KR100859148B1 - High flatness transparent conductive thin films and its manufacturing method - Google Patents

High flatness transparent conductive thin films and its manufacturing method Download PDF

Info

Publication number
KR100859148B1
KR100859148B1 KR1020070028617A KR20070028617A KR100859148B1 KR 100859148 B1 KR100859148 B1 KR 100859148B1 KR 1020070028617 A KR1020070028617 A KR 1020070028617A KR 20070028617 A KR20070028617 A KR 20070028617A KR 100859148 B1 KR100859148 B1 KR 100859148B1
Authority
KR
South Korea
Prior art keywords
layer
transparent conductive
thin film
magnetron sputtering
forming
Prior art date
Application number
KR1020070028617A
Other languages
Korean (ko)
Inventor
김관수
양승호
조기택
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to KR1020070028617A priority Critical patent/KR100859148B1/en
Application granted granted Critical
Publication of KR100859148B1 publication Critical patent/KR100859148B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A manufacturing method of a high flatness transparent conductive film is provided to manufacture a transparent conductive film with a flat surface that can be used for organic light emitting diodes through a new process that is a multilayer process method as an inexpensive and general DC-magnetron sputtering method. A manufacturing method of a transparent conductive film used in flat panel displays using DC magnetron sputtering comprises the steps of: forming a first layer on a substrate by magnetron sputtering at a high process pressure of 0.5 to 1.2 Pa under an argon gas atmosphere into which oxygen is not added at room temperature; forming a second layer on the first layer continuously by the magnetron sputtering at a low process pressure of 0.1 to 0.4 Pa under an atmosphere containing 0.4% of oxygen relative to argon at room temperature; and heat-treating a multilayer thin film comprising the first layer and the second layer under the non-reactive gas atmosphere. The heat-treatment step is performed by heat-treating the multilayer thin film at a temperature of 100 to 350 deg.C under a pressure of 10^-3 Pa to 10^-5 Pa. The first layer is formed by forming an ITO thin film with a thickness of 30 to 90 nm in the first layer forming step, and the second layer is formed by forming an ITO(Indium Tin Oxide) thin film with a thickness of 60 to 120 nm in the second layer forming step.

Description

고평탄 투명도전막 및 그 제조 방법{High Flatness Transparent Conductive Thin Films and its Manufacturing Method}High flatness transparent conductive thin films and its manufacturing method

도 1은 본 발명에 따른 투명도전막의 성막 과정을 나타내는 순서도이다.1 is a flowchart illustrating a film forming process of a transparent conductive film according to the present invention.

도 2는 본 발명에 따른 투명도전막의 단면도이다.2 is a cross-sectional view of the transparent conductive film according to the present invention.

도 3은 본 발명에 따른 투명도전막의 표면 구조 형상을 나타내는 도면이다.3 is a view showing the surface structure shape of the transparent conductive film according to the present invention.

도 4은 종래 기술에 따른 투명도전막의 표면 구조 형상을 나타내는 도면이다.4 is a view showing the surface structure of the transparent conductive film according to the prior art.

본 발명은 평판디스플레이(Flat Panel Display)에 사용되는 투명도전막을 제조하는 방법에 관한 것으로서, 특히 차세대디스플레이로 각광받는 유기 발광 다이오드는 투명도전막의 박막 표면 조도가 높을 경우 전류밀도의 집중으로 인해 소자에 흑점이 발생하게 되어 평탄한 표면특성을 갖는 투명도전막이 요구된다. 따라서, 본 발명에서는 성막장치 중 범용으로 사용되어지는 DC-마그네트론 스퍼터 장치의 공정제어를 통하여 유기 발광 다이오드(OLED)에도 적용 가능한 고평탄 투명도전막의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a transparent conductive film used in a flat panel display. In particular, an organic light emitting diode, which is spotlighted as a next-generation display, has a high concentration of current density when the surface roughness of a thin film of a transparent conductive film is high. Black spots are generated and a transparent conductive film having flat surface characteristics is required. Accordingly, the present invention relates to a method for manufacturing a high flat transparent conductive film applicable to an organic light emitting diode (OLED) through process control of a DC-magnetron sputtering device which is used in general among film forming apparatuses.

최근 디스플레이에 대한 관심도가 증가함에 따라 두께가 얇고 가벼운 액정 디스플레이(LCD), 플라즈마 디스플레이 패널(PDP), 유기발광 다이오드(OLED)등의 평면 디스플레이(FPD)의 개발이 활발히 증가하고 있다.Recently, as interest in displays increases, development of flat panel displays (FPDs), such as thin and light liquid crystal displays (LCDs), plasma display panels (PDPs), organic light emitting diodes (OLEDs), and the like, is actively increasing.

특히, 유기 발광 다이오드(OLED)는 자체 발광 특성과 저전압에서의 구동, 빠른 응답 속도 및 넓은 시야각 등의 장점으로 인해 차세대 평판 디스플레이로 각광 받고 있다. 유기발광 다이오드(OLED)는 전류구동방식이므로 투명 도전막 표면의 돌출부에서 전하 축적이 발생하여 스파크가 발생하기 쉽고 이로 인하여 흑점 등의 불량을 야기시킬 수 있어 평탄한 표면을 갖는 투명도전막의 제조가 중요하다. 유기발광 다이오드용 평탄 투명도전막을 제조하기 위해서는 통상적으로 이온-보조-스퍼터링 또는 이온 도금 공정이 사용되어 오고 있다.In particular, organic light emitting diodes (OLEDs) are attracting attention as next-generation flat panel displays due to their advantages such as self-luminous characteristics, low voltage driving, fast response speed, and wide viewing angle. Since the organic light emitting diode (OLED) is a current driving method, charge accumulation occurs on the protrusions on the surface of the transparent conductive film, and sparks easily occur, which may cause defects such as black spots. . In order to manufacture flat transparent conductive films for organic light emitting diodes, ion-assisted-sputtering or ion plating processes have been commonly used.

종래의 박막 제조에 있어서, 높은 keV의 에너지를 이용한 박막 제조 방법들은 기판 또는 박막에 많은 손상을 준다. 따라서, 이온 보조 설비를 장착하여 증착하고자 하는 물질의 에너지를 수eV로 감속시켜 기판 또는 박막에 손상을 주지 않는 이온 보조 증착법이 사용되고 있다. 이온 보조 증착법은 에너지를 가진 원자나 기체를 기판표면에 충돌해 주면서 다른 한쪽에선 금속을 증착시키거나 증착하기를 원하는 물질을 기체나 원자 또는 클러스터(cluster)의 덩어리로 만들고, 그 자체에 에너지를 주어 증착시키는 성막 방법이다. 기판 또는 박막 손상이 낮은 이온 보조 증착법은 일반적인 박막 제조 방법에 비해 유기발광 다이오드용 투명도전막이 요구하는 평탄한 박막을 구현하는 것이 가능하다.In conventional thin film fabrication, thin film manufacturing methods using high keV energy cause a lot of damage to the substrate or thin film. Accordingly, an ion assisted deposition method is used in which the energy of a material to be deposited by mounting an ion assist facility is reduced to several eV so as not to damage a substrate or a thin film. Ion assisted vapor deposition impinges an atom or gas with energy on the surface of the substrate while depositing or depositing a metal on the other side of the material, or a mass of gas, atoms or clusters, and energizing itself. It is a film-forming method to vapor-deposit. The ion assisted deposition method with low damage to the substrate or the thin film can implement a flat thin film required by the transparent conductive film for the organic light emitting diode, compared to the general thin film manufacturing method.

도 4는 상기와 같은 이온 보조 증착법을 이용하여 제조된 투명도전막의 표면 구조를 나타내는 것으로, 이러한 이온 보조 증착법은 평탄한 표면을 갖는 박막을 증착할 수는 있으나 증착속도가 낮고 설비가 높으며 대면적화가 어렵기 때문에 양산에 적용하는데 많은 어려움이 있다.Figure 4 shows the surface structure of the transparent conductive film prepared using the ion assisted deposition method as described above, such an ion assisted deposition method can deposit a thin film having a flat surface, but the deposition rate is low, the equipment is high, difficult to large area Because of this, there are many difficulties in applying to mass production.

또한, 다른 방법으로는 종래의 DC-마그네트론 스퍼터링을 이용하여 제조된 박막의 표면을 미세 연마하여 평탄화시키는 방법이 있으나 이 또한 새로운 공정이 추가됨에 따라 설비 및 공간의 투자가 필요하여 최종 제품의 가격이 상승되는 문제를 초래한다.In addition, another method is a method of finely polishing and planarizing the surface of a thin film manufactured using conventional DC-magnetron sputtering. However, as the new process is added, the investment of equipment and space is required, and thus the price of the final product is increased. It causes a problem of ascension.

유기발광 다이오드에 적용되는 높은 표면개질 특성을 지닌 투명도전막일 경우, 전류밀도의 집중으로 인해 유기물이 손상되어 흑점등의 불량이 야기되므로 평탄한 표면특성이 요구된다. 일반적으로DC-마그네트론 스퍼터링으로 성막된 박막은 Rrms 1nm이상, Rpv 20nm이상의 높은 표면조도를 갖는 박막이 형성되어, 유기발광 다이오드용으로 사용이 난이한 것으로 보고되어져 있으나, 통상의 LCD/PDP의 생상라인에 적용되어지는 DC-마그네트론 스퍼터법은 이온 보조 증착법에 비해 설비가가 낮고, 방전이 안정하며, 제어성이 우수한 장점을 가지고 있을 뿐만 아니라, 성막속도가 높고 양산성이 우수하여 대면적 기판상에 균일한 박막을 형성할 수 있는 장점이 있다.In the case of a transparent conductive film having a high surface modification property applied to the organic light emitting diode, the organic material is damaged due to the concentration of the current density, so that a poor black spot is caused, so that a flat surface property is required. Generally, thin films formed by DC-magnetron sputtering have a high surface roughness of Rrms of 1 nm or more and Rpv of 20 nm or more, which is reported to be difficult to use for organic light emitting diodes. The DC-magnetron sputtering method is applied to the large-area substrate due to the low facility cost, stable discharge, excellent controllability, and high film formation speed and mass productivity. There is an advantage that can form a uniform thin film.

따라서, 유기발광 다이오드의 대형화를 위하여서는 DC 마그네트론 스퍼터링과 같은 저가 및 범용의 성막 장치가 요구되어진다. 이에 본 발명에서는 저가 및 범용의 DC-마그네트론 스퍼터링법으로서의 멀티레이어 공정방법이라는 새로운 공정을 통하여 유기발광 다이오드용으로 사용 가능한 평탄한 표면을 갖는 투명도전막을 제조하는 방법을 제공한다.Therefore, in order to increase the size of the organic light emitting diode, a low cost and general purpose film forming apparatus such as DC magnetron sputtering is required. Accordingly, the present invention provides a method for producing a transparent conductive film having a flat surface that can be used for an organic light emitting diode through a new process called a multilayer process method as a low-cost and general-purpose DC-magnetron sputtering method.

상기한 목적을 달성하기 위해, 본 발명에 따르면, DC 마그네트론 스퍼터링을 이용한 평판 디스플레이에 사용되는 투명 도전막에 있어서, 상온에서 산소가 미첨가된 아르곤 가스 분위기하에서 0.5 ~ 1.2Pa의 고공정압으로 마그네트론 스퍼터링법을 이용하여 기판상에 형성된 제 1층과, 상온에서 아르곤 대비 0.4%의 산소 가스 분위기하에서 0.1 ~ 0.4Pa의 저공정압으로 마그네트론 스퍼터링법을 이용하여 상기 제 1층 위에 연속적으로 형성된 제 2층을 포함하여 구성되고, 상기 제 1층과 제 2층을 포함하는 다층박막을 비반응성 가스 분위기 하에서 열처리하여 형성되는 것을 특징으로 하는 투명 도전막이 제공된다. In order to achieve the above object, according to the present invention, in the transparent conductive film used for a flat panel display using DC magnetron sputtering, magnetron sputtering at a high process pressure of 0.5 to 1.2 Pa in an argon gas atmosphere without oxygen at room temperature The first layer formed on the substrate using the method, and the second layer continuously formed on the first layer using a magnetron sputtering method at a low process pressure of 0.1 to 0.4 Pa in an oxygen gas atmosphere of 0.4% compared to argon at room temperature And a multilayer thin film comprising the first layer and the second layer is formed by heat treatment under a non-reactive gas atmosphere.

삭제delete

여기서, 상기 다층박막의 열처리는 10-3Pa ~ 10-5Pa의 압력하에서 100℃ ~ 350℃로 열처리하여 형성되는 것을 특징으로 한다. Here, the heat treatment of the multilayer thin film is characterized in that formed by heat treatment at 100 ℃ ~ 350 ℃ under a pressure of 10 -3 Pa ~ 10 -5 Pa.

또한, 상기 제 1층은 30 ~ 90nm의 두께로 성막된 ITO 박막이며, 상기 제 2층은 60 ~ 120nm의 두께로 성막된 ITO박막인 것을 특징으로 한다. The first layer may be an ITO thin film formed to a thickness of 30 to 90 nm, and the second layer may be an ITO thin film formed to a thickness of 60 to 120 nm.

또한, 본 발명에 따르면, DC 마그네트론 스퍼터링을 이용한 평판 디스플레이에 사용되는 투명 도전막 제조방법에 있어서, 상온에서 산소가 미첨가된 아르곤 가스 분위기하에서 0.5 ~ 1.2Pa의 고공정압으로 마그네트론 스퍼터링법을 이용하여 기판상에 제 1층을 형성하는 단계와, 상온에서 아르곤 대비 0.4%의 산소 가스 분위기하에서 0.1 ~ 0.4Pa의 저공정압으로 마그네트론 스퍼터링법을 이용하여 상기 제 1층 위에 연속적으로 제 2층을 형성하는 단계와, 상기 제 1층과 상기 제 2층을 포함하는 다층박막을 비반응성 가스 분위기 하에서 열처리하는 단계를 포함하여 구성된 것을 특징으로 하는 투명 도전막 제조방법이 제공된다. In addition, according to the present invention, in the method of manufacturing a transparent conductive film used for a flat panel display using DC magnetron sputtering, by using the magnetron sputtering method at a high process pressure of 0.5 to 1.2 Pa under oxygen-free argon gas atmosphere at room temperature Forming a second layer on the first layer continuously using the magnetron sputtering method at a low process pressure of 0.1 to 0.4 Pa under an oxygen gas atmosphere of 0.4% compared to argon at room temperature. And a step of heat-treating the multilayer thin film including the first layer and the second layer in a non-reactive gas atmosphere is provided.

삭제delete

여기서, 상기 열처리하는 단계에서, 상기 다층박막의 열처리는 10-3Pa ~ 10-5Pa의 압력하에서 100℃ ~ 350℃로 열처리하는 것을 특징으로 한다. Here, in the heat treatment step, the heat treatment of the multilayer thin film is characterized in that the heat treatment at 100 ℃ ~ 350 ℃ under a pressure of 10 -3 Pa ~ 10 -5 Pa.

또한, 상기 제 1층을 형성하는 단계에서, 상기 제 1층은 30 ~ 90nm의 두께로 ITO박막을 성막하여 형성되고, 상기 제 2층을 형성하는 단계에서, 상기 제 2층은 60 ~ 120nm의 두께로 ITO박막을 성막하여 형성되는 것을 특징으로 한다. Further, in the forming of the first layer, the first layer is formed by forming an ITO thin film with a thickness of 30 to 90 nm, and in the forming of the second layer, the second layer is formed of 60 to 120 nm. It is characterized by being formed by forming an ITO thin film with a thickness.

이하, 도 1 및 도 2를 참조하여 본 발명에 따른 투명도전막의 공정에 대해서 상세하게 설명하기로 한다.Hereinafter, the process of the transparent conductive film according to the present invention will be described in detail with reference to FIGS. 1 and 2.

도 1은 본 발명에 따른 투명도전막의 성막 과정을 나타내는 순서도이다.1 is a flowchart illustrating a film forming process of a transparent conductive film according to the present invention.

기판(1) 상부에 형성되는 제 1층(결정화 억제층)(2)은 평탄한 표면 조도를 구현하기 위해 높은 공정압 0.5 ~ 1.2Pa에서 아르곤 가스만을 주입하여 상온에서 30 ~ 90nm박막의 두께를 성막한다. ITO 투명도전막은 일반적으로 70nm이하에서 비결정성으로 성막되어지는 것으로 알려져 있으므로 DC-마그네트론 스퍼터링으로 불균일한 결정성장을 최소화시킨다.The first layer (crystallization inhibiting layer) 2 formed on the substrate 1 is formed by injecting only argon gas at a high process pressure of 0.5 to 1.2 Pa to achieve flat surface roughness, and forming a thickness of 30 to 90 nm thin film at room temperature. do. Since the ITO transparent conductive film is generally known to be amorphous formed below 70 nm, DC-magnetron sputtering minimizes non-uniform crystal growth.

또한, 높은 공정압은 챔버내 성막입자의 평균 자유 행로(Mean Free Path)가 짧아지고 이로 인해 연속적으로 성막되는 박막은 낮은 성막입자 에너지로 성장된다. 그러나, 제 1층에서 성장된 박막은 산소 결손 및 주석의 인듐 위치로의 치환으로 인한 자유전자의 발생에 의해 낮은 전기 저항을 구현하는 적당량의 산소 가스가 미첨가되어 ITO 투명도전막의 전기 저항이 높아지게 된다. In addition, the high process pressure shortens the mean free path of the deposited particles in the chamber, and thus the thin films continuously deposited are grown at low deposition particle energy. However, the thin film grown in the first layer does not contain an appropriate amount of oxygen gas, which realizes low electrical resistance due to the generation of free electrons due to oxygen deficiency and substitution of tin in the indium position, thereby increasing the electrical resistance of the ITO transparent conductive film. do.

그 다음, 제 1층 상부에 형성되는 제 2층(저저항 구현층)은 저저항 박막을 구현하기 위해 낮은 공정압 0.1 ~ 0.45Pa에서 아르곤 대비 0.4%의 산소 가스를 주입하여 상온에서 제 1층상에 제조되며 그 두께는 60 ~ 120 nm으로 두 층이 합쳐져 150nm를 이룬다. 제 1층에서 성막된 박막의 저저항을 보상하기 위해 첨가되는 산소 가스는 ITO 박막의 결정화를 촉진시키는 역할도 하여 자유전자의 이동도를 증가시켜 저항 감소 효과를 나타낸다. 또한 낮은 공정압은 DC-마그네트론 스퍼터링으로 성막되어지는 입자의 평균 자유 행로(Mean Free Path)가 길어짐에 따라 높은 성막 입자 에너지가 성막 입자간의 충돌을 최소화하여 제 1층상에 연속적으로 성막되어지는 박막의 결정성이 높아지게 된다.Next, the second layer (low resistance realization layer) formed on the first layer is injected with 0.4% oxygen gas compared to argon at a low process pressure of 0.1 to 0.45 Pa to realize a low resistance thin film. The thickness is 60-120 nm and the two layers combine to form 150 nm. Oxygen gas, which is added to compensate for the low resistance of the thin film formed in the first layer, also serves to promote crystallization of the ITO thin film, thereby increasing the mobility of free electrons, thereby reducing the resistance. In addition, the low process pressure increases the mean free path of particles to be deposited by DC-magnetron sputtering, so that high deposition particle energy minimizes the collision between the deposition particles. The crystallinity becomes high.

상기 제조된 박막을 100℃ ~ 350℃로 열처리하여 증착된 박막을 결정화시킨다. 제 1, 2층으로 성막된 멀티레이어 박막의 열처리에 의해 결정화가 가속되고 높은 정공 이동도를 얻을 수 있어 저저항을 구현한다. The prepared thin film is heat-treated at 100 ° C. to 350 ° C. to crystallize the deposited thin film. Crystallization is accelerated by the heat treatment of the multilayer thin films formed into the first and second layers, and high hole mobility can be obtained, thereby achieving low resistance.

도 2는 상기와 같은 방법으로 제조된 본 발명의 투명도전막의 단면도이다. 도 2에 도시된 바와 같이, 일반적인 기판(1)이 맨 아래에 형성되어 있고, 그 위에 결정화 억제층(2)이 형성되어 있고, 마지막으로 저저항 구현층이 형성되어 있다.2 is a cross-sectional view of the transparent conductive film of the present invention prepared by the above method. As shown in Fig. 2, a general substrate 1 is formed at the bottom, a crystallization inhibiting layer 2 is formed thereon, and finally a low resistance realization layer is formed.

[실시예]EXAMPLE

DC-마그네트론 스퍼터링을 이용하여 1kW의 DC Power로 ITO (In2O3-90%, SnO2-10%)타겟으로부터 유리기판상에 박막을 증착시킨다. 유리기판의 온도는 상온(25℃)이고 아르곤 가스는 0.54Pa의 공정압에서 100sccm이 주입된다. 증착 두께는 70nm로 제어되어 결정화 핵성장을 억제함과 동시에 박막표면 조도를 제어하기 위한 제 1층이 형성된다. A thin film is deposited on a glass substrate from an ITO (In 2 O 3 -90%, SnO 2 -10%) target with DC power of 1 kW using DC-magnetron sputtering. The glass substrate is at room temperature (25 ° C) and argon gas is injected at 100 sccm at a process pressure of 0.54 Pa. The deposition thickness is controlled to 70 nm to suppress crystallization nucleus growth and to form a first layer for controlling the surface roughness.

상기 증착된 제 1층 위에 동일 챔버 내에서 연속적으로 0.25Pa의 공정압에서 아르곤 가스와 산소가스가 각각 100sccm, 0.4sccm 주입되며 80nm 두께로 제 2층이 성막된다. 100 sccm and 0.4 sccm of argon gas and oxygen gas are respectively injected at a process pressure of 0.25 Pa continuously in the same chamber on the deposited first layer, and a second layer is formed to a thickness of 80 nm.

상기 형성된 ITO 다층박막을 열처리 챔버에서 300℃, 10min 동안 열처리하여 평탄한 표면과 저저항 특성을 갖는 ITO 투명도전막을 제조한다. The formed ITO multilayer thin film is heat-treated at 300 ° C. for 10 min in a heat treatment chamber to prepare an ITO transparent conductive film having a flat surface and low resistance.

본 실시예에 따라 제조된 ITO 투명도전막과 종래의 DC-마그네트론 스퍼터링에 의해 제조된 ITO 투명도전막의 면저항값과 Rrms, Rpv를 표 1에 나타내었다. 표 1에서 보이는 것과 같이 본 실시예의 방법으로 제조된 ITO 투명도전막은 종래의 방법과 비교하여 낮은 저항값을 유지하면서 평탄도가 개선되었음을 확인할 수 있었다.Table 1 shows the sheet resistance, Rrms, and Rpv of the ITO transparent conductive film prepared according to the present embodiment and the ITO transparent conductive film prepared by conventional DC-magnetron sputtering. As shown in Table 1, it was confirmed that the ITO transparent conductive film manufactured by the method of the present embodiment was improved in flatness while maintaining a low resistance value compared with the conventional method.

구 분division 면저항(Ω/□)Sheet resistance (Ω / □) Rrms(nm)Rrms (nm) Rpv(nm)Rpv (nm) 실시예에 따라 제조된 ITO 투명도전막ITO transparent conductive film prepared according to the embodiment 10.110.1 0.9180.918 12.09112.091 종래의 방법으로 제조된 ITO 투명도전막ITO transparent conductive film manufactured by a conventional method 11.411.4 1.8581.858 29.20629.206

상기한 바와 같이, 본 발명에 따르면, 저가 및 범용의 DC-마그네트론 스퍼터링법을 이용한 멀티레이어 공정방법을 이용하여 유기발광 다이오드용으로 사용가능한 평탄한 표면을 갖는 투명도전막을 제조할 수 있고, 이러한 고평탄의 투명도전막은 플라즈마 디스플레이 패널, 유기발광 다이오드 등의 평판 디스플레이에 사용될 수 있다. As described above, according to the present invention, a transparent conductive film having a flat surface usable for an organic light emitting diode can be manufactured by using a multilayer process method using a low cost and general purpose DC-magnetron sputtering method. Can be used for flat panel displays such as plasma display panels and organic light emitting diodes.

Claims (8)

DC 마그네트론 스퍼터링을 이용한 평판 디스플레이에 사용되는 투명 도전막에 있어서, In the transparent conductive film used for flat panel displays using DC magnetron sputtering, 상온에서 산소가 미첨가된 아르곤 가스 분위기하에서 0.5 ~ 1.2Pa의 고공정압으로 마그네트론 스퍼터링법을 이용하여 기판상에 형성된 제 1층과, A first layer formed on a substrate by using a magnetron sputtering method at a high process pressure of 0.5 to 1.2 Pa under an oxygen-free argon gas atmosphere at room temperature, 상온에서 아르곤 대비 0.4%의 산소 가스 분위기하에서 0.1 ~ 0.4Pa의 저공정압으로 마그네트론 스퍼터링법을 이용하여 상기 제 1층 위에 연속적으로 형성된 제 2층을 포함하여 구성되고, It comprises a second layer continuously formed on the first layer by using a magnetron sputtering method at a low process pressure of 0.1 ~ 0.4Pa in an oxygen gas atmosphere of 0.4% compared to argon at room temperature, 상기 제 1층과 제 2층을 포함하는 다층박막을 비반응성 가스 분위기 하에서 열처리하여 형성되는 것을 특징으로 하는 투명 도전막. And a multilayer thin film comprising the first layer and the second layer is heat-treated under a non-reactive gas atmosphere. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 다층박막의 열처리는 10-3Pa ~ 10-5Pa의 압력하에서 100℃ ~ 350℃로 열처리하여 형성되는 것을 특징으로 하는 투명 도전막. Heat treatment of the multilayer thin film is a transparent conductive film, characterized in that formed by heat treatment at 100 ℃ ~ 350 ℃ under a pressure of 10 -3 Pa ~ 10 -5 Pa. 제 1항에 있어서, The method of claim 1, 상기 제 1층은 30 ~ 90nm의 두께로 성막된 ITO 박막이며, The first layer is an ITO thin film formed to a thickness of 30 ~ 90nm, 상기 제 2층은 60 ~ 120nm의 두께로 성막된 ITO 박막인 것을 특징으로 하는 투명 도전막. The second layer is a transparent conductive film, characterized in that the ITO thin film formed to a thickness of 60 ~ 120nm. DC 마그네트론 스퍼터링을 이용한 평판 디스플레이에 사용되는 투명 도전막 제조방법에 있어서, In the method of manufacturing a transparent conductive film used for a flat panel display using DC magnetron sputtering, 상온에서 산소가 미첨가된 아르곤 가스 분위기하에서 0.5 ~ 1.2Pa의 고공정압으로 마그네트론 스퍼터링법을 이용하여 기판상에 제 1층을 형성하는 단계와, Forming a first layer on a substrate by using a magnetron sputtering method at a high process pressure of 0.5 to 1.2 Pa under an oxygen-free argon gas atmosphere at room temperature; 상온에서 아르곤 대비 0.4%의 산소 가스 분위기하에서 0.1 ~ 0.4Pa의 저공정압으로 마그네트론 스퍼터링법을 이용하여 상기 제 1층 위에 연속적으로 제 2층을 형성하는 단계와, Continuously forming a second layer on the first layer by using a magnetron sputtering method at a low process pressure of 0.1 to 0.4 Pa under an oxygen gas atmosphere of 0.4% of argon at room temperature; 상기 제 1층과 상기 제 2층을 포함하는 다층박막을 비반응성 가스 분위기 하에서 열처리하는 단계를 포함하여 구성된 것을 특징으로 하는 투명 도전막 제조방법. And heat-treating the multilayer thin film including the first layer and the second layer under a non-reactive gas atmosphere. 삭제delete 제 5항에 있어서, The method of claim 5, 상기 열처리하는 단계에서, 상기 다층박막의 열처리는 10-3Pa ~ 10-5Pa의 압력하에서 100℃ ~ 350℃로 열처리하는 것을 특징으로 하는 투명 도전막 제조방법. In the heat treatment step, the heat treatment of the multilayer thin film is a transparent conductive film manufacturing method characterized in that the heat treatment at 100 ℃ ~ 350 ℃ under a pressure of 10 -3 Pa ~ 10 -5 Pa. 제 5항에 있어서, The method of claim 5, 상기 제 1층을 형성하는 단계에서, 상기 제 1층은 30 ~ 90nm의 두께로 ITO 박막을 성막하여 형성되고, In the step of forming the first layer, the first layer is formed by forming an ITO thin film with a thickness of 30 ~ 90nm, 상기 제 2층을 형성하는 단계에서, 상기 제 2층은 60 ~ 120nm의 두께로 ITO 박막을 성막하여 형성되는 것을 특징으로 하는 투명 도전막 제조방법. In the forming of the second layer, the second layer is a transparent conductive film manufacturing method, characterized in that formed by forming an ITO thin film with a thickness of 60 ~ 120nm.
KR1020070028617A 2007-03-23 2007-03-23 High flatness transparent conductive thin films and its manufacturing method KR100859148B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070028617A KR100859148B1 (en) 2007-03-23 2007-03-23 High flatness transparent conductive thin films and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070028617A KR100859148B1 (en) 2007-03-23 2007-03-23 High flatness transparent conductive thin films and its manufacturing method

Publications (1)

Publication Number Publication Date
KR100859148B1 true KR100859148B1 (en) 2008-09-19

Family

ID=40023321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070028617A KR100859148B1 (en) 2007-03-23 2007-03-23 High flatness transparent conductive thin films and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100859148B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560390A (en) * 2010-12-23 2012-07-11 海洋王照明科技股份有限公司 Preparation method of transparent conductive film
CN103243299A (en) * 2012-02-10 2013-08-14 海洋王照明科技股份有限公司 AZO-zinc halide bilayer conductive film and preparation method
CN111593310A (en) * 2020-05-09 2020-08-28 哈尔滨工业大学 Method for preparing transparent conductive film with high photoelectric stability by magnetron sputtering
KR20200113961A (en) * 2019-03-27 2020-10-07 성균관대학교산학협력단 Transparent thin film for solarcell and method of fabricating thereof
CN115029665A (en) * 2022-06-14 2022-09-09 浙江水晶光电科技股份有限公司 Compound film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458225A (en) * 1990-06-28 1992-02-25 Seiko Epson Corp Transparent conductive film and production thereof
KR20030062729A (en) * 2002-01-18 2003-07-28 삼성에스디아이 주식회사 Method for formming transparent electrode of organic luminescence electro device and organic luminescence electro device thereby
KR20060077548A (en) * 2004-12-30 2006-07-05 (주)플라웍스 Multi-layered ito deposited on polymer substrate, manufacturing method of the same and manufacturing apparatus of the same
KR20070021342A (en) * 2005-08-18 2007-02-23 인하대학교 산학협력단 Method for ZnO thin film doped with metal using magnetron sputtering method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458225A (en) * 1990-06-28 1992-02-25 Seiko Epson Corp Transparent conductive film and production thereof
KR20030062729A (en) * 2002-01-18 2003-07-28 삼성에스디아이 주식회사 Method for formming transparent electrode of organic luminescence electro device and organic luminescence electro device thereby
KR20060077548A (en) * 2004-12-30 2006-07-05 (주)플라웍스 Multi-layered ito deposited on polymer substrate, manufacturing method of the same and manufacturing apparatus of the same
KR20070021342A (en) * 2005-08-18 2007-02-23 인하대학교 산학협력단 Method for ZnO thin film doped with metal using magnetron sputtering method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560390A (en) * 2010-12-23 2012-07-11 海洋王照明科技股份有限公司 Preparation method of transparent conductive film
CN102560390B (en) * 2010-12-23 2013-11-06 海洋王照明科技股份有限公司 Preparation method of transparent conductive film
CN103243299A (en) * 2012-02-10 2013-08-14 海洋王照明科技股份有限公司 AZO-zinc halide bilayer conductive film and preparation method
KR20200113961A (en) * 2019-03-27 2020-10-07 성균관대학교산학협력단 Transparent thin film for solarcell and method of fabricating thereof
KR102219810B1 (en) * 2019-03-27 2021-02-23 성균관대학교산학협력단 Transparent thin film for solarcell and method of fabricating thereof
CN111593310A (en) * 2020-05-09 2020-08-28 哈尔滨工业大学 Method for preparing transparent conductive film with high photoelectric stability by magnetron sputtering
CN115029665A (en) * 2022-06-14 2022-09-09 浙江水晶光电科技股份有限公司 Compound film and preparation method thereof
CN115029665B (en) * 2022-06-14 2023-08-25 浙江水晶光电科技股份有限公司 Compound film and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100514952B1 (en) Method of forming indium tin oxide thin film including a seed layer and a bulk layer utilizing an optimized sequential sputter deposition
KR101025932B1 (en) Method for fabricating transparent conductive oxide electrode using electron beam post treatment
US7371475B2 (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element and solar cell
US9805837B2 (en) Transparent conductive film and production method therefor
US9570210B2 (en) Transparent conductive film and production method therefor
US9624573B2 (en) Production method for transparent conductive film
KR100859148B1 (en) High flatness transparent conductive thin films and its manufacturing method
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
KR101449258B1 (en) High Flexible and Transparent Electrode based Oxide
KR20070050143A (en) Methods for fabricating transparent conductive oxide electrode
KR100862593B1 (en) Transparent conductive thin film and method of fabricating thereof
KR102164629B1 (en) Composite transparent electrodes
KR100733915B1 (en) Transparent conductive oxide thin film deposited with buffer layer on polymer substrate and its preparation
KR102181436B1 (en) Transparent conductive thin film
KR20140011854A (en) Multilayer transparent eletrode comprising mgzno alloy and method for preparing the same
KR100773960B1 (en) A transparent conductive film having low-resistance and high-flatness property and a manufacture method thereof
JP7478721B2 (en) Method for manufacturing a substrate with a transparent electrode
JP7320510B2 (en) SUBSTRATE WITH TRANSPARENT ELECTRODE AND PRODUCTION METHOD THEREOF
JP2014148734A (en) Production method of substrate with transparent electrode, and substrate with transparent electrode
US9219254B2 (en) Method of forming nanocrystals and method of manufacturing an organic light-emitting display apparatus including a thin film having nanocrystals
KR20090069886A (en) Ito(indium tin oxide) film for transparent electrode manufactured using low frequency sputtering apparatus, and method thereof
KR101537069B1 (en) Method for producing transparent conductive film
TWI651427B (en) Transparent conductive oxide film processing method and device applied to organic light-emitting diode
KR101807957B1 (en) Highly conductive flexible transparent electrodes based oxide and method for manufacturing thereof
KR20080086662A (en) Method of varying surface roughness in ito transparent conductive film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140826

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150813

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160621

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170811

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180710

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190820

Year of fee payment: 12