게 압축되지 않게 된다.When the braid angle is less than 15 degrees or more than 80 degrees, the anisotropic conductive sheet is not easily compressed.
본 발명은 상기 도전성 편조선을 삽입(매립)하여 이방성 도전 시트를 구성함으로써, 도전성 향상 및 수명을 연장시킬 수 있는 특징이 있다. The present invention is characterized in that the anisotropic conductive sheet is formed by inserting (embedding) the conductive braided wire, thereby improving the conductivity and extending the life.
상기 전기전도성섬유 실을 금속섬유, 금속을 도금한 섬유, 도전성 고무를 코팅한 섬유, 탄소나노튜브, 탄소섬유 및 흑연섬유 중 어느 하나 이상인 것으로 조합해 사용함으로써 전자부품에서 복합기능을 발휘할 수 있다.By using the electrically conductive fiber yarn in combination with any one or more of metal fiber, metal plated fiber, conductive rubber coated fiber, carbon nanotube, carbon fiber and graphite fiber, a composite function can be exhibited in an electronic component.
한 예로서, 볼그리드어레이(Ball Grid Array) 반도체 패키징 기술의 핵심적인 부분은 PCB보드 상에 0.2~0.3mm 정도의 마이크로 볼을 붙이고 그 위에 칩 스케일의 볼그리드어레이(BGA)를 올려 놓게 되어 있다. As an example, a key part of the Ball Grid Array semiconductor packaging technology involves placing micro-balls of 0.2-0.3 mm on a PCB board and placing a chip-scale ball grid array (BGA) on it. .
BGA chip의 성능을 결정하는 가장 중요한 것은 ball size의 균일성, ball 높낮이의 균일성 등인데, 즉 ball grid array의 3차원 형상이 균일해야 한다. 이와 같은 형상의 균일성이 유지되지 않으면 접촉점(contact points)의 접촉불량 내지는 접촉저항의 증가로 반도체의 불량과 품질저하를 가져오게 된다.The most important factors in determining the performance of the BGA chip are the uniformity of ball size and uniformity of ball height. That is, the three-dimensional shape of the ball grid array must be uniform. If the uniformity of such a shape is not maintained, defects and deterioration of the semiconductor may be caused by poor contact or increase in contact resistance of contact points.
따라서 칩과 외부를 연결하는 chip connection의 기능에 본 발명인 이방성 도전 시트를 추가로 삽입해 해결할 수 있는 특징이 있다.Therefore, there is a feature that can be solved by additionally inserting the anisotropic conductive sheet of the present invention in the function of the chip connection for connecting the chip and the outside.
도 1은 본 발명에 따른 이방성 도전 시트를 나타내는 도면.1 is a view showing an anisotropic conductive sheet according to the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
100: 이방성 도전 시트100: anisotropic conductive sheet
110: 탄성 고분자 시트110: elastomeric sheet
120: 도전부120: challenge
121: 전기전도성섬유(電氣傳導性纖維) 실121: electrically conductive fiber thread
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080067863A KR101011903B1 (en) | 2008-07-14 | 2008-07-14 | Method of manufacturing Anisotropic conductive sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080067863A KR101011903B1 (en) | 2008-07-14 | 2008-07-14 | Method of manufacturing Anisotropic conductive sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100007288A KR20100007288A (en) | 2010-01-22 |
KR101011903B1 true KR101011903B1 (en) | 2011-02-01 |
Family
ID=41816287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080067863A KR101011903B1 (en) | 2008-07-14 | 2008-07-14 | Method of manufacturing Anisotropic conductive sheet |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101011903B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101890849B1 (en) * | 2016-07-26 | 2018-10-01 | 한국화학연구원 | High energy density polymer composite film via sandwich structure and the method for preparing thereof |
KR102587764B1 (en) * | 2018-11-21 | 2023-10-10 | 미쓰이 가가쿠 가부시키가이샤 | Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electrical inspection device and electrical inspection method |
CN114976022B (en) * | 2022-07-27 | 2022-10-25 | 湖南金阳烯碳新材料股份有限公司 | Graphene composite dry powder conductive agent and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06176624A (en) * | 1992-12-10 | 1994-06-24 | Shin Etsu Polymer Co Ltd | Adheive anisotropic conductive heet and connecting method for electric circuit member uing it |
JP2001322139A (en) | 2000-05-16 | 2001-11-20 | Jsr Corp | Method for producing composite sheet and composite sheet |
JP2005116183A (en) * | 2003-10-02 | 2005-04-28 | Lintec Corp | Forming method of anisotropic conductive film |
KR100797406B1 (en) * | 2007-02-12 | 2008-01-23 | 주식회사 아이에스시테크놀러지 | Anisotropic conductive sheet |
-
2008
- 2008-07-14 KR KR1020080067863A patent/KR101011903B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06176624A (en) * | 1992-12-10 | 1994-06-24 | Shin Etsu Polymer Co Ltd | Adheive anisotropic conductive heet and connecting method for electric circuit member uing it |
JP2001322139A (en) | 2000-05-16 | 2001-11-20 | Jsr Corp | Method for producing composite sheet and composite sheet |
JP2005116183A (en) * | 2003-10-02 | 2005-04-28 | Lintec Corp | Forming method of anisotropic conductive film |
KR100797406B1 (en) * | 2007-02-12 | 2008-01-23 | 주식회사 아이에스시테크놀러지 | Anisotropic conductive sheet |
Also Published As
Publication number | Publication date |
---|---|
KR20100007288A (en) | 2010-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI588493B (en) | Test socket | |
US9488675B2 (en) | Test socket having high-density conductive unit, and method for manufacturing same | |
CN105527472B (en) | Test bench | |
CN105452877B (en) | Elecrical connector and its manufacturing method | |
KR101339166B1 (en) | Test socket with conductive powder having through-hole and fabrication method thereof | |
CN104285151B (en) | Allow the test jack of simple alignment | |
JP4597602B2 (en) | Multi-element connector | |
KR101606284B1 (en) | Electrical connection device having porous insulating sheet with through hole and test socket | |
CN105008940A (en) | Test socket with high density conduction section | |
KR101976701B1 (en) | anisotropic conductive sheet | |
KR101151880B1 (en) | Sheet type connector, the fabrication method therefor and test socket | |
TWI453438B (en) | Semiconductor test socket | |
KR101011903B1 (en) | Method of manufacturing Anisotropic conductive sheet | |
KR101506131B1 (en) | Fabrication method of test sheet and test sheet | |
KR101624689B1 (en) | Electrical connecting connector | |
KR100797406B1 (en) | Anisotropic conductive sheet | |
KR20120037593A (en) | Test socket | |
KR20100000680U (en) | Anisotropic conductive sheet | |
TWI550980B (en) | Connection connector and method of manufacturing the same | |
KR20170017951A (en) | anisotropic conductive sheet | |
KR102043098B1 (en) | Device for test socket having conducting fiber and method of manufacturing the same | |
KR20170108521A (en) | Device and method for manufacturing conductive particle of test socket using wire bonding and press | |
CN206322886U (en) | A kind of foam metal contact coaxial radio-frequency electric connector | |
TWI542086B (en) | Anisotropic conductive connector, manufacturing and device thereof | |
KR102191699B1 (en) | Electrically conductive pin and electrically conductive module using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131202 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150126 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160125 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170124 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180124 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20190124 Year of fee payment: 9 |