KR101001312B1 - 초음파 세정 장치 - Google Patents

초음파 세정 장치 Download PDF

Info

Publication number
KR101001312B1
KR101001312B1 KR1020080125988A KR20080125988A KR101001312B1 KR 101001312 B1 KR101001312 B1 KR 101001312B1 KR 1020080125988 A KR1020080125988 A KR 1020080125988A KR 20080125988 A KR20080125988 A KR 20080125988A KR 101001312 B1 KR101001312 B1 KR 101001312B1
Authority
KR
South Korea
Prior art keywords
transmitter
cleaning liquid
cleaning
light
ultrasonic
Prior art date
Application number
KR1020080125988A
Other languages
English (en)
Other versions
KR20100067423A (ko
Inventor
윤창로
Original Assignee
세메스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세메스 주식회사 filed Critical 세메스 주식회사
Priority to KR1020080125988A priority Critical patent/KR101001312B1/ko
Publication of KR20100067423A publication Critical patent/KR20100067423A/ko
Application granted granted Critical
Publication of KR101001312B1 publication Critical patent/KR101001312B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

초음파 세정 장치가 제공된다. 본 발명의 실시예에 따른 초음파 세정 장치는 기판을 지지하는 지지부, 기판에 세정액을 분사하는 세정액 노즐, 발생된 초음파를 세정액에 인가하는 트랜스미터, 트랜스미터의 측면에서 초음파를 상기 세정액에 인가하는 트랜스미터의 하부면을 향하여 빛을 방출하는 발광부, 트랜스미터의 다른 쪽 측면에서 하부면으로부터 반사된 빛을 수광하는 수광부 및 수광부의 신호에 따라 트랜스미터와 기판 사이에 세정액이 존재하는지 유무를 판단하는 판단부를 포함한다.
초음파, 세정액, 초음파 세정, 트랜스미터, 임계각, 전반사

Description

초음파 세정 장치{Ultrasonic cleaning apparatus}
본 발명은 초음파 세정 장치에 관한 것으로, 보다 상세하게는 초음파 트랜스미터의 하부면의 매질이 세정액으로 채워 있는지 대기에 노출된 상태인지를 감지하는 초음파 세정 장치에 관한 것이다.
일반적으로, 반도체 기판에는 증착, 리소그래피, 식각, 화학적/기계적 연마, 세정, 건조 등과 같은 단위 공정들이 반복적으로 수행된다. 상기 단위 공정들 중에서 세정 공정은 각각의 단위 공정을 수행하는 동안, 반도체 기판의 표면에 부착되는 이물질이나 불필요한 막을 제거하는 공정이다.
반도체 기판 상에 형성되는 패턴이 미세화되고, 패턴의 종횡비(aspect ratio)가 커짐에 따라 점차 세정 공정의 중요도가 커지고 있다. 그리고, 완벽한 세정을 위하여 기판 세정 장치가 지속적으로 개발되었다. 최근에는 세정액에 수백 kHz 이상의 초음파 진동을 인가하는 기판 세정 장치가 주로 사용되고 있다.
초음파를 이용한 세정은 주로 입자 가속도와 초음파의 케비테이션 현상에 의해 이루어진다. 케비테이션 현상은 초음파의 에너지가 용액 중에 전파될 때 초음파의 압력에 의해 미세기포가 생성되고 소멸되는 현상으로 매우 큰 압력과 고온을 동 반한다. 이 충격파에 의해 용액 중에 담겨 있는 피세척물의 내부 깊숙히 보이지 않는 곳까지 단 시간내에 세척이 가능해진다.
한편, 기판 세정 장치는 다수의 반도체 기판을 동시에 세정하는 배치식 세정 장치와 낱장 단위로 반도체 기판을 세정하는 매엽식 세정 장치로 구분된다. 이 중에서, 매엽식 세정 장치는 반도체 기판을 지지하는 지지대와 반도체 기판의 전면 또는 이면에 세정액을 분사하는 세정액 노즐을 포함한다. 그리고, 세정액이 반도체 기판 상에 공급된 상태에서 초음파 진동이 인가되어 세정이 수행된다.
초음파를 이용한 세정이 정상적으로 작동하기 위해서는 초음파가 인가되는 트랜스미터와 기판 사이에 세정액(예를 들어 순수(DIW))이 채워져 있어야 한다. 트랜스미터와 기판 사이에 세정액이 채워져 있지 않고 대기에 노출되는 경우 파티클 세정이 수행되지 않아 공정 사고를 일으킬 수도 있다.
본 발명은 상기한 문제점을 개선하기 위해 고안된 것으로, 본 발명이 이루고자 하는 목적은 발광 센서와 수광 센서 및 빛의 전반사 효과를 이용하여 트랜스미터의 하부에 세정책이 채워져 있는지 여부를 판단할 수 있도록 하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위하여, 본 발명의 실시예에 따른 초음파 세정 장치는 기판을 지지하는 지지부; 상기 기판에 세정액을 분사하는 세정액 노즐; 발생된 초음파를 상기 세정액에 인가하는 트랜스미터; 상기 트랜스미터의 측면에서 상기 초음파을 상기 세정액에 인가하는 상기 트랜스미터의 하부면을 향하여 빛을 방출하는 발광부; 상기 트랜스미터의 다른 쪽 측면에서 상기 하부면으로부터 반사된 빛을 수광하는 수광부; 및 상기 수광부의 신호에 따라 상기 트랜스미터와 상기 기판 사이에 상기 세정액이 존재하는지 유무를 판단하는 판단부를 포함한다.
상기한 바와 같은 본 발명의 초음파 세정 장치에 따르면 초음파 세정 공정 중 트랜스미터와 기판 사이에 세정액이 채워져 있는지를 판단할 수 있어서 공정 사고를 방지할 수 있다는 장점이 있다.
실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다
이하, 본 발명의 실시예들에 의하여 초음파 세정 장치를 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 기판 세정 장치를 설명하기 위한 개략적인 구성도이고, 도 2는 도 1에 도시된 초음파 노즐을 설명하기 위한 상세도이다.
본 발명의 일 실시예에 따른 기판 세정 장치는 지지부(210), 바울(202), 세정액 노즐(204, 206), 초음파 노즐(290), 발광부(280), 수광부(285), 및 판단부를 포함할 수 있다.
지지부(210)는 제 1 모터(218)의 회전력을 전달하기 위한 제 1 회전축(220)과 연결되어 있는 허브(214), 반도체 기판(W)을 지지하기 위한 원형 링(212), 및 원형 링(212)을 연결하기 위한 다수개의 스포크(216)를 포함하여 구성될 수 있다. 지지부(210)의 구조는 전술한 것에 한정되지 않고, 다른 공지된 기술로 다양하게 변형이 가능하다.
또한, 지지부(210)는 상하로 구동이 가능하도록 구성될 수도 있다.
바울(202)은 반도체 기판(W)의 표면으로 공급되어 반도체 기판(W)의 회전에 의해 반도체 기판(W)으로부터 비산되는 세정액을 차단할 수 있다. 바울(202)은 반도체 기판(W)의 로딩 및 언로딩을 위해 상하 이동 가능하도록 설치될 수 있다.
바울(202)의 하부에는 세정액을 배출시키는 배출관(208)이 형성될 수 있고, 바울(202)의 하부 중앙 부위를 관통하여 제1 회전축(220)이 설치될 수 있다. 배출관(208)을 통해 바울(202)에 의해 차단된 세정액이 배출시킨 후 이를 다시 수거하여 세정액으로 재사용할 수도 있다.
세정액 노즐(204, 206)은 반도체 기판(W)의 상면에 세정액을 공급하기 위한 제 1 노즐(204)과, 반도체 기판(W)의 하면에 세정액을 공급하기 위한 제 2 노즐(206)로 구성될 수 있다. 도시된 바와 같이 제 1 노즐(204)은 지지부(210)의 상부에 배치되어 반도체 기판(W)의 상면에 세정액을 공급할 수 있으며, 제 2 노즐(206)은 바울(202)의 측벽을 관통하여 설치되어 반도체 기판(W)의 하면에 세정액을 공급할 수 있다.
여기서, 세정액으로는 탈이온수(de-ionized water, H2O), 불산(HF)과 탈이온수의 혼합액, 수산화암모늄(NH4OH)과 과산화수소(H2O2) 및 탈이온수의 혼합액, 불화암모늄(NH4F)과 불산(HF) 및 탈이온수의 혼합액 및 인산(H3PO4) 및 탈이온수를 포함하는 혼합액 등이 사용될 수 있다.
일반적으로, 탈이온수는 반도체 기판(W)에 부착된 이물질 제거 및 린스의 목 적으로 사용될 수 있다. 불산과 탈이온수의 혼합액(DHF)은 반도체 기판(W) 상에 형성된 자연 산화막(SiO2) 제거 및 금속 이온 제거를 위해 사용될 수 있다. 이때, 불산과 탈이온수의 혼합 비율은 1:100 내지 1:500 정도일 수 있으며, 세정 공정의 조건에 따라 적절하게 변경될 수 있다.
일반적으로, SC1(standard clean 1) 용액이라 불리는 수산화암모늄과 과산화수소 및 탈이온수의 혼합액은 반도체 기판(W) 상에 형성된 산화막 또는 반도체 기판(W) 상에 부착된 유기물을 제거할 수 있으며, 혼합 비율은 1:4:20 내지 1:4:100 정도일 수 있으며, 세정 공정에 따라 적절하게 변경될 수 있다.
그리고, Lal 용액이라 불리는 불화암모늄과 불산 및 탈이온수의 혼합액은 반도체 기판(W) 상에 형성된 산화막을 제거할 수 있으며, 인산과 탈이온수를 포함하는 혼합액은 상기 Lal 용액으로 처리가 불가능한 나이트라이드(nitride) 계열의 이물질을 제거할 수 있다.
도 2에 도시된 것과 같이 본 발명의 일 실시예에 따른 초음파 발생 장치(290)(이하, 초음파 노즐이라고 칭하기로 한다)는 복수의 주파수를 가지는 진동 에너지를 제공하는 초음파 진동부(232, 234, 238)와, 초음파 진동부(232, 234, 238)를 수납하는 하우징(240)을 포함하여 구성될 수 있다.
초음파 진동부(232, 234, 238)는 전기 에너지를 진동 에너지로 변환하는 트랜스듀서(transducer, 238)와 트랜스듀서(238)에 의해 진동하는 트랜스미터(transmitter, 232)를 포함하여 구성될 수 있다. 트랜스미터는 진동자라고도 불리는데, 이하 설명에 있어서는 트랜스 미터라고 칭하기로 한다.
트랜스미터(232)는 지지부(210)에 지지된 반도체 기판(W)의 상부에 배치될 수 있다. 트랜스미터(232)는 제1 노즐(204)을 통해 반도체 기판(W)의 상면에 공급된 세정액에 초음파 진동을 인가할 수 있다.
도시된 바와 같이 트랜스미터(232)는 반도체 기판(W)을 향하여 갈수록 점차 증가하는 단면적을 가지도록 형성될 수 있다. 도 1 및 도 2에 도시된 트랜스미터(232)는 원형 단면을 가지며, 반도체 기판(W)의 상면에 공급된 세정액과 접촉되는 트랜스미터(232)의 하부면의 직경이, 트랜스미터(232)의 상부면의 직경보다 크다. 여기서, 트랜스미터(232)의 단면 형상은 이에 한정되지 아니하며, 원형이 아닌 다른 단면 형상을 가질 수도 있다.
트랜스미터(232)의 단면적이 트랜스미터(232)의 상부면으로부터 트랜스미터(232)의 하부면을 향하여 점차 증가하면 초음파 진동 에너지가 넓게 분산될 수 있다. 이에 따라, 반도체 기판(W) 상에 형성된 미세 패턴이 손상되는 것을 방지할 수 있다.
트랜스미터(232)의 하부면 직경은 이에 한정되는 것은 아니나 바람직하게는 반도체 기판(W) 반경의 0.2 내지 1배일 수 있다. 트랜스미터(232)의 하부면 직경이 반도체 기판(W) 반경의 0.2배보다 작은 경우, 세정 공정의 시간이 너무 길어질 수 있기 때문이다. 그리고, 트랜스미터(232)의 하부면 직경이 반도체 기판(W) 반경보다 큰 경우, 반도체 기판(W)과 트랜스미터(232) 사이로 세정액이 원활하게 공급되지 않을 수 있기 때문이다.
트랜스미터(232)는 초음파 에너지를 효과적으로 전달하는 물질, 예를 들어 석영으로 제조될 수 있다. 석영으로 제조된 트랜스미터(232)는 대부분의 세정액에 만족스럽게 사용될 수 있지만, 불산을 포함하는 세정액은 석영을 식각할 수 있다. 따라서, 불산을 포함하는 세정액이 사용되는 경우, 사파이어(sapphire), 탄화규소(silicon carbide), 질화붕소(boron nitride) 등이 석영 대신에 사용될 수 있다. 또는, 석영으로 제조된 트랜스미터(232)에 불산에 견딜 수 있는 탄화규소나 탄소유리(vitreous carbon)를 코팅하여 사용할 수 있다.
트랜스듀서(238)는 전기적인 에너지를 물리적인 진동 에너지로 변환시켜 초음파 진동을 최초 발생시키는 역할을 한다.
트랜스듀서(238)에 의해 발생하는 진동 에너지의 주파수는 압전 소자의 두께에 따라서 다르게 나타날 수가 있다.
초음파 세정은 초음파에 의한 입자의 가속도와 캐비테이션을 이용한다. 입자의 가속도는 특히 초음파의 주파수가 1MHz 이상인 메가소닉 세정에서 주된 세정 원리가 된다. 그리고, 캐비테이션은 초음파가 세정액으로 전달될 때 발생하는 압력의 변화에 의해서 캐비티가 붕괴되면서 발생하는 충격 현상이다.
초음파의 주파수가 낮을수록, 입자 가속도가 느려지고 충격력이 강해진다. 그리고, 주파수가 낮아질수록, 캐비티의 크기가 커지고 캐비테이션의 강도가 강해진다. 이렇게 초음파의 주파수가 낮아지면, 반도체 기판 상의 큰 입자를 제거할 수 있다.
반면, 초음파의 주파수가 높을수록, 입자 가속도가 빨라지고 충격력이 약해진다. 그리고, 주파수가 높아질수록, 캐비티의 크기가 작아지고 캐비테이션의 강도 가 약해진다. 이렇게 초음파의 주파수가 커지면, 큰 입자를 제거할 수 있는 능력이 떨어질 수 있다. 그러나 캐비테이션의 밀도가 높아지므로, 침투력이 향상되어서, 정밀 세척이 가능해진다.
압전 소자의 두께가 두꺼우면 낮은 주파수의 초음파 진동 에너지가 발생하고, 압전 소자의 두께가 얇으면 상대적으로 높은 주파수의 초음파 진동 에너지가 발생한다. 따라서, 세정 목적에 따라서 압전 소자의 두께를 달리 형성하여 목적에 맞는 초음파 진동 에너지를 발생시킬 수가 있다.
트랜스듀서(238)에 인가되는 전기 에너지는 발진기와 같은 초음파 에너지 소스(미도시)로부터 제공될 수 있다. 다수의 전기 커넥터(254, connector)와 제2 회전축(264)을 관통하는 전선(256)에 의해서, 트랜스듀서(238)와 초음파 에너지 소스(미도시)가 연결될 수 있다.
초음파 진동부(232, 234, 238)는 버퍼(234)를 더 포함할 수 있다.
버퍼(234)는 트랜스듀서(238)와 트랜스미터(232) 사이에 배치되며, 트랜스듀서(238)에서 발생되는 초음파 진동 에너지를 손실없이 트랜스미터(232) 상면에 제공하는 역할을 할 수 있다.
버퍼(234)는 트랜스미터(232)의 상부면에 음향적으로 결합될 수 있고, 트랜스듀서(238)는 버퍼(234)의 상부면에 음향적으로 결합될 수 있다. 여기서, 트랜스미터(232)와 버퍼(234)는 접착 물질에 의해 접착될 수 있다. 또한, 트랜스미터(232)와 버퍼(234) 사이에 다수의 홀이 형성되어 있는 얇은 금속 스크린이 개재될 수 있다.
버퍼(234)는 원기둥 형상을 가질 수 있으며, 트랜스미터(232)의 열전도도보다 높은 열전도도를 갖는 물질로 이루어질 수 있다. 예를 들면, 버퍼(234)는 동, 알루미늄 등과 같이 열전도도가 높은 물질로 이루어질 수 있다.
하우징(240)은 원통 형상을 가지며, 트랜스미터(232)와 버퍼(234)를 수납할 수 있다. 하우징(240)은 원형의 컵(242)과 커버(244)를 포함할 수 있다. 컵(242)과 커버(244)는 복수의 볼트(246)에 의해 결합될 수 있다.
초음파 노즐(290)은 초음파 노즐(290)을 회전 운동시키는 제 2 모터(262)와 제 2 회전축(264)를 더 포함할 수 있다.
제 2 모터(262)는 수평 암(250)의 상부면에 설치될 수 있으며 제 2 회전축(264)에 연결될 수 있다. 제 2 모터(262)는 회전력을 발생시키고, 제2 회전축(264)에 회전력을 전달한다. 제 2 회전축(264)은 하우징(240)의 상부와 연결되는데, 따라서 제 2 회전축(264)이 회전함에 따라서 하우징(240) 및 하우징(240)에 결합되는 트랜스미터(232) 등을 일체로 회전시킬 수가 있다.
초음파 노즐(290)은 초음파 진동부(232, 234, 238)의 온/오프를 제어하는 초음파 제어부(270)를 더 포함할 수 있는데, 초음파 제어부(270)는 트랜스듀서(238)에 인가되는 전기 에너지를 온/오프하여, 초음파 진동부(232, 234, 238)의 온/오프 동작을 제어할 수 있다.
도 3은 도 1에 도시된 기판 세정 장치에서 초음파 노즐의 이동을 설명하기 위한 도면이고, 도 4는 도 1에 도시된 기판 세정 장치에서 초음파 노즐의 수평 방향 이동을 설명하기 위한 도면이다.
도 3 및 도 4를 참조하면, 바울(도 1의 202 참조)의 일측에는 트랜스미터(232)의 높이를 조절하기 위한 공압 실린더(278)가 배치될 수 있고, 공압 실린더(278)는 트랜스미터(232)를 수평 방향으로 이동시키기 위한 제 3 모터(272)와 연결될 수 있다.
제 3 모터(272)의 회전력을 전달하는 제 3 회전축(274)은 수평 암(250)과 연결될 수 있다. 공압 실린더(278)는 초음파 노즐(290)을 수직 방향으로 이동시키며, 제 3 모터(272)는 수평 암(250)을 수평 방향으로 회전시킨다. 트랜스미터(232)가 바울(202) 내에서 수평 방향으로 이동하도록, 수평 암(250)은 일정한 각도(θ) 내에서 회전할 수 있다. 반도체 기판(W)이 회전하고, 트랜스미터(232)가 수평 방향으로 이동함으로써, 반도체 기판(W)의 상면의 전면에 초음파 진동을 균일하게 인가시킬 수가 있다.
도시된 바에 의하면, 트랜스미터(232)의 수평 방향 이동은 수평 암(250)과 제3 모터(272)에 의해 수행되며, 트랜스미터(232)의 수직 방향 이동은 공압 실린더(278)에 의해 수행된다. 그러나, 트랜스미터(232)의 수평 방향 이동 및 수직 방향 이동은 이에 한정되지 않고, 다양한 방법으로 변형 가능하다.
발광부(280)는 트랜스미터(232)의 측면에 형성되어 트랜스미터(232)의 하부면을 향하여 빛을 방출하는 센서이다. 도시되어 있는 것과 같이 하우징(240)의 측면에서 연장되는 고정 부재(282)에 연결되어 트랜스미터(232)의 하부면을 향하여 빛을 방출한다.
수광부(285)는 발광부(280)의 다른 쪽 측면에 형성되어 발광부(280)에서 방 출된 빛이 트랜스미터(232)의 하부면에서 반사된 빛을 수광한다. 수광부(285)도 발광부(280)와 마찬가지로 하우징(240)의 측면에서 연장되는 고정 부재(287)에 연결되어 고정될 수 있다.
본 발명에서는 발광부(280)에서 방출된 빛이 트랜스미터(232)의 하부면에서 반사된 빛을 수광부(285)에서 수신하여, 수신된 신호에 따라 트랜스미터(232)와 반도체 기판(W) 사이에 세정액이 존재하는지를 판단한다.
이에 관해서는 도 5 내지 7을 참조로 설명하기로 한다.
도 5는 두 매질 사이의 전반사를 설명하기 위한 도면이다.
먼저, 도 5를 참조로 두 매질 사이에 발생하는 전반사에 관하여 설명하기로 한다.
빛이 한 매질(n1)로부터 다른 매질(n2)로 입사될 때 일부는 굴절되고 나머지 일부는 반사될 수 있다.
전반사란 입사된 빛이 전혀 굴절되지 않고 모두 반사되는 현상을 말하는데, 두 매질(n1, n2) 사이의 입사각이 특정 각도보다 커지게 되면 굴절되는 빛이 없어지고 입사된 빛이 모두 반사되는데, 이때 특정 각도를 임계각(Θc) 이라고 한다.
도 5에 도시되어 있는 것과 같이 두 매질(n1, n2)의 경계면에 수직인 방향에서 보았을 때, n1 매질에서 입사되는 각이 임계각(Θc)보다 작은 경우(입사각이 Θ1인 경우)에는 일부는 n2 매질로 입사되어 굴절되고 일부는 반사되어 진행한다. 하지만, 입사각이 임계각(Θc)보다 큰 경우(입사각이 Θ2인 경우)에는 굴절되는 것 없이 입사된 빛이 전부 반사되어 진행한다. 도 5에서 임계각(Θc)은 Θ1 과 Θ2 사 이의 각이다.
이때, 임계각(Θc)은 다음과 같은 수학식 (1)으로 정의 된다.
Θc= arcsin(n2/n1)
수학식 (1)
즉, n1과 n2는 각각 두 매질(n1, n2)의 굴절율을 나타내는데, 수학식 (1)과 같이 임계각은 두 매질(n1, n2)의 굴절률의 비로 정해진다. 즉, 임계각(Θc)은 빛이 진행하고 있는 매질(n1)과 입사하려고 하는 매질(n2)의 굴절율에 의해 정해지는 값이므로 인접해서 경계면을 이루는 두 매질(n1, n2)의 종류가 무엇이냐에 따라서 달라지게 된다.
또한, 전반사가 일어나기 위해서는 기본적으로 굴절율이 큰 밀한 매질(n1)에서 굴절율이 작은 소한 매질(n2)로 입사되어야 한다. 도 5에서 n1은 밀한 매질이고, n2는 소한 매질이다.
일반적으로 대기, 순수, 석영의 굴절율을 아래의 표와 같다.
매질 굴절율
공기(0℃, 1기압) 1.000293
순수(200℃) 1.333
석영 1.46
따라서, 트랜스미터(232)의 대표적인 재질인 석영과 순수 사이 및 석영과 공기 사이의 임계각은 아래의 표와 같다.
경계면 임계각
석영(n1)과 순수(n2)사이 65.63도
석영(n1)과 공기(n2)사이 43.23도
발광부(280)는 트랜스미터(232)와 세정액 사이에 전반사를 일으키는 임계각 (Θc2)보다는 작고, 트랜스미터(232)와 대기 사이에 전반사를 일으키는 임계각 (Θ c1)보다 큰 각도로 트랜스미터의 하부면을 향하여 빛을 방출할 수가 있다.
이하, 세정액이 순수로 이루어져 있고, 트랜스미터(232)가 석영으로 이루어졌다고 가정하여 도 6 및 도 7을 참조로 트랜스미터(232) 하부면과 반도체 기판(W) 사이에 세정액이 존재하는지 여부를 판단하는 과정을 설명하기로 한다.
도 6은 트랜스미터와 반도체 기판 사이에 세정액이 존재하는 경우 발광부에서 방출된 빛의 경로를 도시한 도면이고, 도 7은 트랜스미터와 반도체 기판 사이에 세정액이 존재하지 않고 대기에 노출되었을 때 빛의 경로를 도시한 도면이다.
도 6에 도시되어 있는 것과 같이 발광부(280)를 통해 트랜스미터(232)의 하부면을 향하여 트랜스미터(232)와 세정액 사이의 임계각인(Θc2)보다는 작고 트랜스미터(232)와 대기 사이의 임계각인(Θc1) 보다는 큰 각도로 입사되도록 빛을 방출한다.
물론, 트랜스미터(232)의 측면에 있는 발광부(280)에서 트랜스미터(232)로 빛을 입사시킬 때에도 두 매질 사이에 굴절이 일어나기 때문에, 이를 고려하여 트랜스미터(232)의 하부면을 향하여 Θc2보다는 작고 Θc1보다는 큰 각도로 입사되도록 빛을 방출한다.
이때, 도 6과 같이 트랜스미터(232)의 하부면과 반도체 기판(W) 사이에 세정액이 존재하면, 트랜스미터(232)와 세정액 사이의 임계각인 Θc2보다 작은 각도로 입사되었으므로 굴절이 일어난다. 물론, 도 5를 참조로 설명한 것과 같이 일부의 빛은 반사가 되지만, 발광부(280)에서 방출된 빛의 양과 수광부(285)에서 입사된 빛의 양을 비교하면 일부의 빛에 대하여 반사가 일어났는지, 전반사가 일어났는지 여부를 알 수 있다. 따라서, 트랜스미터(W)의 하부면에서 굴절이 일어난 경우에는 트랜스미터(232)와 반도체 기판(W) 사이에 세정액으로 채워져 있다는 것을 알 수 있다.
또한, 도 7과 같이 트랜스미터(232)의 하부면과 반도체 기판(W) 사이에 세정액으로 채워져 있지 않고 대기에 노출되어 있으면, 트랜스미터(232)와 공기 사이의 임계각인 Θc1 보다 큰 각도로 빛이 입사되었으므로 트랜스미터(232)의 하부면에서 전반사가 일어난다. 따라서, 수광부(285)에서 수신된 신호로부터 트랜스 미터(232)의 하부면에서 전반사가 일어난 것으로 판단한 경우에는 트랜스미터(232)와 반도체 기판(W) 사이에 세정액으로 채워져 있지 않다는 것을 알 수 있다.
판단부는 수광부(285)의 신호에 따라 트랜스미터(232)와 반도체 기판(W) 사이에 세정액이 채워져 있는지를 판단할 수 있다. 전술한 바와 같이 발광부(280)에서 트랜스미터(232)와 세정액 사이의 임계각인 Θc2보다는 작고 트랜스미터(232)와 대기 사이의 임계각인 Θc1보다는 큰 각도로 입사되도록 빛을 방출하였을 때, 수광부(285)에서 트랜스미터(232)의 하부면에서 전반사된 빛을 수광하면 트랜스미터(232)와 반도체 기판(W) 사이에 세정액이 채워져 있지 않은 것으로 판단할 수 있고, 트랜스미터(232)의 하부면에서 일부 반사된 빛을 수광하면 트랜스미터(232)와 반도체 기판(W) 사이에 세정액으로 채워져 있는 것으로 판단할 수가 있다.
제어부는 판단부의 판단 결과에 따라 세정 장치의 세정 동작을 제어한다. 예를 들어, 판단부가 트랜스미터(232)와 반도체 기판(W) 사이에 세정액으로 채워져 있는 것으로 판단하면 제어부에서는 초음파 제어부(270)에 신호를 보내어 초음파 노즐(290)을 작동시켜 초음파 세정을 수행하도록 하고, 판단부가 트랜스미터(232)와 반도체 기판(W) 사이에 세정액으로 채워져 있지 않은 것으로 판단하면 제어부는 초음파 제어부(270)에 신호를 보내어 초음파 노즐(290)의 작동을 멈추어서 초음파 세정이 수행되지 않도록 할 수가 있다.
발광부(280)와 수광부(285)는 각각 빛을 방출하는 각도와 수광하는 각도를 조절할 수 있도록 하여 세정액의 종류, 트랜스미터(232)의 재질에 따라 각도를 조절하여 트랜스미터(232)와 반도체 기판(W) 사이에 세정액이 존재하는지 여부를 판단할 수 있도록 할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
도 1은 본 발명의 일 실시예에 따른 기판 세정 장치를 설명하기 위한 개략적인 구성도이다.
도 2는 도 1에 도시된 초음파 노즐을 설명하기 위한 상세도이다.
도 3은 도 1에 도시된 기판 세정 장치에서 초음파 노즐의 이동을 설명하기 위한 도면이다.
도 4는 도 1에 도시된 기판 세정 장치에서 초음파 노즐의 수평 방향 이동을 설명하기 위한 도면이다.
도 5는 두 매질 사이의 전반사를 설명하기 위한 도면이다.
도 6은 트랜스미터와 기판 사이에 세정액이 존재하는 경우 발광부에서 방출된 빛의 경로를 도시한 도면이다.
도 7은 트랜스미터와 기판 사이에 세정액이 존재하지 않고 대기에 노출되었을 때 빛의 경로를 도시한 도면이다.
<도면의 주요 부분에 대한 부호의 설명>
202: 바울
204, 206: 세정액 노즐
210: 지지부
232: 트랜스미터
234: 버퍼
238: 트랜스듀서
240: 하우징
280: 발광부
285: 수광부

Claims (8)

  1. 기판을 지지하는 지지부;
    상기 기판에 세정액을 분사하는 세정액 노즐;
    발생된 초음파를 상기 세정액에 인가하는 트랜스미터;
    상기 트랜스미터의 측면에서 상기 초음파를 상기 세정액에 인가하는 상기 트랜스미터의 하부면을 향하여 빛을 방출하는 발광부;
    상기 트랜스미터의 다른 쪽 측면에서 상기 하부면으로부터 반사된 빛을 수광하는 수광부; 및
    상기 수광부의 신호에 따라 상기 트랜스미터와 상기 기판 사이에 상기 세정액이 존재하는지 유무를 판단하는 판단부를 포함하는 초음파 세정 장치.
  2. 제 1 항에 있어서,
    상기 발광부는 상기 트랜스미터와 상기 세정액 사이에 전반사를 일으키는 임계각 Θc2 보다 작고, 상기 트랜스미터와 대기 사이에 전반사를 일으키는 임계각 Θc1 보다 큰 각도로 상기 트랜스미터의 하부면을 향하여 상기 빛을 방출하는 초음파 세정 장치.
  3. 제 2 항에 있어서,
    상기 수광부가 전반사 신호를 수광하면 상기 판단부는 상기 트랜스미터의 하부면과 상기 기판 사이에 세정액이 존재하지 않는 것으로 판단하는 초음파 세정 장치.
  4. 제 2 항에 있어서,
    상기 수광부가 전반사 신호를 수광하지 못하면 상기 판단부는 상기 트랜스미터의 하부면과 상기 기판 사이에 세정액이 존재하는 것으로 판단하는 초음파 세정 장치.
  5. 제 1 항에 있어서,
    상기 트랜스미터의 재질은 석영인 초음파 세정 장치.
  6. 제 2 항에 있어서,
    상기 세정액은 순수를 포함하는 초음파 세정 장치.
  7. 제 1 항에 있어서,
    상기 판단부에 판단 결과에 따라 세정 동작을 제어하는 제어부를 더 포함하는 초음파 세정 장치.
  8. 제 1 항에 있어서,
    상기 발광부가 빛을 방출하는 각도와 상기 수광부가 빛을 수광하는 각도는 상기 세정액의 종류 및 상기 트랜스미터의 재질 중 적어도 하나에 따라 조절되는, 초음파 세정 장치.
KR1020080125988A 2008-12-11 2008-12-11 초음파 세정 장치 KR101001312B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080125988A KR101001312B1 (ko) 2008-12-11 2008-12-11 초음파 세정 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080125988A KR101001312B1 (ko) 2008-12-11 2008-12-11 초음파 세정 장치

Publications (2)

Publication Number Publication Date
KR20100067423A KR20100067423A (ko) 2010-06-21
KR101001312B1 true KR101001312B1 (ko) 2010-12-14

Family

ID=42366100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080125988A KR101001312B1 (ko) 2008-12-11 2008-12-11 초음파 세정 장치

Country Status (1)

Country Link
KR (1) KR101001312B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205074A1 (en) * 2018-04-27 2019-10-31 Acm Research (Shanghai) Inc. Methods and apparatus for cleaning semiconductor wafers
TWI755122B (zh) * 2020-10-28 2022-02-11 辛耘企業股份有限公司 晶圓蝕刻機

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162239A (ja) 1999-12-09 2001-06-19 Matsushita Electronics Industry Corp 超音波洗浄装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162239A (ja) 1999-12-09 2001-06-19 Matsushita Electronics Industry Corp 超音波洗浄装置

Also Published As

Publication number Publication date
KR20100067423A (ko) 2010-06-21

Similar Documents

Publication Publication Date Title
JP3772056B2 (ja) 半導体基板の洗浄方法
US7451774B2 (en) Method and apparatus for wafer cleaning
KR101437301B1 (ko) 초음파 세정 장치 및 초음파 세정 방법
KR100931856B1 (ko) 기판 세정 장치 및 기판 세정 방법
KR100824362B1 (ko) 반도체기판 세정장치 및 세정방법
US20080083436A1 (en) Method and apparatus for wafer cleaning
KR100473475B1 (ko) 기판 세정 장치
US10090189B2 (en) Substrate cleaning apparatus comprising a second jet nozzle surrounding a first jet nozzle
KR100887226B1 (ko) 초음파 진동 생성 장치 및 방법 그리고 웨이퍼 세정 장치및 방법
KR101001312B1 (ko) 초음파 세정 장치
CN210160074U (zh) 具有清洁功能的研磨装置
KR100927028B1 (ko) 초음파 노즐 및 이를 포함하는 기판 세정 장치
KR20110077705A (ko) 매엽식 웨이퍼 세정 장치 및 방법
KR100927029B1 (ko) 트랜스듀서 및 이를 포함하는 기판 세정 장치
KR100938249B1 (ko) 초음파 발생 장치 및 이를 포함하는 기판 세정 장치
KR100873937B1 (ko) 웨이퍼 세정 장치 및 웨이퍼 세정 방법
KR100479004B1 (ko) 세정처리방법 및 세정처리장치
KR101065349B1 (ko) 세정 노즐 및 이를 포함하는 세정 장치
KR100694798B1 (ko) 기판의 세정 방법
JP2011121009A (ja) 基板処理装置および基板処理方法
KR100899875B1 (ko) 기판 세정 장치 및 기판 세정 방법
KR100870525B1 (ko) 기판 세정 장치
KR20110062026A (ko) 기판 세정 장치
WO2022210088A1 (ja) 基板処理装置、および基板処理方法
KR20070073311A (ko) 웨이퍼 초음파 세정장치 및 이를 이용한 웨이퍼 세정방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141209

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171130

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181130

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191129

Year of fee payment: 10