KR100997501B1 - Method for producing a heat-retaining fiber - Google Patents

Method for producing a heat-retaining fiber Download PDF

Info

Publication number
KR100997501B1
KR100997501B1 KR1020080056747A KR20080056747A KR100997501B1 KR 100997501 B1 KR100997501 B1 KR 100997501B1 KR 1020080056747 A KR1020080056747 A KR 1020080056747A KR 20080056747 A KR20080056747 A KR 20080056747A KR 100997501 B1 KR100997501 B1 KR 100997501B1
Authority
KR
South Korea
Prior art keywords
coating
coating agent
applying
heat storage
dry
Prior art date
Application number
KR1020080056747A
Other languages
Korean (ko)
Other versions
KR20090130998A (en
Inventor
최종석
김영달
박진영
Original Assignee
미광다이텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미광다이텍 주식회사 filed Critical 미광다이텍 주식회사
Priority to KR1020080056747A priority Critical patent/KR100997501B1/en
Publication of KR20090130998A publication Critical patent/KR20090130998A/en
Application granted granted Critical
Publication of KR100997501B1 publication Critical patent/KR100997501B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

본 발명은 보온섬유의 제조방법에 관련되며, 통상의 염색공정을 거친 기포지에 후가공 방식으로 축열ㆍ발열 기능을 부여하는 방법에 있어서: 축열ㆍ발열 기능을 가진 PCM 10~20wt%와 내한성을 가진 폴리우레탄 수지80~90wt%를 혼합하여 제1코팅제를 형성하는 제1단계; 상기 제1단계에 의해 얻어진 제1코팅제를 기포지 상에 습식 코팅하여 도포하여 경화시키는 제2단계; 항균기능을 가진 카본계 나노물질 1~5wt%와 건식 친수무공형 폴리우레탄수지 95~99wt%를 혼합하여 제2코팅제를 형성하는 제3단계; 및 상기 제3단계에 의해 얻어진 제2코팅제를 기포지 상에 다시 건식 코팅하여 도포하여 경화시키는 제4단계;를 포함하여 이루어지는 것을 특징으로 한다.The present invention relates to a method for producing a thermally insulating fiber, the method of imparting heat storage and heat generation function to post-processed foam paper after a normal dyeing process: 10 ~ 20wt% PCM having heat storage and heat generation function and poly having cold resistance A first step of forming a first coating agent by mixing the urethane resin 80 ~ 90wt%; A second step of applying a first coating agent obtained in the first step by applying a wet coating on a bubble paper to harden it; A third step of forming a second coating agent by mixing 1-5 wt% of the carbon-based nanomaterial having an antibacterial function with 95-99 wt% of the dry hydrophilic non-porous polyurethane resin; And a fourth step of applying the second coating agent obtained by the third step to dry coating on the bubble paper and applying it to harden.

이에 따라 본 발명은, 축열 보온과 투습방수의 동시 효과 발현하고, 항균성이 향상되며, 원적외선 방사의 지속적인 효과를 유지하며 세탁 내구성을 증진하는 효과가 있다.Accordingly, the present invention, the simultaneous effect of the heat storage thermal insulation and moisture permeability, the antibacterial properties are improved, there is an effect of maintaining the lasting effect of far-infrared radiation and improve the washing durability.

PCM(Phase Change Materials), CACO, 카본계 나노물질, 도포, 습식 코팅, 건식 코팅 PCM (Phase Change Materials), CACO, Carbon Nano Materials, Coating, Wet Coating, Dry Coating

Description

보온섬유의 제조방법{Method for producing a heat-retaining fiber}Method for producing a thermal fiber [Method for producing a heat-retaining fiber}

본 발명은 보온섬유의 제조방법에 관한 것으로, 보다 구체적으로는 축열 보온과 투습방수의 동시 효과 발현하고, 항균성이 향상되며, 원적외선 방사의 지속적인 효과를 유지하며 세탁 내구성이 증진되는 보온섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing a thermal fiber, more specifically, the simultaneous effect of heat storage thermal insulation and moisture-permeable waterproof, antimicrobial properties are improved, maintaining the continuous effect of far-infrared radiation and washing durability is improved manufacturing method It is about.

일반적으로, 섬유제품의 보온성에 관한 관심과 기술개발을 위한 연구는 꽤 오래전부터 이루어져 왔다. 일반적으로 섬유제품의 보온성을 향상시키는 방법으로는 주로 단열에 의한 보온효과를 생각해 왔으나 최근에 개발되고 있는 축열ㆍ보온 소재는 종래의 보온가공의 개념을 전환ㆍ발전시킨 것이라 할 수 있다. 축열 보온 가공(thermal storage and warmth proofing)은 종래의 합성섬유 제조기술을 바탕으로 하여 세라믹 및 원적외선에 관한 연구 등이 조합하여 이루어진 것으로서 일본을 중심으로 원사제조 업체 및 섬유가공 업체들이 앞을 다투어 원적외선을 응용한 축열 보온 가공제품을 개발ㆍ생산하고 있다.In general, research on the thermal insulation of textile products and research for technology development has been carried out for quite some time. In general, as a method of improving the thermal insulation of textile products, the thermal insulation effect by heat insulation has been mainly considered, but recently developed heat storage and thermal insulation materials can be said to be a change in the concept of conventional thermal processing. Thermal storage and warmth proofing is a combination of research on ceramics and far-infrared based on conventional synthetic fiber manufacturing technology. Yarn manufacturers and textile processing companies have been fighting for far-infrared rays in Japan. We have developed and produced heat storage thermal insulation products.

이러한 가공제품은 종래의 합성섬유 제품에 축열 보온 기능을 추가하여 같은 용도의 상품으로 생산하고 있으며 건강증진의 효과도 있다고 한다. 섬유집합체로서 의복에 보온성을 주는 목적은 가볍고 얇으면서 경우에 따라서는 보다 짧고 작은(輕 ㆍ短ㆍ小) 보온성이 우수한 소재를 얻는 데 있으며, 여기에 몇 가지 인자의 조합으로 섬유집합체의 단위 두께에 대한 보온성을 향상시킬 수 있다. Such processed products are produced as a commodity of the same use by adding heat storage insulation function to the conventional synthetic fiber products, and is said to have the effect of promoting health. The purpose of providing thermal insulation to clothing as a fiber aggregate is to obtain a material that is light and thin and, in some cases, shorter and smaller in thermal insulation, and has a combination of several factors in the unit thickness of the fiber assembly. It can improve the heat retention.

축열ㆍ보온섬유의 정의는 다소 불명확하지만, 다음의 3가지 기능이 조합되어야 하는 것으로 알려진다. 외부로부터 빛과 열, 즉 전자파(주로 태양빛)를 효율적으로 잘 흡수시켜 일부는 장파장의 전자파(적외선)로 변환시키는 기능과 인체로부터 방사되는 열선(자외선)을 그대로 반사시키거나, 파장을 변환해서 반사하는 기능과 양모의 흡습 발열 원리와 유사하게 섬유 스스로 발열해서 인체를 따뜻하게 해주는 기능 등이 있다.Although the definition of heat storage / insulating fiber is somewhat unclear, it is known that the following three functions should be combined. It effectively absorbs light and heat from the outside, that is, electromagnetic waves (mainly sunlight), and converts them into long-wave electromagnetic waves (infrared rays), and reflects the heating rays (ultraviolet rays) emitted from the human body or converts wavelengths. Similar to the principle of hygroscopic heating of the wool and the function of reflex, there is a function to warm the human body by heating the fibers themselves.

일본 평성(平城) 제08-188970호의 “보온성섬유직물 및 그 제조법”에 의하면, 최근 10여 년 동안의 특허는 대부분 원사상태에서의 세라믹 혼입을 중심으로 하고 그 원료로서는 PCM이 중심을 이루어 왔다. 반면에 코팅 기술을 중심으로 PCM을 사용하고 더구나 후가공에 적용함에 따른 차별적 특허 권리의 확보 가능성이 예상된다. 또한 -10℃~-40℃의 극한 기후 지방에서는 열대나 아열대지방에서 보다 비교적 위생문제가 발생할 소지가 많기 때문에 필수적으로 환경 친화적이며 인체친화적인 항균소재가 필수적이므로 이를 실현하기 위해서 천연물에서 추출한 아직 섬유에 적용한 적이 없는 완전히 새로운 다기능 항균, 항박테리아 등의 조제를 도입하고자 한다. 이 또한 기존에 합성 항균제만 사용했던 점에서 특허 권리의 확보가 필요하다.According to "Thermal Insulating Textile Fabric and Its Manufacturing Method" of Japanese Patent No. 08-188970, most of the patents for the last ten years have been centered on the incorporation of ceramics in the yarn state, and PCM has been the main material. On the other hand, it is expected to secure differentiated patent rights by using PCM mainly for coating technology and applying it to post-processing. In addition, in the extreme climate region of -10 ℃ ~ -40 ℃, since hygiene problems are more likely to occur in tropical or subtropical regions, environmentally friendly and human-friendly antibacterial materials are essential. The company intends to introduce completely new multifunctional antibacterial and antibacterial preparations. In addition, it is necessary to secure patent rights since only conventional antimicrobial agents were used.

이에 따라 본 발명은 상기와 같은 종래의 문제점을 근본적으로 해결하기 위한 것으로서, 축열 보온과 투습방수의 동시 효과 발현하고, 항균성이 향상되며, 원적외선 방사의 지속적인 효과를 유지하며 세탁 내구성이 증진되는 보온섬유의 제조방법을 제공하려는데 그 목적이 있다.Accordingly, the present invention is to fundamentally solve the conventional problems as described above, the thermal effect of the thermal insulation and the moisture permeable waterproof expression, antimicrobial properties are improved, maintaining the lasting effect of far-infrared radiation and washing durability is improved laundry durability The purpose of the present invention is to provide a method.

이러한 목적을 달성하기 위해 본 발명은 통상의 염색공정을 거친 기포지에 후가공 방식으로 축열ㆍ발열 기능을 부여하는 방법에 있어서: 축열ㆍ발열 기능을 가진 PCM 10~20wt%와 내한성을 가진 폴리우레탄 수지80~90wt%를 혼합하여 제1코팅제를 형성하는 제1단계; 상기 제1단계에 의해 얻어진 제1코팅제를 기포지 상에 습식 코팅하여 도포하여 경화시키는 제2단계; 항균기능을 가진 카본계 나노물질 1~5wt%와 건식 친수무공형 폴리우레탄수지 95~99wt%를 혼합하여 제2코팅제를 형성하는 제3단계; 및 상기 제3단계에 의해 얻어진 제2코팅제를 기포지 상에 다시 건식 코팅하여 도포하여 경화시키는 제4단계;를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a heat storage and heat generation function in a post-processing manner to a bubble paper subjected to a conventional dyeing process: 10-20 wt% PCM having heat storage and heat generation functions and a polyurethane resin having cold resistance A first step of forming a first coating agent by mixing about 90 wt%; A second step of applying a first coating agent obtained in the first step by applying a wet coating on a bubble paper to harden it; A third step of forming a second coating agent by mixing 1-5 wt% of the carbon-based nanomaterial having an antibacterial function with 95-99 wt% of the dry hydrophilic non-porous polyurethane resin; And a fourth step of applying the second coating agent obtained by the third step to dry coating on the bubble paper and applying it to harden.

이때, 본 발명의 카본계 나노물질은 탄소성분이 65±2%와, 산소성분이 25±2%로 이루어진 100nm 크기의 입자로 형성된 CACO로 형성되는 것을 특징으로 한다.At this time, the carbon-based nanomaterial of the present invention is characterized in that the carbon component is formed of CACO formed of particles of 100nm size consisting of 65 ± 2%, oxygen component 25 ± 2%.

한편, 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발 명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Meanwhile, the terms or words used in the present specification and claims are not to be construed as being limited to the ordinary or dictionary meanings, and the inventors have the concept of terms in order to explain their own invention in the best way. On the basis of the principle that can be appropriately defined should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all of the technical ideas of the present invention, and various alternatives may be substituted at the time of the present application. It should be understood that there may be equivalents and variations.

이상의 구성 및 작용에서 설명한 바와 같이, 본 발명은 축열 보온과 투습방수의 동시 효과 발현하고, 항균성이 향상되며, 원적외선 방사의 지속적인 효과를 유지하며 세탁 내구성을 증진하는 효과를 제공한다.As described in the above configuration and operation, the present invention expresses the simultaneous effect of heat storage thermal insulation and moisture permeability, improves antimicrobial properties, provides the effect of maintaining the lasting effect of far-infrared radiation and improving laundry durability.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 섬유의 제조방법의 블록도이고, 도 2는 본 발명에 따른 섬유의 제조방법의 보온섬유를 확대하여 나타내는 도식도이다.1 is a block diagram of a manufacturing method of the fiber according to the present invention, Figure 2 is a schematic diagram showing an enlarged insulating fiber of the manufacturing method of the fiber according to the present invention.

본 발명은 축열 보온과 투습방수의 동시 효과 발현하고, 항균성이 향상되며, 원적외선 방사의 지속적인 효과를 유지하며 세탁 내구성을 증진하는 보온섬유의 제조방법에 관련되며, 제1단계(S10), 제2단계(S20), 제3단계(S30), 제4단계(S40)를 통해 섬유의 제조방법이 이루어진다.The present invention relates to the manufacturing method of thermal insulation fibers to express the simultaneous effect of heat storage thermal insulation and moisture permeability, to improve the antimicrobial properties, to maintain the continuous effect of far-infrared radiation and to improve the durability of the laundry, the first step (S10), the second The manufacturing method of the fiber is made through the step (S20), the third step (S30), the fourth step (S40).

본 발명에 따르면, 제1단계(S10)는 축열ㆍ발열기능을 가진 PCM 10~20wt%와 내한성을 가진 폴리우레탄수지 80~90wt%를 혼합하여 제1코팅제(10)를 형성한다. 상기 PCM(Phase Change Materials)은 상변화물질 또는 잠열저장 물질이라 하여 기체, 액체, 고체상태로 상변화하는 과정에서 흡열 또는 방열이 수행된다. PCM의 적용분야는 신발, 주방용품 등의 생활용품분야, 자동차, 통신기기, 의학기기 등의 첨단산업분야, 태양열을 이용 등의 친환경에너지분야, 심야전력을 이용한 축열ㆍ축냉분야 등으로 다양하게 사용되지만, PCM이 일정한 온도에서 상변화가 되는 에너지 저장 수단으로 이용되는 경우 고체와 액체 사이를 변화하는 과정에서 액체 상태가 되었을 때 정형의 유지가 곤란하므로 모듈화의 용이성이나 전열면적의 증가를 고려하여 마이크로캡슐화(microcapsule)하는 것이 유리하다. 이때, 캡슐은 160℃이상에서는 깨어질 위험이 있으므로 현장 적용시 온도제어에 주의가 요구되며, 이러한 PCM 10~20wt%와 내한성을 가진 폴리우레탄수지 80~90wt%를 혼합하여 제1코팅제(10)를 형성한다.According to the present invention, the first step (S10) to form a first coating agent 10 by mixing 10 ~ 20wt% PCM having a heat storage / heat generation function and 80 ~ 90wt% polyurethane resin having a cold resistance. The PCM (Phase Change Materials) is called a phase change material or latent heat storage material, and endothermic or heat dissipation is performed in the process of phase change to a gas, liquid, or solid state. Applications of PCM are diversely used in daily necessities such as shoes and kitchenware, high-tech industries such as automobiles, communication devices, and medical devices, environmentally friendly energy fields such as solar heat, and heat storage and cold storage fields using midnight power. However, when PCM is used as an energy storage means that changes phase at a certain temperature, it is difficult to maintain a shape when it becomes a liquid in the process of changing between a solid and a liquid. Therefore, in consideration of the ease of modularization or the increase in heat transfer area, It is advantageous to microcapsule. At this time, since the capsule may be broken at 160 ° C. or higher, attention is required for temperature control in the field application, and the first coating agent 10 is mixed with 10 to 20 wt% of PCM and 80 to 90 wt% of polyurethane resin having cold resistance. To form.

또, 본 발명에 따르면, 제2단계(S20)는 상기 제1단계(S10)에 의해 얻어진 제1코팅제(10)를 기포지(1) 상에 습식 코팅하여 도포하여 경화시킨다. 상기 기포지(1)는 섬유나 원단에 제한을 두지 않으며 생지, 해단, CPB 정련, 연속 수세, 염색, P/set(텐타 가공), 발수 등의 통상적인 염색공정을 거친 상태를 말하며, 도2에 도시된 바와 같이 기포지(1) 상에 PCM 10~20wt%와 내한성을 가진 폴리우레탄수지 80~90wt%를 혼합한 제1코팅제(10)를 도포하여 경화시킴으로 인해 상기 기포지(1) 상에 흡수됨과 동시에 코팅이 적층된 형태를 지니며, 습식코팅은 knife over roll 방식을 채택하여 사용하는 것이 적합하다.In addition, according to the present invention, in the second step S20, the first coating agent 10 obtained by the first step S10 is applied by the wet coating on the bubble paper 1 to be cured. The bubble paper 1 is not limited to fibers or fabrics, and refers to a state that has been subjected to conventional dyeing processes such as dough, cutting, CPB refining, continuous washing, dyeing, P / set (tenta processing), and water repellent, and FIG. 2. As shown in FIG. 1, the first coating agent 10 mixed with 10-20 wt% of PCM and 80-90 wt% of polyurethane resin having cold resistance is applied to the bubble paper 1 and cured. It is absorbed in and has the form of laminated coating. Wet coating is suitable to use knife over roll method.

또, 본 발명에 따르면, 제3단계(S30)는 항균기능을 가진 카본계 나노물질 1~5wt%와 건식 친수무공형 폴리우레탄수지 95~99wt%를 혼합하여 제2코팅제(30)를 형성한다. 여기서 상기 카본계 나노물질은 탄소성분이 65±2%와, 산소성분이 25±2%로 이루어진 100nm 크기의 입자로 형성된 CACO로써 KINGPRIZE에서 처음 개발한 것이며 명칭이 정해지지 않아 임시적으로 CACO로 정의 하였다. 이러한, 항균기능을 가진 CACO 1~5wt%와 건식 친수무공형 폴리우레탄수지 95~99wt%를 혼합한 제2코팅제(30)를 형성한다.In addition, according to the present invention, the third step (S30) forms a second coating agent 30 by mixing 1 ~ 5wt% of the carbon-based nanomaterials having antibacterial function and 95 ~ 99wt% of the dry hydrophilic non-porous polyurethane resin. . Here, the carbon-based nanomaterials were first developed by KINGPRIZE as CACO formed of particles having a size of 100 nm consisting of 65 ± 2% of carbon and 25 ± 2% of oxygen, and were temporarily defined as CACO. The second coating agent 30 is formed by mixing CACO 1 to 5 wt% with the antibacterial function and 95 to 99 wt% of the dry hydrophilic non-porous polyurethane resin.

또, 본 발명에 따르면, 제4단계(S40)는 상기 제3단계(S30)에 의해 얻어진 제2코팅제(30)를 기포지(1) 상에 다시 건식 코팅하여 도포하여 경화시킨다. 도 2에 도시된 바와 같이 상기 제2코팅제(30)를 기포지(1) 상에 도포하여 경화시킴으로 인해 경화시킴으로 인해 상기 기포지(1) 상에 흡수됨과 동시에 제1코팅(20) 상에 코팅이 적층된 형태를 지니며, 건식코팅은 knife over roll 또는 comma 방식을 채택하여 사용하는 것이 적합하다.In addition, according to the present invention, in the fourth step S40, the second coating agent 30 obtained by the third step S30 is dry-coated by applying the dry coating on the bubble paper 1 again to cure. As shown in FIG. 2, the second coating agent 30 is applied onto the bubble paper 1 to be cured by curing, thereby being absorbed onto the bubble paper 1 and coated on the first coating 20. This laminated form is suitable for dry coatings using knife over roll or comma methods.

이후, 도시에는 생략되나 건조가공과 텐타가공을 거쳐 제품을 완성하는데, 특히 정확한 온도 제어로 건조의 균일성을 유지해야 한다. 상하 노즐을 통하여 정확하게 온도 조절된 열풍이 정밀하게 제어된 팬을 통해 원단에 균일하게 열을 전달하며, 열 공급관을 통하여 버너의 불꽃이 열풍의 온도를 정확하게 조절할 수 있도록 한다. 물론 폐열회수시스템을 이용하여 원단을 건조하고 남은 열을 회수하는 장치도 부가하는 것이 좋다.Thereafter, although not shown in the drawing, the product is finished through dry processing and tenta processing, in particular, it is necessary to maintain uniformity of drying with accurate temperature control. The hot air, which is precisely temperature controlled through the upper and lower nozzles, transmits heat uniformly to the fabric through the precisely controlled fan, and the flame of the burner can accurately control the temperature of the hot air through the heat supply pipe. Of course, it is good to add a device for recovering the remaining heat after drying the fabric using the waste heat recovery system.

이와 같은 방법으로 제조된 원단은 기포지(1) 상에 겹겹의 기능층이 적층된 형태를 지니게 된다.The fabric produced in this manner has a form in which a layer of functional layers are stacked on the bubble paper 1.

[실험예][Experimental Example]

먼저, 나이론(Nylon) 100% 원단을 사용하여 CIRE 2회로 하여 습식 코팅하고, 건조(160℃×1.5分)이후, 건식 코팅하여 다시 건조(160℃×1.5分)하는 공정을 실험하였다. 이때, 실험 조건은 습식 코팅은 내한성 폴리우레탄 80wt%와 PCM 20wt%를 사용하였고, 건식 코팅은 친수무공형 폴리우레탄과 CACO 1,5,10wt%를 사용하였다.First, using a 100% nylon (Nylon) fabric was subjected to wet coating by two cycles of CIRE, followed by drying (160 ℃ × 1.5 minutes), and then dry coating to dry again (160 ℃ × 1.5 minutes) was tested. At this time, the wet conditions were 80 wt% cold-resistant polyurethane and 20 wt% PCM for wet coating, and 1,5,10 wt% for hydrocoated non-porous polyurethane and dry coating.

Figure 112008043168712-pat00001
Figure 112008043168712-pat00001

Figure 112008043168712-pat00002
Figure 112008043168712-pat00002

상기 표 1에서 미첨가와 CACO 1,5,10wt%를 첨가함을 비교하면, 중량, 두께, 접착력, 상용성은 별다른 효과가 나타나지 않았지만, 내수압과 투습도에서 큰 차이가 있는 것을 알 수 있으며 특히, CACO 1~5wt%를 첨가하는 것이 내수압과 투습도의 큰 효과를 얻을 수 있었다. 의복의 쾌적함을 위한 조건은 투습성과 보온성에 있다. 본 발명에 따르면 투습도(g/㎡.day)는 현재 세계최고수준(6000~8000)의 90% 이상 가능하고, 보온성은 현재 직물상태에서 외부기온보다 2~3℃ 높게 유지가 가능하게 된다. 그리고, 내수압은 세탁 내구성과 관련된다.Comparing the addition of CACO 1,5,10wt% in Table 1, the weight, thickness, adhesion, and compatibility did not show a significant effect, but it can be seen that there is a significant difference in water pressure and moisture permeability, in particular, CACO Addition of 1-5 wt% was able to obtain great effects of water pressure and moisture permeability. The conditions for the comfort of clothing are moisture permeability and warmth. According to the present invention, the water vapor transmission rate (g / m 2 .day) can be more than 90% of the current world's highest level (6000 ~ 8000), and the thermal insulation can be maintained at 2 ~ 3 ℃ higher than the external temperature in the current fabric state. And water pressure is related to laundry durability.

Figure 112008043168712-pat00003
Figure 112008043168712-pat00003

Figure 112008043168712-pat00004
Figure 112008043168712-pat00004

상기 표 2와 표 3에서 CACO의 함량에 의해 카본계열인 CACO는 미첨가 시료에서 나타나는 탄소의 비율보다 2배 정도의 탄소비율이 높아졌다.In Table 2 and Table 3, the CACO, which is a carbon series, has a carbon ratio about twice that of the carbon in the unadded sample.

Figure 112008043168712-pat00005
Figure 112008043168712-pat00005

표 4에서 카본계열인 CACO은 기준 시료보다 높은 원적외선 방사율과 방사에너지 값을 나타냈다. 이러한 원적외선이 인체에 들어오면 피부 밑 혈관부위의 온도를 상승시켜 미세혈관이 확장되고 혈액순환이 촉진 되며, 신진 대사를 강화하고 조직의 재생능력을 증가시켜 건강한 체력을 유지할 수 있게 하며, 질병 예방과 치료 가능하게 하는 다양한 효과를 얻게 된다.In Table 4, the carbon-based CACO showed far-infrared emissivity and radiation energy values higher than those of the reference sample. When such far infrared rays enter the human body, the temperature of blood vessels under the skin is raised to expand microvascular vessels, promote blood circulation, enhance metabolism, increase tissue regeneration, and maintain healthy stamina. You get a variety of effects that make it treatable.

Figure 112008043168712-pat00006
Figure 112008043168712-pat00006

표 5는 일반 수지를 사용한 Dual - Coating 직물보다 내한성 가공 시료의 발열량과 흡열량이 늘어난 것을 확인 할 수 있다. 이는 내한성 가공 직물이 축열/발열가공에 적합한 소재임을 알 수 있고, CACO를 넣은 시료에서는 넣지 않은 내한성 가공 시료보다 낮은 발열량을 나타내고 있다. 이것은 나노 물질이 잠열을 흡수하고 있어 발열량이 줄어들고, 이 성질로 인해 흡열량은 내한성 가공 시료보다 증가한 것이다.Table 5 shows that the calorific value and endothermic amount of the cold-resistant processed sample increased compared to the dual-coated fabric using general resin. It can be seen that the cold-resistant fabric is a material suitable for heat storage / heat processing, and the sample with the CACO shows a lower calorific value than the cold-resistant processed sample without. This is because the nanomaterial absorbs latent heat and the calorific value decreases, which is why the endothermic amount is higher than that of cold-resistant processed samples.

Figure 112008043168712-pat00007
Figure 112008043168712-pat00007

표 6은 CACO를 첨가하지 않은 내한성 가공 직물에 재현성 그래프와 CACO를 첨가한 내한성 가공 직물의 재현성 그래프이다. CACO가 잠열을 흡수하여 3 Cycling 하였을 때, 그래프가 일정하게 반복되는 것을 알 수 있다. 이는 나노 물질이 안정된 보온성 유지에 상당한 효과를 알 수 있다.Table 6 shows the reproducibility graph of the cold-resistant processed fabric without the addition of CACO and the reproducibility graph of the cold-resistant processed fabric with the addition of CACO. When CACO absorbs latent heat and performs 3 Cycling, it can be seen that the graph repeats constantly. It can be seen that the nanomaterials have a significant effect on maintaining a stable thermal insulation.

이로써, 축열보온과 투습방수의 동시 효과 발현하고, 항균성이 향상되며, 원적외선 방사의 지속적인 효과를 유지하며 세탁 내구성을 증진하는 효과를 제공한다.As a result, the simultaneous effect of heat storage insulation and moisture permeability is expressed, antimicrobial properties are improved, and the effect of maintaining the continuous effect of far-infrared radiation and improving laundry durability.

본 발명은 기재된 실시예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It is apparent to those skilled in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. Therefore, such modifications or variations will have to belong to the claims of the present invention.

도 1은 본 발명에 따른 섬유의 제조방법의 블록도,1 is a block diagram of a method for producing a fiber according to the present invention,

도 2는 본 발명에 따른 섬유의 제조방법의 보온섬유를 확대하여 나타내는 도식도이다.Figure 2 is a schematic diagram showing an enlarged insulating fiber of the method for producing a fiber according to the present invention.

* 도면의 주요부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

1: 기포지 10: 제1코팅제1: bubble paper 10: first coating agent

30: 제2코팅제 S10: 제1단계30: second coating agent S10: the first step

S20: 제2단계 S30: 제3단계S20: second stage S30: third stage

S40: 제4단계S40: fourth stage

Claims (2)

통상의 염색공정을 거친 기포지(1)에 후가공 방식으로 축열ㆍ발열 기능을 부여하는 방법에 있어서:In the method of imparting heat storage and heat generation functions to a post-processing method on a bubble paper 1 subjected to a conventional dyeing process: 축열ㆍ발열기능을 가진 PCM 10~20wt%와 내한성을 가진 폴리우레탄 수지80~90wt%를 혼합하여 제1코팅제(10)를 형성하는 제1단계(S10);A first step (S10) of forming a first coating agent (10) by mixing 10-20 wt% of PCM having a heat storage / heating function and 80-90 wt% of a polyurethane resin having cold resistance; 상기 제1단계(S10)에 의해 얻어진 제1코팅제(10)를 기포지(1) 상에 습식 코팅하여 도포하여 경화시키는 제2단계(S20);A second step (S20) of applying a hard coating by coating the first coating agent (10) obtained by the first step (S10) on the bubble paper (1); 항균기능을 가진 카본계 나노물질 1~5wt%와 건식 친수무공형 폴리우레탄수지 95~99wt%를 혼합하여 제2코팅제(30)를 형성하는 제3단계(S30); 및 A third step (S30) of forming a second coating agent 30 by mixing 1-5 wt% of the carbon-based nanomaterial having an antibacterial function and 95-99 wt% of the dry hydrophilic non-porous polyurethane resin; And 상기 제3단계(S30)에 의해 얻어진 제2코팅제(30)를 기포지(1)상에 다시 건식 코팅하여 도포하여 경화시키는 제4단계(S40);를 포함하여 이루어지는 것을 특징으로 하는 보온섬유의 제조방법.The second coating agent 30 obtained by the third step (S30) is a dry coating on the bubble paper (1) by applying a fourth step (S40) to harden by applying again; Manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 카본계 나노물질은 탄소성분이 65±2%와, 산소성분이 25±2%로 이루어진 100nm 크기의 입자로 형성된 CACO로 형성되는 것을 특징으로 하는 보온섬유의 제조방법.The carbon-based nanomaterial is a method of producing a thermal fiber, characterized in that the carbon component is formed of CACO formed of particles of 100nm size consisting of 65 ± 2%, oxygen component 25 ± 2%.
KR1020080056747A 2008-06-17 2008-06-17 Method for producing a heat-retaining fiber KR100997501B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080056747A KR100997501B1 (en) 2008-06-17 2008-06-17 Method for producing a heat-retaining fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080056747A KR100997501B1 (en) 2008-06-17 2008-06-17 Method for producing a heat-retaining fiber

Publications (2)

Publication Number Publication Date
KR20090130998A KR20090130998A (en) 2009-12-28
KR100997501B1 true KR100997501B1 (en) 2010-11-30

Family

ID=41690314

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080056747A KR100997501B1 (en) 2008-06-17 2008-06-17 Method for producing a heat-retaining fiber

Country Status (1)

Country Link
KR (1) KR100997501B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307787B1 (en) 2012-08-13 2013-09-12 주식회사 이피씨코리아 Carbon-ink coated heating yarn and the manufaturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572864A (en) 1985-01-04 1986-02-25 The United States Of America As Represented By The United States Department Of Energy Composite materials for thermal energy storage
KR100504677B1 (en) 2003-04-30 2005-08-02 벤텍스 주식회사 A thermal insulation 4 layer breathable fabric having the self temperature control function
KR200427596Y1 (en) 2006-07-05 2006-09-27 (주)데카닉스 A heat absorption sheat using phase change material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572864A (en) 1985-01-04 1986-02-25 The United States Of America As Represented By The United States Department Of Energy Composite materials for thermal energy storage
KR100504677B1 (en) 2003-04-30 2005-08-02 벤텍스 주식회사 A thermal insulation 4 layer breathable fabric having the self temperature control function
KR200427596Y1 (en) 2006-07-05 2006-09-27 (주)데카닉스 A heat absorption sheat using phase change material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307787B1 (en) 2012-08-13 2013-09-12 주식회사 이피씨코리아 Carbon-ink coated heating yarn and the manufaturing method thereof

Also Published As

Publication number Publication date
KR20090130998A (en) 2009-12-28

Similar Documents

Publication Publication Date Title
KR101253032B1 (en) Method for producing fiber and fabric with heating, heat-retaining and heat storage function
CN108192327A (en) Anion Flexible graphene composite electrothermal material, anion Flexible graphene electric heating composite membrane and preparation method and application
JP2011094285A (en) Unilateral sweat-absorbing quick-drying comfortable fabric and method for preparing the same
CN1982533A (en) Far-infrared ceramic fabric
CN105088780A (en) Nano-silver antibacterial cotton fabric
KR101372929B1 (en) Thermokeeping triple layer clouths have good thermal storage ability and high soft inner part
CN101481872A (en) Heat storing heat preserving finishing method
KR100997501B1 (en) Method for producing a heat-retaining fiber
KR100997499B1 (en) Method for producing a heat-retaining fiber
CN107974839A (en) A kind of preparation method of polylactic acid microcapsule aromatic type automotive trim composite material
CN101929019A (en) Temperature superconducting intelligent memory functional fabric
CN106223046A (en) A kind of bidirectional inductive accumulation of energy insulation afterfinish method of fabric
KR101394502B1 (en) Fuctional textile with excellent light-weight and keeping warm and fuctional clothes using the same
KR100865471B1 (en) Method for producing a heat-retaining fiber
CN108049191A (en) A kind of preparation method of automobile cushion microcapsule aromatic type coconut husk composite material
CN107956132A (en) A kind of preparation method of microcapsule aromatic type automotive trim coir fibre material
CN115805737A (en) Graphene-containing moisture-permeable heat storage fabric preparation method and moisture-permeable heat storage fabric
CN108642768B (en) Preparation method of moisture-absorbing and sweat-releasing fabric based on viscose fibers
CN106811958A (en) A kind of anion easily nurses Australia's wool top
KR20120021396A (en) Method of manufacturing functional fiber and functional fiber with waterproof-breathable function manufactured thereof
CN112575593A (en) Thermal fabric with photo-thermal conversion function and preparation method thereof
CN206706134U (en) Waterproof and breathable multilayer corium
CN108085970A (en) A kind of preparation method of Chinese fiber crops microcapsule aromatic type automobile cushion composite material
KR102515254B1 (en) Curtain using water-repellent coating treated fabric and manufacturing method thereof
TW201540500A (en) Temperature regulating cloth

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190814

Year of fee payment: 9

R401 Registration of restoration