JP2013251935A - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
JP2013251935A
JP2013251935A JP2012122825A JP2012122825A JP2013251935A JP 2013251935 A JP2013251935 A JP 2013251935A JP 2012122825 A JP2012122825 A JP 2012122825A JP 2012122825 A JP2012122825 A JP 2012122825A JP 2013251935 A JP2013251935 A JP 2013251935A
Authority
JP
Japan
Prior art keywords
conductive polymer
electrolytic solution
antioxidant
actuator
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012122825A
Other languages
Japanese (ja)
Inventor
Kodai Takeda
広大 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012122825A priority Critical patent/JP2013251935A/en
Publication of JP2013251935A publication Critical patent/JP2013251935A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide maximal suppression of time-series reduction in the expansion/contraction ratio in an actuator where an electroconductive polymer immersed in an electrolyte is expanded or contracted by applying a voltage to the electroconductive polymer.SOLUTION: An actuator comprises an electroconductive polymer 10 and an electrolyte 20 where the electroconductive polymer 10 is immersed. The electrolyte 20 dissolves an antioxidant being soluble in an electrolyte 20 and preventing oxidation of the electroconductive polymer 10, and the electroconductive polymer 10 is expanded or contracted by voltage application to the electroconductive polymer 10 in the electrolyte 20.

Description

本発明は、電解液中に浸漬された導電性高分子に、電圧を印加することにより当該導電性高分子を伸縮させるアクチュエータに関する。   The present invention relates to an actuator for expanding and contracting a conductive polymer immersed in an electrolytic solution by applying a voltage to the conductive polymer.

従来より、この種のアクチュエータとしては、導電性高分子と、当該導電性高分子が浸漬される電解液と、を備え、当該電解液中にて導電性高分子に電圧印加することによって、導電性高分子を伸縮させるようにしたものが提案されている(非特許文献1参照)。   Conventionally, as this type of actuator, a conductive polymer and an electrolytic solution in which the conductive polymer is immersed are provided. By applying voltage to the conductive polymer in the electrolytic solution, The thing which made the elastic polymer expand and contract has been proposed (see Non-Patent Document 1).

金藤敬一、「人工筋肉の実現を目指したソフトアクチュエータ開発の最前線」、応用物理、2007年、第76巻、第12号、p1356−1361Keiichi Kanto, “Frontier of Soft Actuator Development for Realizing Artificial Muscle”, Applied Physics, 2007, Vol. 76, No. 12, p1356-1361

本発明者は、上記特許文献1に記載のアクチュエータについて試作等を行い、検討した。その結果、従来のものでは、アクチュエータの伸縮率が時系列的に低下してしまうことがわかった(後述の図5参照)。   The present inventor made and studied a prototype of the actuator described in Patent Document 1. As a result, it was found that the expansion / contraction rate of the actuator was lowered in time series in the conventional one (see FIG. 5 described later).

本発明は、上記問題に鑑みてなされたものであり、電解液中に浸漬された導電性高分子に、電圧を印加することにより当該導電性高分子を伸縮させるアクチュエータにおいて、伸縮率の時系列的な低下を極力抑制することを目的とする。   The present invention has been made in view of the above problems, and in an actuator that expands and contracts the conductive polymer by applying a voltage to the conductive polymer immersed in the electrolytic solution, the time series of the expansion rate The purpose is to suppress the general decline as much as possible.

上記目的を達成するため、本発明者は、導電性高分子の酸化による劣化が膜の伸縮率の時系列的な低下をもたらしていると考えた。そこで、電解液に酸化防止剤を溶解させてやれば、この酸化防止剤が膜全体に行き渡り、膜中の導電性高分子の酸化を防止できると考えた。   In order to achieve the above object, the present inventor considered that the deterioration due to the oxidation of the conductive polymer caused a time-series decrease in the expansion / contraction rate of the film. Therefore, it was considered that if an antioxidant is dissolved in the electrolyte, the antioxidant spreads over the entire film, preventing oxidation of the conductive polymer in the film.

本発明は、上記着目点に鑑みて実験的に創出されたものであり、請求項1に記載の発明では、導電性高分子(10)と、導電性高分子が浸漬される電解液(20)と、を備え、電解液中には、電解液に可溶性であって導電性高分子の酸化を防止する酸化防止剤が溶解しており、電解液中にて導電性高分子に電圧印加することによって、導電性高分子を伸縮させるようにしたことを特徴とするアクチュエータが提供される。   The present invention has been created experimentally in view of the above-mentioned points of interest. In the invention according to claim 1, the conductive polymer (10) and the electrolytic solution in which the conductive polymer is immersed (20 In the electrolytic solution, an antioxidant that is soluble in the electrolytic solution and prevents oxidation of the conductive polymer is dissolved, and a voltage is applied to the conductive polymer in the electrolytic solution. Thus, an actuator characterized in that the conductive polymer is expanded and contracted is provided.

それによれば、酸化防止剤の酸化防止効果によって、後述の図6等に示されるように、従来に比べて、伸縮率の時系列的な低下を大幅に抑制することができる。   According to this, due to the antioxidant effect of the antioxidant, as shown in FIG.

ここで、酸化防止剤としては、アスコルビン酸、エリソルビン酸、グルタチオン、リポ酸、レスベラトロール、セサモールおよびそれらの塩の中から選択された1種以上のものが挙げられ、特に、アスコルビン酸またはエリソルビン酸が好ましい。   Here, examples of the antioxidant include at least one selected from ascorbic acid, erythorbic acid, glutathione, lipoic acid, resveratrol, sesamol, and salts thereof, and in particular, ascorbic acid or erythorbine Acid is preferred.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

本発明の実施形態にかかるアクチュエータおよびその伸縮率の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the actuator concerning the embodiment of this invention, and its expansion-contraction rate. 実施形態にかかるアクチュエータにおける酸化防止剤であるアスコルビン酸の分子構造を示す図である。It is a figure which shows the molecular structure of ascorbic acid which is antioxidant in the actuator concerning embodiment. 実施形態にかかるアクチュエータにおける酸化防止剤であるエリソルビン酸の分子構造を示す図である。It is a figure which shows the molecular structure of erythorbic acid which is antioxidant in the actuator concerning embodiment. 実施例1のアクチュエータの伸縮率の時間変化を示すグラフである。5 is a graph showing a change with time of an expansion / contraction rate of the actuator of Example 1. 比較例1のアクチュエータの伸縮率の時間変化を示すグラフである。10 is a graph showing a change with time of an expansion / contraction rate of the actuator of Comparative Example 1; 実施例1〜5および比較例1の伸縮率の測定結果を示す図表である。It is a graph which shows the measurement result of the expansion-contraction rate of Examples 1-5 and Comparative Example 1.

以下、本発明の実施形態について図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示されるように、本実施形態のアクチュエータは、導電性高分子10と、導電性高分子10が浸漬される電解液20と、を備え、電解液20中にて導電性高分子10に電圧印加することによって、導電性高分子10を伸縮させるようにしたものである。   As shown in FIG. 1, the actuator of this embodiment includes a conductive polymer 10 and an electrolytic solution 20 in which the conductive polymer 10 is immersed, and the conductive polymer 10 is contained in the electrolytic solution 20. By applying a voltage to the conductive polymer 10, the conductive polymer 10 is expanded and contracted.

ここで、導電性高分子10は、膜状のものであり、たとえば膜厚5〜100μmのものである。この導電性高分子10は、ポリピロール、ポリアニリン、ポリチオフェンまたはこれらの類縁体よりなり、たとえばポリピロールやポリチオフェンよりなる場合は、電解重合により形成され、ポリアニリンよりなる場合は、電解重合または塗布法により形成される。   Here, the conductive polymer 10 is in the form of a film, for example, having a film thickness of 5 to 100 μm. The conductive polymer 10 is made of polypyrrole, polyaniline, polythiophene or an analog thereof. For example, when made of polypyrrole or polythiophene, it is formed by electrolytic polymerization, and when made of polyaniline, it is formed by electrolytic polymerization or a coating method. The

電解液20は、容器30に蓄えられている。そして、この電解液20に導電性高分子10が浸漬されている。この電解液20は、ドーパント(つまり電解質)と溶媒とよりなる。ドーパントは導電性高分子10に電子を付与するものであり、このドーパントが溶媒に溶けたものが電解液20である。たとえば、溶媒100wt%に対して、ドーパントは0.1wt%以上溶解している。   The electrolytic solution 20 is stored in the container 30. The conductive polymer 10 is immersed in the electrolytic solution 20. The electrolytic solution 20 includes a dopant (that is, an electrolyte) and a solvent. The dopant imparts electrons to the conductive polymer 10, and the electrolyte solution 20 is obtained by dissolving this dopant in a solvent. For example, the dopant is dissolved by 0.1 wt% or more with respect to 100 wt% of the solvent.

ここで、ドーパントとしては、トリフルオロメタンスルホン酸、または、その他の強酸、もしくはこれら酸の塩などが挙げられる。溶媒としては、水またはイオン性液体(たとえば1−エチル−3−メチルイミダゾリウムトリフルオロメタンスルホネートなど)が挙げられる。   Here, examples of the dopant include trifluoromethanesulfonic acid, other strong acids, or salts of these acids. Examples of the solvent include water or an ionic liquid (for example, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and the like).

さらに、この電解液20中には、電解液20に可溶性であって導電性高分子10の酸化を防止する酸化防止剤が溶解している。ここで、酸化防止剤が可溶性であるとは、具体的には、電解液100wt%に対して、酸化防止剤が0.1wt%以上溶解することに相当する。なお、この0.1wt%以上であって妥当な範囲であれば、電解液20に対する酸化防止剤の濃度は限定されない。   Further, an antioxidant that is soluble in the electrolytic solution 20 and prevents the conductive polymer 10 from being oxidized is dissolved in the electrolytic solution 20. Here, the fact that the antioxidant is soluble specifically corresponds to the fact that the antioxidant is dissolved by 0.1 wt% or more with respect to 100 wt% of the electrolytic solution. Note that the concentration of the antioxidant with respect to the electrolytic solution 20 is not limited as long as it is 0.1 wt% or more and within an appropriate range.

酸化防止剤としては、アスコルビン酸(図2参照)、エリソルビン酸(図3参照)、グルタチオン、リポ酸、レスベラトロール、セサモールおよびそれらの塩(Li、Na、Mg、K、Ca)の中から選択された1種以上のものが挙げられる。   Antioxidants include ascorbic acid (see FIG. 2), erythorbic acid (see FIG. 3), glutathione, lipoic acid, resveratrol, sesamol and their salts (Li, Na, Mg, K, Ca). One or more selected ones may be mentioned.

ここで、上記酸化防止剤のうちレスベラトロール、セサモールは、水にしか溶けないが、アスコルビン酸(図2参照)、エリソルビン酸(図3参照)、グルタチオン、リポ酸は、水にもイオン性液体にも溶ける。さらに、アスコルビン酸、エリソルビン酸は特に安価なものであり、酸化防止剤として優位である。なお、上記各部材として挙げた材料は、市販材料として入手できるものである。   Of the above antioxidants, resveratrol and sesamol are soluble only in water, but ascorbic acid (see FIG. 2), erythorbic acid (see FIG. 3), glutathione, and lipoic acid are also ionic in water. It dissolves in liquids. Furthermore, ascorbic acid and erythorbic acid are particularly inexpensive and are advantageous as antioxidants. In addition, the material quoted as said each member can be obtained as a commercially available material.

また、このアクチュエータにおいては、導電性高分子10は、電解液20中にて、膜の長手方向(図1中の上下方向)に図示しない錘等によって引張荷重を受けた状態で浸漬されている。また、電解液20の外には、電圧印加手段40が設けられ、この電圧印加手段40と導電性高分子10とは、PtやAu等の金属電極50を介して電気的に接続されている。   Further, in this actuator, the conductive polymer 10 is immersed in the electrolytic solution 20 in a state where a tensile load is applied by a weight or the like not shown in the longitudinal direction of the film (vertical direction in FIG. 1). . In addition, a voltage applying unit 40 is provided outside the electrolytic solution 20, and the voltage applying unit 40 and the conductive polymer 10 are electrically connected via a metal electrode 50 such as Pt or Au. .

また、電解液20中には、導電性高分子10に対向する位置に、Pt等よりなる対向電極60が設けられ、この対向電極60は、電圧印加手段40における導電性高分子10とは反対側の極に電気的に接続されている。   In the electrolytic solution 20, a counter electrode 60 made of Pt or the like is provided at a position facing the conductive polymer 10, and this counter electrode 60 is opposite to the conductive polymer 10 in the voltage applying means 40. It is electrically connected to the side pole.

このようなアクチュエータにおいて、電圧印加手段40によって導電性高分子10と対向電極60との間に電圧を印加すると、電解液20中のドーパントの作用により、導電性高分子10に対するアニオンの付与、脱離が発生する。ここで、導電性高分子10は、アニオンの付与により伸び、脱離により縮む。   In such an actuator, when a voltage is applied between the conductive polymer 10 and the counter electrode 60 by the voltage applying means 40, anion is applied to and removed from the conductive polymer 10 by the action of the dopant in the electrolyte solution 20. Separation occurs. Here, the conductive polymer 10 expands by application of an anion and contracts by desorption.

このアクチュエータの製造方法は次の通りである。まず、膜状の導電性高分子10を作製し、導電性高分子10に金属電極50を接続する。一方で、適量のドーパントを溶媒に溶かして電解液20を調製する。さらに電解液20に適量の酸化防止剤を添加する。そして、導電性高分子10と対向電極60とを、電解液20中に浸漬することで、本アクチュエータができあがる。   The manufacturing method of this actuator is as follows. First, the film-like conductive polymer 10 is produced, and the metal electrode 50 is connected to the conductive polymer 10. On the other hand, an electrolyte 20 is prepared by dissolving an appropriate amount of dopant in a solvent. Further, an appropriate amount of antioxidant is added to the electrolytic solution 20. The actuator is completed by immersing the conductive polymer 10 and the counter electrode 60 in the electrolytic solution 20.

ところで、本実施形態のアクチュエータによれば、電解液20に可溶性であって導電性高分子10の酸化を防止する酸化防止剤が、電解液20に溶解しているので、酸化防止剤の酸化防止効果によって、従来に比べて、伸縮率の時系列的な低下を大幅に抑制することができる。   By the way, according to the actuator of this embodiment, since the antioxidant that is soluble in the electrolytic solution 20 and prevents the conductive polymer 10 from being oxidized is dissolved in the electrolytic solution 20, the antioxidant of the antioxidant is prevented. Due to the effect, it is possible to significantly suppress the time-series decrease in the expansion / contraction rate compared to the conventional case.

このことについて、次に、実施例および比較例を参照して、より具体的に述べる。   Next, this will be described more specifically with reference to examples and comparative examples.

導電性高分子10として実施例1〜6および比較例1ではポリピロールを用いた。電解液10のドーパントとして実施例1〜6ではトリフルオロメタンスルホン酸を用いた。電解液10の溶媒として、実施例1〜5および比較例1では水、実施例6では1−エチル−3−メチルイミダゾリウムトリフルオロメタンスルホネートを用いた。   In Examples 1 to 6 and Comparative Example 1, polypyrrole was used as the conductive polymer 10. In Examples 1 to 6, trifluoromethanesulfonic acid was used as a dopant for the electrolytic solution 10. As a solvent for the electrolytic solution 10, water was used in Examples 1 to 5 and Comparative Example 1, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate was used in Example 6.

酸化防止剤としては、実施例1ではアスコルビン酸、実施例2ではアスコルビン酸Na(ナトリウム塩)、実施例3ではエルソルビン酸、実施例4ではグルタチオン、実施例5ではリポ酸、実施例6ではレスベラトロールを用いた。また、比較例1では酸化防止剤を含まないものとした。また、金属電極50、対向電極60ともに白金とした。   As the antioxidant, ascorbic acid in Example 1, ascorbic acid Na (sodium salt) in Example 2, ersorbic acid in Example 3, glutathione in Example 4, lipoic acid in Example 5, and less in Example 6 Veratrol was used. In Comparative Example 1, the antioxidant was not included. The metal electrode 50 and the counter electrode 60 are both platinum.

そして、実施例1〜6では、電解重合によりポリピロールよりなる厚さ20μmの膜状の導電性高分子10を作製し、導電性高分子10にPtよりなる金属電極50を接続した。また、ドーパントを溶媒に0.1wt%以上溶かして電解液20を調製し、さらに電解液20に酸化防止剤を0.1wt%以上添加し、溶解させた。   In Examples 1 to 6, a film-like conductive polymer 10 having a thickness of 20 μm made of polypyrrole was produced by electrolytic polymerization, and a metal electrode 50 made of Pt was connected to the conductive polymer 10. Further, 0.1 wt% or more of the dopant was dissolved in the solvent to prepare the electrolytic solution 20, and 0.1 wt% or more of the antioxidant was further added to the electrolytic solution 20 and dissolved.

そして、導電性高分子10とPtよりなる対向電極60とを、電解液20中に浸漬し、上記図1の状態とした。そして、たとえば±2Vの定電圧を印加してすることで、導電性高分子10を膜の長手方向に伸縮させた。この導電性高分子10の変位量は、レーザ変位計により計測した。   Then, the conductive polymer 10 and the counter electrode 60 made of Pt were immersed in the electrolytic solution 20 to obtain the state shown in FIG. Then, for example, by applying a constant voltage of ± 2 V, the conductive polymer 10 was expanded and contracted in the longitudinal direction of the film. The amount of displacement of the conductive polymer 10 was measured with a laser displacement meter.

また、比較例については、酸化防止剤を添加しないこと以外は、上記実施例1〜6と同様にして作製し、また、上記変位量の計測も同様に行った。各実施例1〜6および比較例1について、上記変位量の時間経過を測定した。   Moreover, about the comparative example, it produced similarly to the said Examples 1-6 except not adding antioxidant, The measurement of the said displacement amount was also performed similarly. About each Examples 1-6 and the comparative example 1, the time passage of the said displacement amount was measured.

たとえば、実施例1では、図4に示されるように、導電性高分子10の伸縮率は3時間経過後でも初期とほとんど変化していないが、比較例1では、図5に示されるように、当該伸縮率が時間とともに明らかに減少していくことがわかる。   For example, in Example 1, as shown in FIG. 4, the expansion / contraction rate of the conductive polymer 10 hardly changed from the initial value even after 3 hours, but in Comparative Example 1, as shown in FIG. It can be seen that the expansion / contraction rate clearly decreases with time.

具体的に、各例について、当該伸縮における、初期変位量(0時間後変位量)と、連続駆動3時間後変位量とを求めたのが図6である。図6に示されるように、0時間後変位量、連続駆動3時間後変位量は、それぞれ実施例1では4.0%、4.2%であり、実施例2では3.4%、3.4%であり、実施例3では4.1%、4.4%であり、実施例4では3.8%、3.7%であり、実施例5では4.3%、4.0%であり、実施例6では3.1%、3.3%であるのに対して、比較例1では6.2%、2.3%であった。   Specifically, for each example, FIG. 6 shows the initial displacement amount (0 hour displacement amount) and the continuous drive 3 hour displacement amount in the expansion and contraction. As shown in FIG. 6, the displacement amount after 0 hour and the displacement amount after 3 hours of continuous driving are 4.0% and 4.2% in Example 1, respectively, and 3.4% and 3% in Example 2, respectively. 4%, 4.1% and 4.4% in Example 3, 3.8% and 3.7% in Example 4, and 4.3% and 4.0 in Example 5, respectively. In Example 6, it was 3.1% and 3.3%, while in Comparative Example 1, it was 6.2% and 2.3%.

このように比較例1では、上記伸縮率の時系列的な低下が顕著であるのに対して、酸化防止剤を含有する実施例1〜6では、当該伸縮率の時系列的な低下を大幅に抑制できることが確認された。   Thus, in Comparative Example 1, the time-series decrease in the expansion / contraction rate is remarkable, whereas in Examples 1 to 6 containing the antioxidant, the time-series decrease in the expansion / contraction rate is greatly increased. It was confirmed that it can be suppressed.

また、上記の実施例以外にも、導電性高分子10、電解液20の溶媒やドーパントの種類に限らず、上記各酸化防止剤の添加により、同様の効果が得られる。また、酸化防止剤は、電解液20に可溶性であるならばよいが、イオン解離定数が0.1以下のものが望ましい。これは、酸化防止剤が、ドーパントと役割が競合しないようにするためである。   In addition to the above examples, the same effect can be obtained not only by the types of the conductive polymer 10 and the solvent and dopant of the electrolytic solution 20 but also by the addition of the respective antioxidants. In addition, the antioxidant may be soluble in the electrolytic solution 20, but is preferably an ion dissociation constant of 0.1 or less. This is to prevent the antioxidant from competing for roles with the dopant.

また、導電性高分子10、電解液20および酸化防止剤は、上記実施形態に示した材料以外にも、この種のアクチュエータに適した材料であるならば、採用してもよいことはもちろんである。   In addition to the materials shown in the above embodiment, the conductive polymer 10, the electrolytic solution 20, and the antioxidant may be adopted as long as they are materials suitable for this type of actuator. is there.

10 導電性高分子
20 電解液
10 Conductive polymer 20 Electrolyte

Claims (3)

導電性高分子(10)と、
前記導電性高分子が浸漬される電解液(20)と、を備え、
前記電解液中には、前記電解液に可溶性であって前記導電性高分子の酸化を防止する酸化防止剤が溶解しており、
前記電解液中にて前記導電性高分子に電圧印加することによって、前記導電性高分子を伸縮させるようにしたことを特徴とするアクチュエータ。
A conductive polymer (10);
An electrolyte solution (20) in which the conductive polymer is immersed,
In the electrolytic solution, an antioxidant that is soluble in the electrolytic solution and prevents oxidation of the conductive polymer is dissolved,
An actuator characterized in that the conductive polymer is expanded and contracted by applying a voltage to the conductive polymer in the electrolytic solution.
前記酸化防止剤は、アスコルビン酸、エリソルビン酸、グルタチオン、リポ酸、レスベラトロール、セサモールおよびそれらの塩の中から選択された1種以上のものであることを特徴とする請求項1に記載のアクチュエータ。   The antioxidant according to claim 1, wherein the antioxidant is one or more selected from among ascorbic acid, erythorbic acid, glutathione, lipoic acid, resveratrol, sesamol and salts thereof. Actuator. 前記酸化防止剤は、アスコルビン酸またはエリソルビン酸であることを特徴とする請求項2に記載のアクチュエータ。   The actuator according to claim 2, wherein the antioxidant is ascorbic acid or erythorbic acid.
JP2012122825A 2012-05-30 2012-05-30 Actuator Pending JP2013251935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122825A JP2013251935A (en) 2012-05-30 2012-05-30 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122825A JP2013251935A (en) 2012-05-30 2012-05-30 Actuator

Publications (1)

Publication Number Publication Date
JP2013251935A true JP2013251935A (en) 2013-12-12

Family

ID=49850136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122825A Pending JP2013251935A (en) 2012-05-30 2012-05-30 Actuator

Country Status (1)

Country Link
JP (1) JP2013251935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635168A (en) * 2019-08-21 2019-12-31 中国矿业大学 Anti-aging electrolyte additive, lithium ion battery electrolyte and lithium ion battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052597A (en) * 1983-09-02 1985-03-25 Mitsui Keikinzoku Kako Kk Electrolytic method for coloring aluminum and aluminum alloy
JPH09102307A (en) * 1995-10-04 1997-04-15 Toshiba Battery Co Ltd Alkaline storage battery
JPH10136883A (en) * 1996-11-07 1998-05-26 Mercian Corp Method for suppressing browning of food
JP2003170400A (en) * 2001-12-04 2003-06-17 National Institute Of Advanced Industrial & Technology Method of manufacturing actuator element
JP2006067719A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Conductive polymer actuator and drive method therefor
JP2006095430A (en) * 2004-09-29 2006-04-13 Du Pont Mitsui Polychem Co Ltd Oxygen absorbing compound, oxygen absorbent, and laminated body and pack using these
JP2007080888A (en) * 2005-09-12 2007-03-29 Sanyo Chem Ind Ltd Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP2007336790A (en) * 2006-06-19 2007-12-27 Kuraray Co Ltd Polymer electrochemical element
JP2009131949A (en) * 2007-11-30 2009-06-18 Samsung Electro-Mechanics Co Ltd Electrolyte for electrochemical machining of metal product
JP2010008090A (en) * 2008-06-24 2010-01-14 Kobe Steel Ltd Analysis method of cao-containing inclusion in steel
JP2010093954A (en) * 2008-10-08 2010-04-22 Kuraray Co Ltd Polymer transducer
JP2011087387A (en) * 2009-10-14 2011-04-28 Eamex Co Polymer actuator element and polymer sensor using the same
JP2011126882A (en) * 2003-07-30 2011-06-30 Novartis Ag Palatable ductile chewable veterinary composition
WO2012019103A2 (en) * 2010-08-06 2012-02-09 The General Hospital Corporation D/B/A System and apparatus for cell treatment
JP2012083552A (en) * 2010-10-12 2012-04-26 Canon Inc Liquid lens and apparatus having the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052597A (en) * 1983-09-02 1985-03-25 Mitsui Keikinzoku Kako Kk Electrolytic method for coloring aluminum and aluminum alloy
JPH09102307A (en) * 1995-10-04 1997-04-15 Toshiba Battery Co Ltd Alkaline storage battery
JPH10136883A (en) * 1996-11-07 1998-05-26 Mercian Corp Method for suppressing browning of food
JP2003170400A (en) * 2001-12-04 2003-06-17 National Institute Of Advanced Industrial & Technology Method of manufacturing actuator element
JP2011126882A (en) * 2003-07-30 2011-06-30 Novartis Ag Palatable ductile chewable veterinary composition
JP2006067719A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Conductive polymer actuator and drive method therefor
JP2006095430A (en) * 2004-09-29 2006-04-13 Du Pont Mitsui Polychem Co Ltd Oxygen absorbing compound, oxygen absorbent, and laminated body and pack using these
JP2007080888A (en) * 2005-09-12 2007-03-29 Sanyo Chem Ind Ltd Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP2007336790A (en) * 2006-06-19 2007-12-27 Kuraray Co Ltd Polymer electrochemical element
JP2009131949A (en) * 2007-11-30 2009-06-18 Samsung Electro-Mechanics Co Ltd Electrolyte for electrochemical machining of metal product
JP2010008090A (en) * 2008-06-24 2010-01-14 Kobe Steel Ltd Analysis method of cao-containing inclusion in steel
JP2010093954A (en) * 2008-10-08 2010-04-22 Kuraray Co Ltd Polymer transducer
JP2011087387A (en) * 2009-10-14 2011-04-28 Eamex Co Polymer actuator element and polymer sensor using the same
WO2012019103A2 (en) * 2010-08-06 2012-02-09 The General Hospital Corporation D/B/A System and apparatus for cell treatment
JP2012083552A (en) * 2010-10-12 2012-04-26 Canon Inc Liquid lens and apparatus having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635168A (en) * 2019-08-21 2019-12-31 中国矿业大学 Anti-aging electrolyte additive, lithium ion battery electrolyte and lithium ion battery

Similar Documents

Publication Publication Date Title
Zhou et al. Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes
Winsberg et al. Poly (boron-dipyrromethene) A Redox-Active Polymer Class for Polymer Redox-Flow Batteries
WO2015117189A1 (en) Gelated ionic liquid film-coated surfaces and uses thereof
Zama et al. Comparison of conducting polymer actuators based on polypyrrole doped with BF4−, PF6−, CF3SO3−, and ClO4−
JP2006246659A (en) High polymer actuator
Gaihre et al. Comparative displacement study of bilayer actuators comprising of conducting polymers, fabricated from polypyrrole, poly (3, 4-ethylenedioxythiophene) or poly (3, 4-propylenedioxythiophene)
Chopade et al. Self-supporting, hydrophobic, ionic liquid-based reference electrodes prepared by polymerization-induced microphase separation
Hakamada et al. Electrochemical actuation of nanoporous Ni in NaOH solution
JP2013251935A (en) Actuator
Bayer et al. Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures
Nateghi et al. Study of polyaniline oxidation kinetics and conformational relaxation in aqueous acidic solutions
Kim et al. Correlation between ion-exchange properties and swelling/shrinking processes in hexasulfonated calix [6] arene doped polypyrrole films: ac-electrogravimetry and electrochemical atomic force microscopy investigations
Smela et al. Polyaniline actuators: Part 2. PANI (AMPS) in methanesulfonic acid
Randriamahazaka et al. Charging/discharging kinetics of poly (3, 4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl) imide ionic liquid under galvanostatic conditions
JP2012226962A (en) Conductive polymer containing phenol compound
JP4943707B2 (en) Conductive polymer actuator element
Xu et al. Anodic behavior of Mg in acidic AlCl3–1-ethyl-3-methyl-imidazolium chloride ionic liquid
JP5474387B2 (en) Polymer actuator
Aynaou et al. Nucleation, growth and electrochemical performances of polyaniline electrodeposited on ITO substrate
JP2013106491A (en) Polymer actuator
JP5261730B2 (en) Conductive polymer actuator element
Becucci et al. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane
Xi et al. Poly (3-methylthiophene) electrochemical actuators showing increased strain and work per cycle at higher operating stresses
JP5178273B2 (en) Actuator
JP2007023173A (en) Conductive polymer actuator element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628