KR100916479B1 - Electrolyte for electro-chemical machining of metal product - Google Patents

Electrolyte for electro-chemical machining of metal product Download PDF

Info

Publication number
KR100916479B1
KR100916479B1 KR1020070123791A KR20070123791A KR100916479B1 KR 100916479 B1 KR100916479 B1 KR 100916479B1 KR 1020070123791 A KR1020070123791 A KR 1020070123791A KR 20070123791 A KR20070123791 A KR 20070123791A KR 100916479 B1 KR100916479 B1 KR 100916479B1
Authority
KR
South Korea
Prior art keywords
acid
electrolyte
electrolytic
electrolytic processing
metal
Prior art date
Application number
KR1020070123791A
Other languages
Korean (ko)
Other versions
KR20090056577A (en
Inventor
김종윤
이성재
김배균
김영태
최미진
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020070123791A priority Critical patent/KR100916479B1/en
Priority to JP2008258933A priority patent/JP2009131949A/en
Priority to US12/245,181 priority patent/US20090139875A1/en
Priority to CNA2008101667553A priority patent/CN101444860A/en
Publication of KR20090056577A publication Critical patent/KR20090056577A/en
Application granted granted Critical
Publication of KR100916479B1 publication Critical patent/KR100916479B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/08Working media
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

전해가공제품의 불량이 감소하고, 전해액과 전극 수명이 연장되며, 가공효율이 향상되는 금속제품 전해가공용 전해액이 제안된다. 본 발명의 금속제품 전해가공용 전해액은 용매에 무기염을 포함하고, 착화제 및 환원제 중 적어도 하나를 포함한다.An electrolytic solution for metal product electrolytic processing is proposed, which reduces defects of electrolytically processed products, extends electrolyte and electrode life, and improves processing efficiency. The electrolytic solution for metal product electrolytic processing of the present invention includes an inorganic salt in a solvent, and includes at least one of a complexing agent and a reducing agent.

착화제, 환원제, 전해가공 Complexing agent, reducing agent, electrolytic processing

Description

금속제품 전해가공용 전해액{Electrolyte for electro-chemical machining of metal product}Electrolyte for electro-chemical machining of metal product

본 발명은 금속제품 전해가공용 전해액에 관한 것으로서, 보다 상세하게는, 전해가공제품의 불량이 감소하고, 전해액과 전극 수명이 연장되며, 가공효율이 향상되는 금속제품 전해가공용 전해액에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for metal product electrolytic processing, and more particularly, to an electrolytic solution for metal product electrolytic processing in which defects of the electrolytic processed product are reduced, the electrolyte and electrode life are extended, and processing efficiency is improved.

전해가공은 전도성 물질의 전기화학적 반응을 이용한 가공법이다. 전해가공에서는 가공하고자 하는 제품인 가공물과 특정 형상을 갖는 전극을 전해액에 담그고, 가공물을 양극으로 하고, 전극을 음극으로 하여 일정 간극을 유지한 상태에서 전류를 흘려 주면 전극의 형상대로 가공물이 가공된다. Electrolytic processing is a processing method using an electrochemical reaction of a conductive material. In electrolytic processing, a workpiece is processed in the shape of an electrode by immersing a workpiece having a specific shape and an electrode having a specific shape in an electrolytic solution, and using a workpiece as an anode and a cathode while maintaining a constant gap with current.

전해가공법을 이용하면, 가공물의 경도에 관계없이 가공이 가능하고, 곡면이나 홀 내부 가공 등의 복잡한 형상으로 가공할 수 있는 장점이 있다. 최근에는 전해가공시 초단 펄스를 이용하여 미세 형상가공이 가능해 졌는데, 그 예로 유체동압베어링(Fluid dynamic bearing)의 미세 홈 가공을 들 수 있다.By using the electrolytic processing method, it is possible to process regardless of the hardness of the workpiece, and there is an advantage in that it can be processed into a complicated shape such as curved surface or inside hole processing. Recently, micro-machining has been made possible by using ultra-short pulses during electrolytic machining, for example, microgroove processing of fluid dynamic bearings.

전해가공 시 금속 가공물은 양극으로 작용하기 때문에 금속성분이 용출된다. 용출된 금속성분은 금속수산화물을 형성하여 슬러지 형태로 침전될 수 있다. 이러한 침전은 가공물의 표면 및 전극의 표면 또는 전해가공조에 침전되어 미세 전해가공의 주요 불량 발생원인이 된다. During electrolytic processing, metal components elute because they act as anodes. The eluted metal component may form a metal hydroxide and precipitate in the form of sludge. This precipitation is precipitated on the surface of the workpiece and the surface of the electrode or the electrolytic processing bath, which is a major cause of defects in the electrolytic processing.

전해액의 조성은 전기를 통전하기 위한 전해질로 단일 혹은 복합 무기염만을 포함하고 있다. 따라서, 가공물의 금속성분이 전해가공시 용출되면 전해액 중에서 수산화물 형태의 침전을 발생시킨다. 예를 들어, 가공물의 주성분이 철인 경우 전해가공이 진행되면 Fe(OH)3 또는 Fe(OH)2와 같은 수산화철 침전이 다량 발생하게 된다. The composition of the electrolyte is an electrolyte for conducting electricity and contains only a single or complex inorganic salt. Therefore, when the metal component of the workpiece is eluted during electrolytic processing, precipitation of hydroxide form occurs in the electrolyte solution. For example, when the main component of the workpiece is iron, a large amount of precipitates of iron hydroxide such as Fe (OH) 3 or Fe (OH) 2 may be generated when the electrolytic processing proceeds.

슬러지 형태의 침전은 가공물의 형상을 왜곡시키거나 전기공급을 방해하여 가공불량의 주요원인이 되고 있다. 종래에는 필터 프레스(filter press)나 원심분리를 이용하여 물리적으로 침전을 제거하는 방법이 사용되어 왔으나, 침전물이 일정 수준 이상 증가하면 전해액을 교체해 주어야만 하는 문제점이 있다. Sludge-type precipitation distorts the shape of the workpiece or hinders the supply of electricity, which is a major cause of poor processing. Conventionally, a method of physically removing the precipitate by using a filter press or centrifugation has been used, but there is a problem that the electrolyte must be replaced when the precipitate increases by a certain level or more.

따라서, 금속제품의 전해가공시, 전해액에 침전되는 금속 침전물을 감소시켜 가공물의 품질을 향상시키고, 가공공정의 효율성을 높일 수 있는 전해액의 개발이 요청되었다. Therefore, during the electrolytic processing of metal products, it is required to reduce the metal precipitates deposited in the electrolyte solution to improve the quality of the workpiece and to develop an electrolyte solution that can increase the efficiency of the processing process.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 전해가공제품의 불량이 감소하고, 전해액과 전극 수명이 연장되며, 가공효율이 향상되는 금속제품 전해가공용 전해액을 제공하는데 있다.The present invention is to solve the above-mentioned problems, an object of the present invention is to provide an electrolytic solution for electrolytic processing of metal products, the defect of the electrolytically processed product is reduced, the electrolyte and electrode life is extended, and the processing efficiency is improved.

이상과 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 금속제품 전해가공용 전해액은 용매에 무기염을 포함하고, 착화제 및 환원제 중 적어도 하나를 포함한다. 금속은 철, 구리, 니켈, 알루미늄, 주석, 크롬, 아연 및 이들의 합금 중 어느 하나일 수 있다. 용매는 물, 그 중에서 순수일 수 있어서 전해액은 수용액일 수 있다. Electrolytic solution for metal products electrolytic processing according to an aspect of the present invention for achieving the above object includes an inorganic salt in the solvent, at least one of a complexing agent and a reducing agent. The metal may be any of iron, copper, nickel, aluminum, tin, chromium, zinc and alloys thereof. The solvent may be water, among which pure water, so that the electrolyte solution may be an aqueous solution.

무기염은 NaNO3, NaCl, NaClO4, Na2SO4, KNO3, KCl, KClO4, K2SO4, LiNO3, LiCl, LiClO4, 및 Li2SO4로 구성된 군으로부터 선택된 적어도 하나인 것이 바람직하다. 이러한 무기염의 농도는 전체 전해액의 부피를 기준으로 하여 100g/L 내지 500g/L인 것이 전해가공에 적합한 농도일 수 있다. The inorganic salt is at least one selected from the group consisting of NaNO 3 , NaCl, NaClO 4 , Na 2 SO 4 , KNO 3 , KCl, KClO 4 , K 2 SO 4 , LiNO 3 , LiCl, LiClO 4 , and Li 2 SO 4 It is preferable. The concentration of the inorganic salt may be a concentration suitable for electrolytic processing is 100g / L to 500g / L based on the total volume of the electrolyte solution.

착화제로는 시트르산(Citric acid), 아세트산(Acetic acid), 옥살산(Oxalic acid), 풀브산(Fulvic acid), 숙신산(Succinic acid), 타르타르산(Tartaric acid), 락트산(Lactic acid), 글루콘산(Gluconic acid), 말레산(Maleic acid), 말산(Malic acid) 및 이들의 염 중 적어도 하나를 사용할 수 있다. Complexing agents include citric acid, acetic acid, oxalic acid, fulvic acid, succinic acid, tartaric acid, lactic acid, and gluconic acid. acid), maleic acid (Maleic acid), malic acid (Malic acid) and salts thereof may be used.

특히, 착화제는 이 중, 아세트산일 수 있는데, 상세하게는 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid), 히드록시에틸에틸렌디아민트리아세트산(Hydroxyethylethylenediaminetriacetic acid), 및 니트릴로트리아세트산(Nitrilotriacetic acid)으로 구성된 군으로부터 선택된 적어도 하나일 수 있다. In particular, the complexing agent may be acetic acid, specifically, selected from the group consisting of ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, and nitrilotriacetic acid. There may be at least one .

착화제의 농도는 전체 전해액의 부피를 기준으로 하여 0.5 g/L 내지 20 g/L인 것이 바람직하다. The concentration of the complexing agent is preferably 0.5 g / L to 20 g / L based on the volume of the total electrolyte.

환원제는 L-아스코르브산(L-ascorbic acid), D-이소아스코르브산(D-isoascorbic acid) 및 이들의 염 중 적어도 하나를 사용할 수 있는데, 그 농도는 전체 전해액의 부피를 기준으로 하여 0.5 g/L 내지 20 g/L인 것이 바람직하다. The reducing agent may use at least one of L-ascorbic acid, D-isoascorbic acid and salts thereof, the concentration of which is 0.5 g / y based on the total volume of the electrolyte. It is preferable that it is L-20g / L.

본 발명의 일실시예에 따른 금속제품 전해가공용 전해액은 물성향상을 위하여 부식억제제, 계면활성제, 점도조절제, pH조절제 중 적어도 하나를 더 포함하는 것이 바람직하다. The electrolytic solution for metal products electrolytic processing according to an embodiment of the present invention preferably further includes at least one of a corrosion inhibitor, a surfactant, a viscosity regulator, and a pH regulator for improving physical properties.

본 발명의 일실시예에 따른 금속제품 전해가공용 전해액은 pH 범위가 pH 2 내지 pH 7일 수 있다. Electrolyte solution for electrolytic processing of metal products according to an embodiment of the present invention may have a pH range of pH 2 to pH 7.

본 발명에 따른 금속제품 전해가공용 전해액에서 전해가공시에는 금속침전물의 발생을 억제할 수 있다. 따라서, 전해가공시 전극 또는 가공물에 침전물의 침착 등을 억제할 수 있어서, 그로 인한 가공불량을 방지하고 가공효율을 향상시킬 수 있다. In electrolytic processing in the electrolytic solution for metal products electrolytic processing according to the present invention it is possible to suppress the generation of metal precipitates. Therefore, deposition of deposits on the electrode or the workpiece during electrolytic processing can be suppressed, thereby preventing processing defects and improving processing efficiency.

또한, 사용하는 전해가공용 전해액의 수명이 증가하여 전해가공공정의 비용이 절감되고, 추가적인 금속침전물 제거공정을 생략할 수 있어서 시간적 손실이 발생되지 않아 생산성이 향상되는 효과가 있다. In addition, the lifespan of the electrolytic solution to be used is increased, thereby reducing the cost of the electrolytic process, and eliminating additional metal precipitates, thereby eliminating time loss, thereby improving productivity.

이하, 본 발명의 실시형태를 상세히 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

본 발명의 일 측면에 따른 금속제품 전해가공용 전해액은 용매에 무기염을 포함하고, 착화제 및 환원제 중 적어도 하나를 포함한다. Electrolyte solution for metal products electrolytic processing according to an aspect of the present invention comprises an inorganic salt in the solvent, at least one of a complexing agent and a reducing agent.

전해액은 무기염을 물에 용해시켜 제조한다. 전해액에 사용될 수 있는 무기염은 NaNO3, NaCl, NaClO4, Na2SO4, KNO3, KCl, KClO4, K2SO4, LiNO3, LiCl, LiClO4, 및 Li2SO4로 구성된 군으로부터 선택된 적어도 하나인 것이 바람직하다. 이러한 무기염의 농도는 전체 전해액의 부피를 기준으로 하여 100g/L 내지 500g/L인 것이 전해가공에 적합한 농도일 수 있다. The electrolyte is prepared by dissolving an inorganic salt in water. Inorganic salts that may be used in the electrolyte are NaNO 3 , NaCl, NaClO 4 , Na 2 SO 4 , KNO 3 , KCl, KClO 4 , K 2 SO 4 , LiNO 3 , LiCl, LiClO 4 , and Li 2 SO 4 It is preferably at least one selected from. The concentration of the inorganic salt may be a concentration suitable for electrolytic processing is 100g / L to 500g / L based on the total volume of the electrolyte solution.

본 발명의 전해액에 사용되는 용매로서, 물을 사용할 수 있다. 전해액은 수용액이 된다. 물은 염을 제거한 순수를 사용하는 것이 바람직하다.As a solvent used for the electrolyte solution of this invention, water can be used. The electrolyte solution becomes an aqueous solution. It is preferable to use pure water from which salt was removed.

금속제품은 전해가공을 통하여 가공될 수 있는 금속제품은 어떤 것이든 사용될 수 있다. 금속은 예를 들면, 철, 구리, 니켈, 알루미늄, 주석, 크롬, 아연 및 이들의 합금 중 어느 하나일 수 있다. The metal product may be any metal product that can be processed through electrolytic processing. The metal can be, for example, any one of iron, copper, nickel, aluminum, tin, chromium, zinc and alloys thereof.

이하에서는, 철을 예로 들어 금속제품의 전해가공시 용출된 금속의 침전을 설명하기로 한다. 철을 포함하는 제품은 전해가공시 제품표면에서 용출되어 전해액으로 유입된다. 전해액에서 철은 다음과 같이 수산화물로 변환된다. Hereinafter, the precipitation of the metal eluted during electrolytic processing of metal products will be described with iron as an example. Iron-containing products are eluted from the surface of the product during electrolytic processing and flow into the electrolyte. Iron in the electrolyte is converted to hydroxide as follows.

Fe -> Fe++ + 2e- Fe -> Fe ++ + 2e -

Fe++ + 2OH- -> Fe(OH)2 Fe ++ + 2OH -- > Fe (OH) 2

4Fe(OH)2 + 2H2O + O2 -> 4Fe(OH)3 4Fe (OH) 2 + 2H 2 O + O 2- > 4Fe (OH) 3

반응식 1에서 금속제품 속의 철은 2가의 이온으로 용출된다. 전해액에 존재하는 철은 반응식 2에서와 같이 전해액에 존재하는 수산화 이온과 반응하여 Fe(OH)2가 형성되고, Fe(OH)2는 다시 Fe(OH)3 형태의 수산화물로 변환된다. 변환된 수산화물은 슬러지 형태로 침전된다. 따라서, 슬러지 형태로 침전된 금속 수산화물을 억제 또는 제거하기 위하여 본 발명의 일실시예에 따른 전해가공용 전해액은 착화제 및 환원제 중 적어도 하나를 포함한다. In Scheme 1, iron in the metal product is eluted with divalent ions. Iron present in the electrolyte are react with the hydroxide ions present in the electrolyte, as in Scheme 2 to form an Fe (OH) 2, Fe (OH) 2 is converted back to Fe (OH) 3 in the form of hydroxide. The converted hydroxide precipitates in sludge form. Therefore, the electrolytic solution according to an embodiment of the present invention includes at least one of a complexing agent and a reducing agent in order to suppress or remove the metal hydroxide precipitated in the form of sludge.

착화제는 금속과 화학적으로 안정한 킬레이트 화합물을 형성한다. 따라서, 전해액에 금속을 이온상태의 안정한 형태로 존재하게 되어 침전 발생을 억제한다. The complexing agent forms a chemically stable chelate compound with the metal. Therefore, the metal is present in the electrolyte in a stable form in an ionic state to suppress precipitation.

착화제로는 금속을 착화시킬 수 있고, 전해가공에 유의한 영향을 미치지 않 는 착화제라면 어떤 것이든 사용될 수 있다. 예를 들어, 착화제로는 시트르산(Citric acid), 아세트산(Acetic acid), 옥살산(Oxalic acid), 풀브산(Fulvic acid), 숙신산(Succinic acid), 타르타르산(Tartaric acid), 락트산(Lactic acid), 글루콘산(Gluconic acid), 말레산(Maleic acid), 말산(Malic acid) 및 이들의 염 중 적어도 하나를 사용할 수 있다. As the complexing agent, any complexing agent capable of complexing a metal and having no significant effect on electrolytic processing can be used. For example, the complexing agent includes citric acid, acetic acid, oxalic acid, fulvic acid, succinic acid, tartaric acid, lactic acid, At least one of gluconic acid, maleic acid, maleic acid, and salts thereof may be used.

특히, 착화제는 아세트산일 수 있는데, 상세하게는 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid), 히드록시에틸에틸렌디아민트리아세트산(Hydroxyethylethylenediaminetriacetic acid), 및 니트릴로트리아세트산(Nitrilotriacetic acid)으로 구성된 군으로부터 선택된 적어도 하나일 수 있다. In particular, the complexing agent may be acetic acid, in particular at least one selected from the group consisting of ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, and nitrilotriacetic acid. Can be.

착화제의 농도는 전해가공시 전해액 내에서의 금속이온의 농도에 따라 달라진다. 일반적으로 착화제의 농도는 전해액에서 기능을 충분히 발현시키기 위하여 0.5 g/L이상 포함하는 것이 바람직하다. 또한, 전해액의 물성에 유의한 영향을 미치지 않게 하기 위하여 20g/L 이하로 포함되는 것이 바람직하다. 즉, 착화제는 전체 전해액의 부피를 기준으로 하여 0.5 g/L 내지 20 g/L인 것이 바람직하다. The concentration of the complexing agent depends on the concentration of metal ions in the electrolyte during electrolytic processing. In general, the concentration of the complexing agent is preferably included at least 0.5 g / L in order to fully express the function in the electrolyte. In addition, in order not to significantly affect the physical properties of the electrolyte solution, it is preferably included in 20g / L or less. That is, the complexing agent is preferably 0.5 g / L to 20 g / L based on the volume of the total electrolyte solution.

본 발명의 전해액은 환원제를 포함할 수 있다. 환원제는 금속수산화물에서 금속을 환원시켜 용해도가 보다 큰 형태의 금속수산화물을 생성한다. 따라서, 금속침전이 전해액 내에 용해된 상태를 유지할 수 있게 한다.The electrolyte solution of the present invention may include a reducing agent. The reducing agent reduces the metal in the metal hydroxide to produce a metal hydroxide of a higher solubility form. Therefore, it is possible to maintain the metal precipitated state in the electrolyte solution.

철수산화물을 예로 들면, Fe(OH)3의 경우, pH 2 이상에서 생성되어 광범위한 pH 범위에서 생성되나, Fe(OH)2는 pH 7 내지 pH 9의 범위에서 생성된다. 즉, Fe(OH)3보다 Fe(OH)2가 전해액 내에 생성되어 있는 것이 더 바람직하고, 따라서, Fe(OH)3-Fe3+를 상대적으로 용해도가 큰 Fe(OH)2-Fe2 +로 환원시키면 침전 발생을 억제할 수 있다. Take iron hydroxide as an example, in the case of Fe (OH) 3 is produced at a pH above 2 to produce a wide range of pH, while Fe (OH) 2 is produced in a range of pH 7 to pH 9. I.e., Fe (OH) 3 than Fe (OH) 2 is more preferable and that is generated in the electrolytic solution, and thus, Fe (OH) 3 is relatively large Fe (OH) a solubility -Fe 3+ 2 -Fe 2 + Reduction of this can suppress precipitation.

본 발명에 사용될 수 있는 환원제로는 금속을 환원시킬 수 있고 전해가공에 유의한 영향을 미치지 않는 환원제라면 어떤 것이든 사용될 수 있다. 예를 들면, 환원제는 L-아스코르브산(L-ascorbic acid), D-이소아스코르브산(D-isoascorbic acid) 및 이들의 염 중 적어도 하나를 사용할 수 있다. Reducing agents that can be used in the present invention may be used as long as the reducing agent can reduce the metal and does not significantly affect the electrolytic processing. For example, the reducing agent may use at least one of L-ascorbic acid, D-isoascorbic acid and salts thereof.

환원제의 농도 또한, 전해가공시 전해액 내에서의 금속이온의 농도에 따라 달라진다. 일반적으로 환원제의 농도는 전해액에서 기능을 충분히 발현시키기 위하여 0.5 g/L이상 포함하는 것이 바람직하다. 또한, 환원제는 전해액의 물성에 유의한 영향을 미치지 않게 하기 위하여 20g/L 이하로 포함되는 것이 바람직하다. 즉, 환원제는 전체 전해액의 부피를 기준으로 하여 0.5 g/L 내지 20 g/L인 것이 바람직하다. The concentration of the reducing agent also depends on the concentration of metal ions in the electrolyte during electrolytic processing. In general, the concentration of the reducing agent is preferably included 0.5 g / L or more in order to fully express the function in the electrolyte. In addition, the reducing agent is preferably included in 20g / L or less in order not to significantly affect the physical properties of the electrolyte solution. That is, the reducing agent is preferably 0.5 g / L to 20 g / L based on the volume of the total electrolyte solution.

본 발명의 일실시예에 따른 금속제품 전해가공용 전해액은 물성향상을 위하여 부식억제제, 계면활성제, 점도조절제, pH조절제 중 적어도 하나를 더 포함하는 것이 바람직하다. 부식억제제는 전극의 부식을 억제하기 위한 첨가제이다. 계면활성제, 점도조절제, pH 조절제는 전해액의 가공 특성을 향상시키기 위한 물성조절 첨가제이다. The electrolytic solution for metal products electrolytic processing according to an embodiment of the present invention preferably further includes at least one of a corrosion inhibitor, a surfactant, a viscosity regulator, and a pH regulator for improving physical properties. Corrosion inhibitors are additives for inhibiting corrosion of the electrode. Surfactants, viscosity modifiers, pH adjusters are physical property additives for improving the processing properties of the electrolyte.

본 발명의 일실시예에 따른 금속제품 전해가공용 전해액은 pH 범위가 pH 2 내지 pH 7일 수 있다. 전술한 바와 같이, 철수산화물을 예로 들면, 산화수가 더 큰 Fe(OH)3의 경우 pH 2 이상에서 생성되고, 산화수가 더 작도록 환원된 Fe(OH)2는 pH 7 내지 pH 9의 범위에서 생성된다. 따라서, 환원제에 의하여 환원된 Fe(OH)2는 pH 7 내지 pH 9의 범위에서 생성되므로 전해액의 pH 범위를 pH 2 내지 pH 7로 조절하면, Fe(OH)2의 침전을 더 억제할 수 있다. Electrolyte solution for electrolytic processing of metal products according to an embodiment of the present invention may have a pH range of pH 2 to pH 7. As described above, for example, iron hydroxide, Fe (OH) 3 having a higher oxidation number is produced at pH 2 or higher, and Fe (OH) 2 reduced to have a lower oxidation number is in the range of pH 7 to pH 9. Is generated. Therefore, since Fe (OH) 2 reduced by the reducing agent is generated in the range of pH 7 to pH 9, by adjusting the pH range of the electrolyte solution to pH 2 to pH 7, it is possible to further suppress the precipitation of Fe (OH) 2 . .

[실시예] EXAMPLE

이하의 실시예에서는, 본 발명의 일실시예에 따라 전해가공 전해액을 제조하고, 이들 전해액의 금속침전물 제거효과를 확인하기 위하여 금속이온(철이온)을 첨가하여 그 제거율을 산출하였다. In the following examples, electrolytically processed electrolyte solutions were prepared according to one embodiment of the present invention, and metal ions (iron ions) were added to calculate the removal rate in order to confirm the effect of removing metal precipitates from these electrolyte solutions.

먼저, 전해액을 제조하기 위하여, 용매로서 순수에 무기염으로서 질산나트 륨(NaNO3)을 용해시켜 150g/L 질산나트륨수용액을 제조하였다. 금속제품을 가공하지 않고, 일정량의 질산제2철(Fe(NO3)3.12H2O)을 첨가하여 전해액 내에 일정농도의 철이온을 포함시킨다. 전해액은 0.1M 수산화나트륨(NaOH)용액을 이용하여 pH를 중성으로 조절한다. 그 결과 육안으로 확인할 수 있는 황토색 침전물이 확인되었다. First, in order to prepare an electrolyte, sodium nitrate (NaNO 3 ) was dissolved as an inorganic salt in pure water as a solvent to prepare an aqueous solution of 150 g / L sodium nitrate. A certain amount of ferric nitrate (Fe (NO 3 ) 3 .12H 2 O) is added without processing the metal product to include a certain concentration of iron ions in the electrolyte. The electrolyte is adjusted to neutral pH using 0.1 M sodium hydroxide (NaOH) solution. As a result, an ocher-colored precipitate that can be seen with the naked eye was confirmed.

전해액에 착화제와 환원제 역할을 할 수 있는 첨가제를 일정량씩 첨가하면서 침전물이 제거되는지를 관찰하고, ICP-AES(유도결합플라즈마 원자발광분석기)를 이용하여 철 농도 변화를 측정하였다. 실험에 사용한 착화제는 EDTA, NTA, 시트르산 및 HEDTA이 사용되었고, 환원제로는 L-아스코르브산, D-아스코르브산이 사용되었다.It was observed whether the precipitate was removed by adding a certain amount of an additive that can act as a complexing agent and a reducing agent in the electrolyte, and the iron concentration change was measured by using ICP-AES (inductively coupled plasma atomic emission spectrometer). The complexing agents used in the experiments were EDTA, NTA, citric acid and HEDTA, and L-ascorbic acid and D-ascorbic acid were used as reducing agents.

침전물 제거율은 최초 기준 전해액에 첨가한 철 농도와 침전이 아닌 전해액에 용해되어 있는 철 농도를 비교하는 방법으로 계산하였다. 즉 초기 침전물이 생성된 기준 전해액을 원심 분리시켜 침전과 분리된 상등액의 철 농도를 측정하면 대부분의 철은 수화물 형태로 침전되어 있어 침전물과 분리된 전해액 상등액에서는 철이 거의 검출이 되지 않는다. The precipitate removal rate was calculated by comparing the iron concentration added to the initial reference electrolyte with the iron concentration dissolved in the electrolyte rather than precipitation. That is, when the iron concentration of the supernatant separated from the precipitate was measured by centrifuging the reference electrolyte in which the initial precipitate was formed, most of the iron was precipitated in the form of a hydrate, and almost no iron was detected in the electrolyte supernatant separated from the precipitate.

반면 침전물 제거를 위한 착화제나 환원제를 기준 전해액에 첨가하게 되면, 침전물에 포함되어 있는 철 성분이 전해액에 용해되어 침전물은 제거되고, 전해액 의 철 농도는 증가하게 된다. 최초 전해액에 첨가한 철 농도와 첨가제 첨가 후 전해액의 철 농도를 비교함으로 전해액의 침전제거율을 계산하였다. 첨가된 착화제 및 환원제의 종류와 양에 따른 침전제거율이 이하의 표1 내지 표 3에 나타나 있다. On the other hand, when a complexing agent or a reducing agent for removing the precipitate is added to the reference electrolyte, the iron component contained in the precipitate is dissolved in the electrolyte, and the precipitate is removed, and the iron concentration of the electrolyte is increased. The precipitation removal rate of the electrolyte was calculated by comparing the iron concentration added to the initial electrolyte and the iron concentration of the electrolyte after the additive was added. Precipitation removal rates according to the type and amount of the complexing agent and the reducing agent added are shown in Tables 1 to 3 below.

실시예Example 착화제Complexing agent 농도 (g/L)Concentration (g / L) 철 농도(mg/L)Iron concentration (mg / L) 침전제거율 (%)Precipitation Removal Rate (%) 첨가량Amount 측정량Measurand 실시예 1Example 1 EDTAEDTA 1One 808808 156156 1919 실시예 2Example 2 EDTAEDTA 33 808808 594594 7474 실시예 3Example 3 EDTAEDTA 55 808808 748748 9393 실시예 4Example 4 EDTAEDTA 77 808808 762762 9494 실시예 5Example 5 HEDTAHEDTA 1One 808808 126126 1616 실시예 6Example 6 HEDTAHEDTA 33 808808 460460 5757 실시예 7Example 7 HEDTAHEDTA 55 808808 701701 87 87 실시예 8Example 8 HEDTAHEDTA 77 808808 732732 91 91 실시예 9Example 9 NTANTA 1One 808808 170170 21 21 실시예 10Example 10 NTANTA 33 808808 711711 88 88 실시예 11Example 11 NTANTA 55 808808 754754 93 93 실시예 12Example 12 NTANTA 77 808808 754754 93 93 실시예 13Example 13 시트르산Citric acid 1One 808808 196196 24 24 실시예 14Example 14 시트르산Citric acid 33 808808 662662 82 82 실시예 15Example 15 시트르산Citric acid 55 808808 772772 95 95 실시예 16Example 16 시트르산Citric acid 77 808808 753753 93 93

실시예 1 내지 실시예 16에서는 전해액에 착화제로서, EDTA, HEDTA, NTA, 및시트르산이 각각 1 g/L 내지 7 g/L 범위에서 포함되어 있다.In Examples 1 to 16, EDTA, HEDTA, NTA, and citric acid were included in the range of 1 g / L to 7 g / L as complexing agents in the electrolyte solution, respectively.

표 1을 참조하면, 실시예 1 내지 실시예 16에서와 같이 전해액이 착화제를 포함하는 경우, 철이 제거되었음을 확인할 수 있었다. 착화제의 농도가 높아질수록 더 높은 침전제거율이 나타났다.Referring to Table 1, when the electrolyte solution contains a complexing agent as in Examples 1 to 16, it was confirmed that iron was removed. Higher concentrations of complexing agents resulted in higher precipitation removal rates.

실시예Example 환원제reducing agent 농도 (g/L)Concentration (g / L) 철 농도(mg/L)Iron concentration (mg / L) 침전제거율 (%)Precipitation Removal Rate (%) 첨가량Amount 측정량Measurand 실시예 17Example 17 L-아스코르브산L-ascorbic acid 1One 808808 364364 45 45 실시예 18Example 18 L-아스코르브산L-ascorbic acid 33 808808 682682 84 84 실시예 19Example 19 L-아스코르브산L-ascorbic acid 55 808808 690690 85 85 실시예 20Example 20 L-아스코르브산L-ascorbic acid 77 808808 766766 95 95 실시예 21Example 21 D-아스코르브산D-ascorbic acid 1One 808808 155155 19 19 실시예 22Example 22 D-아스코르브산D-ascorbic acid 33 808808 630630 78 78 실시예 23Example 23 D-아스코르브산D-ascorbic acid 55 808808 764764 95 95 실시예 24Example 24 D-아스코르브산D-ascorbic acid 77 808808 776776 96 96

실시예 17 내지 24에서는 전해액에 환원제로서, L-아스코르브산 및 D-아스코르브산이 각각 1 g/L 내지 7 g/L 범위에서 포함되어 있다. In Examples 17 to 24, L-ascorbic acid and D-ascorbic acid were included in the electrolyte as a reducing agent in the range of 1 g / L to 7 g / L, respectively.

표 2를 참조하면, 실시예 17 내지 24에서와 같이 전해액이 환원제를 포함하는 경우, 철이 제거되었으며 환원제의 농도가 높을수록 침전제거율이 높게 나타났다. Referring to Table 2, as in Examples 17 to 24, when the electrolyte solution contains a reducing agent, iron was removed, and the higher the concentration of the reducing agent, the higher the precipitation removal rate.

실시예Example 착화제Complexing agent 환원제reducing agent 농도 (g/L)Concentration (g / L) 철 농도(mg/L)Iron concentration (mg / L) 침전제거율 (%)Precipitation Removal Rate (%) 첨가량Amount 측정량Measurand 실시예 25Example 25 NTANTA 1One 882882 789789 89 89 L-아스코르브산L-ascorbic acid 1One 실시예 26Example 26 NTANTA 1One 882882 818818 9393 L-아스코르브산L-ascorbic acid 33 실시예 27Example 27 NTANTA 1One 882882 816 816 93 93 L-아스코르브산L-ascorbic acid 55 실시예 28Example 28 NTANTA 33 882882 835835 95 95 L-아스코르브산L-ascorbic acid 1One 실시예 29Example 29 NTANTA 33 882882 853853 97 97 L-아스코르브산L-ascorbic acid 33 실시예 30Example 30 NTANTA 33 882882 860860 9898 L-아스코르브산L-ascorbic acid 55 실시예 31Example 31 NTANTA 55 882882 826826 9494 L-아스코르브산L-ascorbic acid 1One 실시예 32Example 32 NTANTA 55 882882 839839 9595 L-아스코르브산L-ascorbic acid 33 실시예 33Example 33 NTANTA 55 882882 832832 9494 L-아스코르브산L-ascorbic acid 55

실시예 25 내지 실시예 33의 전해액에는 착화제로서 NTA, 환원제로서 L-아스코르브산이 그 농도를 달리하며 포함되어 있다. In the electrolyte solutions of Examples 25 to 33, NTA as a complexing agent and L-ascorbic acid as a reducing agent were contained at different concentrations.

실시예 25 내지 실시예 33과 같이 착화제 및 환원제를 함께 전해액에 첨가한 경우, 89% 이상의 침전제거율이 산출되었다. 특히, 실시예 25에서는 NTA 및 L-아스코르브산이 각각 1g/L 씩 첨가되어 비교적 소량이 첨가되었음에도 불구하고 89%의 높은 침전제거율을 나타내었다. When the complexing agent and the reducing agent were added together to the electrolyte solution as in Examples 25 to 33, a precipitation removal rate of 89% or more was calculated. In particular, in Example 25, NTA and L-ascorbic acid were added 1 g / L, respectively, and showed a high precipitation removal rate of 89% even though a relatively small amount was added.

표 1 및 표 2를 참조하면, 실시예 1 내지 실시예 16에서와 같이 전해액이 착화제를 포함하는 경우와 실시예 17 내지 24에서와 같이 전해액이 환원제를 포함하는 경우, 철 침전물이 제거되었으며 각각의 착화제 및 환원제의 농도가 높을수록 침전제거율이 높게 나타났다. Referring to Table 1 and Table 2, when the electrolyte solution contains a complexing agent as in Examples 1 to 16 and when the electrolyte solution contains a reducing agent as in Examples 17 to 24, iron precipitates were removed, respectively. The higher the concentration of complexing agent and reducing agent, the higher the precipitation removal rate.

따라서, 금속제품의 전해가공용 전해액에 착화제 및 환원제 중 어느 하나가 포함되는 경우, 철과 같이 용출된 금속이온의 침전제거가 높은 효율로 가능함을 확인할 수 있었다. 특히, 각각의 실험결과에서, 침전이 90% 이상 제거되기 위하여는 착화제 또는 환원제가 5g/L 이상 포함된 경우 가능하였다. Therefore, when any one of the complexing agent and the reducing agent is included in the electrolytic solution for metalworking, it was confirmed that precipitation of the metal ions eluted, such as iron, is possible with high efficiency. In particular, in each of the experimental results, in order to remove 90% or more of the precipitation, it was possible when the complexing agent or the reducing agent included 5g / L or more.

실시예 25 내지 실시예 33과 같이 착화제 및 환원제를 함께 전해액에 첨가한 경우는 실시예 1 내지 실시예 24에서와 같이 착화제 및 환원제가 단독으로 사용되는 경우보다 더 적은 양을 사용하여도 동등한 수준의 침전제거율을 얻을 수 있었다. When the complexing agent and the reducing agent are added together to the electrolyte solution as in Examples 25 to 33, even when the amount of the complexing agent and the reducing agent is used alone as in Examples 1 to 24, A level of precipitation removal rate could be obtained.

본 실시예에서는 철을 예로 들어 실시하고 그 결과를 확인하였으나, 철 이외의 금속, 예를 들면, 구리, 니켈, 알루미늄, 주석, 크롬, 또는 아연과 같은 금속 및 이들의 합금으로 된 제품의 경우에도 착화제 및 환원제의 금속에의 작용면에서 철제품의 경우와 유사하게 금속침전물을 제거할 수 있을 것이다. In the present embodiment, the example of iron was performed and the results were confirmed. However, even in the case of a product other than iron, for example, a metal such as copper, nickel, aluminum, tin, chromium, or zinc, and an alloy thereof. In terms of the action of the complexing agent and the reducing agent on the metal, metal precipitates may be removed similarly to iron products.

본 발명은 상술한 실시형태에 의해 한정되는 것이 아니라, 첨부된 청구범위에 의해 해석되어야 한다. 또한, 본 발명에 대하여 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당해 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.The present invention should not be limited by the above-described embodiments, but should be construed by the appended claims. In addition, it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible within the scope of the present invention without departing from the technical spirit of the present invention.

Claims (12)

용매에 무기염을 포함하고, 착화제 및 환원제 중 적어도 하나를 포함하며, An inorganic salt in the solvent, at least one of a complexing agent and a reducing agent, 상기 착화제는 시트르산(Citric acid), 아세트산(Acetic acid), 옥살산(Oxalic acid), 풀브산(Fulvic acid), 숙신산(Succinic acid), 타르타르산(Tartaric acid), 락트산(Lactic acid), 글루콘산(Gluconic acid), 말레산(Maleic acid), 말산(Malic acid) 및 이들의 염으로 구성된 군으로부터 선택되는 하나 이상이며,The complexing agent is citric acid (Acetic acid), acetic acid (Acetic acid), oxalic acid (Oxalic acid), Fulvic acid (Fulvic acid), Succinic acid (Succinic acid), tartaric acid (Tartaric acid), lactic acid (glucoic acid) ( One or more selected from the group consisting of Gluconic acid, Maleic acid, Malic acid, and salts thereof, 상기 환원제는 L-아스코르브산(L-ascorbic acid), D-이소아스코르브산(D-isoascorbic acid) 및 이들의 염으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 금속제품 전해가공용 전해액.The reducing agent is at least one selected from the group consisting of L-ascorbic acid (L-ascorbic acid), D-isoascorbic acid (D-isoascorbic acid) and salts thereof. 제1항에 있어서, The method of claim 1, 상기 금속은 철, 구리, 니켈, 알루미늄, 주석, 크롬, 아연 및 이들의 합금 중 어느 하나인 것을 특징으로 하는 금속제품 전해가공용 전해액.Wherein the metal is iron, copper, nickel, aluminum, tin, chromium, zinc and any one of these alloys, the electrolytic solution for metal products electrolytic processing. 제1항에 있어서, The method of claim 1, 상기 용매는 순수인 것을 특징으로 하는 금속제품 전해가공용 전해액.Electrolyte solution for electrolytic processing of metal products, characterized in that the solvent is pure water. 제1항에 있어서, The method of claim 1, 상기 무기염은 NaNO3, NaCl, NaClO4, Na2SO4, KNO3, KCl, KClO4, K2SO4, LiNO3, LiCl, LiClO4, 및 Li2SO4로 구성된 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 금속제품 전해가공용 전해액. The inorganic salt is at least one selected from the group consisting of NaNO 3 , NaCl, NaClO 4 , Na 2 SO 4 , KNO 3 , KCl, KClO 4 , K 2 SO 4 , LiNO 3 , LiCl, LiClO 4 , and Li 2 SO 4 Electrolyte solution for electrolytic processing of metal products, characterized in that the. 제1항에 있어서, The method of claim 1, 상기 무기염의 농도는 전체 전해액의 부피를 기준으로 하여 100g/L 내지 500g/L인 것을 특징으로 하는 금속제품 전해가공용 전해액.The concentration of the inorganic salt is an electrolytic solution for metal product electrolytic processing, characterized in that from 100g / L to 500g / L based on the volume of the total electrolyte solution. 삭제delete 제1항에 있어서, The method of claim 1, 상기 아세트산은 The acetic acid 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid), 히드록시에틸에틸렌디아민트리아세트산(Hydroxyethylethylenediaminetriacetic acid), 및 니트릴로트리아세트산(Nitrilotriacetic acid)으로 구성된 군으로부터 선택된 하나 이상인 것을 특징으로 하는 금속제품 전해가공용 전해액.Electrolyte solution for electrolytic processing of metal products, characterized in that at least one selected from the group consisting of ethylenediaminetetraacetic acid (Ethylenediaminetetraacetic acid), hydroxyethylethylenediaminetriacetic acid, and nitrilotriacetic acid. 제1항에 있어서, The method of claim 1, 상기 착화제의 농도는 전체 전해액의 부피를 기준으로 하여 0.5 g/L 내지 20 g/L인 것을 특징으로 하는 금속제품 전해가공용 전해액.The concentration of the complexing agent is an electrolytic solution for metal product electrolytic processing, characterized in that 0.5 to 20 g / L based on the volume of the total electrolyte. 삭제delete 제1항에 있어서, The method of claim 1, 상기 환원제의 농도는 전체 전해액의 부피를 기준으로 하여 0.5 g/L 내지 20 g/L인 것을 특징으로 하는 금속제품 전해가공용 전해액.The concentration of the reducing agent is an electrolytic solution for metal products electrolytic processing, characterized in that 0.5 to 20 g / L based on the total volume of the electrolyte. 제1항에 있어서, The method of claim 1, 부식억제제, 계면활성제, 점도조절제, pH조절제 중 적어도 하나를 더 포함하는 것을 특징으로 하는 금속제품 전해가공용 전해액.Electrolytic solution for a metal product electrolytic processing, characterized in that it further comprises at least one of a corrosion inhibitor, a surfactant, a viscosity regulator, a pH regulator. 제1항에 있어서, The method of claim 1, pH 범위가 pH 2 내지 pH 7인 것을 특징으로 하는 금속제품 전해가공용 전해액.Electrolyte solution for electrolytic processing of metal products, characterized in that the pH range is pH 2 to pH 7.
KR1020070123791A 2007-11-30 2007-11-30 Electrolyte for electro-chemical machining of metal product KR100916479B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070123791A KR100916479B1 (en) 2007-11-30 2007-11-30 Electrolyte for electro-chemical machining of metal product
JP2008258933A JP2009131949A (en) 2007-11-30 2008-10-03 Electrolyte for electrochemical machining of metal product
US12/245,181 US20090139875A1 (en) 2007-11-30 2008-10-03 Electrolyte for electro-chemical machining of metal product
CNA2008101667553A CN101444860A (en) 2007-11-30 2008-10-23 Electrolyte for electro-chemical machining of metal product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070123791A KR100916479B1 (en) 2007-11-30 2007-11-30 Electrolyte for electro-chemical machining of metal product

Publications (2)

Publication Number Publication Date
KR20090056577A KR20090056577A (en) 2009-06-03
KR100916479B1 true KR100916479B1 (en) 2009-09-08

Family

ID=40674629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070123791A KR100916479B1 (en) 2007-11-30 2007-11-30 Electrolyte for electro-chemical machining of metal product

Country Status (4)

Country Link
US (1) US20090139875A1 (en)
JP (1) JP2009131949A (en)
KR (1) KR100916479B1 (en)
CN (1) CN101444860A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492009B1 (en) * 2009-08-25 2013-07-23 Wd Media, Inc. Electrochemical etching of magnetic recording layer
KR101334877B1 (en) * 2009-09-18 2013-11-29 주식회사 아모그린텍 Method and Apparatus for Manufacturing Metal Nano-Particles Using Alternating Current Electrolysis
WO2011063353A2 (en) * 2009-11-23 2011-05-26 Metcon, Llc Electrolyte solution and electropolishing methods
US8580103B2 (en) 2010-11-22 2013-11-12 Metcon, Llc Electrolyte solution and electrochemical surface modification methods
EP2756117B1 (en) * 2011-09-15 2018-08-22 Ensitech IP Pty Ltd Weld cleaning fluid
CN102628176A (en) * 2012-04-21 2012-08-08 广东白云国际科学研究院有限公司 Electrolyte capable of removing nuclear pollution and movable cathode electrochemical cleaning device
CN102699454A (en) * 2012-05-07 2012-10-03 天津大学 Electrolytic machining system and method for foamed aluminium buffering and energy adsorbing material
JP2013251935A (en) * 2012-05-30 2013-12-12 Denso Corp Actuator
CN103147114B (en) * 2013-01-07 2016-05-11 中航电测仪器股份有限公司 Foil strain gauge resistance trimming method
CN105081487B (en) * 2014-05-21 2019-01-22 通用电气公司 Electrolyte for electrical-chemistry method and the method for electrochemical machining using the electrolyte
CN104328476B (en) * 2014-09-16 2016-09-28 邯郸学院 A kind of electrolyte and the method removing silverware surface mottle with this electrolyte
JP6610767B2 (en) 2016-02-18 2019-11-27 日本製鉄株式会社 Electrolytic etching apparatus and method for extracting metal compound particles
JP6690699B2 (en) 2016-02-18 2020-04-28 日本製鉄株式会社 Method for extracting metal compound particles, method for analyzing metal compound particles, and electrolytic solution used therein
JP6752626B2 (en) * 2016-05-31 2020-09-09 株式会社カネカ Method for manufacturing electropolishing liquid and electropolished metal molded product
CN109420811A (en) * 2017-08-31 2019-03-05 深圳市水佳鑫科技有限公司 Hard metal boring method and equipment
DE102018208299A1 (en) * 2018-05-25 2019-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for the electrochemical machining of a material
EP3899110B1 (en) * 2018-12-17 2022-10-05 Safran Aircraft Engines Electrolyte for electrochemical machining of gamma-gamma prime type nickel-based superalloys
FR3089836B1 (en) * 2018-12-17 2021-02-19 Safran Aircraft Engines Electrolyte for the electrochemical machining of nickel-based superalloys type γ-γ "
CN111197173B (en) * 2020-02-07 2022-03-18 复旦大学 Electroplating preparation method of non-noble metal single-atom-doped two-dimensional material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256419A (en) * 1989-03-30 1990-10-17 Johnson Kk Electrochemical machining fluid
JPH0542414A (en) * 1991-08-08 1993-02-23 Sodick Co Ltd Control device for water system machining liquid for electric discharge machine
KR19980024807A (en) * 1996-09-20 1998-07-06 이데이 노부유끼 Optics and electrolytes
JPH11506052A (en) * 1996-03-27 1999-06-02 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method for removing iron and chromium compounds from aqueous electrolyte solutions and use of this method in electrochemical machining

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453288A (en) * 1965-10-15 1969-07-01 Synvar Ass Electron spin resonance labels for biomolecules
JPS62208823A (en) * 1986-03-07 1987-09-14 Mitsubishi Heavy Ind Ltd Electrochemical machining liquid
JPH07316899A (en) * 1994-05-17 1995-12-05 Yuken Kogyo Kk Electrolyte composition for electrochemical machining
DE19534277B4 (en) * 1995-09-15 2006-02-09 Fritz-Herbert Frembgen Method and apparatus for purifying the electrolyte of an electrochemical machining process
US6178679B1 (en) * 1996-02-13 2001-01-30 David M. Dundorf Weather-proof readerboard signage system
JP2003260618A (en) * 2002-03-06 2003-09-16 Sankyo Seiki Mfg Co Ltd Electro-chemical machining method, and electro-chemical machine
JP2006013177A (en) * 2004-06-25 2006-01-12 Ebara Corp Apparatus and method for electrolytic processing
JP2005288580A (en) * 2004-03-31 2005-10-20 Ebara Corp Electrochemical machining method and device
US7998335B2 (en) * 2005-06-13 2011-08-16 Cabot Microelectronics Corporation Controlled electrochemical polishing method
US20080202552A1 (en) * 2006-12-07 2008-08-28 Lawrence Bernard Kool Method for selectively removing coatings from metal substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256419A (en) * 1989-03-30 1990-10-17 Johnson Kk Electrochemical machining fluid
JPH0542414A (en) * 1991-08-08 1993-02-23 Sodick Co Ltd Control device for water system machining liquid for electric discharge machine
JPH11506052A (en) * 1996-03-27 1999-06-02 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method for removing iron and chromium compounds from aqueous electrolyte solutions and use of this method in electrochemical machining
KR19980024807A (en) * 1996-09-20 1998-07-06 이데이 노부유끼 Optics and electrolytes

Also Published As

Publication number Publication date
KR20090056577A (en) 2009-06-03
US20090139875A1 (en) 2009-06-04
CN101444860A (en) 2009-06-03
JP2009131949A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
KR100916479B1 (en) Electrolyte for electro-chemical machining of metal product
JP4091518B2 (en) Electroless deposition of metals
JP4419905B2 (en) Electrolytic phosphate chemical treatment method
KR102639867B1 (en) Method for depositing tin or tin alloy on tin plating bath and substrate surfaces
EP2329062B1 (en) Cyanide free electrolyte composition for the galvanic deposition of a copper layer
TWI669296B (en) Composition and method for electrodepositing gold containing layers
KR100971555B1 (en) High concentration ni-flash plating composition for pre-treatment of cold-rolled steel sheet in electrolytic galvanized iron plating process
TW201331413A (en) Reducing electroless silver plating solution and reducing electroless silver plating method
TWI385275B (en) Method of electrolytically dissolving nickel into electroless nickel plating solutions
CN110446802B (en) Method for the electrolytic deposition of a chromium or chromium alloy layer on at least one substrate
Nakano et al. Electrodeposition behavior of Zn–Co alloys from an alkaline zincate solution containing triethanolamine
Roev et al. Zinc–nickel electroplating from alkaline electrolytes containing amino compounds
JP2008285732A (en) Nickel plating solution, electroplating method using the same, and chip component with nickel-plated film formed by the electroplating method
JP4992434B2 (en) Gold plating solution and gold plating method
EP3725919A1 (en) Trivalent chromium plating solution and trivalent chromium plating method using same
CN115216828A (en) Novel environment-friendly electrolytic deplating liquid and deplating method thereof
KR890001106B1 (en) High-speed silver plating
KR101264089B1 (en) Ni-Flash plating slurry composition comprising nickel hydroxide
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
JPH11229176A (en) Tungsten alloy electroplating bath and electroplating method
KR20210034979A (en) Method and apparatus for reducing ferric ion in sulfuric acid bath for eletroplating iron
US8801916B2 (en) Recovery method of nickel from spent electroless nickel plating solutions by electrolysis
US5814202A (en) Electrolytic tin plating process with reduced sludge production
US3157586A (en) Copper pyrophosphate electroplating baths
WO2021122932A1 (en) Electroplating composition and method for depositing a chromium coating on a substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 10