KR100877837B1 - 동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형 - Google Patents

동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형 Download PDF

Info

Publication number
KR100877837B1
KR100877837B1 KR1020060129240A KR20060129240A KR100877837B1 KR 100877837 B1 KR100877837 B1 KR 100877837B1 KR 1020060129240 A KR1020060129240 A KR 1020060129240A KR 20060129240 A KR20060129240 A KR 20060129240A KR 100877837 B1 KR100877837 B1 KR 100877837B1
Authority
KR
South Korea
Prior art keywords
starch
rice
endosperm
flo5
osssiiia
Prior art date
Application number
KR1020060129240A
Other languages
English (en)
Other versions
KR20080056395A (ko
Inventor
전종성
안진흥
류나연
부성희
한태룡
Original Assignee
경희대학교 산학협력단
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단, 포항공과대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020060129240A priority Critical patent/KR100877837B1/ko
Publication of KR20080056395A publication Critical patent/KR20080056395A/ko
Application granted granted Critical
Publication of KR100877837B1 publication Critical patent/KR100877837B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01021Starch synthase (2.4.1.21)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 자포니카 품종인 동진벼의 전분합성효소 유전자 OsSS Ⅲa에 T-DNA를 삽입한 기능상실 돌연변이체 OsSSⅢa/ Flo5 - 1를 이용하여, 야생형에 비해 쌀 배유의 전분결정성이 감소되며, 전분 중합도(DP) 6~8, 16~20 및 30 이상의 전분 사슬은 감소하고 DP 9~15 및 22~29는 증가하며, 호화개시온도가 1~5℃ 감소되는 것을 특징으로 하는 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 쌀을 제조하는 방법에 관한 것으로, 이런 쌀은 지방질 등이 있는 외층분리가 용이하여 청주 등을 만들 때 적합하며 열처리를 통한 가공에 에너지 절약 효과가 있다.
동진벼, 전분합성효소 유전자(OsSSⅢa), 돌연변이체(OsSSⅢa/Flo5-1), 전분입자

Description

동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형{Modification of Endosperm Starch Property by Loss of Function of Starch Synthase in Dongjin rice}
도 1a는 두 개의 flo5 -1 돌연변이 대립유전자에서 T-DNA가 삽입된 위치를 나타내는 모식도이고, 도 1b 및 1c는 이들 돌연변이를 특이 프라이머로 PCR하여 분리하여 확인한 결과를 나타내는 전기영동 사진이다.
도 2는 flo5 -1 돌연변이에서 종자 배유의 형태를 나타내는 사진(b,d) 및 그들의 야생형 대조구(a,c)를 나타내는 사진이다.
도 3은 flo5 -1 및 동진벼의 배유와 배유 전분과립을 나타내는 주사전자현미경(SEM) 사진이다.
도 4는 flo5 -1 돌연변이 및 동진벼로부터 분리한 배유의 전분과립의 X-ray 회절 패턴을 나타내는 그래프이다.
도 5는 flo5 -1 및 동진벼의 배유에서 분리한 아밀로펙틴의 사슬 길이 정도를 나타내는 그래프이다.
본 발명은 자포니카 품종인 동진벼의 전분합성효소 유전자 OsSSⅢa에 T-DNA를 삽입한 기능상실 돌연변이체 OsSSⅢa/Flo5-1를 이용하여, 야생형에 비해 쌀 배유의 전분결정성이 감소되며, 전분 중합도(DP) 6~8, 16~20 및 30 이상의 전분 사슬은 감소하고 DP 9~15 및 22~29는 증가하며, 호화개시온도가 1~5℃ 감소되는 것을 특징으로 하는 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 쌀을 제조하는 방법에 관한 것으로, 이런 쌀은 지방질 등이 있는 외층분리가 용이하여 청주 등을 만들 때 적합하며 열처리를 통한 가공에 에너지 절약 효과가 있다.
전분(starch)은 쌀, 옥수수 및 감자를 포함하는 많은 식물에서 중요한 저장성 다당류이며, 일반적으로 D-글루코스 동종중합체(D-glucose homopolymers)인 아밀로오스(amylose)와 아밀로펙틴(amylopectin)으로 구성된다. 아밀로오스는 선형 α-1,4 글루칸 쇄로 이루어지며, 아밀로펙틴은 α-1,6 결합에 의해 연결된 선형 α-1,4 글루칸 쇄로 이루어진 분지된 분자이다. 아밀로펙틴의 구조는 전분 입자의 결정구성(crystalline organization)에 기여하고 좋은 아밀로펙틴 클러스터들은 종자(seed)의 가장 큰 부분을 이루는 알맞은 배유(endosperm) 전분을 형성하는데 기여한다.
곡물의 배유에서 전분의 합성은 AGPase(ADP glucose pyrophosphorylase), 전분 합 성효소(starch synthase, SS), 전분가지화효소(starch branching enzyme, BE) 및 전분비가지화효소(starch debranching enzyme, DBE)가 연관되어 합동적인 일련의 효소 반응으로 이루어진다.
전분합성효소(SS)는 글루칸 사슬의 비환원 말단(non-reducing end)에서 ADP 글루코스(ADPGlc)의 글루코실 유닛(glucosyl unit) 전이를 촉매함으로써 선형 글루칸 사슬을 합성한다. 가지화효소(BE)는 폴리글루칸(polyglucan) 사슬에서 α-1,6 glucosidic 결합의 형성을 촉매하는 유일한 효소이며, 비가지화효소(DBE)는
폴리글루칸의 α-1,6 glucosidic 결합을 가수분해하는 것으로 알려져 있다.
고등식물에서는 5개의 전분합성효소, 1개의 GBSS(granule-bound starch synthase)와 4개의 가용성(soluble) 전분합성효소가 동정되어있다. GBSS는 아밀로오스 사슬을 합성하며, GBSSI은 저장 조직에서, GBSSII는 비저장 조직에서의 아밀로오스 합성에 관여한다. 많은 연구에서 고등식물의 가용성 전분합성 효소는 네 가지 그룹의 형태(SSI 에서 SSIV)를 가지며 각각 여러 동형체(isoforms)를 가진다고 보고되어 있는데, 그 중 벼(Oryza sativa)에서는 OsSSI, SSⅡs(OsSSⅡa, OsSSⅡb, OsSSⅡc), SSⅢs(OsSSⅢa, OsSSⅢb) 및 SSIV(OsSSⅣa, OsSSⅣb)으로 8개의 동형체들이 보고되어 있다. 대부분의 OsSS 동형체들은 배유에서 발견되었으며, 이들은 종자 발달에 있어 유전자 발현 패턴을 바탕으로 초기(early), 후기(late) 및 모든시기(steady) expressers의 세 그룹으로 나뉜다. 벼 종자 배유에서 발달 진행은 전 저장기(pre-storage)와 전분필링기(starch filling phase)로 구성된다.
OsSSⅡb 및 OsSSⅢb 는 early expresser에 속하고, 수정 후(DAF) 1~5일사이의 종자 배유 발달의 전저장기에서 주된 기능을 가지는 것으로 예상된다. OsSSⅡa와 OsSSⅢa 는 late expresser에 속하며, 수정 5일후 전분필링기에 풍부하나 전저장기동안에도 드물게 발현되며, 종자 배유에서 전분합성에 중요한 역할을 하는 것으로 여겨진다. OsSSI, OsSS Ⅱc, OsSS ⅣaOsSS Ⅳb 는 배유 발달 동안 비교적 일정하게 존재한다. 이는 전분합성효소 동형체들이 벼 배유 발달에서 전분 합성에 개별적으로 관여하는 것이다.
이러한 벼의 가용성 전분합성효소 동형체들의 역할은 기능상실 돌연변이, 기능부여 형질전환 식물체 또는 다른 많은 재배종(cultivar)에서 전분합성효소 활성과 전분구조의 관계 규명으로 밝혀지고 있다. OsSSI의 기능은 Tos17 삽입 돌연변이를 통하여 아밀로펙틴의 분지점으로부터 나오는 중합도(degrees of polymerization)가 6-7의 짧은 사슬에서 8-12의 사슬로의 합성이 결여됨을 확인하였다. 이때 SSI 돌연변이는 종자와 전분입자의 크기, 모양 및 배유 전분의 결정도(crystallinity)에는 영향을 주지 않아 다른 전분합성효소들이 부분적으로 SSⅠ기능의 손실을 보완한 것으로 보인다(Fujita et al., Function and characterization of starch synthase I using mutants in rice, 2006, Plant Physiol., 140:1070-1084). OsSSⅡa는 알칼리 붕괴도(alk 유전자)와 호화도(gel 유전자)에 관여하는 유전자와 일치하는 것으 로 알려져 있고(Nakamura et al., Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties, 2005, Plant Mol. Biol., 58:213-227), 이전 연구에서 그 역할은 중합도(DP)가 6-11에서 13-28로의 합성에 관여하고, 그 활성이 인디카 벼에 비하여 자포니카 벼에서는 감소하는 것으로 보고되고 있다. OsSSⅢa 는 배유 발달의 전분필링기 동안에 강하게 발현하고 전분합성에 중요한 역할을 하는 것으로 보이며, 이전의 연구에서 SS 돌연변이의 분석은 옥수수의 dull -1, 애기장대의 Atss3 -1Atss3 - 2 에서처럼 아밀로펙틴 B2(중합도 25-36), B3,B4(중합도 37)의 긴 사슬을 합성하는 것으로 추측되고 있다.
무디고(dull), 가루모양의(floury), 점착성의(glutinous) 배유와 같이 윤기가 나지 않는 불투명한(opaque) 배유 돌연변이의 연구는 전분합성 효소를 암호화하는 유전자를 규명하는데 유용하였는데, 가지화효소인 BEⅡb의 결실을 가지는 아밀로오스-익스텐더(amylose - extender, ae) 돌연변이의 연구는 배유에서 아밀로펙틴의 짧은 사슬의 전이에 관여하는 특이 효소의 역할을 알아내는데 도움이 되었다. 벼에서 가루모양(floury)의 배유(flo)의 표현형(phenotype)은 전분입자 형태에 관련되어 있고, flo1 좌(locus)는 둥글고 느슨한 전분입자를 포함하는 백색 가루모양(floury-white)의 배유를 가져오는 것으로 알려져 있다. Flo2는 히스티딘을 증가시키고 높은 리신(lysine) 함량과 전분합성 유전자의 발현 조절에 관여하는 돌연변이로 밝혀 졌다. 또한 Flo4 돌연변이는 PPDK(pyruvate orthophosphate dikinase)를 암호하는 OsPPDKB 유전자의 이상으로 느슨한 전분 입자를 가지는 비정상적인 배유를 가지는 것으로 나타났다.
본 발명은 이러한 벼의 가용성 전분합성효소 동형체들의 역할에 관련된 연구를 진행하던 중, OsSSⅢa의 유전자에 T-DNA를 삽입하여 OsSSⅢa 기능상실 돌연변이를 분리하고 분석하였으며, 백색 가루 형태의 배유(floury white-core endosperm) 표현형을 지녀 가공 적성을 높인 새로운 형태의 쌀(flo5 -1)을 발명하고자 하였다.
따라서 본 발명의 목적은 자포니카 품종인 동진벼의 전분합성효소 유전자 OsSSⅢa에 T-DNA를 삽입한 기능상실 돌연변이체 OsSSⅢa/Flo5-1를 이용하여, 배유 전분의 아밀로펙틴의 사슬 길이 분포와 물리화학적인 특성을 조사하여 벼 배유 발달에서 아밀로펙틴 합성시 OsSSIIIa/Flo5-1의 기능을 억제한 야생형에 비해 쌀 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 쌀을 제조하는 방법 및 그로 인한 쌀 가공단계에서 효율성이 높은 새로운 품종의 쌀을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은 자포니카(japonica) 품종인 동진벼의 전분합성효소 유전자 OsSS Ⅲa에 T-DNA를 삽입한 기능상실 돌연변이체 OsSS Ⅲa/ Flo5 - 1를 이용하여, 야생형 보다 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 쌀을 제조하는 방법에 관한 것이다.
보다 자세하게는, 자포니카(japonica) 품종인 동진벼의 전분합성효소 유전자 OsSS Ⅲa에 T-DNA를 삽입한 기능상실 돌연변이체 OsSS Ⅲa/ Flo5 - 1를 이용하여, 야생형 보다 배유의 전분결정성이 감소되며, 전분 중합도(DP) 6~8, 16~20 및 30 이상의 전분 사슬은 감소하고 DP 9~15 및 22~29는 증가하며, 호화개시온도가 1~5℃ 감소되는 것을 특징으로 하는 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 쌀을 제조하는 방법을 제공한다.
이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만, 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되는 것으로 해석돼서는 안 될 것이다.
< 실시예 1. OsSS Ⅲa/ Flo5 -1 돌연변이>
자포니카(japonica) 품종인 동진의 돌연변이(mutant) flo5-1를 이용하였으며, 전분(Starch)은 충분히 익은 종자에서 추출하였고, 필요에 따라 익어가는 종자를 수집하여 -80℃에 저장하여 이용하였다.
돌연변이 풀(Mutant pool)을 만들기 위해 pGA2715와 pGA2772가 사용되었으며, 이들 모두 T-DNA에 35S 인헨서(enhancer)를 포함하며, 활성 돌연변이체를 만드는 운반체이며, pGA2772는 pGA2715를 변형한 것으로 pUC18 벡터를 근간으로 한다. OsSSⅢa 유전자는 16개의 엑손(exon)과 15개의 인트론(intron)으로 구성되며, flo5 -1 OsSS Ⅲa 유전자의 11번 엑손(exon)에 pGA2715 T-DNA가 삽입된 돌연변이이다(도 1a). 이들은 floury(flo) white-core endosperm 표현형을 나타내고, 이하 실시예에서는 OsSSⅢa/Flo5-1로 표기한다.
OsSS Ⅲa 돌연변이인 flo5 - 1는 벼 T-DNA 삽입 염기서열 데이타베이스를 통하여 분리하였다(RISD; Jeon et al. 2000; Jeong et al. 2002; An et al. 2003; Jeong et al. 2006; http://141.223.132.44/pfg/index.php). 돌연변이는 PCR로 분리하였으며, 유전자 특이 프라이머 조합(F1/R1 and F2/R2)과, T-DNA와 유전자 특이 프라이머 조합(T1/R1 and T1/R2)의 방법으로 분리하였다(도 1b). T2, T3개체의 분석을 통해 이들 돌연변이는 가루모양의 배유(floury endosperm) 표현형을 나타내는 것을 확인하였고, 이를 통해 열성유전을 확인하였다.
T-DNA-특이 프라이머 T1: 5'-ATCCAGACTGAATGCCCACA-3'(서열번호 1)
OsSS Ⅲa 유전자 특이 프라이머 F1: 5'-TGAAAACTTCCAAGTCCAAAATCAGT-3'
(서열번호 2)
R1: 5'-GCATCTGACATAGGATGAAATAAGCAAAA-3' (서열번호 3)
F2: 5'-GTTTTGATTCATTTCATCTTGGGAACATA -3' (서열번호 4)
R2: 5'-TTTACGAAGCTATCCTACACAAACCTGAA-3' (서열번호 5)
< 실시예 2. RT - PCR 분석>
전체 RNA는 트리졸(Trizol)을 사용하여 미성숙 종자에서 RNA를 추출하여 준비하였다. DNase를 처리한 RNA를 올리고-dT 프라이머를 이용하여 역전사효소(reverse-transcriptase)를 이용하여 cDNA를 합성하였다. 첫 번째 가닥 cDNA는 OsAct1에 대해 유전자 특이 프라이머로 정량하여 이용하였다. OsSSIIIa의 RT-PCR을 위한 유전자 특이 프라이머는 게놈 오염을 확인할 수 있도록 3번째와 4번째 인트론을 포함하여 제작하였다. RT-PCR 반응은 94℃에서 5분, 94℃에서 1분, 56℃에서 1분, 72℃에서 1분을 28~35회 반복하였으며 72℃에서 5분간 수행하였다.
F3: 5'- CATGAAGTTGATGTAATCTCTTTG-3' (서열번호 6)
R3: 5'- TCTCATAGTCTTTTCCTTCATCTC-3' (서열번호 7)
OsAct1: 5'- GGAACTGGATAGGTCAAGGC -3' (서열번호 8)
5'- AGTCTCATGGATACCCGCAG -3' (서열번호 9)
돌연변이는 종자를 제외한 다른 조직에서는 특이한 성장의 차이나 표현형의 차이가 나타나지 않았으며 이는 RT-PCR 결과를 통해서 볼 때 다른 조직에서의 적은 발현과 종자에서의 많은 발현을 통한 결과로 종자에서의 역할이 크다는 사실과 일치한다는 것을 알 수 있었다. 또한 돌연변이의 미성숙 종자의 RNA를 통해 야생형(동진벼, 화 영벼)과 비교해볼 때 전사의 발현이 나타나지 않아 정확하게 유전자의 기능상실을 확인할 수 있었다(도 1c).
< 실시예 3. 전분 함량 측정>
전분 함량 측정은 에탄올-물 추출방법(Lee at al. 2005)과 비가용성 분광광도법(Jelitto et al. 1992)으로 측정하였다. 돌연변이에서 전분 함량이 변화된 것을 여러 조직에서 확인하였으나 두드러진 차이를 확인할 수 없었다. 껍질을 벗긴 쌀 낟알의 중심의 부분은 flo5-1가 백색 가루모양의 배유(floury white-core endosperm)를 보이며(도 2b, d), 대조구의 배유는 투명하게 보인다(도2 a.c). 이것은 OsSSIIIa / Flo5 -1의 기능 상실의 결과로 발생하는 전분 합성에 문제가 생긴 것에 의해 나타난 것이라고 예상한다. 낟알 무게에는 flo5 돌연변이와 야생형간에 큰 변화가 없었다.
< 실시예 4. 주사전자현미경 분석>
배유의 비가용성 전분은 동형질의 돌연변이를 백미로 만든 후, 0.1%의 수산화나트륨(NaOH)에 반복적으로 담가서 씻는 방법(alkali steeping method)으로 분리하였다. 그 후, 실온에서 건조시키고 100 메쉬(mesh) 체에 걸러 실험에 이용하였다. 분리된 전분 가루는 주사전자현미경으로 관찰하였고, X-ray 회절 패턴과 사슬 길이 측정에도 사용되었다.
껍질을 벗긴 쌀은 현미경 분석을 통해 floury endosperm 표현형을 찾았다. 주사전 자현며경(SEM) 분석은 Fujita(2003) 방법에 따라서 수행되었는데, 금으로 코팅하여 Stereoscan Leica Model 440(Leica Cambridge사)으로 SEM측정을 하였다.
중심부의 전분의 구조를 SEM을 통해 확인했을 때 전체 종자의 단면이 변형된 것을 확인할 수 있었고, 전분 복합체가 느슨하게 구성(loosely packing)된 것을 확인할 수 있으며, 각각의 전분 과립(starch granule)은 야생형에 비해 작고 둥근 형태를 띠고 있다는 것을 확인할 수 있다(도 3).
< 실시예 5. X- ray 회절 측정>
X-ray 회절 패턴(X-ray diffraction pattern)은 X-ray 회절계(diffractometer)를 사용하여 확인하였다(1.542Å, Cu-Kα, 40㎸와 300㎃). 전분은 3°/분 (0.02° step)의 스캐닝 비율로 2θ의 회절각으로 4°에서 40° 까지 스캐닝하였고, 전분 결정도는 Komiya and Nara (1986)방법으로 정량적으로 추정되었다.
전분은 비결정(amorphous) 및 결정(crystalline)을 띤 구조를 포함하는 부분 결정형의(semi-crystalline) 생체고분자(biopolymer)이다. X-ray로 확인한 결과, 대조구와 flo5돌연변이의 배유 전분은 15.06, 17.16, 17.94 와 23.00에서 4개의 피크(peak)를 가지는 전형적인 A 형태 결정 패턴을 보인다. flo5 - 1는 대조구에 비해 피크(peak)의 높이가 감소하였고 결정도 줄어든 것을 확인하였다(도 4, 표 1). 이 는 OsSSIIIa / Flo5 -1 유전자의 기능 결실은 전분 결정 형태의 변화가 아니라 전분 결정의 구조의 손상을 야기하는 것이다.
[표 1] 배유 전분의 결정 비교
유전형 Relative crystallinity (%)a Relative crystallinity ratio (%)
동진벼 10.14 100
화영벼 9.34 100
flo5 -1 8.14 80.3
flo5 -2 5.63 60.3
aRelative crystallinity (%) = Ic (Ia + Ic) x 100, Ia = amorphous area on the X-ray diffractogram, Ic = crystallized area on the diffractogram
< 실시예 6. 배유에서 폴리글루칸의 사슬 길이 분포>
성숙한 배유로부터 추출된 전분은 이전의 보고 논문에 따라 음이온 교환 크로마토그래피(HPAEC) 방법(Kubo et al. 1999; Kang et al. 2003)으로 측정하였다. HPAEC-PAD (HPAEC equipped with a pulsed amperometric detector)에 의해 사슬 길이 분포를 측정하기 위해 전분(1 ㎎/㎖)을 녹인 후 60분 동안 끓여서 식히고, 600mM 아세트산나트륨 버퍼(pH 4.4) 50㎕, 2% 아지드화나트륨(NaN3) 10㎕를 넣은 후 비가지화를 위해 700U의 이소아밀라제(isoamylase)를 넣어 37℃에서 24시간 동안 반응시킨 후, 실온에서 침전물을 말렸다. 말린 침전물은 1M 수산화나트륨 60㎕를 넣고 녹인 후 450㎕의 물을 넣어 희석하고 25㎕를 반응에 사용하였다. 이때 CarboPac PA-1 컬럼(4 mm x 25 cm)이 장착된 BioLC (DX-500, Dionex, Sunnyvale)를 이용하여 PAD(pulsed amperometric detector)방법으로 측정하였다. 이때 α-1,4-글루칸의 크기 분류는 1 ㎖/min의 흐름 비율에 0.1 M 수산화나트륨에 아세트산나트륨(50~500 mM)의 농도 구배를 통해 측정하였다.
flo5 -1 돌연변이의 전분 사슬의 분포 변화를 보면 중합도가 30인 사슬이 감소하였으며, 이는 SSⅢa가 아밀로펙틴 B2, B3 및 B4 같은 긴 사슬의 합성에 중요한 역할을 할 것이라 판단되며, 중합도가 9-15, 22-29인 사슬은 증가하였고 6-8, 16-20인 사슬은 감소하였는데, 이는 다른 전분합성효소 동형체들의 변화된 활성으로 인하여 flo5-1 돌연변이에서 아밀로펙틴의 짧은 사슬에 변화가 이루어진 것으로 보인다(도 5).
< 실시예 7. 전분의 온도 특성>
분리된 전분의 호화도 특성은 Atichokudomchai의 방법을 사용하여 Calorimetry (DSC-650)로 측정하였다. 전분은 60% 수분 함유량으로 물을 섞은 후 알루미늄 팬에 옮겨서 밀봉하고 1시간동안 수분평형상태를 유지하도록 두었다가 25℃~130℃의 범위내에서 5℃/분 간격으로 가열하였다. 그리고 호화 개시온도(To), 최고온도(Tp), 종결온도(Tc) 및 호화 엔탈피ΔH(crystal melting enthalpy)를 DSC thermogram을 이용하여 확인하였다.
[표 2] 배유 전분의 온도 특성
유전형 호화 개시온도 (To) 호화 최고 온도 (Tp) 호화 종결 온도 (Tc) ΔT ΔH
동진벼 57.3±0.3* 65.1±0.3 80.7±1.7 23.5±1.5 5.5±0.8
화영벼 55.5±1.6 64.2±0.1 81.5±1.3 26.0±2.6 6.1±2.2
flo5 -1 53.6±0.3 60.0±1.1 81.3±0.6 27.8±1.3 5.9±1.8
flo5 -2 54.1±0.6 61.1±0.4 82.1±1.6 28.0±1.9 5.6±0.4
flo5 -1 돌연변이에서 호화 개시 온도가 대조구보다 1~5℃ 감소하였으며 이것은 전분의 구조 변화와 결정 부위의 감소로 인하여 호화 온도가 감소한 것을 나타낸다. 또한 대조구보다 온도 변화의 폭(ΔT)도 크게 나타나는 것을 확인할 수 있었다(표 2).
본 발명은 자포니카 품종인 동진벼의 전분합성효소 유전자 OsSS Ⅲa에 T-DNA를 삽입한 기능상실 돌연변이체 OsSSⅢa/ Flo5 - 1를 이용하여, 야생형에 비해 쌀 배유의 전분과립 구조를 변형하는 것에 관한 것이다. 구체적으로, 야생형에 비해 쌀 배유의 전분결정성이 감소되며, 전분 중합도(DP) 6~8, 16~20 및 30 이상의 전분 사슬은 감소하고 DP 9~15 및 22~29는 증가하며, 호화개시온도가 1~5℃ 감소되는 것을 특징으로 하는 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 쌀을 제조하여, 이 런 쌀은 지방질 등이 있는 외층분리가 용이하여 청주 등의 주류를 제조할 때나 열처리가 필요한 쌀 가공식품에서 가공공정을 편리하게 하고 에너지 절약 효과가 있을 것으로 기대된다.
<110> Industry Academic Cooperation Foundation of KyungHee University POSTECH ACADEMY-INDUSTRY FOUNDATION <120> Modification of Endosperm Starch Property by Loss of Function of Starch Synthase in Dongjin rice <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T-DNA-specific primer TI <400> 1 atccagactg aatgcccaca 20 <210> 2 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> OsSSllla gene specific primer F1 <400> 2 tgaaaacttc caagtccaaa atcagt 26 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> OsSSllla gene specific primer R1 <400> 3 gcatctgaca taggatgaaa taagcaaaa 29 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> OsSSllla gene specific primer F2 <400> 4 gttttgattc atttcatctt gggaacata 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> OsSSllla gene specific primer R2 <400> 5 tttacgaagc tatcctacac aaacctgaa 29 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OsSSllla gene specific primer F3 <400> 6 catgaagttg atgtaatctc tttg 24 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OsSSllla gene specific primer R3 <400> 7 tctcatagtc ttttccttca tctc 24 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsAct1 gene speicific primer <400> 8 ggaactggat aggtcaaggc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsAct1 gene specific primer <400> 9 agtctcatgg atacccgcag 20

Claims (3)

  1. 삭제
  2. 자포니카(japonica) 품종인 동진벼의 전분합성효소 유전자 OsSSⅢa의 11번 엑손(exon)에 pGA2715 T-DNA를 삽입한 기능상실 돌연변이체 OsSSⅢa/Flo5-1(Oryza sativa starch synthaseⅢa/Floury5-1))를 이용하여, 야생형 보다 배유의 전분결정성이 20% 감소되며, 전분 중합도(DP) 6~8, 16~20 및 30 이상의 전분 사슬은 감소하고 DP 9~15 및 22~29는 증가하며, 호화개시온도가 3~4℃ 감소되는 것을 특징으로 하는 배유의 전분과립이 작고 둥글며 느슨한 구조로 형성된 동진벼의 쌀을 제조하는 방법.
  3. 삭제
KR1020060129240A 2006-12-18 2006-12-18 동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형 KR100877837B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060129240A KR100877837B1 (ko) 2006-12-18 2006-12-18 동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060129240A KR100877837B1 (ko) 2006-12-18 2006-12-18 동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형

Publications (2)

Publication Number Publication Date
KR20080056395A KR20080056395A (ko) 2008-06-23
KR100877837B1 true KR100877837B1 (ko) 2009-01-12

Family

ID=39802590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060129240A KR100877837B1 (ko) 2006-12-18 2006-12-18 동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형

Country Status (1)

Country Link
KR (1) KR100877837B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174903B1 (ko) 2009-02-24 2012-08-22 대한민국 관상 및 화훼용 벼 신품종 카멜레온
EP3430144A4 (en) * 2016-02-15 2019-12-04 Udaya Agro Farm PROCESS FOR INCREASING RESISTANT STARCH AND BALANCE IN RICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051023A (ja) * 2004-07-15 2006-02-23 Japan Science & Technology Agency スターチシンターゼIIIa型の機能解明と新規デンプン作出法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051023A (ja) * 2004-07-15 2006-02-23 Japan Science & Technology Agency スターチシンターゼIIIa型の機能解明と新規デンプン作出法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174903B1 (ko) 2009-02-24 2012-08-22 대한민국 관상 및 화훼용 벼 신품종 카멜레온
EP3430144A4 (en) * 2016-02-15 2019-12-04 Udaya Agro Farm PROCESS FOR INCREASING RESISTANT STARCH AND BALANCE IN RICE

Also Published As

Publication number Publication date
KR20080056395A (ko) 2008-06-23

Similar Documents

Publication Publication Date Title
Umemoto et al. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties
US6483010B1 (en) DNA molecules encoding enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing these molecules
US6207880B1 (en) Plants which synthesize a modified starch, process for the production thereof and modified starch
Ryoo et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.)
US6211436B1 (en) Nucleic acid molecules from plants coding enzymes which participate in the starch synthesis
US6307124B1 (en) Nucleic acid molecules encoding soluble starch synthases from maize
JP2008271984A (ja) デンプン合成酵素類
CN102933072A (zh) 大麦及其用途
PL169848B1 (pl) Sposób hamowania tworzenia sie amylozy w ziemniakach PL
KR20010043457A (ko) 전분 합성에 관여하는 밀 유래 효소를 암호화하는 핵산 분자
Cao et al. Effect of high temperature on the expressions of genes encoding starch synthesis enzymes in developing rice endosperms
CN105349559A (zh) 玉米ZmWx基因在提高玉米产量和改良籽粒性状中的应用
KR101226485B1 (ko) 벼의 분질배유 유전자 FLO(a)와 분자마커 및 유전자 부위 정밀유전자지도
He et al. The defective effect of starch branching enzyme IIb from weak to strong induces the formation of biphasic starch granules in amylose-extender maize endosperm
KR100877837B1 (ko) 동진벼 전분합성효소 기능상실을 이용한 쌀 배유의 전분특성 변형
KR100836826B1 (ko) 화영벼 전분분해효소 기능상실을 이용한 쌀 배유의전분특성 변형
JP4711762B2 (ja) スターチシンターゼIIIa型の機能解明と新規デンプン作出法
JP2012019742A (ja) イネ変異体、澱粉の製造方法、澱粉、及びイネ変異体の製造方法
Sun et al. Overexpression of starch branching enzyme 1 gene improves eating quality in japonica rice
Hwang et al. Gene expression of the biosynthetic enzymes and biosynthesis of starch during rice grain development
White et al. New corn starches
JP2011055764A (ja) イネ変異体、澱粉の製造方法、澱粉、及びイネ変異体の製造方法
Yao A genetic study of the SSIIa and SSIIIa genes of rice under the control of Wx-mq gene
Van De Wal Amylose biosynthesis in potato: interaction between substrate availability and GBSSI activity, regulated at the allelic level
Pirone Disentangling the role of transitory starch storages in plant development and in osmotic stress response

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080528

Effective date: 20081210

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee