KR100982136B1 - 스케터로메트리를 위한 카타디옵트릭 광학 시스템 - Google Patents

스케터로메트리를 위한 카타디옵트릭 광학 시스템 Download PDF

Info

Publication number
KR100982136B1
KR100982136B1 KR1020080070018A KR20080070018A KR100982136B1 KR 100982136 B1 KR100982136 B1 KR 100982136B1 KR 1020080070018 A KR1020080070018 A KR 1020080070018A KR 20080070018 A KR20080070018 A KR 20080070018A KR 100982136 B1 KR100982136 B1 KR 100982136B1
Authority
KR
South Korea
Prior art keywords
electromagnetic radiation
reflective surface
substrate
monolithic glass
glass element
Prior art date
Application number
KR1020080070018A
Other languages
English (en)
Other versions
KR20090009159A (ko
Inventor
예프게니 콘스탄티노비치 슈마레프
스타니슬라브 와이. 스미르노프
이리나 아이. 포츠힌스카야
Original Assignee
에이에스엠엘 홀딩 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 홀딩 엔.브이. filed Critical 에이에스엠엘 홀딩 엔.브이.
Publication of KR20090009159A publication Critical patent/KR20090009159A/ko
Application granted granted Critical
Publication of KR100982136B1 publication Critical patent/KR100982136B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4714Continuous plural angles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

높은 개구수를 갖는 카타디옵트릭 광학 시스템은 폭넓은 스펙트럼 범위에서 작동한다. 카타디옵트릭 광학 시스템은 보정 플레이트, 제 1 반사 표면 및 제 2 반사 표면을 포함한다. 보정 플레이트는 1 이상의 수차를 보정하도록 전자기 방사선을 컨디셔닝한다. 제 1 반사 표면은 보정 플레이트에 의해 컨디셔닝된 전자기 방사선을 반사하도록 위치된다. 제 2 반사 표면은 제 1 반사 표면에 의해 반사된 전자기 방사선을 기판의 타겟부 상으로 포커스하도록 위치된다. 제 1 반사 표면에 의해 반사되고 제 2 반사 표면에 의해 포커스된 전자기 방사선은 굴절 요소에 의해 굴절되지 않아, 카타디옵트릭 광학 시스템으로 하여금 폭넓은 스펙트럼 범위에서 작동할 수 있게 한다.

Description

스케터로메트리를 위한 카타디옵트릭 광학 시스템{CATADIOPTRIC OPTICAL SYSTEM FOR SCATTEROMETRY}
본 발명은 일반적으로 광학 시스템들, 특히 카타디옵트릭(catadioptric) 광학 시스템들로 지향된다.
리소그래피 장치는 기판 또는 기판의 일부분 상에 원하는 패턴을 적용시키는 기계이다. 리소그래피 장치는, 예를 들어 평판 디스플레이(flat panel display), 집적 회로(IC) 및 미세 구조체를 수반하는 다른 디바이스 제조시에 사용될 수 있다. 종래의 장치에서 마스크 또는 레티클이라 칭할 수 있는 패터닝 디바이스는, IC, 평판 디스플레이 또는 다른 디바이스의 개별 층에 대응하는 회로 패턴을 생성하는데 사용될 수 있다. 이 패턴은 기판 상에 제공된 방사선-감응재(예컨대, 레지스트) 층 상에 이미징(imaging)함으로써, 기판(예컨대, 유리판, 웨이퍼 등)의 전체 또는 일부분 상으로 전사될 수 있다.
패터닝 디바이스는, 예를 들어 IC 패턴을 생성하는데 사용될 수 있다. 패터닝 디바이스는, 추가적으로 또는 대안적으로 다른 패턴들 예를 들어 컬러 필터 패턴(color filter pattern) 또는 도트(dot)들의 매트릭스를 생성하는데 사용될 수 있다. 마스크 대신에, 패터닝 디바이스는 개별적으로 제어가능한 요소들의 어레이를 포함하는 패터닝 어레이일 수 있다. 이러한 시스템에서 상기 패턴은 마스크 기반 시스템에 비해 더 빠르고 더 적은 비용으로 변화될 수 있다.
기판을 패터닝한 이후, 전형적으로 측정들 및 검사가 수행된다. 측정 및 검사 단계는 전형적으로 2 가지 목적을 만족시킨다. 첫째로, 현상된 레지스트의 패턴에 결점이 있는 여하한의 타겟 영역들을 검출하는데 바람직하다. 충분한 수의 타겟 영역들에 결점이 있는 경우, 결점이 있는 패턴을 이용하여 공정 단계 예를 들어 에칭을 수행함으로써 결점이 영구적이게 하기보다는, 패터닝된 레지스트를 벗겨내고 바라건대 올바르게 기판이 재-노광될 수 있다. 둘째로, 측정들은 리소그래피 장치 내의 오차들, 예를 들어 조명 세팅들 또는 노광 도즈의 오차들이 검출되어 후속 노광들에서 보정되게 할 수 있다.
하지만, 리소그래피 장치 내의 많은 오차들은 레지스트에 프린트된 패턴들로부터 쉽게 검출되거나 정량화(quantify)될 수 없다. 결점의 검출이 항상 그 원인을 직접 초래하는 것은 아니다. 따라서, 리소그래피 장치 내의 오차들을 검출하고 측정하기 위해 다양한 오프-라인 절차들(즉, 기판의 통상적인 처리에 추가로 수행되는 절차들)이 알려져 있다. 이것들은 기판을 측정 디바이스와 교체하는 단계, 또는 예를 들어 여러 가지 상이한 기계 세팅들로 특수한 테스트 패턴들의 노광들을 수행하는 단계를 수반할 수 있다. 이러한 오프-라인 기술들은 흔히 상당한 시간이 걸리므로, 생산 시간을 감소시키고 그동안 상기 장치의 최종 생산물은 측정 결과들이 이용가능하게 될 때까지 알려지지 않은 품질로 구성될 것이다.
인-라인 측정 및 검사 절차들(즉, 기판의 통상적인 처리시 수행되는 절차들)이 알려져 있다. 예를 들어, 스케터로메트리(scatterometry)는 임계 치수(CD) 및 오버레이의 인-라인 측정들에 사용될 수 있는 광학 메트롤로지 기술이다. 2 가지 주요한 스케터로메트리 기술이 존재한다:
(1) 분광 스케터로메트리(spectroscopic scatterometry)가, 통상적으로 크세논 아크 램프(xenon arc lamp)와 같은 크세논, 듀테륨 또는 할로겐 기반 광원과 같이 광대역 광원을 이용하여, 파장의 함수로서 고정된 각도에서 산란광(scattered light)의 특성들을 측정한다. 고정된 각도는 수직으로 입사하거나 비스듬히 입사할 수 있다.
(2) 각도-분해 스케터로메트리(angle-resolved scatterometry)가, 통상적으로 단파장 광원으로서 레이저를 이용하여, 입사각의 함수로서 고정된 파장에서 산란광의 특성들을 측정한다.
스케터로메트리를 이용하여, 예를 들어 실시간 회귀(real-time regression)를 이용하거나 시뮬레이션에 의해 도출된 패턴들의 라이브러리(library)에 비교함으로써, 반사 스펙트럼(reflected spectrum)을 일으키는 구조체가 재구성된다. 재구성은 비용 함수의 최소화를 수반한다. 두 접근법들은 모두 주기적 구조체들에 의해 광의 산란을 계산한다. 가장 통상적인 기술은 RCWA(Rigorous Coupled-Wave Analysis)이지만, FDTD(Finite Difference Time Domain) 또는 적분 방정식(Integral Equation) 기술들과 같은 다른 기술들에 의해 광 산란이 계산될 수도 있다.
하지만, 알려진 스케터로미터들은 몇몇 단점들을 갖는다. 예를 들어, 종래의 스케터로미터들은 한 번에 하나의 파장만을 검출한다. 결과로서, 1 이상의 파장을 갖는 스펙트럼들은 시간-다중화(time-multiplex)되어야 하며, 이는 스펙트럼을 검출하고 처리하는데 걸리는 총 획득 시간을 증가시킨다.
앞서 언급된 내용을 감안하면, 리소그래피 장치에서 인-라인 측정 및 검사를 위해 사용될 수 있는 장치가 요구된다.
본 발명의 일 실시예에 따르면, 폭넓은 스펙트럼 범위에서 작동하는 높은 개구수(numerical aperture)를 갖는 카타디옵트릭 광학 시스템이 제공된다. 카타디옵트릭 광학 시스템은 보정 플레이트, 제 1 반사 표면 및 제 2 반사 표면을 포함한다. 보정 플레이트는 1 이상의 수차를 보정하도록 전자기 방사선을 컨디셔닝(condition)한다. 제 1 반사 표면은 보정 플레이트에 의해 컨디셔닝된 전자기 방사선을 반사시키도록 위치된다. 제 2 반사 표면은 제 1 반사 표면에 의해 반사된 전자기 방사선을 기판의 타겟부 상에 포커스하도록 위치된다. 제 1 반사 표면에 의해 반사되고 제 2 반사 표면에 의해 포커스된 전자기 방사선은 굴절 요소에 의해 굴절되지 않아, 카타디옵트릭 광학 시스템으로 하여금 폭넓은 스펙트럼 범위에서 작동할 수 있게 한다.
첨부된 도면들을 참조하여, 본 발명의 또 다른 실시예, 특징 및 장점뿐만 아니라, 본 발명의 다양한 실시예들의 구조 및 작동이 아래에서 상세하게 설명된다.
Ⅰ. 도입부
본 발명은 스케터로메트리를 위한 카타디옵트릭 광학 시스템을 제공한다. 본 명세서에서 "하나의 실시예", "일 실시예", "예시적인 실시예" 등의 언급은, 설명된 실시예가 특정한 특징, 구조 또는 특성을 포함할 수 있지만, 모든 실시예가 특정한 특징, 구조 또는 특성을 반드시 포함하는 것은 아닐 수 있음을 나타낸다. 또한, 이러한 어구들이 반드시 동일한 실시예를 칭하는 것은 아니다. 또한, 특정한 특징, 구조 또는 특성이 일 실시예와 관련하여 설명되는 경우, 다른 실시예들과 관련하여 이러한 특징, 구조 또는 특성에 영향을 주는 것은 명확하게 설명되든지 그렇지 않든지 당업자의 지식 내에 있음을 이해한다.
본 발명의 일 실시예에 따른 카타디옵트릭 광학 시스템은 (ⅰ) 높은 개구수 및 무색(achromatism)을 제공하는 거울 시스템, 및 (ⅱ) [코마(coma)와 같은] 1 이상의 수차를 보정하는 거의 어포컬인 굴절 요소(nearly afocal refractive element)를 포함한다. 카타디옵트릭 광학 시스템은 (예를 들어, 도 4에 도시된 바와 같이) 임계 치수(CD) 및 오버레이 측정들에 대해 UV-가시광(visible) 스케터로미터 내에서 특수한 대물렌즈(special objective)로서 사용될 수 있다.
특수한 대물렌즈는 정렬 브랜치(alignment branch) 및 감지 브랜치(sensing branch) 모두를 포함하는 시스템 내에서 구현될 수 있다. 이러한 일 실시예에서, 정렬 브랜치는 감지 브랜치의 광학 디자인 내에 구현되는 굴절 요소들을 포함한다. 굴절 요소들은 작은 구형 거울에 의해 가려지는(obscure) 볼륨 내에 위치된다. 정렬 브랜치 내의 제 1 표면(또는 표면들의 그룹)은 감지 브랜치 내의 볼록한 굴절 표면과 공통 표면(또는 표면들)을 갖는다. 볼록한 굴절 표면은 (예를 들어, 80 % 반사와 같이) 부분적으로 반사형일 수 있으며, 또는 감지 및 정렬 브랜치들 사이에 광 분포를 제공하는 스펙트럼-의존성 반사(spectral-dependent reflection)를 갖는다. 대안적으로, 특수한 대물렌즈는 감지 브랜치만을 포함하는 시스템 내에서 사용될 수 있다.
본 발명의 1 이상의 실시예들의 스케터로미터에 따른 카타디옵트릭 광학 시 스템은 종래의 스케터로미터들을 능가하는 수 개의 바람직한 특성들을 가질 수 있다. 예를 들어, 이러한 카타디옵트릭 광학 시스템은 (예를 들어, 약 0.95와 같이) 매우 높은 개구수를 가지며, (예를 들어, 약 200 나노미터 내지 1000 나노미터와 같이) 폭넓은 스펙트럼 범위에서 작동한다. 또한, 이러한 카타디옵트릭 광학 시스템은 감지 브랜치 내에서 낮은 차폐(obscuration)(약 14 %)를 야기하며, 정렬 브랜치 내에서는 차폐를 야기하지 않는다. 또한, 이러한 카타디옵트릭 광학 시스템은 종래 스케터로미터에 비해 감지 브랜치 내에 더 적은 광학 표면들을 포함하여, 감지 브랜치 내에서 생성되는 산란 및 고스트 이미지(ghost image)들을 최소화한다. 또한, 이러한 카타디옵트릭 광학 시스템은 종래 스케터로미터들에 비해 더 작은 치수 및 무게를 갖는다.
본 발명의 1 이상의 실시예에 따른 카타디옵트릭 광학 시스템들의 추가적인 세부 사항들을 제공하기 전에, 먼저 이러한 카타디옵트릭 시스템들이 사용될 수 있는 예시적인 리소그래피 환경 및 스케터로메트리 시스템을 설명하는 것이 유용하다.
Ⅱ. 예시적인 리소그래피 환경
도 1은 본 발명의 일 실시예의 리소그래피 장치(1)를 개략적으로 도시한다. 상기 장치는 조명 시스템(IL), 패터닝 디바이스(PD), 기판 테이블(WT) 및 투영 시스템(PS)을 포함한다. 조명 시스템(일루미네이터)(IL)은 방사선 빔(B)(예를 들어, UV 방사선)을 컨디셔닝하도록 구성된다.
상기 설명은 리소그래피로 지향되지만, 패터닝 디바이스(PD)가 본 발명의 범위를 벗어나지 않고 디스플레이 시스템(예를 들어, LCD 텔레비전 또는 투영기) 내에 형성될 수도 있다는 것을 이해하여야 한다. 따라서, 투영되는 패터닝된 빔은 다수의 다른 형태의 대상물들, 예를 들어 기판, 디스플레이 디바이스 등에 투영될 수 있다.
기판 테이블(WT)은 기판(예를 들어, 레지스트-코팅된 기판)(W)을 지지하도록 구성되며, 소정 파라미터들에 따라 기판을 정확히 위치시키도록 구성된 위치설정기(PW)에 연결된다.
투영 시스템(예를 들어, 굴절 투영 렌즈 시스템)(PS)은 기판(W)의 (예를 들어, 1 이상의 다이를 포함하는) 타겟부(C) 상으로 개별적으로 제어가능한 요소들의 어레이에 의해 변조된 방사선 빔을 투영하도록 구성된다. 본 명세서에서 사용되는 "투영 시스템"이라는 용어는, 사용되는 노광 방사선에 대하여, 또는 침지 액체의 사용 또는 진공의 사용과 같은 다른 인자들에 대하여 적절하다면, 굴절, 반사, 카타디옵트릭, 자기, 전자기 및 정전기 광학 시스템들, 또는 여하한의 그 조합을 포함하는 여하한 형태의 투영 시스템을 포괄하는 것으로서 폭넓게 해석되어야 한다. 본 명세서의 "투영 렌즈"라는 용어의 어떠한 사용도 "투영 시스템"이라는 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
조명 시스템은 방사선을 지향, 성형 또는 제어하기 위하여, 굴절, 반사, 자기, 전자기, 정전기 또는 다른 타입의 광학 구성요소들, 또는 여하한의 그 조합과 같은 다양한 타입의 광학 구성요소들을 포함할 수 있다.
패터닝 디바이스(PD)(예를 들어, 레티클 또는 마스크 또는 개별적으로 제어가능한 요소들의 어레이)는 상기 빔을 변조시킨다. 일반적으로, 개별적으로 제어가능한 요소들의 어레이의 위치는 투영 시스템(PS)에 대해 고정될 것이다. 하지만, 그 대신에 소정 파라미터들에 따라 개별적으로 제어가능한 요소들의 어레이를 정확히 위치시키도록 구성된 위치설정기에 연결될 수 있다.
본 명세서에서 사용되는 "패터닝 디바이스" 또는 "콘트라스트 디바이스(contrast device)"라는 용어는, 기판의 타겟부에 패턴을 생성하도록 방사선 빔의 단면을 변조시키는데 사용될 수 있는 여하한의 디바이스를 언급하는 것으로 폭넓게 해석되어야 한다. 상기 디바이스들은 정적(static) 패터닝 디바이스(예를 들어, 마스크 또는 레티클) 또는 동적(dynamic) 패터닝 디바이스(예를 들어, 프로그램가능한 요소들의 어레이) 중 하나일 수 있다. 간결함을 위해, 대부분의 설명은 동적 패터닝 디바이스에 관하여 할 것이지만, 본 발명의 범위를 벗어나지 않고 정적 패터닝 디바이스가 사용될 수도 있다는 것을 이해하여야 한다.
방사선 빔에 부여된 패턴은, 예를 들어 상기 패턴이 위상-시프팅 피처(phase-shifting feature)들 또는 소위 어시스트 피처(assist feature)들을 포함하는 경우, 기판의 타겟부 내의 원하는 패턴과 정확히 일치하지 않을 수도 있다는 것을 유의하여야 한다. 이와 유사하게, 기판 상에 최종적으로 생성된 패턴은 어느 한 순간에 개별적으로 제어가능한 요소들의 어레이 상에 형성된 패턴과 일치하지 않을 수 있다. 이는, 기판의 각 부분 상에 형성된 최종 패턴이 기판의 상대 위치 및/또는 개별적으로 제어가능한 요소들의 어레이의 패턴이 변화하는 주어진 시간 주기 또는 주어진 수의 노광에 걸쳐 형성되는 구성인 경우일 수 있다.
일반적으로, 기판의 타겟부 상에 생성된 패턴은 집적 회로 또는 평판 디스플레이와 같이 타겟부에 생성될 디바이스 내의 특정 기능층(예를 들어, 평판 디스플레이 내의 컬러 필터층 또는 평판 디스플레이 내의 박막 트랜지스터층)에 해당할 것이다. 이러한 패터닝 디바이스의 예로는 레티클, 프로그램가능한 거울 어레이, 레이저 다이오드 어레이(laser diode array), 발광 다이오드 어레이(light emitting diode array), 격자 광 밸브(grating light valve) 및 LCD 어레이를 포함한다.
복수의 프로그램가능한 요소들을 포함하는 패터닝 디바이스와 같이 전자 수단(예를 들어, 컴퓨터)의 도움으로 그 패턴이 프로그램가능한 패터닝 디바이스들(예를 들어, 레티클을 제외하고 이전 문장에 언급된 모든 디바이스)은, 본 명세서에서 집합적으로 "콘트라스트 디바이스들"로 언급된다. 패터닝 디바이스는 10 이상, 100 이상, 1,000 이상, 10,000 이상, 100,000 이상, 1,000,000 이상 또는 10,000,000 이상의 프로그램가능한 요소들을 포함한다.
프로그램가능한 거울 어레이는 점탄성(viscoelastic) 제어층 및 반사 표면을 갖는 매트릭스-어드레서블 표면(matrix-addressable surface)을 포함할 수 있다. 이러한 장치의 기본 원리는, 반사 표면의 어드레싱된 영역들이 입사 광을 회절 광(diffracted light)으로서 반사시키는 반면, 어드레싱되지 않은 영역들은 입사 광을 비회절 광으로서 반사시킨다는 것이다. 적절한 공간 필터를 사용하여, 반사된 빔 중에서 상기 비회절 광을 필터링하고, 회절 광만이 기판에 도달하도록 남게 할 수 있다. 이러한 방식으로 매트릭스-어드레서블 표면의 어드레싱 패턴에 따라 상기 빔이 패터닝된다.
일 대안예로서, 상기 필터는 회절 광을 필터링하여 비회절 광이 기판에 도달하도록 남게 할 수 있다는 것을 이해할 것이다.
또한, 회절 광학 MEMS 디바이스[마이크로-전기기계 시스템 디바이스(micro-electromechanical system device)]들의 어레이가 대응하는 방식으로 사용될 수도 있다. 일 예시에서 회절 광학 MEMS 디바이스는, 입사 광을 회절 광으로서 반사시키는 격자를 형성하도록 서로에 대해 변형될 수 있는 복수의 반사 리본(reflective ribbon)들을 포함한다.
프로그램가능한 거울 어레이의 또 다른 대안적인 예시는 작은 거울들의 매트릭스 구성을 채택하며, 그 각각은 적절한 국부화된 전기장을 인가하거나 압전 작동 수단들(piezoelectric actuation means)을 채택함으로써 축선을 중심으로 개별적으로 기울어질 수 있다. 다시 말하면, 상기 거울들은 매트릭스-어드레서블로 어드레싱된 거울들은 입사하는 방사선 빔을 어드레싱되지 않은 거울들과 다른 방향으로 반사시킨다; 이러한 방식으로 매트릭스-어드레서블 거울들의 어드레싱 패턴에 따라 반사된 빔이 패터닝될 수 있다. 요구되는 매트릭스 어드레싱은 적절한 전자 수단들을 사용하여 수행될 수 있다.
또 다른 예시적인 패터닝 디바이스는 프로그램가능한 LCD 어레이이다.
리소그래피 장치는 1 이상의 콘트라스트 디바이스를 포함할 수 있다. 예를 들어, 이는 서로 독립적으로 각각 제어되는 개별적으로 제어가능한 요소들의 복수 의 어레이를 가질 수 있다. 이러한 구성에서 개별적으로 제어가능한 요소들의 어레이의 몇몇 또는 모두는, 공통의 조명 시스템 (또는 조명 시스템의 일부분), 개별적으로 제어가능한 요소들의 어레이에 대한 공통의 지지 구조체 및/또는 공통의 투영 시스템 (또는 투영 시스템의 일부분) 중 1 이상을 가질 수 있다.
도 1에 도시된 실시예와 같은 일 예시에서, 기판(W)은 실질적으로 원형이며, 선택적으로는 그 주변의 일부분을 따라 노치(notch) 및/또는 평탄한 에지(flattened edge)를 갖는다. 또 다른 예시에서 기판은 다각형, 예를 들어 직사각형이다.
기판이 실질적으로 원형인 예시들은, 기판이 25 mm 이상, 50 mm 이상, 75 mm 이상, 100 mm 이상, 125 mm 이상, 150 mm 이상, 175 mm 이상, 200 mm 이상, 250 mm 이상 또는 300 mm 이상의 직경을 갖는 예시들을 포함한다. 대안적으로, 기판은 최대 500 mm, 최대 400 mm, 최대 350 mm, 최대 300 mm, 최대 250 mm, 최대 200 mm, 최대 150 mm, 최대 100 mm 또는 최대 75 mm의 직경을 갖는다.
기판이 다각형, 예를 들어 직사각형인 예시들은 기판의 1 변 이상, 2 변 이상 또는 3 변 이상이 5 cm 이상, 25 cm 이상, 50 cm 이상, 100 cm 이상, 150 cm 이상, 200 cm 이상 또는 250 cm 이상의 길이를 갖는 예시들을 포함한다.
기판의 1 변 이상은 최대 1000 cm, 최대 750 cm, 최대 500 cm, 최대 350 cm, 최대 250 cm, 최대 150 cm 또는 최대 75 cm의 길이를 갖는다.
일 예시에서 기판(W)은 웨이퍼, 예를 들어 반도체 웨이퍼이다. 웨이퍼 재료는 Si, SiGe, SiGeC, SiC, Ge, GaAs, InP 및 InAs로 구성된 그룹으로부터 선택될 수 있다. 웨이퍼는: Ⅲ/Ⅴ 화합물 반도체 웨이퍼, 실리콘 웨이퍼, 세라믹 기판, 유리 기판 또는 플라스틱 기판일 수 있다. 기판은 (육안으로) 투명하거나, 유채색 또는 무채색일 수 있다.
기판의 두께는 변할 수 있으며, 기판 재료 및/또는 기판 치수에 어느 정도 의존할 수 있다. 상기 두께는 50 ㎛ 이상, 100 ㎛ 이상, 200 ㎛ 이상, 300 ㎛ 이상, 400 ㎛ 이상, 500 ㎛ 이상 또는 600 ㎛ 이상일 수 있다. 대안적으로, 기판의 두께는 최대 5000 ㎛, 최대 3500 ㎛, 최대 2500 ㎛, 최대 1750 ㎛, 최대 1250 ㎛, 최대 1000 ㎛, 최대 800 ㎛, 최대 600 ㎛, 최대 500 ㎛, 최대 400 ㎛ 또는 최대 300 ㎛일 수 있다.
본 명세서에 언급된 기판은, 노광 전후에, 예를 들어 트랙(전형적으로, 기판에 레지스트 층을 도포하고 노광된 레지스트를 현상하는 툴), 메트롤로지 툴 및/또는 검사 툴에서 처리될 수 있다. 일 예시에서 레지스트층은 기판 상에 제공된다.
투영 시스템은, 패턴이 기판 상에 일관되게(coherently) 형성되도록 개별적으로 제어가능한 요소들의 어레이 상에 패턴을 이미징할 수 있다. 대안적으로 투영 시스템은, 개별적으로 제어가능한 요소들의 어레이의 요소들이 셔터(shutter)로서 기능하는 2 차 소스(secondary source)들을 이미징할 수 있다. 이러한 점에서, 투영 시스템은 2 차 소스들을 형성하고 기판 상에 스폿(spot)들을 이미징하도록 마이크로 렌즈 어레이(MLA라고도 함) 또는 프레넬 렌즈 어레이(Fresnel lens array)와 같은 포커싱 요소들의 어레이를 포함할 수 있다. 포커싱 요소들의 어레이(예를 들어, MLA)는 10 이상의 포커스 요소, 100 이상의 포커스 요소, 1,000 이상의 포커스 요소, 10,000 이상의 포커스 요소, 100,000 이상의 포커스 요소 또는 1,000,000 이상의 포커스 요소를 포함한다.
패터닝 디바이스 내의 개별적으로 제어가능한 요소들의 개수는, 포커싱 요소들의 어레이 내의 포커싱 요소들의 개수와 같거나 그보다 크다. 포커싱 요소들의 어레이 내의 1 이상(예를 들어, 1000 이상, 대부분 또는 그 각각)의 포커싱 요소들은, 개별적으로 제어가능한 요소들의 어레이 내의 1 이상의 개별적으로 제어가능한 요소들, 개별적으로 제어가능한 요소들의 어레이 내의 2 이상, 3 이상, 5 이상, 10 이상, 20 이상, 25 이상, 35 이상 또는 50 이상의 개별적으로 제어가능한 요소들과 광학적으로 연계(associate)될 수 있다.
MLA는 (예를 들어, 1 이상의 액추에이터를 사용하여) 적어도 기판을 향하는 방향으로, 또한 기판으로부터 멀어지는 방향으로 이동가능할 수 있다. MLA를 기판 쪽으로, 또한 기판으로부터 멀리 이동시킬 수 있는 것은, 예를 들어 기판을 이동시킬 필요없이 포커스 조정을 허용한다.
본 명세서에서 도 1 및 도 2에 도시된 바와 같이, 상기 장치는 (예를 들어, 개별적으로 제어가능한 요소들의 반사 어레이를 채택하는) 반사형으로 구성된다. 대안적으로, 상기 장치는 (예를 들어, 개별적으로 제어가능한 요소들의 투과 어레이를 채택하는) 투과형으로 구성될 수 있다.
리소그래피 장치는 2 개(듀얼 스테이지) 이상의 기판 테이블들을 갖는 형태로 구성될 수 있다. 이러한 "다수 스테이지" 기계에서는, 추가 테이블이 병행하여 사용될 수 있으며, 또는 1 이상의 테이블이 노광에 사용되고 있는 동안 1 이상의 다른 테이블에서는 준비작업 단계가 수행될 수 있다.
또한, 리소그래피 장치는 투영 시스템과 기판 사이의 공간을 채우기 위해서, 기판의 전체 또는 일부분이 비교적 높은 굴절률을 갖는 "침지 액체", 예컨대 물로 덮일 수 있는 형태로도 구성될 수 있다. 또한, 침지 액체는 리소그래피 장치 내의 다른 공간들, 예를 들어 패터닝 디바이스와 투영 시스템 사이에도 적용될 수 있다. 침지 기술은 투영 시스템의 개구수를 증가시키는 기술로 당업계에 잘 알려져 있다. 본 명세서에서 사용되는 "침지"라는 용어는 기판과 같은 구조체가 액체 내에 담그어져야 함을 의미하는 것이라기보다는, 노광시 액체가 투영 시스템과 기판 사이에 놓이기만 하면 된다는 것을 의미한다.
도 1을 다시 참조하면, 일루미네이터(IL)는 방사선 소스(SO)로부터 방사선 빔을 수용한다. 방사선 소스는 5 nm 이상, 10 nm 이상, 11 내지 13 nm 이상, 50 nm 이상, 100 nm 이상, 150 nm 이상, 175 nm 이상, 200 nm 이상, 250 nm 이상, 275 nm 이상, 300 nm 이상, 325 nm 이상, 350 nm 또는 360 nm 이상의 파장을 갖는 방사선을 제공한다. 대안적으로, 방사선 소스(SO)에 의해 제공된 방사선은 최대 450 nm, 최대 425 nm, 최대 375 nm, 최대 360 nm, 최대 325 nm, 최대 275 nm, 최대 250 nm, 최대 225 nm, 최대 200 nm 또는 최대 175 nm의 파장을 갖는다. 상기 방사선은 436 nm, 405 nm, 365 nm, 355 nm, 248 nm, 193 nm, 157 nm 및/또는 126 nm를 포함하는 파장을 가질 수 있다.
예를 들어 상기 소스가 엑시머 레이저(excimer laser)인 경우, 상기 소스 및 리소그래피 장치는 별도의 개체일 수 있다. 이러한 경우, 상기 소스는 리소그래피 장치의 일부분을 형성하는 것으로 간주되지 않으며, 상기 방사선 빔은 예를 들어 적절한 지향 거울들 및/또는 빔 익스팬더(beam expander)를 포함하는 빔 전달 시스템(BD)의 도움으로 소스(SO)로부터 일루미네이터(IL)로 통과된다. 다른 경우, 예를 들어 상기 소스가 수은 램프인 경우, 상기 소스는 리소그래피 장치의 통합부일 수 있다. 상기 소스(SO) 및 일루미네이터(IL)는, 필요에 따라 빔 전달 시스템(BD)과 함께 방사선 시스템이라고도 칭해질 수 있다.
상기 일루미네이터(IL)는 방사선 빔의 각도 세기 분포를 조정하는 조정기(AD)를 포함할 수 있다. 일반적으로, 일루미네이터의 퓨필 평면 내의 세기 분포의 적어도 외반경 및/또는 내반경 크기(통상적으로, 각각 외측-σ 및 내측-σ라 함)가 조정될 수 있다. 또한, 일루미네이터(IL)는 인티그레이터(IN) 및 콘덴서(CO)와 같이 다양한 다른 구성요소들을 포함할 수도 있다. 일루미네이터는 방사선 빔의 단면에 원하는 균일성(uniformity) 및 세기 분포를 갖기 위해, 방사선 빔을 컨디셔닝하는데 사용될 수 있다. 또한, 일루미네이터(IL) 또는 그와 연계된 추가 구성요소는 방사선 빔을, 예를 들어 개별적으로 제어가능한 요소들의 어레이의 하나 또는 복수의 개별적으로 제어가능한 요소들과 각각 연계될 수 있는 복수의 서브-빔(sub-beam)으로 분할하도록 배치될 수도 있다. 예를 들어, 방사선 빔을 서브-빔으로 분할하기 위해 2 차원 회절 격자가 사용될 수 있다. 본 명세서에서 "방사선의 빔" 및 "방사선 빔"이라는 용어는 빔이 이러한 방사선의 복수의 서브-빔으로 구성되는 상황을 포함하지만, 이에 제한되지는 않는다.
상기 방사선 빔(B)은 패터닝 디바이스(PD)(예를 들어, 개별적으로 제어가능 한 요소들의 어레이) 상에 입사되며, 패터닝 디바이스에 의해 변조된다. 상기 패터닝 디바이스(PD)에 의해 반사되었으면, 상기 방사선 빔(B)은 투영 시스템(PS)을 통과하고, 이는 기판(W)의 타겟부(C) 상에 상기 빔을 포커스한다. 위치설정기(PW) 및 위치 센서(IF2)(예를 들어, 간섭계 디바이스, 리니어 인코더, 용량성 센서 등)의 도움으로, 기판 테이블(WT)은 예를 들어 방사선 빔(B)의 경로 내에 상이한 타겟부(C)들을 위치시키도록 정확하게 이동될 수 있다. 사용된다면, 개별적으로 제어가능한 요소들의 어레이에 대한 위치설정 수단은, 예를 들어 스캔하는 동안 방사선 빔(B)의 경로에 대해 패터닝 디바이스(PD)의 위치를 정확히 보정하는데 사용될 수 있다.
일 예시에서, 기판 테이블(WT)의 이동은 장-행정 모듈(long-stroke module: 개략 위치설정) 및 단-행정 모듈(short-stroke module: 미세 위치설정)의 도움으로 실현되며, 이는 도 1에 명확하게 도시되지는 않는다. 또 다른 예시에서는, 단 행정 스테이지가 존재하지 않을 수 있다. 또한, 유사한 시스템이 개별적으로 제어가능한 요소들의 어레이를 위치시키는데 사용될 수도 있다. 대상물 테이블 및/또는 개별적으로 제어가능한 요소들의 어레이가 요구되는 상대 이동을 제공하도록 고정된 위치를 가질 수 있는 한편, 투영 빔(B)은 대안적으로/추가적으로 이동가능할 수 있다는 것을 이해할 것이다. 이러한 구성은 상기 장치의 크기를 제한하는데 도움이 될 수 있다. 예를 들어, 평판 디스플레이의 제조시에 적용가능할 수 있는 또 다른 대안예로서, 기판 테이블(WT) 및 투영 시스템(PS)의 위치는 고정될 수 있으며, 기판(W)은 기판 테이블(WT)에 대해 이동되도록 배치될 수 있다. 예를 들어, 기판 테이블(WT) 에는 실질적으로 일정한 속도로 기판(W)을 가로질러 스캐닝하는 시스템이 제공될 수 있다.
도 1에 나타낸 바와 같이, 방사선이 초기에 빔 스플리터에 의해 반사되고 패터닝 디바이스(PD)로 지향되도록 구성되는 빔 스플리터(BS)에 의해, 방사선의 빔(B)이 패터닝 디바이스(PD)로 지향될 수 있다. 또한, 방사선의 빔(B)은 빔 스플리터를 사용하지 않고 패터닝 디바이스에 지향될 수 있다는 것이 실현되어야 한다. 상기 방사선의 빔은 0 내지 90°, 5 내지 85°, 15 내지 75°, 25 내지 65°, 또는 35 내지 55°의 각도로 패터닝 디바이스에 지향될 수 있다(도 1에 나타낸 실시예는 90°의 각도에서이다). 상기 패터닝 디바이스(PD)는 방사선의 빔(B)을 변조시키고, 변조된 빔을 투영 시스템(PS)으로 전달하는 빔 스플리터(BS)로 상기 빔을 다시 반사시킨다. 하지만, 방사선의 빔(B)을 패터닝 디바이스(PD)로 지향하고, 후속하여 투영 시스템(PS)으로 지향하기 위해, 대안적인 구성들이 사용될 수 있다는 것을 이해할 것이다. 특히, 투과 패터닝 디바이스가 사용되는 경우, 도 1에 나타낸 바와 같은 구성은 요구되지 않을 수 있다.
도시된 장치는 몇몇 모드에서 사용될 수 있다:
1. 스텝 모드에서, 개별적으로 제어가능한 요소들의 어레이 및 기판은 기본적으로 정지 상태로 유지되는 한편, 방사선 빔에 부여된 전체 패턴은 한번에 타겟부(C) 상에 투영된다[즉, 단일 정적 노광(single static exposure)]. 그 후 기판 테이블(WT)은, 상이한 타겟부(C)가 노광될 수 있도록 X 및/또는 Y 방향으로 시프트된다. 스텝 모드에서 노광 필드의 최대 크기는, 단일 정적 노광시에 이미징되는 타 겟부(C)의 크기를 제한한다.
2. 스캔 모드에서, 개별적으로 제어가능한 요소들의 어레이 및 기판은 방사선 빔에 부여된 패턴이 타겟부(C) 상에 투영되는 동안에 동기적으로 스캐닝된다[즉, 단일 동적 노광(single dynamic exposure)]. 개별적으로 제어가능한 요소들의 어레이에 대한 기판의 속도 및 방향은, 투영 시스템(PS)의 확대(축소) 및 이미지 반전 특성에 의하여 결정될 수 있다. 스캔 모드에서, 노광 필드의 최대 크기는 단일 동적 노광시 타겟부의 (스캐닝 되지 않는 방향으로의) 폭을 제한하는 반면, 스캐닝 동작의 길이는 타겟부의 (스캐닝 방향으로의) 높이를 결정한다.
3. 펄스 모드에서, 개별적으로 제어가능한 요소들의 어레이는 기본적으로 정지된 상태로 유지되며, 펄스화된 방사선 소스를 사용하여 전체 패턴이 기판(W)의 타겟부(C) 상에 투영된다. 기판 테이블(WT)은, 상기 빔(B)이 기판(W)을 가로질러 라인을 스캐닝하도록 유도하기 위해 기본적으로 일정한 속력으로 이동된다. 개별적으로 제어가능한 요소들의 어레이 상의 패턴은, 방사선 시스템의 펄스 사이사이에 필요에 따라 업데이트되며, 연속한 타겟부(C)들이 기판(W) 상의 요구된 위치에 노광되도록 상기 펄스의 시간이 조절된다(time). 결과적으로, 상기 빔(B)은 기판의 스트립(strip)에 완전한 패턴을 노광하도록 기판(W)을 가로질러 스캐닝할 수 있다. 상기 공정은, 한 라인씩 전체 기판(W)이 노광될 때까지 반복된다.
4. 연속 스캔 모드는, 기판(W)이 실질적으로 일정한 속력으로 변조된 방사선 빔(B)에 대해 스캐닝되고 상기 빔(B)이 기판(W)을 가로질러 스캐닝하고 그것을 노광함에 따라 개별적으로 제어가능한 요소들의 어레이 상의 패턴이 업데이트된다는 것을 제외하고는, 기본적으로 펄스 모드와 동일하다. 개별적으로 제어가능한 요소들의 어레이 상의 패턴의 업데이팅과 동기화된, 실질적으로 일정한 방사선 소스 또는 펄스화된 방사선 소스가 사용될 수 있다.
5. 도 2의 리소그래피 장치를 사용하여 수행될 수 있는 픽셀 그리드 이미징 모드(pixel grid imaging mode)에서, 기판(W) 상에 형성된 패턴은 패터닝 디바이스(PD) 상으로 지향되는 스폿 발생기(spot generator)에 의해 형성된 스폿들의 후속 노광에 의해 실현된다. 상기 노광된 스폿들은 실질적으로 동일한 형상을 갖는다. 기판(W) 상에서, 상기 스폿들은 실질적으로 그리드 내에 프린트된다. 일 예시에서, 상기 스폿 크기는 프린트된 픽셀 그리드의 피치(pitch)보다 크지만, 노광 스폿 그리드보다는 훨씬 작다. 프린트된 스폿들의 세기를 변화시킴으로써 패턴이 실현된다. 노광 플래시(exposure flash)들 사이에서, 스폿들에 걸친 세기 분포가 변화된다.
또한, 상술된 사용 모드들의 조합 및/또는 변형, 또는 완전히 다른 사용 모드들이 채택될 수도 있다.
도 13은 본 발명의 또 다른 실시예에 따른 리소그래피 장치를 도시한다. 앞선 도 1 및 도 2와 유사하게, 도 13의 장치는 조명 시스템(IL), 지지 구조체(MT), 기판 테이블(WT) 및 투영 시스템을 포함한다.
조명 시스템(IL)은 방사선 빔(B)(예를 들어, 수은 아크 램프에 의해 제공된 UV 방사선 빔, 또는 KrF 엑시머 레이저 또는 ArF 엑시머 레이저에 의해 생성된 DUV 방사선 빔)을 컨디셔닝하도록 구성된다.
지지 구조체(예를 들어, 마스크 테이블)(MT)는 마스크 패턴(MP)을 갖는 패터닝 디바이스(예를 들어, 마스크)(MA)를 지지하도록 구성되고, 소정 파라미터들에 따라 패터닝 디바이스를 정확히 위치시키도록 구성된 제 1 위치설정기(PM)에 연결된다.
기판 테이블(예를 들어, 웨이퍼 테이블)(WT)은 기판(예를 들어, 레지스트-코팅된 웨이퍼)(W)을 유지하도록 구성되고, 소정 파라미터들에 따라 기판을 정확히 위치시키도록 구성된 제 2 위치설정기(PW)에 연결된다.
투영 시스템(예를 들어, 굴절 투영 렌즈 시스템)(PS)은 기판(W)의 (예를 들어, 1 이상의 다이를 포함하는) 타겟부(C) 상으로 패터닝 디바이스(MA)의 마스크 패턴(MP)에 의해 방사선 빔(B)에 부여된 패턴을 투영하도록 구성된다.
조명 시스템(IL)은 방사선을 지향, 성형 또는 제어하기 위하여, 굴절, 반사, 및 다른 형태의 광학 구성요소들, 또는 여하한의 그 조합과 같은 다양한 형태의 광학 구성요소들을 포함할 수 있다.
지지 구조체(MT)는 패터닝 디바이스(MA)를 지지, 즉 그 무게를 견딘다. 이는 패터닝 디바이스(MA)의 방위, 리소그래피 장치의 디자인, 및 예를 들어 패터닝 디바이스(MA)가 진공 환경에서 유지되는지의 여부와 같은 다른 조건들에 의존하는 방식으로 패터닝 디바이스(MA)를 유지한다. 지지 구조체(MT)는, 예를 들어 필요에 따라 고정되거나 이동가능할 수 있는 프레임 또는 테이블일 수 있다. 지지 구조체(MT)는, 패터닝 디바이스(MA)가 예를 들어 투영 시스템(PS)에 대해 원하는 위치에 있을 것을 보장할 수 있다. 본 명세서의 "레티클" 또는 "마스크"라는 용어의 어 떠한 사용도 "패터닝 디바이스"라는 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
앞서 명시된 바와 같이, 본 명세서에서 사용되는 "패터닝 디바이스"라는 용어는, 기판(W)의 타겟부(C)에 패턴을 생성하기 위해서, 방사선 빔(B)의 단면에 패턴을 부여하는데 사용될 수 있는 여하한의 디바이스를 언급하는 것으로 폭넓게 해석되어야 한다. 방사선 빔(B)에 부여된 패턴은, 예를 들어 상기 패턴(MP)이 위상-시프팅 피처들 또는 소위 어시스트 피처들을 포함하는 경우, 기판(W)의 타겟부(C) 내의 원하는 패턴과 정확히 일치하지 않을 수도 있다는 것을 유의하여야 한다. 일반적으로, 방사선 빔(B)에 부여된 패턴은 집적 회로와 같이 타겟부(C)에 생성될 디바이스 내의 특정 기능 층에 해당할 것이다.
도 13을 참조하면, 조명 시스템(IL)은 예를 들어 g-라인 또는 i-라인 UV 방사선을 제공하는 수은 아크 램프, 또는 248, 193, 157 및 126 nm와 같이 약 270 nm보다 작은 파장의 DUV 방사선을 제공하는 엑시머 레이저와 같은 방사선 소스(SO)로부터 방사선 빔을 수용한다. 예를 들어, 상기 소스(SO)가 엑시머 레이저인 경우, 상기 소스(SO) 및 리소그래피 장치는 별도의 개체일 수 있다. 이러한 경우, 상기 방사선 빔(B)은, 예를 들어 적절한 지향 거울 및/또는 빔 익스팬더를 포함하는 빔 전달 시스템(BD)의 도움으로, 소스(SO)로부터 조명 시스템(IL)으로 통과된다. 다른 경우, 예를 들어 상기 소스(SO)가 수은 램프인 경우, 상기 소스(SO)는 리소그래피 장치의 통합부일 수 있다. 상기 소스(SO) 및 조명 시스템(IL)은, 필요에 따라 빔 전달 시스템(BD)과 함께 방사선 시스템이라고 칭해질 수 있다.
조명 시스템(IL)은 마스크 레벨에서 방사선 빔(B)의 각도 세기 분포를 조정하는 조정기(AD)를 포함할 수 있다. 일반적으로, 조명 시스템(IL)의 퓨필(IPU) 내의 세기 분포의 적어도 외반경 및/또는 내반경 크기(통상적으로, 각각 외측-σ 및 내측-σ라 함)가 조정될 수 있다. 또한, 조명 시스템(IL)은 인티그레이터(IN) 및 콘덴서(CO)와 같이, 다양한 다른 구성요소들을 포함할 수도 있다. 조명 시스템(IL)은 마스크 레벨에서 방사선 빔(B)의 단면에 원하는 균일성 및 세기 분포를 갖기 위해, 방사선 빔(B)을 컨디셔닝하는데 사용될 수 있다.
상기 방사선 빔(B)은 지지 구조체(예를 들어, 마스크 테이블)(MT) 상에 유지되어 있는 패터닝 디바이스(예를 들어, 마스크)(MA) 상에 입사되며, 패턴(MP)에 따라 패터닝 디바이스(MA)에 의해 패터닝된다. 상기 마스크(MA)를 가로질렀으면, 상기 방사선 빔(B)은 투영 시스템(PS)을 통과하여 기판(W)의 타겟부(C) 상에 상기 빔을 포커스한다.
투영 시스템은 조명 시스템 퓨필(IPU)과 켤레(conjugate)인 퓨필(PPU)을 갖는다. 방사선의 일부는 조명 시스템 퓨필(IPU)에서의 세기 분포로부터 발산하며, 조명 시스템 퓨필(IPU)에서의 세기 분포의 이미지를 생성하는 마스크 패턴에서의 회절에 의해 영향을 받지 않고 마스크 패턴을 가로지른다.
제 2 위치설정기(PW) 및 위치 센서(IF)(예를 들어, 간섭계 디바이스, 리니어 인코더 또는 용량성 센서)의 도움으로, 기판 테이블(WT)은, 예를 들어 방사선 빔(B)의 경로 내에 상이한 타겟부(C)들을 위치시키도록 정확하게 이동될 수 있다. 이와 유사하게, 제 1 위치설정기(PM) 및 또 다른 위치 센서(도 13에 명확히 도시되 지 않음)는, 예를 들어 마스크 라이브러리로부터의 기계적인 회수 후에, 또는 스캔하는 동안, 방사선 빔(B)의 경로에 대해 마스크(MA)를 정확히 위치시키는데 사용될 수 있다. 일반적으로, 마스크 테이블(MT)의 이동은, 장-행정 모듈(개략 위치설정) 및 단-행정 모듈(미세 위치설정)의 도움으로 실현될 수 있으며, 이는 제 1 위치설정기(PM)의 일부분을 형성한다. 이와 유사하게, 기판 테이블(WT)의 이동은 장-행정 모듈 및 단-행정 모듈을 이용하여 실현될 수 있으며, 이는 제 2 위치설정기(PW)의 일부분을 형성한다. (스캐너와는 대조적으로) 스테퍼의 경우, 마스크 테이블(MT)은 단-행정 액추에이터에만 연결되거나 고정될 수 있다. 마스크(MA) 및 기판(W)은 마스크 정렬 마크들(M1 및 M2) 및 기판 정렬 마크들(P1 및 P2)을 이용하여 정렬될 수 있다. 비록, 예시된 기판 정렬 마크들은 지정된(dedicated) 타겟부들을 차지하고 있지만, 그들은 타겟부들 사이의 공간들 내에 위치될 수도 있다[이들은 스크라이브-레인 정렬 마크(scribe-lane alignment mark)들로 알려져 있다]. 이와 유사하게, 마스크(MA) 상에 1 이상의 다이가 제공되는 상황들에서, 마스크 정렬 마크들(M1 및 M2)은 다이들 사이에 위치될 수 있다.
도 13의 도시된 장치는 다음 모드들 중 1 이상에서 사용될 수 있다:
1. 스텝 모드에서, 마스크 테이블(MT) 및 기판 테이블(WT)은 기본적으로 정지 상태로 유지되는 한편, 방사선 빔에 부여되는 전체 패턴은 한번에 타겟부(C) 상에 투영된다(즉, 단일 정적 노광). 그 후, 기판 테이블(WT)은 상이한 타겟부(C)가 노광될 수 있도록 X 및/또는 Y 방향으로 시프트된다. 스텝 모드에서 노광 필드의 최대 크기는, 단일 정적 노광시에 이미징되는 타겟부(C)의 크기를 제한한다.
2. 스캔 모드에서, 마스크 테이블(MT) 및 기판 테이블(WT)은 방사선 빔에 부여된 패턴이 타겟부(C) 상에 투영되는 동안에 동기적으로 스캐닝된다(즉, 단일 동적 노광). 마스크 테이블(MT)에 대한 기판 테이블(WT)의 속도 및 방향은 투영 시스템(PS)의 확대(축소) 및 이미지 반전 특성에 의하여 결정될 수 있다. 스캔 모드에서, 노광 필드의 최대 크기는 단일 동적 노광시 타겟부의 (스캐닝 되지 않는 방향으로의) 폭을 제한하는 반면, 스캐닝 동작의 길이는 타겟부의 (스캐닝 방향으로의) 높이를 결정한다.
3. 또 다른 모드에서, 마스크 테이블(MT)은 프로그램가능한 패터닝 디바이스를 유지하여 기본적으로 정지된 상태로 유지되며, 방사선 빔에 부여된 패턴이 타겟부(C) 상에 투영되는 동안 기판 테이블(WT)이 이동되거나 스캐닝된다. 이 모드에서는, 일반적으로 펄스화된 방사선 소스가 채택되며, 프로그램가능한 패터닝 디바이스는 기판 테이블(WT)이 각각 이동한 후, 또는 스캔 중에 계속되는 방사선 펄스 사이사이에 필요에 따라 업데이트된다. 이 작동 모드는 앞서 언급된 바와 같은 타입의 프로그램가능한 거울 어레이와 같은 프로그램가능한 패터닝 디바이스를 이용하는 마스크없는 리소그래피(maskless lithography)에 용이하게 적용될 수 있다.
또한, 상술된 사용 모드들의 조합 및/또는 변형, 또는 완전히 다른 사용 모드들이 채택될 수도 있다.
리소그래피에서 기판 상의 레지스트층 상에 패턴이 노광된다. 그 후, 상기 레지스트가 현상된다. 후속하여 기판 상에서 추가 처리 단계들이 수행된다. 기판의 각 부분 상에서의 이 후속 처리 단계들의 효과는 레지스트의 노광에 의존한다. 특 히 상기 공정들은, 주어진 도즈 임계치(dose threshold) 이상의 방사선 도즈를 수용하는 기판의 부분들이 상기 도즈 임계치 이하의 방사선 도즈를 수용하는 기판의 부분들과 상이하게 응답하도록 조절(tune)된다. 예를 들어, 에칭 공정에서 상기 임계치 이상의 방사선 도즈를 수용하는 기판의 영역들은, 현상된 레지스트층에 의해 에칭으로부터 보호된다. 하지만, 노광 후 현상(post-exposure development)시 임계치 이하의 방사선 도즈를 수용하는 레지스트의 부분들은 제거되므로, 이 영역들은 에칭으로부터 보호되지 않는다. 따라서, 원하는 패턴이 에칭될 수 있다. 특히 패터닝 디바이스 내의 개별적으로 제어가능한 요소들은, 패턴 피처 내에서 기판 상의 영역으로 전달되는 방사선이 충분히 높은 세기로 있게 하여, 노광시 상기 영역이 도즈 임계치 이상의 방사선 도즈를 수용하도록 설정된다. 기판 상의 나머지 영역들은, 0 또는 상당히 낮은 방사선 세기를 제공하도록 대응하는 개별적으로 제어가능한 요소들을 설정함으로써 도즈 임계치 이하의 방사선 도즈를 수용한다.
실제로는, 개별적으로 제어가능한 요소들이 피처 경계의 한쪽에 최대 방사선 세기를 제공하고, 다른 한쪽에는 최소 방사선 세기를 제공하도록 설정되더라도, 패턴 피처의 에지들에서의 방사선 도즈는 주어진 최대 도즈에서 0 도즈까지 급작스럽게 변화하지 않는다. 그 대신 회절 효과로 인해, 방사선 도즈의 레벨이 전이 지대(transition zone)에 걸쳐 감소(drop off)된다. 현상된 레지스트에 의해 최종적으로 형성된 패턴 피처의 경계의 위치는, 수용된 도즈가 방사선 도즈 임계치 이하로 떨어지는 위치에 의해 결정된다. 전이 지대에 걸친 방사선 도즈의 감소에 대한 프로파일, 및 이에 따른 패턴 피처 경계의 정밀한 위치는 패턴 피처 경계 상에 또 는 그 부근에 있는 기판 상의 지점들에 방사선을 제공하는 개별적으로 제어가능한 요소들을 설정함으로써 더 정밀하게 제어될 수 있다. 이는 최대 또는 최소 세기 레벨에서뿐만 아니라 최대 및 최소 세기 레벨들 사이의 세기 레벨들에서도 가능하다. 이는, 통상적으로 "그레이스케일링(grayscaling)"이라고 언급된다.
그레이스케일링은, 주어진 개별적으로 제어가능한 요소에 의해 기판에 제공된 방사선 세기가 2 개의 값으로만 (즉, 최대값 및 최소값으로만) 설정될 수 있는 리소그래피 시스템에서 가능한 것보다 더 뛰어난 패턴 피처 경계들의 위치 제어를 제공한다. 3 이상, 4 이상의 방사선 세기 값, 8 이상의 방사선 세기 값, 16 이상의 방사선 세기 값, 32 이상의 방사선 세기 값, 64 이상의 방사선 세기 값, 128 이상의 방사선 세기 값, 또는 256 이상의 상이한 방사선 세기 값이 기판 상에 투영될 수 있다.
그레이스케일링은 앞서 설명된 것에 추가적인 또는 대안적인 목적으로 사용될 수 있다는 것을 이해하여야 한다. 예를 들어 노광 이후의 기판의 처리는, 수용된 방사선 도즈 레벨에 의존하여 기판의 구역들의 2 이상의 응답 가능성(potential response)이 존재하도록 조절될 수 있다. 예를 들어, 제 1 임계치 이하의 방사선 도즈를 수용하는 기판의 일부분은 제 1 방식으로 응답하며; 상기 제 1 임계치 이상이지만 제 2 임계치 이하의 방사선 도즈를 수용하는 기판의 일부분은 제 2 방식으로 응답하고; 상기 제 2 임계치 이상의 방사선 도즈를 수용하는 기판의 일부분은 제 3 방식으로 응답한다. 따라서, 그레이스케일링은 2 이상의 원하는 도즈 레벨을 갖는 기판에 걸쳐 방사선 도즈 프로파일을 제공하는데 사용될 수 있다. 방사선 도 즈 프로파일은 2 이상의 원하는 도즈 레벨, 3 이상의 원하는 방사선 도즈 레벨, 4 이상의 원하는 방사선 도즈 레벨, 6 이상의 원하는 방사선 도즈 레벨 또는 8 이상의 원하는 방사선 도즈 레벨을 가질 수 있다.
또한, 앞서 설명된 바와 같이 단지 기판 상의 각 지점에 수용된 방사선의 세기만을 제어하는 것 이외의 방법들에 의해 방사선 도즈 프로파일이 제어될 수 있다는 것을 이해하여야 한다. 예를 들어, 기판 상의 각 지점에 의해 수용된 방사선 도즈는 상기 지점의 노광의 지속시간(duration)을 제어함으로써 대안적으로 또는 추가적으로 제어될 수 있다. 또 다른 예시로서, 기판 상의 각 지점은 복수의 연속하는 노광에서 방사선을 잠재적으로 수용할 수 있다. 그러므로, 각 지점에 수용된 방사선 도즈는 복수의 연속하는 노광의 선택된 서브세트(subset)를 이용하여 상기 지점을 노광함으로써 대안적으로 또는 추가적으로 제어될 수 있다.
도 2는, 예를 들어 평판 디스플레이의 제조시에 사용될 수 있는 본 발명에 따른 장치의 구성을 도시한다. 도 1에 나타낸 것에 대응하는 구성요소들은 동일한 참조 번호들로 도시된다. 또한, 다양한 실시예들의 앞선 서술내용, 예를 들어 기판, 콘트라스트 디바이스, MLA, 방사선 빔 등의 다양한 구성들이 유효하게 적용될 수 있다.
도 2에 나타낸 바와 같이, 투영 시스템(PS)은 2 개의 렌즈(L1 및 L2)를 포함하는 빔 익스팬더를 포함한다. 제 1 렌즈(L1)는 변조된 방사선 빔(B)을 수용하고, 어퍼처 스톱(aperture stop: AS) 내의 어퍼처를 통해 상기 빔을 포커스하도록 배치된다. 또 다른 렌즈(AL)는 상기 어퍼처 내에 위치될 수 있다. 그 후, 방사선 빔(B) 은 발산하며 제 2 렌즈(L2)(예를 들어, 필드 렌즈)에 의해 포커스된다.
또한, 투영 시스템(PS)은 확대된 변조된 방사선(B)을 수용하도록 배치된 렌즈들의 어레이(MLA)를 포함한다. 패터닝 디바이스(PD) 내의 1 이상의 개별적으로 제어가능한 요소들에 대응하는, 변조된 방사선 빔(B)의 상이한 부분들은 렌즈들의 어레이(MLA) 내의 각각의 상이한 렌즈(ML)들을 통과한다. 각각의 렌즈는 변조된 방사선 빔(B)의 각 부분을 기판(W) 상에 놓인 지점으로 포커스한다. 이러한 방식으로 방사선 스폿(S)들의 어레이가 기판(W) 상에 노광된다. 예시된 렌즈(ML)들의 어레이 중 8 개의 렌즈만이 도시되었지만, 렌즈들의 어레이는 수 천개의 렌즈들을 포함할 수 있다(동일하게는, 패터닝 디바이스(PD)로서 사용된 개별적으로 제어가능한 요소들의 어레이에서도 그러하다)는 것을 이해할 것이다.
Ⅲ. 본 발명의 실시예들에 따른 스케터로메트리에 사용되는 예시적인 카타디옵트릭 광학 시스템
본 발명의 일 실시예에 따른 카타디옵트릭 광학 시스템은 기판의 표면의 특성들을 감지하거나 검출하는 스케터로메트리에서 사용될 수 있다.
도 3a는 기판(6) 표면의 1 이상의 특성들을 결정할 수 있는 스케터로미터가 도시한다. 일 실시예에서, 스케터로미터는 기판(6) 상으로 방사선을 지향하는 방사선 소스(2)[예를 들어, 광대역(백색 광) 방사선 소스]를 포함한다. 반사된 방사선은 정반사된 방사선(specular reflected radiation)의 스펙트럼(10)(파장의 함수로서 세기)을 측정하는 센서(4)[예를 들어, 분광계 검출기(spectrometer detector)] 로 통과된다. 이 데이터로부터, 검출되는 스펙트럼을 야기하는 프로파일 또는 구조체가, 예를 들어 RCWA(Rigorous Coupled Wave Analysis) 및 비-선형 회귀(non-linear regression)에 의해, 또는 도 3b 및 도 3c에 나타낸 시뮬레이션된 스펙트럼들의 라이브러리와 비교함으로써 재구성될 수 있다. 일반적으로, 재구성을 위해 상기 구조체의 일반적인 형태가 공지되며, 상기 구조체가 만들어진 공정의 정보(knowledge)로부터 몇몇 파라미터들이 가정되어, 스케터로메트리 데이터로부터 결정될 구조체의 몇몇 파라미터들만이 남게 된다.
스케터로미터는 수직-입사 스케터로미터 또는 경사-입사 스케터로미터일 수 있다. 또한, 파장들의 범위의 단일 각도에서 반사가 측정되기보다는, 단일 파장의 각도들의 범위에서 반사가 측정되는 스케터로메트리의 변형예들이 사용될 수도 있다.
도 4는 웨이퍼(490)의 표면의 1 이상의 특성들을 감지할 수 있는 스케터로메트리 시스템(400)을 도시한다. 시스템(400)은 카타디옵트릭 광학 시스템(480)을 공유하는 정렬 브랜치 및 감지 브랜치를 갖는다. 적절히 작동하기 위해, 정렬 및 감지 브랜치들은 상이한 조명 소스들을 사용하고 상이한 기능들을 수행하기 때문에 매우 상이한 광학 사양(specification)을 갖는다. 카타디옵트릭 광학 시스템(480)은 정렬 브랜치 및 감지 브랜치 모두의 광학 사양들 내에서 적절히 기능한다는 것이 중요하다. 도 4에 도시된 실시예에서, 카타디옵트릭 광학 시스템(480)은 광학 요소(434) 및 대물렌즈 시스템(470)을 포함한다. 정렬 브랜치, 감지 브랜치 및 카타디옵트릭 시스템(480)은 아래에서 더 상세히 설명된다.
정렬 브랜치는 웨이퍼(490) 상의 피처와 시스템(400)을 정렬시키는데 사용된다. 정렬 브랜치는 전자기 방사선의 제 1 빔을 제공하는 [광대역 발광 다이오드(LED)와 같은] 조명 소스(412)를 포함한다. 일 예시에서, 상기 제 1 빔은 450 나노미터 내지 600 나노미터의 스펙트럼 범위를 갖는다. 상기 제 1 빔은 광학 요소들(430 및 432)을 통과한 후, 광학 요소(434) 상에 입사한다. 그 후, 제 1 빔은 대물렌즈(470)로 지향되고 웨이퍼(490)의 일부분에 포커스된다. 그 후, 제 1 빔은 대물렌즈(470) 및 광학 요소(434)를 통해 다시 반사된다. 빔 스플리터(436)는 포커싱 렌즈(450) 및 빔 스플리터(452)를 통해, 제 1 센서(454)[예를 들어, 전하 결합 소자(CCD)] 상으로 제 1 빔을 지향한다. 센서(454)에 의해 제공되는 웨이퍼(490)의 이미지가 웨이퍼의 특정 부분들과 시스템(400)을 정렬시키는데 사용된다.
감지 브랜치는 앞서 설명된 스케터로메트리 기술들과 같은 알려진 스케터로메트리 기술들에 따라 웨이퍼(490)의 정렬된 부분들 상의 피처들을 감지하거나 검출하는데 사용된다. 감지 브랜치는 전자기 방사선의 제 2 빔을 제공하는 (간섭 필터를 갖는 텅스텐 조명 소스와 같은) 조명 소스(410)를 포함한다. 일 예시에서, 상기 제 2 빔은 약 10 나노미터의 대역폭을 가지며, 약 300 나노미터 내지 800 나노미터의 스펙트럼 범위 내에 포함된다. 제 2 빔은 광학 요소들(420, 422, 424, 430 및 432)을 통과한다. 그 후, 광학 요소(434)가 대물렌즈 시스템(470)을 통해 웨이퍼(490)의 정렬된 부분 상으로 제 2 빔을 지향한다. 제 2 빔은 웨이퍼(490)의 정렬된 부분에 의해 반사 및/또는 굴절되고, 다시 대물렌즈 시스템(470) 및 광학 요소(434)를 통해 지향된다. 또한, 제 2 빔은 빔 스플리터(436), 렌즈(440), 어퍼 처(442) 및 렌즈(444)를 통과한 후, 제 2 검출기(446)(예를 들어, 제 2 CCD) 상에 입사한다. 제 2 검출기(446)는 웨이퍼(490)의 표면 상의 피처들을 검출하는데 사용되는 웨이퍼(490)의 정렬된 부분의 이미지를 제공한다.
앞서 언급된 바와 같이, 카타디옵트릭 광학 시스템(480)은 광학 요소(434) 및 대물렌즈 시스템(470)을 포함한다. 카타디옵트릭 광학 시스템(480)은 (약 200 나노미터 내지 1000 나노미터와 같은) 폭넓은 스펙트럼 범위 내에서 무색이다. 시스템(400)에서 사용되는 경우, 카타디옵트릭 시스템(480)은 (반경에서 약 14 %와 같이) 감지 브랜치 내에서 낮은 차폐를 가지며, 정렬 브랜치에서는 실질적으로 차폐를 갖지 않는다. 그것은 더 작은 치수들을 및 무게, 및 약간의 표면들만을 가져서, 산란을 감소시키고 고스트 이미지를 제거한다.
도 5는 일 실시예에 따른 대물렌즈 시스템(470)을 상세하게 도시한다. 도 5에 예시된 바와 같이, 대물렌즈 시스템(470)은 볼록한 구면(convex spherical surface: 520), 오목한 비구면(concave aspherical surface: 510) 및 렌즈(530)를 포함한다. 구면(520)은 (ⅰ) 정렬 브랜치로부터 전자기 방사선에 대해 굴절 특성들을 갖고, (ⅱ) 감지 브랜치로부터 전자기 방사선에 대해 반사 특성들을 갖게 하도록 컨디셔닝(예를 들어, 코팅)된다. 즉, 아래에서 더 상세히 설명되는 바와 같이 볼록한 구면(520)의 굴절 특성들 및 렌즈(530)는 정렬에 사용되는 한편, 볼록한 구면(520)의 반사 특성들 및 오목한 비구면(510)은 감지에 사용된다.
정렬을 위해, 웨이퍼(490)의 고스트 이미지로 도시된 바와 같이, 웨이퍼(490)는 렌즈(530)에 더 가깝게 위치된다. (정렬에 사용되는) 전자기 방사선의 제 1 빔은 오목한 비구면(510) 내의 홀을 통과하고, 볼록한 구면(520)을 통과하며, 렌즈(530)에 의해 웨이퍼(490) 상에 포커스된다. 그 후, 제 1 빔은 웨이퍼(490)로부터 반사되고, 앞서 설명된 제 1 CCD(454)(도시되지 않음, 도 4 참조)로 정렬 브랜치를 통과한다.
감지를 위해, 웨이퍼(490)의 실제 이미지(solid image)로 도시된 바와 같이, 웨이퍼(490)는 렌즈(530)로부터 더 멀리 위치된다. (감지에 사용되는) 전자기 방사선의 제 2 빔은 오목한 비구면(510) 내의 홀을 통과하고, 볼록한 구면(520)으로부터 반사하며, 오목한 비구면(510)의 반사 부분 상에 입사한다. 오목한 비구면(510)의 반사 부분은 제 2 빔을 웨이퍼(490) 상에 포커스한다. 예를 들어, 볼록한 구면(520) 및 오목한 비구면(510)으로부터 반사하여 웨이퍼(490) 상에 포커스되는 3 개의 예시적인 광선(511, 513 및 515)이 도시된다. 감지에 사용되는 경우, 대물렌즈 시스템(470)은 (예를 들어, 약 0.90 또는 0.95와 같은) 높은 개구수를 가질 수 있으며, 여하한의 굴절 요소들은 포함하지 않는다는 것이 중요하다. 결과로서, 대물렌즈 시스템(470)은 (약 200 나노미터 내지 1000 나노미터와 같은) 폭넓은 스펙트럼 범위에 걸쳐 적절히 작동한다.
따라서, 빔 스플리터들(437 및 434) 및 대물렌즈(470)는 본 발명의 일 실시예에 따른 스케터로미터에서 사용될 수 있는 카타디옵트릭 광학 시스템을 포함한다. 아래에서, 본 발명의 실시예들에 따른 추가적인 카타디옵트릭 광학 시스템들이 설명된다.
본 발명의 일 실시예에 따른 무색의 높은 개구수 카타디옵트릭 광학 시스템 은 볼록한 구면 및 볼록한 구면으로부터 전자기 방사선을 수용하도록 위치된 오목한 비구면을 포함한다. 볼록한 비구면은 다음의 비구면 방정식에 따라 디자인된다.
Figure 112008051762249-pat00001
이때:
Figure 112008051762249-pat00002
c는 표면의 극(pole)에서의 곡률;
K는 코닉(conic) 상수;
A 내지 J는 4 차에서 20 차까지의 변형 항(deformation term)들이다.
예를 들어, 도 6 내지 도 9, 및 도 12에 예시된 카타디옵트릭 광학 시스템을 디자인하는 몇몇 실시예들이 존재한다. 도 6 내지 도 9, 및 도 12에 도시된 실시예들 각각에서, 일루미네이터로부터 시준된 전자기 방사선이 기판(예를 들어, 웨이퍼) 상의 (약 10 미크론과 같이) 작은 스폿 상에 포커스된다. 각각의 실시예는 스케터로메트리를 위해 사용될 수 있으며, 각각의 실시예는 (약 0.95의 개구수와 같은) 매우 폭넓은 개구수를 가지며 (약 200 나노미터 내지 1000 나노미터와 같은) 폭넓은 스펙트럼 범위에서 작동한다. 도 6 내지 도 9, 및 도 12에 나타낸 바와 같이, 각각의 실시예는 오목한 비구면 전에 보정 플레이트를 포함한다. 이 실시예들 각각은 아래에서 더 상세히 설명된다.
도 6은 본 발명의 일 실시예에 따른 예시적인 카타디옵트릭 광학 시스템(600)을 도시한다. 도 6에 나타낸 바와 같이, 카타디옵트릭 광학 시스템(600)은 보정 플레이트(610), 구면 볼록 거울(616) 및 비구면 오목 거울(612)을 포함한다.
보정 플레이트(610)는 (코마와 같은) 1 이상의 광학 수차들을 보정하도록 전자기 방사선 빔을 컨디셔닝한다. 도 6에 나타낸 바와 같이, 보정 플레이트(610)는 비구면(s2) 및 구면(s3)을 포함한다.
구면 볼록 거울(616)은 보정 플레이트(610)에 의해 컨디셔닝된 전자기 방사선을 반사하도록 위치되는 구면 반사 표면(s6)을 포함한다. 보정 플레이트(610)에 의해 컨디셔닝된 전자기 방사선은 비구면 오목 거울(612) 내의 홀(614)을 통과하고, 구면 볼록 거울(616) 상에 입사한다. 구면 볼록 거울(616)은 웨이퍼에 대해 공간에서 기계적 지지체들 상에 위치될 수 있다(도 6에 명확히 예시되지 않음).
비구면 오목 거울(612)은 구면 반사 표면(s6)에 의해 반사된 전자기 방사선을 수용한다. 비구면 오목 거울(612)은 이 전자기 방사선을 웨이퍼의 타겟부 상에 포커스하는 비구면 반사 표면(s7)을 포함한다. 예를 들어, 비구면 반사 표면(s7)에 의해 반사되는 예시적인 광선(611)이 도 6에 도시된다.
도 6의 실시예에 도시된 광학 표면들을 디자인하는 예시적인 처방(prescription)이 아래의 테이블 1에서 설명된다.
테이블 1
Figure 112008051762249-pat00003
도 6에 도시된 실시예의 비구면(s2 및 s7)은 아래의 테이블 2에서 설명된 파라미터들에 따라 수학식 1에 의해 정의된다.
테이블 2
Figure 112008051762249-pat00004
도 7은 본 발명의 또 다른 실시예에 따른 예시적인 카타디옵트릭 광학 시스템(700)을 도시한다. 도 7에 나타낸 바와 같이, 카타디옵트릭 광학 시스템(700)은 보정 플레이트(710), 구면 볼록 거울(716) 및 단일체 유리 요소(monolithic glass element: 712)를 포함한다.
보정 플레이트(710)는 (코마와 같은) 1 이상의 광학 수차를 보정하도록 전자기 방사선 빔을 컨디셔닝한다. 보정 플레이트(710)는 비구면(s2)을 포함한다.
구면 볼록 거울(716)은 보정 플레이트(710)에 의해 컨디셔닝된 전자기 방사선을 반사하도록 위치되는 구면 반사 표면(s4)을 포함한다. 도 7에 도시된 실시예에서, 구면 볼록 거울(716)은 단일체 유리 요소(712)의 표면(s6) 상에 위치된다. 도 14에 예시된 바와 같이, 단일체 유리 요소(712)의 비구면(s5)은 반사 부분(1401) 및 투명한 부분(1403)을 갖는다. 투명한 부분(1403)은 광학 축선을 중심으로 중앙에 있고, 입력 빔의 폭에 기초한 직경을 갖는다. 결과로서, 표면(s5)은 보정 플레이트(710)로부터 나오는 빔을 통과시키지만, 구면 거울(716)로부터 나오는 광선들은 반사한다. 즉, 보정 플레이트(710)에 의해 컨디셔닝된 전자기 방사선은 단일체 유리 요소(712) 내의 표면(s5)의 투명한 부분(1403)을 통과하고, 구면 볼록 거울(716) 상에 입사한다.
단일체 유리 요소(712)는 표면들(s4, s5 및 s6)을 포함한다. 단일체 유리 요소(712)의 표면(s5)은 구면 볼록 거울(716)(표면 s4)에 의해 반사되는 전자기 방사선을 수용하고, 이 전자기 방사선을 웨이퍼의 타겟부를 향해 반사한다. 웨이퍼의 타겟부 상에 입사하기 이전에, 전자기 방사선은 단일체 유리 요소의 표면(s6)을 가로지른다. 비구면 반사 표면(s5)으로부터 반사하는 모든 광선들은 표면(s6)에 수직하여 단일체 유리 요소(712)를 나가므로, 표면(s6)에 의해 굴절되지 않는다는 것이 중요하다. 결과로서, 카타디옵트릭 광학 시스템(700)은 무색이다.
도 7의 실시예에 도시된 광학 표면들을 디자인하는 예시적인 처방이 아래의 테이블 3에서 설명된다.
테이블 3
Figure 112008051762249-pat00005
도 7에 도시된 실시예의 비구면(s2 및 s5)은 아래의 테이블 4에서 설명된 파라미터들에 따라 수학식 1에 의해 정의된다.
테이블 4
Figure 112008051762249-pat00006
도 8은 본 발명의 또 다른 실시예에 따른 예시적인 카타디옵트릭 광학 시스템(800)을 도시한다. 도 8에 나타낸 바와 같이, 카타디옵트릭 광학 시스템(800)은 보정 플레이트(810), 구면 볼록 거울(816), 비구면 오목 거울(812) 및 요소(820)를 포함한다.
보정 플레이트(810)는 (코마와 같은) 1 이상의 광학 수차를 보정하도록 전자기 방사선 빔을 컨디셔닝한다. 보정 플레이트(810)는 비구면(s1) 및 표면(s2)을 포 함한다. 도 8에 예시된 바와 같이, 보정 플레이트(810)는 비구면 오목 거울(812)의 홀(814) 내에 위치된다.
구면 볼록 거울(816)은 보정 플레이트(810)에 의해 컨디셔닝된 전자기 방사선을 반사하도록 위치되는 구면 반사 표면(s3)을 포함한다. 도 8에 나타낸 실시예에서, 구면 볼록 거울(816)은 요소(820)의 표면(s5) 상에 위치된다. 보정 플레이트(810)에 의해 컨디셔닝된 전자기 방사선은 구면 볼록 거울(816) 상에 입사한다.
비구면 오목 거울(812)은 비구면 반사 표면(s4)을 포함한다. 비규면 오목 거울(812)의 비구면 반사 표면(s4)은 구면 볼록 거울(816)에 의해 반사된 전자기 방사선을 수용하고, 이 전자기 방사선을 요소(820)[예를 들어, 요철 렌즈(meniscus)]를 향해 반사한다.
요소(820)는 제 1 표면(s5) 및 제 2 표면(s6)을 포함한다. 비구면 오목 거울(812)에 의해 반사된 전자기 방사선은 제 1 표면(s5) 및 제 2 표면(s6) 모두에 수직하여 요소(820)를 통과하므로, 요소(820)의 어느 표면에서도 굴절되지 않는다. 결과로서, 카타디옵트릭 광학 시스템(800)은 무색이다.
도 8의 실시예에 도시된 광학 표면들을 디자인하는 예시적인 처방이 아래의 테이블 5에서 설명된다.
테이블 5
Figure 112008051762249-pat00007
도 8에 도시된 실시예의 비구면(s1 및 s4)은 아래의 테이블 6에서 설명된 파라미터들에 따라 수학식 1에 의해 정의된다.
테이블 6
Figure 112008051762249-pat00008
도 9는 본 발명의 또 다른 실시예에 따른 카타디옵트릭 광학 시스템(900)의 조명 모드를 도시한다. 카타디옵트릭 광학 시스템(900)은 약 0.95의 조명 개구수를 가지며, 약 300 나노미터 내지 800 나노미터의 폭넓은 스펙트럼 범위에서 작동한다. 단파장 범위는 BAL35Y 유리의 투과에 의해 제한되며, 렌즈 요소들에 대해 용융 실리카(fused silica) 및 플루오르화 칼슘(calcium fluoride)만을 이용함으로써 확장될 수 있다. 그 후, 훨씬 더 짧은 파장 범위가 달성될 수 있다. 카타디옵트릭 광 학 시스템(900)은 웨이퍼(910) 상에 스케터로메트리 기술들을 채택함으로써 웨이퍼(910)를 테스트하는데 사용될 수 있는 (예를 들어, 약 10 미크론 스폿과 같은) 작은 스폿을 생성한다.
카타디옵트릭 광학 시스템(900)은 구면 굴절 표면(920), 편평한 반사 표면(930), 비구면 반사 표면(940), 광학 요소(960), 렌즈들(970)의 그룹, 보조 렌즈(subsidiary lens: 980), 및 웨이퍼(910) 상의 스폿과 켤레인 조명 소스(990)를 포함한다. 조명 소스(990)는 완벽한 보조 렌즈(980)(실제 일루미테이터는 도시되지 않음) 및 렌즈들(970)을 통해 전달되는 전자기 방사선을 제공한다. 렌즈들(970)은, 예를 들어 1 이상의 비구면을 갖는 유리들 BAL35Y, CaF2 및 SiO2로 구성된다. 렌즈들(970)은 카타디옵트릭 광학 시스템(900)의 (코마와 같은) 수차들을 보정하도록 기능한다. 광학 요소(960)는 편평한 반사 표면(930)에서 반사하도록 렌즈들(970)로부터 전자기 방사선을 지향한다. 그 후, 전자기 방사선은 비구면 반사 표면(940)으로부터 반사되고, 구면 굴절 표면(920)을 통과하며, 웨이퍼(910) 상에 포커스된다. 전자기 방사선은 표면(920)에 실질적으로 수직인 방향으로 구면 굴절 표면(920)을 가로지른다는 것이 중요하다. 결과로서, 카타디옵트릭 광학 시스템(900)은 무색이다.
앞서 언급된 바와 같이, 카타디옵트릭 광학 시스템(900)은 웨이퍼(910)의 피처들을 테스트하거나 감지하는데 사용될 수 있다. 감지 모드에서, 카타디옵트릭 광학 시스템(900)은 높은 개구수의 푸리에 대물렌즈(Fourier objective)로서 작용하 며, 이때 전자기 방사선은 도 9에 나타낸 것과 반대 방향으로 전파된다. 명확하게는, 전자기 방사선이 웨이퍼(910)의 표면으로부터 회절되고, 카타디옵트릭 광학 시스템(900)을 통해 가로지르며, 카타디옵트릭 광학 시스템의 후초점면(back focal plane)(즉, 퓨필 평면)과 켤레인 평면 내에 위치된 CCD 상에 입사할 것이다. CCD 상의 상이한 지점들에 위치된 광 스폿들은 웨이퍼(910)의 표면으로부터 상이한 각도들로 회절된 전자기 방사선 빔들에 대응한다. 알려진 스케터로메트리 기술들을 이용하여, 이 광 스폿들은 (CD 및 오버레이와 같이) 웨이퍼(910)의 피처들을 분석하는데 사용될 수 있다.
예를 들어, 도 10은 감지 모드에서 카타디옵트릭 광학 시스템(900)을 통해 전파하는 (웨이퍼(910)의 표면으로부터 약 0, 30 및 72 도의 회절 광선들에 대응하는) 3 개의 회절 빔(913, 915 및 917)을 도시한다. 회절 빔들은 카타디옵트릭 광학 시스템(900)의 퓨필 평면 내에 푸리에 패턴을 생성한다.
도 11은 광학 요소(960)의 일 실시예를 도시한다. 이 실시예에서, 광학 요소(960)는 반사 빗변(reflective hypotenuse: 1130) 및 비구면 반사 표면(1120)을 포함한다. 빗변(1130) 상의 반사 코팅은, 도 9에 나타낸 바와 같이 웨이퍼(910)의 표면으로부터 굴절된 전자기 방사선을 전달하고 조명 소스(990)로부터 시준된 전자기 방사선은 반사하도록 홀(1170)을 포함한다. 예를 들어, 도 11은 반사 빗변(1130) 및 비구면 반사 표면(1120)으로부터 반사되고, 홀(1170)을 통과하는 2 개의 예시적인 광선(1111 및 1113)을 도시한다.
도 9를 다시 참조하고 도 11을 계속해서 참조하면, (홀(1170)의 위치에서) 광학 요소(960)의 빗변 상에 조명 소스(990)의 중간 이미지(intermediate image)를 생성하기 위해 어포컬 렌즈(afocal lens) 그룹(970)(도 9) 및 비구면 반사 표면(1120)이 사용된다. 비구면 거울(940), 편평한 거울(930) 및 구면 굴절 표면(920)은 집합적으로 웨이퍼(910) 상에 최종 조명 스폿을 생성한다.
도 9에 나타낸 바와 같이, 비구면 거울(940), 편평한 거울(930) 및 구면 굴절 표면(920)은 단일체 유리 광학 요소(912)로부터 구성될 수 있다. 단일체 유리 광학 요소(912)는 약 200 나노미터 내지 1000 나노미터의 스펙트럼 범위에서 전달하는 (예를 들어, SiO2와 같은) 유리로부터 제작될 수 있다.
예를 들어, 도 15는 편평한 거울(930) 및 구면 굴절 표면(920)을 포함한 단일체 유리 광학 요소(912)의 일부분의 평면도이다. 이 예시에서, 편평한 거울(930)은 그 중심에 구면 굴절 표면(920)이 위치된 고리(annulus)를 포함한다. 단일체 유리 광학 요소(912)는 웨이퍼(910) 상의 조명 스폿(901)으로 하여금 편평한 거울(930) 및 구면 굴절 표면(920)과 동심(concentric)이게 하도록 방위된다.
광학 요소(960)는 단일체 유리 요소(912)와 동일한 재료로부터 제작되고, 그것을 단일체 유리 요소(912)와 광학적으로 접촉시킴으로써 조립될 수 있다. 광학 요소(960)는 단일체 유리 요소로서, 또는 도 11에 도시된 바와 같이 제 1 요소(1150) 및 제 2 요소(1160)를 포함한 두 요소들의 조립체로서 제작될 수 있다. 일 예시에서, 광학 요소(960)가 제 1 요소(1150) 및 제 2 요소(1160)로부터 조립되는 경우, 그것은 (제 2 요소(1160)에 대해 제 1 요소(1150)를 이동시킴으로써) 제 작 결점들로 인한 수차를 보상할 수 있다.
카타디옵트릭 광학 시스템(900)의 광학 표면들을 디자인하는 예시적인 처방이 아래의 테이블 7에서 설명된다.
테이블 7
Figure 112008051762249-pat00009
카타디옵트릭 광학 시스템(900)의 비구면(s3 및 s7, 및 s12)은 아래의 테이블 8에서 설명된 파라미터들에 따라 수학식 1에 의해 정의된다.
테이블 8
Figure 112008051762249-pat00010
도 12는 본 발명의 또 다른 실시예에 따른 예시적인 카타디옵트릭 광학 시스템(1200)을 도시한다. 카타디옵트릭 광학 시스템(1200)은 제 1 단일체 유리 요 소(1210), 제 2 단일체 유리 요소(1220), 및 함께 캐스케이드(cascade)된 굴절 렌즈 그룹(1230)을 포함한다. 단일체 유리 요소(1210)는 약 0.95의 개구수에서 약 0.4의 개구수로(그리고 거꾸로) 전이한다. 단일체 유리 요소들(1210 및 1220)을 캐스케이드하는 것은 약 0.95의 개구수에서 약 0.02의 개구수로 전이한다.
제 1 단일체 유리 요소(1210)는 굴절 표면(s2), 비구면 반사 표면(s3), 편평한 반사 표면(s4), 및 굴절 표면(s5)을 포함한다. 도 12에 예시된 바와 같이, 굴절 표면(s2)은 편평한 반사 표면(s4)의 중심에 위치되고, 굴절 표면(s5)은 비구면 반사 표면(s3)의 중심에 위치된다.
제 2 단일체 유리 요소(1220)는 반사 표면(s7) 및 반사 표면(s8)을 포함한다. 반사 표면들(s7 및 s8)은 각각 중심의 투명한 부분을 포함한다.
굴절 렌즈 그룹(1230)은 광학 표면들(s9, s10, s11, s12, s13 및 s14)을 포함하며, 이는 (코마와 같은) 1 이상의 수차를 보정하도록 위치되고 형성된다.
이 광학 디자인은 도 9 및 도 10에 도시된 디자인들과 유사하게 기능하지만, 단지 하나의 비구면(제 1 단일체 유리 요소(1210)의 비구면 굴절 표면(s3)) 및 더 폭넓은 스펙트럼 범위(200 내지 1000 나노미터)를 갖는다.
예를 들어, 전자기 방사선들은 굴절 렌즈 그룹(1230)을 통해 카타디옵트릭 광학 시스템(1200)에 들어온다. 전자기 방사선은 굴절 렌즈 그룹(1230)을 통과한 후, 반사 표면(s8)의 중심의 투명한 부분을 통과한다.
반사 표면(s8)의 중심의 투명한 부분을 통과한 전자기 방사선은 반사 표면(s7)에 의해 반사된 후, 반사 표면(s8)에 의해 수용된다. 반사 표면(s8)은 반사 표면(s7)의 중심의 투명한 부분을 통과하는 전자기 방사선의 포커스된 스폿으로 전자기 방사선을 포커스한다. 즉, 제 2 단일체 유리 요소(1220)는 전자기 방사선의 포커스된 스폿을 제공하도록 구성된다.
제 1 단일체 유리 요소(1210)의 굴절 표면(s5)은 제 2 단일체 유리 요소(1220)로부터의 전자기 방사선의 포커스된 스폿과 동심이도록 위치된다. 그 결과, 제 2 단일체 유리 요소(1220)로부터의 전자기 방사선이 굴절 표면(s5)에 실질적으로 수직하여 단일체 유리 요소(1210)에 들어온다. 반사 표면(s4)은 이 전자기 방사선을 수용하고, 그것을 비구면 반사 표면(s3)을 향해 반사한다. 비구면 반사 표면(s3)은 웨이퍼 상의 포커스된 스폿 상에 전자기 방사선을 포커스한다(도 12에 명확하게 도시되지 않음). 굴절 표면(s2)은 웨이퍼 상의 포커스된 스폿에 동심이도록 위치되어, 전자기 방사선으로 하여금 굴절 표면(s2)에 실질적으로 수직하여 제 1 단일체 유리 요소(1210)를 나가게 한다.
전자기 방사선은 굴절 표면들(s5 및 s2)에 실질적으로 수직하여 제 1 단일체 유리 요소(1210)에 들어오고 나가기 때문에, 카타디옵트릭 광학 시스템은 실질적으로 무색이다 - 약 200 내지 1000 나노미터의 스펙트럼 범위를 가짐.
카타디옵트릭 광학 시스템(1200)의 광학 표면들을 디자인하는 예시적인 처방이 아래의 테이블 9에서 설명된다.
테이블 9
Figure 112008051762249-pat00011
카타디옵트릭 광학 시스템(1200)의 비구면(s3)은 아래의 테이블 10에서 설명된 파라미터들에 따라 수학식 1에 의해 정의된다.
테이블 10
Figure 112008051762249-pat00012
Ⅳ. 결론
스케터로미터에 대한 카타디옵트릭 광학 시스템들이 설명되었다. 이상, 본 발명의 다양한 실시예들이 설명되었지만, 예시의 방식으로만 제시되었으며 제한하 려는 것이 아님을 이해하여야 한다. 당업자라면, 본 발명의 범위와 기술사상을 벗어나지 않고 본 명세서의 형태 및 세부사항의 다양한 변화들이 행해질 수 있다는 것을 이해할 것이다.
당업자라면, 감지 및 정렬 브랜치들에 포함된 광학기 또는 그 제작 공정을 더 훌륭하게 따르기 위해, 앞서 설명된 실시예들을 수정하고 다시 최적화할 수 있다. 예를 들어, (도 6, 도 7 및 도 8 각각의) 구면 볼록 거울(616, 716 및 816)은 동일한 포커스 위치를 갖는 오목 또는 비구면 거울로 교체될 수 있다. 비구면 보정 플레이트들(610, 710 및 810)은 앞서 설명된 비구면 플레이트들과 동일한 파면(wavefront)들을 발생시킬 구면 렌즈들의 그룹들로 교체될 수 있으며, 이러한 구면 렌즈들이 더 제작하기 쉽다. 당업자라면, 앞서 설명된 실시예들의 이 변형예들, 또는 다른 변형예들을 명백히 알 것이며, 이는 본 발명의 기술사상 및 범위 내에서 의도된다.
또한, 초록 부분(Abstract sectons)이 아닌, 상세한 설명 부분(Detailed Description section)이 청구항을 해석하는데 사용되도록 의도된다는 것을 이해하여야 한다. 초록 부분은 1 이상을 설명할 수 있지만, 발명자(들)에 의해 의도(contemplate)된 본 발명의 모든 예시적인 실시예를 설명하지는 않으므로, 어떠한 방식으로도 본 발명 및 첨부된 청구항을 제한하지는 않는다.
따라서, 본 발명의 범위와 폭은 상술된 예시적인 실시예들 중 어느 것에 의해서도 제한되지 않아야 하며, 다음의 청구항 및 그 균등물에 따라서만 정의되어야 한다.
본 명세서에 통합되며 명세서의 일부분을 형성하는 첨부된 도면들은 본 발명을 예시하며, 또한 설명과 함께 본 발명의 원리들을 설명하고 당업자가 본 발명을 수행하고 사용할 수 있게 하는 역할을 한다:
도 1 및 도 2는 본 발명의 실시예들에 따른 리소그래피 투영 장치를 도시하는 도면;
도 3a 내지 도 3c는 예시적인 스케터로미터를 도시하는 도면;
도 4는 본 발명의 일 실시예에 따른 카타디옵트릭 광학 대물렌즈를 포함한 감지 및 정렬 시스템을 도시하는 도면;
도 5는 도 4의 카타디옵트릭 광학 대물렌즈을 상세하게 도시하는 도면;
도 6 내지 도 9는 본 발명의 실시예들에 따른 다양한 카타디옵트릭 광학 시스템들을 도시하는 도면;
도 10은 도 9의 카타디옵트릭 광학 시스템을 가로지르는 광선들을 도시하는 도면;
도 11은 도 9의 카타디옵트릭 광학 시스템 내에 포함된 빔 스플리터를 상세하게 도시하는 도면;
도 12는 매우 낮은 개구수에서 매우 높은 개구수로 변환하는 카타디옵트릭 광학 시스템을 도시하는 도면;
도 13은 또 다른 리소그래피 장치를 도시하는 도면;
도 14는 도 7의 카타디옵트릭 광학 시스템 내에 포함된 표면의 평면도; 및
도 15는 도 9의 카타디옵트릭 광학 시스템 내에 포함된 단일체 유리 요소의 평면도이다.
동일한 참조 기호들이 대응하는 요소들을 전부 식별하는 도면들에 관련하여 아래에서 설명되는 상세한 설명으로부터 본 발명의 특징들 및 장점들을 더 이해하게 될 것이다. 도면들에서 동일한 참조 번호들은 일반적으로 동일하거나 기능적으로 유사한, 및/또는 구조적으로 유사한 요소들을 나타낸다. 요소가 처음 나타나는 도면은 대응하는 참조 번호의 맨 앞자리 수(들)에 의해 나타내어진다.

Claims (19)

  1. 카타디옵트릭(catadioptic) 광학 시스템에 있어서:
    1 이상의 수차를 보정하기 위해 전자기 방사선을 컨디셔닝(condition)하도록 구성된 보정 플레이트;
    상기 보정 플레이트에 의해 컨디셔닝된 상기 전자기 방사선을 반사하도록 위치된 제 1 반사 표면;
    상기 제 1 반사 표면에 의해 반사된 상기 전자기 방사선을 기판의 타겟부 상에 포커스하도록 위치된 제 2 반사 표면을 포함하고,
    상기 제 2 반사 표면은 단일체 유리 요소(monolithic glass element)의 표면이며,
    상기 제 1 반사 표면에 의해 반사되고 상기 제 2 반사 표면에 의해 포커스된 상기 전자기 방사선은, 광학 요소에 의해 굴절되지 않아 상기 카타디옵트릭 광학 시스템으로 하여금 200 nm 내지 1000 nm 스펙트럼 범위에서 작동할 수 있게 하는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  2. 제 1 항에 있어서,
    상기 제 1 반사 표면은 볼록한 반사 표면을 포함하는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  3. 삭제
  4. 제 1 항에 있어서,
    상기 제 1 반사 표면은 상기 단일체 유리 요소의 제 2 표면 상에 위치되는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  5. 제 1 항에 있어서,
    상기 제 1 반사 표면은 상기 제 2 반사 표면과 상기 기판 사이에 위치되는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  6. 제 5 항에 있어서,
    상기 제 1 반사 표면은 기계적 지지체들 상에 위치되는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  7. 제 5 항에 있어서,
    상기 제 1 반사 표면은 요철 렌즈(meniscus) 상에 위치되는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  8. 제 5 항에 있어서,
    상기 제 2 반사 표면은 상기 보정 플레이트와 상기 제 1 반사 표면 사이에 위치되고, 상기 제 2 반사 표면은 상기 보정 플레이트에 의해 컨디셔닝된 상기 전자기 방사선이 통과하는 홀을 포함하는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  9. 제 1 항에 있어서,
    상기 제 2 반사 표면은 오목한 비구면 반사 표면(concave aspheric reflective surface)을 포함하는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  10. 제 1 항에 있어서,
    상기 카타디옵트릭 광학 시스템은 스케터로미터(scatterometer)의 감지 브랜치(sensing branch) 및 정렬 브랜치(alignment branch) 모두에 포함되는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  11. 스케터로메트리(scatterometry)를 위한 광학 시스템에 있어서:
    전자기 방사선을 굴절(deflect)시키는 광학 요소; 및
    상기 광학 요소와 광학적으로 접촉되고, 상기 굴절된 전자기 방사선을 수용하도록 구성된 단일체 유리 요소를 포함한 대물렌즈 시스템(objective system)을 포함하고, 상기 단일체 유리 요소는:
    상기 전자기 방사선을 반사하는 제 1 표면,
    상기 제 1 표면으로부터 상기 전자기 방사선을 수용하고, 상기 전자기 방사선을 기판의 타겟부를 향해 포커스하는 제 2 표면, 및
    제 3 표면을 포함하며, 상기 제 2 표면에 의해 반사되고 포커스된 상기 전자기 방사선은 상기 제 3 표면에 수직하여 상기 단일체 유리 요소를 나가며,
    상기 광학 요소 및 단일체 유리 요소는 동일한 형태의 재료로 구성되는 것을 특징으로 하는 광학 시스템.
  12. 제 11 항에 있어서,
    상기 광학 요소는:
    상기 전자기 방사선을 반사하는 경사 표면(tilted surface)- 상기 경사 표면은 그 안에 홀을 가짐 -; 및
    상기 경사 표면에 의해 반사된 상기 전자기 방사선을 반사하여, 상기 전자기 방사선으로 하여금 상기 경사 표면 내의 홀을 통과하고 상기 단일체 유리 요소의 제 1 표면 상에 입사하게 하는 비구면(aspheric surface)을 포함하는 것을 특징으로 하는 광학 시스템.
  13. 제 11 항에 있어서,
    상기 광학 시스템 내의 코마(coma)를 보정하도록 상기 전자기 방사선을 컨디셔닝하는 굴절 요소를 더 포함하는 것을 특징으로 하는 광학 시스템.
  14. 제 11 항에 있어서,
    상기 제 1 표면은 평탄한 고리(annulus)를 포함하고, 상기 제 3 표면은 상기 고리의 중심 내에 위치되는 것을 특징으로 하는 광학 시스템.
  15. 제 11 항에 있어서,
    상기 광학 요소 및 상기 단일체 유리 요소는 용융 실리카(fused silica: SiO2)를 포함하는 것을 특징으로 하는 광학 시스템.
  16. 스케터로메트리를 위한 카타디옵트릭 광학 시스템에 있어서:
    상기 카타디옵트릭 광학 시스템의 1 이상의 수차를 보정하도록 전자기 방사선을 컨디셔닝하는 굴절 렌즈 그룹;
    상기 굴절 렌즈 그룹으로부터 상기 전자기 방사선을 수용하고, 상기 전자기 방사선을 제 1 포커스 스폿(focused spot)으로 포커스하도록 순응되는 제 1 단일체 유리 요소; 및
    상기 제 1 단일체 유리 요소로부터 상기 전자기 방사선을 수용하고, 상기 전자기 방사선을 기판의 타겟부 상의 제 2 포커스 스폿으로 포커스하도록 구성되는 제 2 단일체 유리 요소를 포함하고,
    상기 전자기 방사선은 제 1 구면 굴절 표면에 수직하여 상기 제 2 단일체 유리 요소에 들어오고, 제 2 구면 굴절 표면에 수직하여 상기 제 2 단일체 유리 요소를 나가는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  17. 제 16 항에 있어서,
    상기 제 1 구면 굴절 표면은 상기 제 1 포커스 스폿과 동심(concentric)이고, 상기 제 2 구면 굴절 표면은 상기 제 2 포커스 스폿과 동심인 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  18. 제 16 항에 있어서,
    상기 제 1 단일체 유리 요소는:
    제 1 중심의 투명한 부분을 갖는 제 1 반사 표면; 및
    제 2 중심의 투명한 부분을 갖는 제 2 반사 표면을 포함하고,
    상기 전자기 방사선은 상기 제 1 중심의 투명한 부분을 통해 상기 제 1 단일체 유리 요소에 들어오고, 상기 제 2 중심의 투명한 부분을 통해 상기 제 1 단일체 유리 요소를 나가는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
  19. 제 16 항에 있어서,
    상기 제 2 단일체 유리 요소는:
    상기 제 1 구면 굴절 표면을 통해 상기 제 2 단일체 유리 요소에 들어가는 전자기 방사선을 반사하는 평탄한 반사 표면; 및
    상기 평탄한 반사 표면으로부터의 전자기 방사선을 반사하고 상기 제 2 포커 스 스폿으로 포커스하는 비구면 반사 표면을 포함하는 것을 특징으로 하는 카타디옵트릭 광학 시스템.
KR1020080070018A 2007-07-18 2008-07-18 스케터로메트리를 위한 카타디옵트릭 광학 시스템 KR100982136B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/779,691 US7633689B2 (en) 2007-07-18 2007-07-18 Catadioptric optical system for scatterometry
US11/779,691 2007-07-18

Publications (2)

Publication Number Publication Date
KR20090009159A KR20090009159A (ko) 2009-01-22
KR100982136B1 true KR100982136B1 (ko) 2010-09-14

Family

ID=39864794

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080070018A KR100982136B1 (ko) 2007-07-18 2008-07-18 스케터로메트리를 위한 카타디옵트릭 광학 시스템

Country Status (8)

Country Link
US (2) US7633689B2 (ko)
EP (1) EP2017662B1 (ko)
JP (1) JP4914408B2 (ko)
KR (1) KR100982136B1 (ko)
CN (1) CN101349804B (ko)
IL (1) IL192667A (ko)
SG (1) SG149765A1 (ko)
TW (1) TWI382202B (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633689B2 (en) * 2007-07-18 2009-12-15 Asml Holding N.V. Catadioptric optical system for scatterometry
US8238042B2 (en) * 2009-06-05 2012-08-07 CVI Melles Griot, Inc. Reflective axicon systems and methods
EP2400345B1 (en) * 2010-06-22 2016-05-11 ASML Holding N.V. Catadioptric illumination system for metrology
NL2006935A (en) 2010-06-28 2011-12-29 Asml Netherlands Bv Inspection apparatus and method.
EP2579100A3 (en) * 2011-10-03 2017-12-06 ASML Holding N.V. Inspection apparatus, lithographic apparatus, and device manufacturing method
US8982481B2 (en) 2011-12-30 2015-03-17 Asml Holding N.V. Catadioptric objective for scatterometry
CN103529643B (zh) * 2012-07-05 2017-01-18 中国科学院物理研究所 一种纳米图形化系统及其光响应特性检测装置
CN104199191A (zh) * 2014-09-29 2014-12-10 光库通讯(珠海)有限公司 扩束镜和扩束系统
CN107076966B (zh) 2014-09-29 2022-05-24 Asml控股股份有限公司 高数值孔径物镜系统
US9846128B2 (en) * 2016-01-19 2017-12-19 Applied Materials Israel Ltd. Inspection system and a method for evaluating an exit pupil of an inspection system
CN106295497B (zh) * 2016-07-19 2019-09-27 西安理工大学 一种三维表面光场编码信号生成及识别的装置与方法
EP3321736A1 (en) * 2016-11-10 2018-05-16 ASML Netherlands B.V. Measurement system, lithographic system, and method of measuring a target
JP6769566B2 (ja) * 2017-12-18 2020-10-14 横河電機株式会社 対物光学系及び顕微鏡システム
CN109724901B (zh) * 2018-12-29 2020-10-13 中国科学院长春光学精密机械与物理研究所 一种微米粒子光学检测装置
CN109581827B (zh) * 2019-01-10 2020-06-09 中国科学院光电技术研究所 光刻投影物镜最佳焦面检测装置及方法
WO2021026526A1 (en) * 2019-08-08 2021-02-11 Arizona Board Of Regents On Behalf Of The University Of Arizona Space, time and angular multiplexed dynamic image transfer for augmented reality display
TW202303301A (zh) * 2021-05-10 2023-01-16 美商應用材料股份有限公司 用於灰階微影術的方法以及設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968604A (ja) * 1995-06-06 1997-03-11 Hughes Missile Syst Co 固体カタディオプトリックレンズ
JPH11316343A (ja) 1998-05-01 1999-11-16 Nikon Corp カタディオプトリックレンズ
US6560039B1 (en) 1999-09-28 2003-05-06 Tropel Corporation Double mirror catadioptric objective lens system with three optical surface multifunction component
US20070153368A1 (en) 2005-10-03 2007-07-05 The Salk Institute For Biological Studies Maximal-aperture reflecting objective

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380887A (en) 1941-05-22 1945-07-31 Taylor Taylor & Hobson Ltd Optical system
US2683394A (en) 1951-09-08 1954-07-13 American Optical Corp Wide aperture optical projection lens system
CH541140A (de) 1971-12-31 1973-08-31 Gretag Ag Beleuchtungsanordnung
US4757354A (en) 1986-05-02 1988-07-12 Matsushita Electrical Industrial Co., Ltd. Projection optical system
JPS6314112A (ja) * 1986-07-07 1988-01-21 Matsushita Electric Ind Co Ltd 微細パタ−ン投影光学系
FR2666924B1 (fr) * 1990-09-13 1992-12-18 Framatome Sa Procede et dispositif de detection de fuite sur un element combustible d'un assemblage pour reacteur nucleaire.
US5136413A (en) 1990-11-05 1992-08-04 Litel Instruments Imaging and illumination system with aspherization and aberration correction by phase steps
US5175591A (en) 1991-08-21 1992-12-29 Xerox Corporation Cleaning device including abrading cleaning brush for comet control
JP3137404B2 (ja) * 1992-01-23 2001-02-19 日本分光株式会社 全反射測定装置
JP3063485B2 (ja) * 1993-09-10 2000-07-12 キヤノン株式会社 反射光学系
JP3402934B2 (ja) 1996-06-21 2003-05-06 三洋電機株式会社 増幅回路
US6064517A (en) 1996-07-22 2000-05-16 Kla-Tencor Corporation High NA system for multiple mode imaging
US5717518A (en) 1996-07-22 1998-02-10 Kla Instruments Corporation Broad spectrum ultraviolet catadioptric imaging system
US5912741A (en) 1997-10-10 1999-06-15 Northrop Grumman Corporation Imaging scatterometer
US6235624B1 (en) 1998-06-01 2001-05-22 Kabushiki Kaisha Toshiba Paste connection plug, burying method, and semiconductor device manufacturing method
CN1189877C (zh) * 1998-08-07 2005-02-16 索尼株式会社 折反射透镜、光学头及光记录重放装置
WO2000039623A1 (fr) * 1998-12-25 2000-07-06 Nikon Corporation Systeme optique de formation d'image par reflexion refraction et appareil d'exposition par projection comprenant le systeme optique
JP2000206411A (ja) * 1999-01-19 2000-07-28 Sharp Corp 光学素子、光学ヘッド及びそれらを用いた情報再生装置
KR100317139B1 (ko) 1999-05-27 2001-12-22 윤덕용 초고분해능 포물선형 렌즈
KR100644566B1 (ko) 1999-09-29 2006-11-13 삼성전자주식회사 고밀도 광집속을 위한 대물렌즈 및 이를 채용한 광픽업장치
KR100657247B1 (ko) * 1999-11-30 2006-12-19 삼성전자주식회사 고밀도 광집속을 위한 대물렌즈 및 이를 채용한광픽업장치
JP2001176118A (ja) 1999-12-15 2001-06-29 Minolta Co Ltd 光ヘッド、記録再生装置、および固浸レンズ
US6721052B2 (en) 2000-12-20 2004-04-13 Kla-Technologies Corporation Systems for measuring periodic structures
US6778273B2 (en) * 2001-03-30 2004-08-17 Therma-Wave, Inc. Polarimetric scatterometer for critical dimension measurements of periodic structures
TW576933B (en) * 2001-05-25 2004-02-21 Wavien Inc Collecting and condensing system, method for collecting electromagnetic radiation emitted by a source, tapered light pipe (TLP), numerical aperture (NA) conversion device, and portable front projection system
US6785051B2 (en) 2001-07-18 2004-08-31 Corning Incorporated Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures
JP4066079B2 (ja) * 2001-11-26 2008-03-26 株式会社ニコン 対物レンズ及びそれを用いた光学装置
US7075721B2 (en) 2002-03-06 2006-07-11 Corning Incorporated Compensator for radially symmetric birefringence
US7869121B2 (en) * 2003-02-21 2011-01-11 Kla-Tencor Technologies Corporation Small ultra-high NA catadioptric objective using aspheric surfaces
US8675276B2 (en) * 2003-02-21 2014-03-18 Kla-Tencor Corporation Catadioptric imaging system for broad band microscopy
US7307783B2 (en) * 2003-02-21 2007-12-11 Kla-Tencor Technologies Corporation Catadioptric imaging system employing immersion liquid for use in broad band microscopy
EP1721201A1 (en) 2004-02-18 2006-11-15 Corning Incorporated Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
IL162617A (en) * 2004-06-17 2010-04-15 Nova Measuring Instr Ltd Reflective optical system
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7274434B2 (en) * 2004-11-24 2007-09-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7135833B2 (en) 2004-11-30 2006-11-14 Rockwell Automation Technologies, Inc. Motor control for flux-reduced braking
US7351980B2 (en) 2005-03-31 2008-04-01 Kla-Tencor Technologies Corp. All-reflective optical systems for broadband wafer inspection
US7633689B2 (en) * 2007-07-18 2009-12-15 Asml Holding N.V. Catadioptric optical system for scatterometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968604A (ja) * 1995-06-06 1997-03-11 Hughes Missile Syst Co 固体カタディオプトリックレンズ
JPH11316343A (ja) 1998-05-01 1999-11-16 Nikon Corp カタディオプトリックレンズ
US6560039B1 (en) 1999-09-28 2003-05-06 Tropel Corporation Double mirror catadioptric objective lens system with three optical surface multifunction component
US20070153368A1 (en) 2005-10-03 2007-07-05 The Salk Institute For Biological Studies Maximal-aperture reflecting objective

Also Published As

Publication number Publication date
JP2009044143A (ja) 2009-02-26
KR20090009159A (ko) 2009-01-22
US20090021845A1 (en) 2009-01-22
IL192667A (en) 2014-09-30
EP2017662A3 (en) 2009-04-22
EP2017662A2 (en) 2009-01-21
JP4914408B2 (ja) 2012-04-11
US8107173B2 (en) 2012-01-31
TWI382202B (zh) 2013-01-11
CN101349804B (zh) 2013-04-17
TW200912384A (en) 2009-03-16
CN101349804A (zh) 2009-01-21
SG149765A1 (en) 2009-02-27
US7633689B2 (en) 2009-12-15
US20100046092A1 (en) 2010-02-25
IL192667A0 (en) 2009-02-11
EP2017662B1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
KR100982136B1 (ko) 스케터로메트리를 위한 카타디옵트릭 광학 시스템
US10048591B2 (en) Catadioptric illumination system for metrology
KR101930836B1 (ko) 검사 장치, 리소그래피 장치, 및 디바이스 제조 방법
US20160091797A1 (en) High Numerical Aperture Objective Lens System
JP2003022968A (ja) リソグラフィ装置の較正方法、リソグラフィ装置の較正に使用するマスク、リソグラフィ装置、デバイス製造方法、該デバイス製造方法により製造されたデバイス
KR20040038884A (ko) 검사방법 및 디바이스제조방법
US8982481B2 (en) Catadioptric objective for scatterometry
JP5819386B2 (ja) オブスキュレーションがない高開口数の反射屈折対物系及びそのアプリケーション
US20190107784A1 (en) Projection lens with a measurement beam path
US20100290017A1 (en) Folded Optical Encoder and Applications for Same
US20090097006A1 (en) Apparatus and Method for Obtaining Information Indicative of the Uniformity of a Projection System of a Lithographic Apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180831

Year of fee payment: 9