KR100857661B1 - 전도성 패드상의 컨디셔닝 스위핑 프로파일을 조정함으로써제거 프로파일을 조절하는 방법 - Google Patents

전도성 패드상의 컨디셔닝 스위핑 프로파일을 조정함으로써제거 프로파일을 조절하는 방법 Download PDF

Info

Publication number
KR100857661B1
KR100857661B1 KR1020070019086A KR20070019086A KR100857661B1 KR 100857661 B1 KR100857661 B1 KR 100857661B1 KR 1020070019086 A KR1020070019086 A KR 1020070019086A KR 20070019086 A KR20070019086 A KR 20070019086A KR 100857661 B1 KR100857661 B1 KR 100857661B1
Authority
KR
South Korea
Prior art keywords
conditioning
setting
pad
polishing
conductive
Prior art date
Application number
KR1020070019086A
Other languages
English (en)
Other versions
KR20070098492A (ko
Inventor
티안바오 듀
펭 큐. 리우
메이 유
알랭 듀보스
웨이-영 수
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20070098492A publication Critical patent/KR20070098492A/ko
Application granted granted Critical
Publication of KR100857661B1 publication Critical patent/KR100857661B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

폴리싱 프로세스 중에 기판으로부터 물질을 제거하는 속도를 제어하기 위한 방법이 개시된다. 일 실시예에서, 기판의 사전-폴리싱 프로파일이 결정되고 폴리싱 패드 컨디셔닝 파라미터들이 상기 프로파일을 기초로 조정된다. 컨디셔닝 헤드 스위핑 범위, 컨디셔닝 헤드 스위핑 주파수, 컨디셔닝 요소에 인가되는 압력, 컨디셔닝 요소에 적용되는 RPM과 같은 파라미터들을 조정하여, 패드의 부분들을 선택적으로 컨디셔닝함으로써 패드의 최적의 폴리싱 품질을 유지한다.

Description

전도성 패드상의 컨디셔닝 스위핑 프로파일을 조정함으로써 제거 프로파일을 조절하는 방법{REMOVAL PROFILE TUNING BY ADJUSTING CONDITIONING SWEEP PROFILE ON A CONDUCTIVE PAD}
도 1은 처리 시스템의 일 실시예이다.
도 2는 패드 조립체의 일 실시예의 전개도이다.
도 3은 ECMP 스테이션의 일 실시예의 측면도이다.
도 4는 ECMP 스테이션의 다른 실시예의 평면도이다.
도 5는 폴리싱 방법의 일 실시예를 도시한 흐름도이다.
본 발명의 실시예들은 대체적으로 기판으로부터 물질을 제거하는 것과 관련된 것이다. 특히, 본 발명은 전기화학적 기계적 폴리싱(electrochemical mechanical polishing)에 의해 기판을 폴리싱 또는 평탄화하는 것과 관련된다.
집적 회로 제조시에, 전도성 물질의 층들이 반도체 웨이퍼상에 연속적으로 부착되고 제거되어 웨이퍼상에 원하는 회로를 만든다.
전기화학적 기계적 처리(ECMP)는, 종래의 화학적 기계적 폴리싱(CMP) 프로세스 보다 적은 하향력(downforce) 및 기계적 마모로 기판을 폴리싱하면서 전기화학적으로 분해함으로써 반도체 웨이퍼 또는 기판 표면으로부터 전도성 물질을 제거하는데 이용되는 기술이다. 통상적으로, 전기화학적 용해는 기판 표면으로부터 주변 전해질로 전도성 물질을 제거하기 위해 양극으로서 작용하는 기판 표면에 바이어스를 인가하고 음극에 바이어스를 인가함으로써 실시된다. 바이어스는 기판이 놓여져서 처리되는 폴리싱 물질을 통해서 또는 그 폴리싱 물질상에 배치된 전도성 콘택(contact)에 의해서, 또는 기판 표면상의 전도성 물질을 통해서 기판 표면에 인가될 수 있다. 폴리싱 물질은, 예를 들어 플래튼(platen)상에 배치된 처리 패드일 수 있다. 폴리싱 프로세스의 기계적 성분(component)은 기판과 폴릿이 물질 사이의 상대적인 운동을 제공함으로써 실시되며, 상기의 상대적인 운동은 기판으로부터 전도성 물질을 제거하는 것을 촉진한다. 일반적으로, ECMP 시스템은 기판과 전극 사이에 인가되는 바이어스의 극성을 반전시킴으로써 기판상에 전도성 물질을 증착하도록 구성될 수도 있다.
통상적으로, 하나 이상의 ECMP 프로세스에 의해 제거될 수 있는 벌크(bulk) 전도성 물질이 비-평면형 배향(non-planar orientation) 상태로 부착된 기판이 평탄화 처리되기 시작한다. 하나 이상의 ECMP 프로세스가 이용되는 경우에, 벌크 제거는 높은 제거 속도를 얻도록 그리고 다음 ECMP 프로세스로 넘어가기 전에 실질적으로 평탄한 기판 표면을 생성하도록 디자인된다. 일부 ECMP 프로세스에서, 기판에 적은 하향력을 인가하면서 전도성 물질을 빠른 속도로 제거할 수 있도록 촉진하는 여러 화학물질이 개발되었다. 예를 들어, 수동태화(passivation) 화학물질은 기판의 오목한 영역상의 전도성 물질을 수동태화시킴으로써 기판 표면의 상승 영역을 빠른 속도로 제거하는 것을 촉진하며, 그에 따라 벌크 제거 프로세스 후에 보다 평탄한 표면을 생성한다.
이러한 벌크 제거를 실시하는 처리 패드는 기판 평탄화를 위한 적절한 기계적 특성을 가져야 하며 동시에 폴리싱 중에 기판내에 결함 생성을 최소화하여야 한다. 그러한 결함은 패드의 높은 영역에 의해서 또는 패드 표면상에 위치된 폴리싱 부산물에 의해서 유발되는 기판 표면내의 스크래치일 수 있으며, 상기 부산물의 예를 들면 전해질 용액으로부터 석출된 기판으로부터 제거된 전도성 물질 덩어리, 패드의 벗겨진 부분, 폴리싱 슬러리로부터의 마모 입자 덩어리 등이 있다. 일반적으로, 폴리싱 중에 처리 패드의 폴리싱 포텐셜(potential)이 감소되는데, 이는 패드 표면상의 폴리싱 부산물의 축적 및/또는 마모에 기인하며, 결과적으로 최적에 미치지 못하는(sub-optimum) 폴리싱 품질을 초래한다. 이러한 부산물 축적은 패드 표면에 걸쳐 불균일하게 또는 국부적인 패턴으로 발생할 수 있으며, 이는 전도성 물질의 불균일한 평탄화를 촉진할 수 있다. 따라서, 패드의 폴리싱 성능을 보존하기 위해 패드 표면은 반드시 주기적으로 재생(refresh)되거나, 컨티셔닝(condition)되어야 한다.
폴리싱 패드상의 부산물 축적이 폴리싱 표면상에서 불균일하게 일어날 수 있는 반면, 패드 컨디셔닝은 통상적으로 패드 표면에 걸쳐 균일한 방식으로 실시된다. 그에 따라, 이러한 균일한 컨디셔닝 방식은 패드를 구분없이(indiscriminately) 컨디셔닝하고, 이는 패드의 폴리싱 포텐셜을 개선하는 결과 를 초래할 것이다. 그러나, 균일한 패드 컨디셔닝 방식은 폴리싱 포텐셜의 국부적인 손실을 나타내는 패드 영역들을 고려하지 못하고 있고 폴리싱 포텐셜이 거의 감소되지 않거나 아예 감소되지 않은 패드 영역도 고려하지 못하고 있다. 그에 따라, 폴리싱 포텐셜 감소가 거의 또는 아예 일어나지 않은 패드 부분상에서는 최적의 컨디션이 유지되는 반면, 폴리싱 포텐셜의 감소가 큰 국부적인 부분들에서는 여전히 최적의 상태 이하로 유지될 것이다.
그에 따라, 처리 패드를 컨디셔닝하기 위한 개선된 방법이 요구된다.
본 발명의 실시예는 기판의 입력(incoming) 두께 프로파일(profile)을 결정하는 단계, 상기 두께 프로파일에 응답하여 컨디셔닝 파라미터를 셋팅하는 단계, 및 상기 컨디셔닝 파라미터를 이용하여 폴리싱 패드의 처리 표면을 컨디셔닝하는 단계를 포함하는 반도체 기판 처리 방법을 제공한다.
다른 실시예에서, 반도체 기판을 처리하는 방법이 개시되며, 그 방법은 기판상에서 전도성 물질의 입력 두께 프로파일을 나타내는 측정치(metric)를 결정하는 단계, 및 상기 측정치에 응답하여 폴리싱 패드의 처리 표면상의 전기적 특성을 변화시키는 단계를 포함한다.
또 다른 실시예에서, 반도체 기판을 처리하는 방법이 개시되며, 그 방법은 기판상의 전도성 물질의 입력 두께 프로파일을 결정하는 단계, 상기 두께 프로파일을 기초로 하여 하나 이상의 컨디셔닝 파라미터를 셋팅하는 단계, 제 1폴리싱 프로세스를 실시하기 위해 폴리싱 패드의 폴리싱 표면에 대항하여 기판을 처리하는 단계, 및 상기 제 1처리 프로세스를 실시하는 동안에 컨디셔닝 파라미터를 이용하여 처리 표면을 컨디셔닝하는 단계를 포함한다.
본 발명의 상기 특징들을 상세히 이해할 수 있도록, 일부가 첨부 도면에 도시된 실시예들을 참조하여, 위에서 간략하게 설명한 본 발명에 대해 보다 구체적으로 설명한다. 그러나, 첨부 도면은 단지 본 발명의 통상적인 실시예로서 본 발명을 제한하는 것이 아님을 주지하여야 하며, 따라서 본 발명은 다른 균등한 유효 실시예도 포함할 것이다.
이해를 돕기 위해, 도면들을 통해 공통되는 동일 구성요소에 대해서는 가능한 한 동일한 도면부호로 표시하였다. 특별한 언급이 없으면, 일 실시예에 개시된 구성요소가 다른 실시예에서도 유리하게 이용될 것이다.
개략적으로, 본 발명의 실시예는 반도체 기판의 제조시에 실시되는 폴리싱 또는 평탄화 프로세스에 관한 것이다. 전기화학적 기계적 평탄화(ECMP)는 폴리싱 프로세스 중 하나이며, 넓게는 기계적, 화학적 및/또는 전기화학적 힘(force)의 조합에 의해 반도체 표면으로부터 미리 증착된 물질을 제거하는 것을 포함한다. 기계적 힘은, 예를 들어, 물리적 접촉 및 마찰(rubbing) 작용을 포함할 것이고, 화학적 및/또는 전기적 힘은, 예를 들어, 양극 분해에 의해 물질을 제거하는 것을 포함할 것이다.
도 1은 전기화학적 기계적 폴리싱 및 화학적 기계적 폴리싱에 적합한 평탄화 모듈을 가지는 처리 시스템(100)의 일부를 도시한 평면도이다. 처리 시스템(100)은 환경적으로 제어된 외피(188)내에 배치된 적어도 제 1전기화학적 기계적 평탄화(ECMP) 스테이션(102), 제 2 ECMP 스테이션(103), 및 선택적으로, 하나 이상의 종래의 화학적 기계적 평탄화(CMP) 스테이션(106)을 포함한다.
하나의 예시적인 프로세스에서, 피쳐 형상(feature definition)이 형성되고 배리어(barrier) 층으로 충진되며 이어서 상기 배리어 층상에 전도성 물질이 배치된 기판으로부터 두 개의 ECMP 스테이션(102, 103)에서의 두 단계에 의해 전도성 물질이 제거되고, CMP 스테이션(106)에서 배리어 층이 처리되어 기판상에 평탄화된 표면을 형성한다. 예를 들어, 제 1 CMP 스테이션(102)이 제 1폴리싱 단계, 예를 들어 벌크 제거 단계를 실시할 것이고, 제 2 ECMP 스테이션(103)이 제 2폴리싱 단계, 예를 들어 잔류 폴리싱 단계를 실시할 것이며, CMP 스테이션(106)은 제 3폴리싱 단계, 예를 들어 배리어 제거 단계를 실시할 것이다. 본 발명이 이러한 특정 구성으로 제한되는 것이 아니며, 기판상에 증착된 여러 층들을 제거하기 위한 ECMP 프로세스에 사용될 수 있도록 모든 스테이션(102, 103 및 106)을 구성할 수도 있을 것이다. 그 대신에, 처리 시스템(100)이 CMP 프로세스를 실시하도록 구성된 두 개의 스테이션을 포함하고, 다른 스테이션은 ECMP 프로세스를 실시하도룩 구성할 수도 있을 것이다. 전기화학적 및/또는 전기화학적 기계적 도금 프로세스에 의해 기판상에 물질을 부착하기 위해 상기 스테이션(102, 103 및 106)을 임의로 조합할 수도 있을 것이다.
본 발명에 적용될 수 있는 ECMP 스테이션들의 예가 본 명세서에서 참조하는 2001년 6월 12일자 미국 특허 제 6,244,935 호 및 2004년 6월 30일자로 출원된 미국 특허출원 제 10/880,752 호에 개시되어 있다. 본 발명의 실시에 이용될 수 있는 처리 시스템의 예를 들면, 미국 캘리포니아 산타클라라에 소재하는 어플라이드 머티어리얼스가 제공하는 REFLEXION LK EcmpTM 시스템이 있다. 소위 당업계에서 일반적으로 이용되는 기타 평탄화 모듈도 본 발명의 실시에 이용될 수 있다.
제 1 ECMP 스테이션(102), 제 2 ECMP 스테이션(103), 및 CMP 스테이션(106)모두는 베이스(108)에 회전가능하게 부착된 컨디셔닝 장치(182) 및 처리 표면(125)으로 유체를 공급하기 위한 노즐(116)을 구비한다. 처리 시스템(100)은 또한 상기 베이스(108)상에 위치된 이송 스테이션(110) 및 회전장치(carousel)(112)를 포함한다. 일반적으로, 회전장치(112)는 다수의 캐리어 헤드(105)를 지지하고, 상기 각각의 캐리어 헤드는 처리 중에 하나의 기판을 수용한다. 회전장치(112)는 캐리어 헤드(105)를 이송 스테이션(110)과 스테이션(102, 103 및 106) 사이에서 이동시킨다. 캐리어 헤드(105)는, 그 캐리어 헤드가 각 스테이션(102, 103 및 106)의 위쪽에 위치될 때, 기판을 처리 표면(125)에 대해 제어가능하게 가압하도록 구성된다.
도 2는 서브-패드(sub-pad)(235)를 사이에 두고 전극(245)에 배치된 전도성 처리 표면(225)을 구비하는 패드 조립체(200)의 전개도이다. 이러한 실시예에서, 전도성 처리 표면(225)은 도 1에 도시된 ECMP 스테이션(102)의 처리 표면(125)을 형성한다. 패드 조립체(200)를 전원(237)의 대향하는 폴(pole)에 결합하기 위해, 전도성 처리 표면(225) 및 전극(245)은 하나 이상의 커넥터(227, 247)를 각각 포함한다. 서브-패드(235)는 전도성 처리 표면(225)에 대해 강화된 압축성 및 두 개의 전도성 부분들 사이의 절연 요소로서의 기능을 제공하여, 전도성 처리 표면이 양극으로 작용할 수 있게 하고, 전극(245)이 ECMP 프로세스에서 음극으로 작용할 수 있게 한다. 전극(245)은 중실(solid) 금속 시트, 호일 또는 금, 주석, 니켈, 은, 스테인리스 스틸, 그 유도체 및 그들의 조합으로 이루어진 메시(mesh)일 수 있다. 통상적으로, 패드 조립체(200)의 여러 부분들은 프로세스와 양립될 수 있는(compatible) 접착제에 의해 서로 결합되며, 플래튼 조립체(255)의 상부 표면에 분리가능하게 부착되며, 상기 플래튼 조립체는 도 1의 ECMP 스테이션(102, 103) 중 하나 이상에 배치된다.
전도성 처리 표면(225)은 전도성 물질로 제조될 수 있고 및/또는 폴리머 매트릭스에 결합된 전도성 입자를 포함할 수 있다. 예를 들어, 전도성 물질은, 전도성 입자들이 분산된 폴리머 매트릭스 및/또는 전도성 코팅 패브릭(fabric) 등과 같이, 처리 표면(225)을 구성하는 물질의 내부에 일체로 분산되거나 또는 그러한 처리 표면을 구성하는 물질로 이루어질 수 있다. 전도성 입자들은 금, 니켈, 주석, 아연, 구리, 그 유도체 및 그 조합과 같은 금속의 입자일 수 있다. 전도성 폴리머는 전도성 호일 또는 메시일 수 있는 전도성 캐리어상에 배치될 수도 있다. 전도성 처리 표면(225)은 또한 서브-패드(235)내의 홀(220)과 적어도 부분적으로 정렬된 하나 이상의 개구(215)를 포함할 수 있다. 개구(215) 및 홀이 전해질로 충진되어, 전도성 처리 표면(225)이 기판상의 전도성 물질에 대해 가압될 때 기판 표면과 전극 사이에 전해질이 소통될 수 있게 구성될 수도 있다. 홈 또는 채널(210)이 전도성 처리 표면(225)에 형성되어 전해질 유동 및 유지를 촉진할 수 있으며, 처리 표면으로부터 넘쳐 흐르는(flushed) 기판으로부터 제거된 물질에 대한 통로를 제공할 수 있다. 패드 조립체의 예가 2006년 1월 31일자로 발행된 미국 특허 제 6,991,528 호(대리인 서류 번호 제 004100.P4) 및 2003년 12월 23일자로 출원된 미국 특허출원 제 10/744,904 호(대리인 서류 번호 제 004100.P10)에 개시되어 있다. 상기 미국 특허 및 특허출원은 본 출원과 관련되는 범위내에서 참조로서 본 명세서에 포함된다.
도 3은 ECMP 시스템의 ECMP 스테이션(102)의 측면도이다. 일반적으로, 폴리싱 스테이션(102)은 모터(도시 안 됨)에 의해 회전되는 플래튼(255) 및 컨디셔닝 장치(182)를 포함한다. 전도성 처리 표면(225)이 ECMP 스테이션(102)의 처리 표면(125)을 형성하도록 패드 조립체(200)가 상기 플래튼(255)의 상부 표면상에 배치된다. 캐리어 헤드(105)가 패드 조립체(200)의 상부에 배치되고 처리 중에 패드 조립체(200)에 대항하여 기판을 유지하도록 구성된다. 캐리어 헤드(105)는 처리 중에 패드 조립체(200)와 기판 사이에 제공되는 상대적인 운동의 일부를 분담한다. 일 실시예에서, 캐리어 헤드(105)는 미국 캘리포니아 산타클라라에 소재하는 어플라이드 머티어리얼스가 제공하는 TITAN HEADTM 또는 TITAN PROFILERTM 웨이퍼 캐리어이다. 전해질과 같은 처리 유체가 처리 유체 공급원(도시 안 됨)에 연결된 노즐(116)에 의해 패드 조립체(200)의 처리 표면으로 제공될 수 있다.
컨디셔닝 장치(182)는 지지 아암(118)을 사이에 두고 지지부 조립체(310)에 의해 지지되는 컨디셔닝 헤드(300)를 포함한다. 지지부 조립체(310)는 베이스(108)에 결합되고, 컨디셔닝 헤드(300)를 패드 조립체(200)와 접촉되도록 위치시키며, 또한 그들 사이에 상대적인 이동을 제공하도록 구성된다. 컨디셔닝 헤드(300)는 또한 패드 조립체(200)를 향해 컨디셔닝 헤드(300)를 제어가능하게 가압하기 위한 하향력 또는 제어가능한 압력을 제공하도록 구성된다. 하향 압력은 약 0.7 psi 내지 약 2 psi일 수 있다. 일반적으로, 컨디셔닝 헤드(300)는, 도 4에서 화살표(410 및 412)로 표시된 바와 같이, 패드 조립체(200)의 표면을 가로지르는 스위핑(sweeping) 운동 중에 측방향으로 이동되거나 및/또는 회전된다. 일 실시예에서, 패드 조립체(200)의 회전과 조합되어 패드 조립체(200)의 전체 표면이 컨디셔닝되도록, 컨디셔닝 헤드(300)의 측방향 운동은 패드 조립체(200)의 대략적인 중심으로부터 패드 조립체(200)의 대략적인 외측 엣지(edge)까지의 범위에서 원호를 따르는 운동이거나 또는 선형 운동일 수 있다. 사용중이 아닐 때(도 4의 가상선으로 도시된 바와 같음) 컨디셔닝 헤드(300)가 패드 조립체(200)의 엣지를 지나 이동하도록, 컨디셔닝 헤드(300)는 추가적인 이동 범위를 가질 수 있다.
컨디셔닝 헤드(300)는 패드 조립체(200)와 접촉하게끔 컨디셔닝 요소(도시 안 됨)를 수용하도록 구성된다. 일반적으로, 패드 조립체(200)의 상부 표면과 접촉하도록 하기 위해, 컨디셔닝 요소는 컨디셔닝 헤드(300)의 하우징 너머로 약 0.2mm 내지 약 1mm 만큼 연장한다. 컨디셔닝 요소는 나일론, 면 직물, 폴리머, 또는 패드 조립체(200)의 상부 표면을 손상시키지 않는 기타 연성 물질로 제조될 수 있다. 그 대신에, 컨디셔닝 요소는 다이아몬드 입자가 부착되거나 거칠게 형성된 거친 표면을 가지는 스테인리스 스틸 또는 텍스쳐드(textured) 폴리머로 제조될 수 있다. 다이아몬드 입자의 크기는 약 30 미크론 내지 약 100 미크론일 수 있다. 적절한 컨디셔닝 요소로는 3MTM Diamond Pad Conditioners 및 대만의 타이페이에 소재하는 Kinik Co.에 공급하는 컨디셔닝 디스크가 있다.
도 4는 ECMP 시스템의 ECMP 스테이션(102)의 평면도이다. 컨디셔닝 헤드가 지지 아암(118)에 결합되어 도시되어 있고, 패드 조립체(200)의 상부 표면을 가로지르는 운동 범위가 화살표(410)로 도시되어 있다. 일 실시예에서, 스위핑 범위는 패드의 둘레 부분으로부터 패드의 중심 부분까지이며, 즉 스위핑 범위가 패드의 반지름을 컨디셔닝할 수 있는 범위이기 때문에 스위핑 범위는 반경(radial) 스위핑 범위이다. 다른 실시예에서, 스위핑 범위는 반경 스위핑 범위의 몇분의 일 보다 작다. 다른 실시예에서, 스위핑 범위는 반경 스위핑 범위 보다 클 수 있다.
일반적으로, 기판의 입력 또는 사전-폴리싱(pre-polish) 프로파일은 넓은 피쳐 형상을 가지는 기판의 영역에 비해 좁은 피쳐 형상 영역에 걸쳐 구리 함유 물질을 포함하는 전도성 물질의 보다 높은 높이 및/또는 보다 두꺼운 두께를 포함한다. 또한, 사전-폴리싱 프로파일은 기판의 중심에 비해 기판의 엣지를 따른 보다 두꺼운 및/또는 보다 높은 전도성 물질의 영역을 포함할 것이다.
전기기계적 화학적 폴리싱 단계에서, 기판이 수동태화 약제를 포함하는 전해질에 노출되어 기판의 전도성 물질상에 수동태 층을 형성함으로써 전도성 물질의 양극 분해를 방지한다. 보다 큰 높이 및/또는 두께의 영역으로부터 수동태 층을 제거하도록, 넓은 피쳐 형상에 걸친 영역과 같이 보다 낮은 높이의 영역내에서 수동태 층이 유지될 수 있게 하면서 수동태 층은 기계적 폴리싱 중에 폴리싱 물품과 접촉된다. 기판에 인가되는 바이어스는 수동태 층이 제거되는 전도성 물질의 영역에서 방해 없이 양극 분해가 실시될 수 있게 하고, 그러한 영역은 보다 낮은 영역에 비해 우선적으로 제거되어 전도성 물질을 평탄화한다. ECMP 프로세스에 의한 전도성 물질의 제거는 넓은 피쳐 형상에서 디싱(dishing; 오목한 형상)을 초래할 수 있다.
돌출부(protrusion) 형성 ECMP 프로세스를 이용하여 넓은 피쳐 형상에서의 디싱을 제한하거나 최소화할 수 있다. ECMP 프로세스에서, 돌출부 형성 조성 및/또는 돌출부 형성 파워 인가를 이용하여, 좁은 피쳐 형상에 대비하여 넓은 피쳐 형상에 걸쳐 충분한 높이 및/또는 두께의 전도성 물질이 남아 있는 정도까지, 넓은 피쳐 형상에 걸친 물질의 제거를 감소시킨다. 넓은 피쳐 형상에 걸친 전도성 물질의 돌출부 형성에 의해, 통상적으로 좁은 피쳐 형상 보다 빠른 제거 속도록 넓은 피쳐 형상에 걸쳐 물질을 제거하는 후속 프로세스를 이용할 수 있게 되어, 넓은 피쳐 형상에서 디싱이 없거나 최소화된 상태로 전도성 물질을 평탄화할 수 있게 된다.
돌출부 형성 프로세스의 예가 2006년 2월 15일자로 출원된 "METHOD AND COMPOSITION FOR POLISHING A SUBSTRATE"라는 명칭의 미국 특허출원 제 11/356,352 호 및 2003년 6월 26일자로 출원된 미국 특허출원 제 10/608,404 호에 보다 구체적 으로 기재되어 있으며, 상기 미국 출원들은 관련 범위내에서 본 명세서에서 참조된다.
전술한 프로세스들이 제거 속도를 높이면서도, 기판의 잔류(remaining) 프로파일을 개선하여 나머지 프로세스와 같은 제 2 폴리싱 프로세스 전에 우수한 잔류 프로파일을 제공한다. 현재 이용되는 패드 컨디셔닝 방식이 개선되어 보다 빠른 평균 제거 속도가 가능해질 것이고 또 패드의 처리 표면을 선택적으로 컨디셔닝 시키는 것이 가능해 질 것으로 생각한다.
도 5는 기판으로부터 전도성 물질을 제거하는 것에 대한 제어 및 제거 속도를 개선하도록 구성된 폴리싱 방법(500)의 일 실시예를 도시한 도면이다. 일 실시예에서, 폴리싱 방법(500)은 패드의 최적의 폴리싱 품질을 보존하기 위해 패드의 처리 표면의 국부적인 영역에 대해 선택적으로 컨티셔닝할 수 있다. 다른 실시예에서, 폴리싱 방법(500)은 처리 패드의 처리 표면의 저항 프로파일, 처리 패드의 처리 표면의 전도성 프로파일, 또는 그 조합과 같은 전기적 특성들을 선택적으로 제어 및/또는 개선할 수 있다. 따라서, 처리 표면과 기판상의 전도성 물질 사이의 전기적 접촉이 개선된다.
단계(510)에서, 기판상에는 전도성 물질이 부착된다. 전도성 물질은 구리 함유 물질, 텅스텐 함유 물질, 또는 전자 소자 생산을 위해 산업계에서 사용되는 임의의 전도성 금속일 수 있다. 단계(520)에서, 입력 또는 사전-폴리싱 프로파일 결정은, 예를 들어 기판의 부분들에 걸쳐 물질의 두께를 측정하는 것에 의해, 이루어질 수 있다. 프로파일 결정은 기판 표면을 가로질러 전도성 물질의 두께 프로파 일을 결정하는 것을 포함할 수 있다. 반도체 기판의 필름 두께를 측정하도록 디자인된 임의 장치에 의해 두께가 측정치로 표시될 수 있을 것이다. 비-접촉식 장치의 예를 들면, 미국 캘리포니아 산타클라라에 소재하는 어플라이드 머티어리얼스가 제공하는 i SCANTM 및 i MAPTM 이 있으며, 상기 각각의 장치는 기판을 스캐닝하고 맵핑(scan and map)한다.
단계(530)에서, 단계(520)의 프로파일 결정에 응답하여 컨디셔닝 파라미터들이 조정된다. 컨디셔닝 파라미터들은 화살표(410)(도 4 참조)으로 표시된 컨디셔닝 헤드 스위핑 범위, 컨디셔닝 중에 컨디셔닝 요소에 인가되는 압력 또는 하향력, 컨디셔닝 요소에 인가되는 회전 속도 또는 RPM, 및 컨디셔닝 헤드 스위핑 주파수 중 하나 이상을 포함한다. 하나 이상의 컨디셔닝 파라미터만이 조정될 수 있고, 또는 다른 하나 이상의 컨디셔닝 파라미터와 함께 조정될 수 있다. 단계(540)에서, 단계(530)의 컨디셔닝 파라미터를 이용하여 전도성 패드를 인시츄(in situ) 방식으로 컨디셔닝하는 동안에, 기판이 폴리싱된다. 이러한 단계에서, 기판이 전도성 폴리싱 패드와 접촉되고, 특히 기판상의 전도성 물질이 전도성 폴리싱 패드의 상부 표면과 접촉된다. 전도성 폴리싱 패드가, 마찬가지로 회전되는 기판에 대해 상대적으로 회전된다. 도 4에 도시된 일 실시예에서, 패드 조립체(200) 및 플래튼(255)(도시 안 됨)에 결합된 컨디셔닝 헤드(300), 캐리어 헤드(105), 및 전도성 처리 표면(225)이 반시계방향으로 회전된다. 다른 실시예들에서, 패드, 캐리어 헤드(105), 및 컨디셔닝 헤드(300)의 회전 방향이 그와 다를 수 있다. 전해질 함유 수동태화 약제가 패드로 유동되고, 전력이 패드의 부분에 인가되어, 기판상의 전도성 물질의 양극 분해를 촉진할 수 있다. 전술한 바와 같이 전력을 펄스화하여 노출된 전도성 물질의 수동태화 강화를 촉진할 수 있다.
본 명세서에 개시된 컨디셔닝 파라미터들은 인 시츄 프로세스에서의 예시적인 파라미터들이나, 이러한 개시내용으로 실시예들이 한정되는 것이 아니다. 일 실시예에서, 컨디셔닝 파라미터가 조정될 수 있고 패드가 폴리싱 프로세스 전에 또는 그 후에 컨디셔닝되어 폴리싱 중에 컨디셔닝 프로세스에 앞서서 패드의 처리 표면을 컨디셔닝할 수 있다. 다른 실시예에서, 후속 폴리싱 프로세스를 위한 처리 표면을 준비하기 위해, 패드가 인 시츄 방식으로 그리고 폴리싱 프로세스 전에 또는 그 후에 컨디셔닝된다.
단계(520)의 기판 프로파일 결정에서 전도성 물질이 중심에서 보다 엣지에서 더 두꺼운 것으로 나타난다면, 이러한 물질의 제거는 기판의 엣지와 접촉하는 패드의 처리 표면 부분들을 감소시키는 폴리싱 포텐셜을 초래할 것이다. 이러한 제거 속도의 국부적인 작은(diminutive) 손실이 기판상의 전도성 물질의 평탄화를 방해할 것이고 기판으로부터 전도성 물질을 제거하는데 있어서 해로운 영향을 미칠 것이다. 따라서, 처리 표면의 감소된 부분들을 우선적으로 컨디셔닝하는 것은 제거 속도의 국부적인 손실을 복구하고 및/또는 제거 속도를 높인다. 예를 들어, 기판의 엣지가 원형 전도성 패드의 처리 표면의 중심 부분에 비해 원형 전도성 패드의 처리 표면의 둘레 부분과 접촉한다면, 원형 전도성 패드의 처리 표면의 둘레 부분의 컨디셔닝을 강화하도록 컨디셔닝 파라미터가 조정될 것이다. 이러한 경우에, 스위핑으로 되돌아가기 전에 둘레에서 정지 시간(dwell time)을 컨디셔닝 요소가 가질 수 있도록 하기 위해, 소정 시간 동안 컨디셔닝 헤드를 스위핑으로부터 중단시킴으로써, 컨디셔닝 요소 하향력과 같은 파라미터가 둘레 부분에서 증대될 수 있고 및/또는 스위핑 주파수가 최적화될 수 있을 것이다. 이러한 예에서, 원형 패드의 둘레에서의 증대된 압력 및/또는 정지 시간이 패드의 처리 표면의 성능을 증대시킬 것이고, 그에 따라 제거 속도에 긍정적인 영향을 미칠 것이다.
다른 실시예에서, 컨디셔닝 요소 및 컨디셔닝 헤드의 스위핑 주파수를 조정할 수 있을 것이다. 폴리싱 포텐셜의 국부적인 손실이 결정되는 처리 표면 부분들상에서 패드의 처리 표면 부분들을 보다 공격적으로 컨디셔닝하도록 스위핑 주파수를 조정할 수 있을 것이다. 예를 들어, 스위핑 주파수는 원형 전도성 패드의 회전 속도를 부분적으로 기초로 할 수 있다. 이러한 예에서, 패드의 기하학적 형상 및 RPM은 기판과 전도성 패드 사이의 접촉 영역 및 프로파일 결정ㅇ르 기초로 한 높거나 낮은 스위핑 주파수를 필요로 할 것이다. 일 실시예에서, 스위핑 주파수는 약 5 스위핑/분 내지 약 20 스위핑/분일 수 있고, 예를 들어 약 10 스위핑/분과 같이 약 8 스위핑/분 내지 약 14 스위핑/분일 수 있다.
다른 실시예에서, 스위핑 범위는 원형 전도성 패드의 처리 표면을 가로질러 스위핑 범위를 변화시킴으로써 조정될 수 있을 것이다. 예를 들어, 원형 전도성 패드의 중심이 원형 전도성 패드의 둘레에 비해 폴리싱 포텐셜의 보다 큰 국부적인 손실을 가지기 쉬우며, 그에 따라 중심 부분의 평탄화를 방해할 수 있다. 이러한 경우에, 스위핑 범위가 전체 반경 스위핑(full radial sweep)으로부터 3/4 스위핑으로 변화될 것이며, 그러한 3/4 스위핑의 경우에 스위핑 범위는 패드의 대략적인 중심으로부터 중심으로부터 약 3/4 반경까지 컨디셔닝한다. 이러한 예에서, 패드의 나머지 1/4 반경은 컨디셔닝되지 않을 것이다. 원형 패드의 둘레가 중심 부분에 비해 감소된 평탄화 포텐셜을 나타내는 경우에, 3/4 스위핑은 반대로 이용될 수 있을 것이며, 그에 따라 둘레를 컨디셔닝하고 패드의 중심 분의 패드 부분에 대해서는 컨디셔닝하지 않을 것이다. 스위핑 범위 조정은 전술한 부분으로 제한되는 것이 아니고 패드의 컨디셔닝 요구에 따라 다른 부분이 될 수도 있을 것이다.
다른 실시예는 스위핑 범위 조정과 패드의 회전 운동을 조합할 수 있으며, 이러한 경우에 스위핑 범위는 임의 패드 회전수의 부분적인 범위가 된다. 스위핑 범위는 원하는 패드 RPM 정수(integer)에 대한 일부분 일 수 있고, 전체 스위핑 범위가 패드 RPM의 다른 원하는 정수에 대해서 재개(resume)된다. 예를 들어, 중심에 비해 패드의 둘레에서 폴리싱 포텐셜의 큰 국부적인 손실이 결정되면, 중심은 둘레 보다 덜 컨디셔닝될 필요가 있을 것이다. 따라서, 패드의 둘레와 둘레로부터 약 절반의 반경 사이에서 절반-스위핑이 실시될 수 있다. 이러한 절반-스위핑은, 예를 들어, 약 5 내지 10의 패드 회전 동안 계속될 수 있다. 매 6 또는 8 회전 마다, 각각, 전체 스위핑이 재개되어 중심에서의 패드의 절반 반경을 컨디셔닝할 수도 있다. 전체 스위핑이 원하는 임의 패드 RPM 정수 동안 계속될 수 있고, 절반-스위핑이 재개될 수 있다.
컨디셔닝 요소 RPM을 조정하여 전도성 폴리싱 패드의 처리 표면의 여러 부분들에 대해 강화된 컨디셔닝을 제공할 수 있을 것이다. 일 실시예에서, 컨디셔닝 요소 RPM을 컨디셔닝 중에 몇몇 정적인 RPM으로 설정할 수 있을 것이다. 일 실시예에서, 컨디셔닝 요소 RPM이 약 30 RPM 내지 약 100 RPM, 예를 들어 약 40 RPM 내지 약 70 RPM이다. 다른 실시예에서, 컨디셔닝 파라미터가 전술한 바와 같이 조정될 수 있을 것이고, 컨디셔닝 요소 RPM이 변화될 수 있을 것이다. 예를 들어, 컨디셔닝 헤드가 패드의 둘레 부분을 컨디셔닝할 때 컨디셔닝 요소 RPM이 증대될 수 있을 것이며, 중심 부분을 컨디셔닝할 때 그 컨디셔닝 요소 RPM이 감소될 수 있을 것이다. 이러한 실시예에서, 둘레가 중심 부분 보다 더 공격적으로 컨디셔닝될 것이다. 둘레 부분 보다 중심 부분을 더 공격적으로 컨디셔닝할 필요가 있다면, 둘레 보다 중심을 컨디셔닝할 때 컨디셔닝 요소 RPM을 보다 높일 수 있다.
컨디셔닝 헤드 하향력 또한 조정될 수 있다. 일 실시예에서, 패드에 대해 컨디셔닝 요소에 인가되는 하향력이 약 0.7 psi 내지 약 2.0 psi, 예를 들어 약 1.0 psi 내지 약 1.7 psi의 범위에서 정적이다. 다른 실시예에서, 컨디셔닝 파라미터가 전술한 바와 같이 조정되고, 하향력이 변화될 수 있다. 예를 들어, 하향력은 컨디셔닝 헤드가 패드의 처리 표면의 둘레 부분을 컨디셔닝할 때 증대될 것이고, 중심 부분의 처리 표면을 컨디셔닝할 때에는 감소될 것이다. 이러한 실시예에서, 중심 부분 보다 둘레가 보다 더 공격적으로 컨디셔닝될 것이다. 둘레 부분 보다 중심 부분을 보다 더 공격적으로 컨디셔닝할 필요가 있다면, 하향력은 둘레 보다 중심을 컨디셔닝할 때 보다 더 클 것이다.
중심 보다 엣지상의 전도성 물질의 두께가 더 두꺼운 기판을 이용하여 테스트하였고, 종래의 컨디셔닝 방식을 이용하여 평균적으로 그리고 전체적으로 약 1550Å 내지 약 1850Å의 전도성 물질을 기판으로부터 제거하였다. 전술한 컨디셔닝 방식을 이용하여 유사한 프로파일을 가지는 후속 기판들을 폴리싱하였으며, 약 600Å 이상의 평균적인 총 제거량의 증가라는 예상치 못한 결과를 얻었다. 예를 들어, 본 명세서에 기재된 실시예들을 이용한 평균 제거 속도는 약 2350Å 내지 약 2900Å의 평균적인 총 제거를 초래하였다.
본 명세서에서 설명된 컨디셔닝 방법이 전도성 패드의 컨디셔닝을 예시적으로 설명하고 있지만, 본 발명은 그러한 전도성 패드로 제한되는 것이 아니고, 비-전도성 패드의 표면을 처리하는 것에도 컨디셔닝 방법에 있어서 유리할 것이다. 또한, 본 명세서에 기재된 방법이 원형 패드를 이용하는 것으로 예시되어 있지만, 본 발명은 그것으로 제한되지 않으며, 예를 들어, 무한 벨트와 같은 선형 폴리싱 시스템, 공급 롤로부터 회수(take up) 롤로 플래튼을 가로질러 진행하도록 구성된 패드를 이용하는 장치, 또는 폴리싱 패드를 이용하는 폴리싱 기판용 장치에도 이용될 수 있을 것이다. 본 발명의 기본적인 범위내에서도 본 발명의 기타 실시예들 및 추가적인 실시예들이 가능할 것이며, 본 발명의 범위는 이하의 특허청구범위에 의해 결정된다.

Claims (15)

  1. 반도체 기판 처리 방법으로서,
    기판의 입력 두께 프로파일을 결정하는 결정 단계;
    상기 두께 프로파일을 기초로 컨디셔닝 파라미터들을 설정하는 설정 단계; 및
    상기 컨디셔닝 파라미터들을 기초로 폴리싱 패드의 전도성 처리 표면을 컨디셔닝하는 컨디셔닝 단계
    를 포함하고, 상기 컨디셔닝 파리미터들을 설정하는 설정 단계는 컨디셔닝 헤드 스위핑 범위를 전체 반경(radial) 스위핑 범위로 설정하는 단계를 포함하는,
    반도체 기판 처리 방법.
  2. 제 1 항에 있어서,
    상기 결정 단계는 상기 기판의 표면에 걸친 전도성 물질의 두께 프로파일을 결정하는 단계를 포함하는 것을 특징으로 하는 반도체 기판 처리 방법.
  3. 제 1 항에 있어서,
    상기 컨디셔닝 파라미터들을 설정하는 설정 단계는 컨디셔닝 헤드 스위핑 주파수, 컨디셔닝 요소에 인가되는 압력, 컨디셔닝 요소에 적용되는 회전 속도, 및 이들의 조합들 중 하나 이상을 설정하는 단계를 더 포함하는 것을 특징으로 하는 반도체 기판 처리 방법.
  4. 삭제
  5. 반도체 기판 처리 방법으로서,
    기판의 입력 두께 프로파일을 결정하는 결정 단계;
    상기 두께 프로파일을 기초로 컨디셔닝 파라미터들을 설정하는 설정 단계; 및
    상기 컨디셔닝 파라미터들을 기초로 폴리싱 패드의 전도성 처리 표면을 컨디셔닝하는 컨디셔닝 단계
    를 포함하고, 상기 컨디셔닝 파리미터들을 설정하는 설정 단계는 컨디셔닝 헤드 스위핑 범위를 전체 반경 스위핑 범위의 일부로 설정하는 단계를 포함하는,
    반도체 기판 처리 방법.
  6. 반도체 기판 처리 방법으로서,
    기판의 입력 두께 프로파일을 결정하는 결정 단계;
    상기 두께 프로파일을 기초로 컨디셔닝 파라미터들을 설정하는 설정 단계; 및
    상기 컨디셔닝 파라미터들을 기초로 폴리싱 패드의 전도성 처리 표면을 컨디셔닝하는 컨디셔닝 단계
    를 포함하고, 상기 컨디셔닝 파리미터들을 설정하는 설정 단계는 컨디셔닝 헤드 스위핑 주파수를 약 5 스위핑/분 내지 약 20 스위핑/분으로 설정하는 단계를 포함하는,
    반도체 기판 처리 방법.
  7. 제 1 항에 있어서,
    상기 컨디셔닝 파리미터들을 설정하는 설정 단계는 컨디셔닝 요소에 인가되는 압력을 약 0.7 psi 내지 약 2.0 psi로 설정하는 단계를 더 포함하는 것을 특징으로 하는 반도체 기판 처리 방법.
  8. 반도체 기판 처리 방법으로서,
    기판의 입력 두께 프로파일을 결정하는 결정 단계;
    상기 두께 프로파일을 기초로 컨디셔닝 파라미터들을 설정하는 설정 단계; 및
    상기 컨디셔닝 파라미터들을 기초로 폴리싱 패드의 전도성 처리 표면을 컨디셔닝하는 컨디셔닝 단계
    를 포함하고, 상기 컨디셔닝 파리미터들을 설정하는 설정 단계는 컨디셔닝 요소에 적용되는 회전 속도를 약 30 RPM 내지 약 100 RPM으로 설정하는 단계를 포함하는,
    반도체 기판 처리 방법.
  9. 제 1 항에 있어서,
    상기 컨디셔닝 동안에 상기 기판을 폴리싱하는 단계를 더 포함하는 것을 특징으로 하는 반도체 기판 처리 방법.
  10. 제 1 항에 있어서,
    상기 전도성 처리 표면의 컨디셔닝은 폴리싱 프로세스 이전에 수행되는 것을 특징으로 하는 반도체 기판 처리 방법.
  11. 삭제
  12. 반도체 기판 처리 방법으로서,
    기판상의 전도성 물질의 입력 두께 프로파일을 나타내는 측정치를 결정하는 결정 단계; 및
    상기 측정치를 기초로 폴리싱 패드의 전도성 처리 표면의 전기적 특성을 변경하는 변경 단계
    를 포함하고, 상기 전기적 특성을 변경하는 변경 단계는 컨디셔닝 헤드 스위핑 주파수를 약 5 스위핑/분 내지 약 20 스위핑/분으로 조절함으로써 상기 측정치를 기초로 하나 이상의 컨디셔닝 파라미터들을 설정하는 단계를 포함하는,
    반도체 기판 처리 방법.
  13. 제 12 항에 있어서,
    상기 전기적 특성을 변경하는 변경 단계는,
    상기 폴리싱 패드의 전도성 처리 표면에 대하여 상기 기판을 처리하는 단계; 및
    상기 컨디셔닝 파라미터들을 이용하여 상기 전도성 처리 표면을 컨디셔닝하는 단계를 포함하는 것을 특징으로 하는 반도체 기판 처리 방법.
  14. 제 12 항에 있어서,
    상기 하나 이상의 컨디셔닝 파라미터들을 설정하는 설정 단계는 컨디셔닝 헤드 스위핑 범위의 조정, 컨디셔닝 요소에 인가되는 압력의 조정, 컨디셔닝 요소에 적용되는 회전 속도의 조정, 및 이들의 조합들 중 하나 이상을 더 포함하는 것을 특징으로 하는 반도체 기판 처리 방법.
  15. 삭제
KR1020070019086A 2006-03-29 2007-02-26 전도성 패드상의 컨디셔닝 스위핑 프로파일을 조정함으로써제거 프로파일을 조절하는 방법 KR100857661B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/392,193 2006-03-29
US11/392,193 US20070227902A1 (en) 2006-03-29 2006-03-29 Removal profile tuning by adjusting conditioning sweep profile on a conductive pad

Publications (2)

Publication Number Publication Date
KR20070098492A KR20070098492A (ko) 2007-10-05
KR100857661B1 true KR100857661B1 (ko) 2008-09-08

Family

ID=38557219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070019086A KR100857661B1 (ko) 2006-03-29 2007-02-26 전도성 패드상의 컨디셔닝 스위핑 프로파일을 조정함으로써제거 프로파일을 조절하는 방법

Country Status (5)

Country Link
US (1) US20070227902A1 (ko)
JP (1) JP2007260899A (ko)
KR (1) KR100857661B1 (ko)
CN (1) CN101047125A (ko)
TW (1) TW200736418A (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473685B (zh) * 2008-01-15 2015-02-21 Iv Technologies Co Ltd 研磨墊及其製造方法
US20100099342A1 (en) * 2008-10-21 2010-04-22 Applied Materials, Inc. Pad conditioner auto disk change
JP6271339B2 (ja) * 2014-05-26 2018-01-31 株式会社ディスコ 研削研磨装置
JP6372859B2 (ja) * 2015-10-01 2018-08-15 信越半導体株式会社 研磨パッドのコンディショニング方法及び研磨装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134904A (ja) * 1995-11-09 1997-05-20 Nissan Motor Co Ltd 半導体基板の研磨方法
KR20010015202A (ko) * 1999-07-09 2001-02-26 조셉 제이. 스위니 화학 기계적 폴리싱 시스템에서 웨이퍼 폴리싱의 폐-루프제어
KR20030080841A (ko) * 2002-04-11 2003-10-17 삼성전자주식회사 검사패턴 및 이를 이용한 화학적기계적 연마공정 제어방법
KR20050107594A (ko) * 2003-03-04 2005-11-14 어플라이드 머티어리얼스, 인코포레이티드 국부 연마 제어를 위한 방법 및 장치

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169337A (en) * 1978-03-30 1979-10-02 Nalco Chemical Company Process for polishing semi-conductor materials
US4588421A (en) * 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
US4752628A (en) * 1987-05-15 1988-06-21 Nalco Chemical Company Concentrated lapping slurries
US4867757A (en) * 1988-09-09 1989-09-19 Nalco Chemical Company Lapping slurry compositions with improved lap rate
US5081051A (en) * 1990-09-12 1992-01-14 Intel Corporation Method for conditioning the surface of a polishing pad
US6110881A (en) * 1990-11-05 2000-08-29 Ekc Technology, Inc. Cleaning solutions including nucleophilic amine compound having reduction and oxidation potentials
US5981454A (en) * 1993-06-21 1999-11-09 Ekc Technology, Inc. Post clean treatment composition comprising an organic acid and hydroxylamine
US5264010A (en) * 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
EP0589434B1 (en) * 1992-09-24 1998-04-08 Ebara Corporation Polishing apparatus
DE19525521B4 (de) * 1994-07-15 2007-04-26 Lam Research Corp.(N.D.Ges.D.Staates Delaware), Fremont Verfahren zum Reinigen von Substraten
JPH08168953A (ja) * 1994-12-16 1996-07-02 Ebara Corp ドレッシング装置
US5662769A (en) * 1995-02-21 1997-09-02 Advanced Micro Devices, Inc. Chemical solutions for removing metal-compound contaminants from wafers after CMP and the method of wafer cleaning
US5614444A (en) * 1995-06-06 1997-03-25 Sematech, Inc. Method of using additives with silica-based slurries to enhance selectivity in metal CMP
US6046110A (en) * 1995-06-08 2000-04-04 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing a semiconductor device
US5835137A (en) * 1995-06-21 1998-11-10 Eastman Kodak Company Method and system for compensating for motion during imaging
US5785585A (en) * 1995-09-18 1998-07-28 International Business Machines Corporation Polish pad conditioner with radial compensation
US5958794A (en) * 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US5709593A (en) * 1995-10-27 1998-01-20 Applied Materials, Inc. Apparatus and method for distribution of slurry in a chemical mechanical polishing system
US5738574A (en) * 1995-10-27 1998-04-14 Applied Materials, Inc. Continuous processing system for chemical mechanical polishing
US5938507A (en) * 1995-10-27 1999-08-17 Applied Materials, Inc. Linear conditioner apparatus for a chemical mechanical polishing system
US5840629A (en) * 1995-12-14 1998-11-24 Sematech, Inc. Copper chemical mechanical polishing slurry utilizing a chromate oxidant
US5700383A (en) * 1995-12-21 1997-12-23 Intel Corporation Slurries and methods for chemical mechanical polish of aluminum and titanium aluminide
US5769689A (en) * 1996-02-28 1998-06-23 Rodel, Inc. Compositions and methods for polishing silica, silicates, and silicon nitride
ATE312895T1 (de) * 1996-07-25 2005-12-15 Dupont Air Prod Nanomaterials Zusammensetzung und verfahren zum chemisch- mechanischen polieren
US5932486A (en) * 1996-08-16 1999-08-03 Rodel, Inc. Apparatus and methods for recirculating chemical-mechanical polishing of semiconductor wafers
US5738800A (en) * 1996-09-27 1998-04-14 Rodel, Inc. Composition and method for polishing a composite of silica and silicon nitride
US6190236B1 (en) * 1996-10-16 2001-02-20 Vlsi Technology, Inc. Method and system for vacuum removal of chemical mechanical polishing by-products
US5954997A (en) * 1996-12-09 1999-09-21 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
TW426556B (en) * 1997-01-24 2001-03-21 United Microelectronics Corp Method of cleaning slurry remnants left on a chemical-mechanical polish machine
US5756398A (en) * 1997-03-17 1998-05-26 Rodel, Inc. Composition and method for polishing a composite comprising titanium
US6068879A (en) * 1997-08-26 2000-05-30 Lsi Logic Corporation Use of corrosion inhibiting compounds to inhibit corrosion of metal plugs in chemical-mechanical polishing
US6033993A (en) * 1997-09-23 2000-03-07 Olin Microelectronic Chemicals, Inc. Process for removing residues from a semiconductor substrate
US6165956A (en) * 1997-10-21 2000-12-26 Lam Research Corporation Methods and apparatus for cleaning semiconductor substrates after polishing of copper film
US6593282B1 (en) * 1997-10-21 2003-07-15 Lam Research Corporation Cleaning solutions for semiconductor substrates after polishing of copper film
JP3371775B2 (ja) * 1997-10-31 2003-01-27 株式会社日立製作所 研磨方法
US6096652A (en) * 1997-11-03 2000-08-01 Motorola, Inc. Method of chemical mechanical planarization using copper coordinating ligands
US6054379A (en) * 1998-02-11 2000-04-25 Applied Materials, Inc. Method of depositing a low k dielectric with organo silane
US6303523B2 (en) * 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6190243B1 (en) * 1998-05-07 2001-02-20 Ebara Corporation Polishing apparatus
US6063306A (en) * 1998-06-26 2000-05-16 Cabot Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrate
US20010052351A1 (en) * 1998-09-29 2001-12-20 Brian J. Brown Method for cleaning semiconductor wafer having copper structure formed thereon
US6074949A (en) * 1998-11-25 2000-06-13 Advanced Micro Devices, Inc. Method of preventing copper dendrite formation and growth
US6083840A (en) * 1998-11-25 2000-07-04 Arch Specialty Chemicals, Inc. Slurry compositions and method for the chemical-mechanical polishing of copper and copper alloys
US6077337A (en) * 1998-12-01 2000-06-20 Intel Corporation Chemical-mechanical polishing slurry
US6244935B1 (en) * 1999-02-04 2001-06-12 Applied Materials, Inc. Apparatus and methods for chemical mechanical polishing with an advanceable polishing sheet
DE19923112A1 (de) * 1999-05-19 2000-11-30 Fraunhofer Ges Forschung Photovoltaisch selbstladendes Speichersystem
US6451699B1 (en) * 1999-07-30 2002-09-17 Lsi Logic Corporation Method and apparatus for planarizing a wafer surface of a semiconductor wafer having an elevated portion extending therefrom
US6436302B1 (en) * 1999-08-23 2002-08-20 Applied Materials, Inc. Post CU CMP polishing for reduced defects
US6355153B1 (en) * 1999-09-17 2002-03-12 Nutool, Inc. Chip interconnect and packaging deposition methods and structures
US6656842B2 (en) * 1999-09-22 2003-12-02 Applied Materials, Inc. Barrier layer buffing after Cu CMP
JP2003513675A (ja) * 1999-11-12 2003-04-15 サー ゴンザレス,クレメンテ デル 缶詰産業のためのマグロその他の魚類の皮剥ぎ方法及びこれを実施するための装置
US6273797B1 (en) * 1999-11-19 2001-08-14 International Business Machines Corporation In-situ automated CMP wedge conditioner
US6432826B1 (en) * 1999-11-29 2002-08-13 Applied Materials, Inc. Planarized Cu cleaning for reduced defects
US6123088A (en) * 1999-12-20 2000-09-26 Chartered Semiconducotor Manufacturing Ltd. Method and cleaner composition for stripping copper containing residue layers
US7041599B1 (en) * 1999-12-21 2006-05-09 Applied Materials Inc. High through-put Cu CMP with significantly reduced erosion and dishing
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition
US6797623B2 (en) * 2000-03-09 2004-09-28 Sony Corporation Methods of producing and polishing semiconductor device and polishing apparatus
WO2001077241A2 (en) * 2000-04-05 2001-10-18 Applied Materials, Inc. Composition for metal cmp with low dishing and overpolish insensitivity
US6653242B1 (en) * 2000-06-30 2003-11-25 Applied Materials, Inc. Solution to metal re-deposition during substrate planarization
US6572446B1 (en) * 2000-09-18 2003-06-03 Applied Materials Inc. Chemical mechanical polishing pad conditioning element with discrete points and compliant membrane
US6569349B1 (en) * 2000-10-23 2003-05-27 Applied Materials Inc. Additives to CMP slurry to polish dielectric films
US6524167B1 (en) * 2000-10-27 2003-02-25 Applied Materials, Inc. Method and composition for the selective removal of residual materials and barrier materials during substrate planarization
US6709316B1 (en) * 2000-10-27 2004-03-23 Applied Materials, Inc. Method and apparatus for two-step barrier layer polishing
US6736952B2 (en) * 2001-02-12 2004-05-18 Speedfam-Ipec Corporation Method and apparatus for electrochemical planarization of a workpiece
JP2002254248A (ja) * 2001-02-28 2002-09-10 Sony Corp 電解加工装置
US6910947B2 (en) * 2001-06-19 2005-06-28 Applied Materials, Inc. Control of chemical mechanical polishing pad conditioner directional velocity to improve pad life
US7101799B2 (en) * 2001-06-19 2006-09-05 Applied Materials, Inc. Feedforward and feedback control for conditioning of chemical mechanical polishing pad
US6709314B2 (en) * 2001-11-07 2004-03-23 Applied Materials Inc. Chemical mechanical polishing endpoinat detection
JP2005518670A (ja) * 2002-02-26 2005-06-23 アプライド マテリアルズ インコーポレイテッド 基板を研磨するための方法及び組成物
JP2003282506A (ja) * 2002-03-27 2003-10-03 Ebara Corp 基板の研磨装置及びコンディショニング方法
US6899592B1 (en) * 2002-07-12 2005-05-31 Ebara Corporation Polishing apparatus and dressing method for polishing tool
US7004822B2 (en) * 2002-07-31 2006-02-28 Ebara Technologies, Inc. Chemical mechanical polishing and pad dressing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134904A (ja) * 1995-11-09 1997-05-20 Nissan Motor Co Ltd 半導体基板の研磨方法
KR20010015202A (ko) * 1999-07-09 2001-02-26 조셉 제이. 스위니 화학 기계적 폴리싱 시스템에서 웨이퍼 폴리싱의 폐-루프제어
KR20030080841A (ko) * 2002-04-11 2003-10-17 삼성전자주식회사 검사패턴 및 이를 이용한 화학적기계적 연마공정 제어방법
KR20050107594A (ko) * 2003-03-04 2005-11-14 어플라이드 머티어리얼스, 인코포레이티드 국부 연마 제어를 위한 방법 및 장치

Also Published As

Publication number Publication date
US20070227902A1 (en) 2007-10-04
CN101047125A (zh) 2007-10-03
JP2007260899A (ja) 2007-10-11
TW200736418A (en) 2007-10-01
KR20070098492A (ko) 2007-10-05

Similar Documents

Publication Publication Date Title
JP5481472B2 (ja) Cmpパッド厚みおよびプロファイル監視システム
US7670466B2 (en) Methods and apparatuses for electrochemical-mechanical polishing
US7066800B2 (en) Conductive polishing article for electrochemical mechanical polishing
US8133096B2 (en) Multi-phase polishing pad
US7276743B2 (en) Retaining ring with conductive portion
US20010019938A1 (en) Apparatus and methods for conditioning polishing pads in mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
WO2006039436A2 (en) Pad design for electrochemical mechanical polishing
JP2004134734A (ja) 基板を研磨する方法および装置
WO2002085570A2 (en) Conductive polishing article for electrochemical mechanical polishing
KR100857661B1 (ko) 전도성 패드상의 컨디셔닝 스위핑 프로파일을 조정함으로써제거 프로파일을 조절하는 방법
US7504018B2 (en) Electrochemical method for Ecmp polishing pad conditioning
US20020081945A1 (en) Piezoelectric platen design for improving performance in CMP applications
US6776695B2 (en) Platen design for improving edge performance in CMP applications
US6800020B1 (en) Web-style pad conditioning system and methods for implementing the same
US7004825B1 (en) Apparatus and associated method for conditioning in chemical mechanical planarization
US20090061741A1 (en) Ecmp polishing sequence to improve planarity and defect performance
JP5675626B2 (ja) 研磨パッド端部の延伸
US20070235345A1 (en) Polishing method that suppresses hillock formation
US20080020682A1 (en) Method for conditioning a polishing pad
US20050287932A1 (en) Article for polishin substrate surface
EP1640113B1 (en) Conductive polishing article for electrochemical mechanical polishing
JPH11320384A (ja) 化学的機械研磨方法及びこれを使った化学的機械研磨装置
KR20050064316A (ko) 화학적 기계적 연마장치의 리테이너링
WO2007027486A2 (en) Method for conditioning a polishing pad
KR20080041414A (ko) 패드 컨디셔너의 디스크 및 상기 디스크를 제조하는 방법,그리고 상기 패드 컨디셔너를 구비하는 화학적 기계적연마장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee