KR100835986B1 - Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same - Google Patents

Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same Download PDF

Info

Publication number
KR100835986B1
KR100835986B1 KR1020060045851A KR20060045851A KR100835986B1 KR 100835986 B1 KR100835986 B1 KR 100835986B1 KR 1020060045851 A KR1020060045851 A KR 1020060045851A KR 20060045851 A KR20060045851 A KR 20060045851A KR 100835986 B1 KR100835986 B1 KR 100835986B1
Authority
KR
South Korea
Prior art keywords
group
light emitting
formula
mmol
organic light
Prior art date
Application number
KR1020060045851A
Other languages
Korean (ko)
Other versions
KR20070112665A (en
Inventor
김성민
김봉옥
곽미영
윤승수
권혁주
Original Assignee
(주)그라쎌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그라쎌 filed Critical (주)그라쎌
Priority to KR1020060045851A priority Critical patent/KR100835986B1/en
Priority to TW096117959A priority patent/TWI354012B/en
Publication of KR20070112665A publication Critical patent/KR20070112665A/en
Application granted granted Critical
Publication of KR100835986B1 publication Critical patent/KR100835986B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 융합고리를 함유하는 하기 화학식 1로 표시되는 유기 발광 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to an organic light emitting compound represented by the following Chemical Formula 1 containing a fused ring and an organic light emitting device including the same.

[화학식 1][Formula 1]

Figure 112006035656814-pat00001
Figure 112006035656814-pat00001

상기 화학식에서 A 고리는 2개 이상의 고리가 융합된 융합아릴기이며; Ar1 및 Ar2는 서로 독립적으로 C6-C30의 아릴기이고; R1 내지 R4는 서로 독립적으로 수소, C1-C20의 직쇄 또는 분지쇄의 알킬기 또는 알콕시기, C6-C30의 아릴 또는 헤테로아릴기, 할로겐기이며; 상기 융합아릴기, 아릴기, 헤테로아릴기, 알킬기, 알콕시기는 C1-C20의 직쇄 또는 분지쇄의 알킬기, 아릴기, 할로겐기로 더 치환될 수 있다. 본 발명에 따른 유기발광소지는 결정화가 적어 박막 안정성이 좋으며, 색순도가 양호하는 등 기존의 발광재료보다 우수한 EL 특성을 보이는 장점이 있다.Ring A in the above formula is a fused aryl group in which two or more rings are fused; Ar 1 and Ar 2 are each independently an aryl group of C 6 -C 30 ; R 1 to R 4 are each independently hydrogen, a straight or branched chain alkyl group or alkoxy group of C 1 -C 20 , an aryl or heteroaryl group of C 6 -C 30 , or a halogen group; The fused aryl group, aryl group, heteroaryl group, alkyl group, alkoxy group may be further substituted with a C 1 -C 20 linear or branched alkyl group, aryl group, halogen group. The organic light emitting diode according to the present invention has the advantage of showing better EL characteristics than conventional light emitting materials, such as low crystallization, good thin film stability and good color purity.

발광, 융합, 유기발광 Luminescence, Fusion, Organic Luminescence

Description

고효율의 방향족 발광 화합물 및 이를 채용하고 있는 발광소자{Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same}Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same}

최근에 정보화시대로 급속히 진입하면서 전자정보기기와 인간의 인터페이스 역할을 하는 디스플레이의 중요성이 더욱 커지고 있다. 새로운 평판 디스플레이 기술로서 OLED가 전세계적으로 활발하게 연구되고 있는데 이는 OLED가 자발광형으로 우수한 디스플레이 특성을 가질 뿐 아니라 소자 구조가 간단하여 제작이 용이하고 초박형, 초경량 디스플레이 제작이 가능하기 때문이다. OLED 소자는 일반적으로 금속으로 이루어진 음극과 양극사이에 여러 유기화합물의 박막층으로 구성되어 있는데 음극과 양극을 통해 주입된 전자와 정공이 각각 전자 주입층 및 전자 수송층, 정공 주입층 및 정공 수송층을 통해 발광층으로 전달되어 엑시톤을 형성하고 이렇게 형성된 엑시톤이 안정한 상태로 붕괴되면서 빛을 방출하게 된다. 이때 OLED 소자의 특성이 사용되는 유기 발광 화합물의 특성에 크게 의존하고 있으므로 발광재료에 대한 연구가 활발히 이루어지고 있다.Recently, as the information age rapidly enters, the importance of the display which serves as an interface between the electronic information device and the human being is increasing. As a new flat panel display technology, OLED is being actively researched all over the world because OLED is not only self-luminous, but also has excellent display characteristics, and is easy to manufacture due to its simple device structure, and it is possible to manufacture ultra-thin and ultra-light display. OLED devices are generally composed of a thin film layer of various organic compounds between a cathode and an anode made of a metal, and electrons and holes injected through the cathode and the anode are respectively emitted through an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer. Is transferred to form an exciton, and the exciton thus formed collapses in a stable state to emit light. At this time, since the characteristics of the OLED device are heavily dependent on the characteristics of the organic light emitting compound used, research on the light emitting material is being actively conducted.

발광재료는 기능적인 측면에서 호스트 재료와 도판트 재료로 구분될 수 있는 데 일반적으로 EL 특성이 가장 우수한 소자 구조로는 호스트에 도판트를 도핑하여 발광층을 만드는 것으로 알려져 있다. 최근에 고효율, 장수명 유기 EL 소자의 개발이 시급한 과제로 대두되고 있는데, 특히 중대형 OLED 패널에서 요구하고 있는 EL 특성 수준을 고려해 볼때 기존의 발광재료에 비해 매우 우수한 재료의 개발이 시급한 실정이다. 이러한 측면에서 호스트 재료의 개발이 해결해야 할 가장 중요한 요소 중의 하나이다. 이때 유기 EL 소자에서 고체 상태의 용매 및 에너지 전달자 역할을 하는 호스트 물질의 바람직한 특성은 순도가 높아야하며, 진공증착이 가능하도록 적당한 분자량을 가져야 한다. 또한 유리 전이온도와 열분해온도가 높아 열적 안정성을 확보해야하며, 장수명화를 위해 높은 전기화학적 안정성이 요구되며, 무정형박막을 형성하기 용이해야 하며, 인접한 다른 층의 재료들과는 접착력이 좋은 반면 층간이동은 하지 않아야 한다.The light emitting material can be classified into a host material and a dopant material in terms of its functional properties. In general, a device structure having the best EL characteristics is known to form a light emitting layer by doping a host with a dopant. Recently, the development of high efficiency and long life organic EL devices has emerged as an urgent task. In particular, considering the EL characteristic level required in medium and large OLED panels, it is urgent to develop materials that are much superior to existing light emitting materials. In this respect, the development of host materials is one of the most important factors to be solved. At this time, the desirable characteristics of the host material serving as a solid solvent and energy transmitter in the organic EL device should be high in purity and have an appropriate molecular weight to enable vacuum deposition. In addition, high glass transition temperature and pyrolysis temperature should ensure thermal stability, high electrochemical stability is required for long life, easy to form amorphous thin film, good adhesion with other adjacent materials, Should not.

기존에 호스트 재료들이 많이 발표되었는데 대표적인 예로서는, 이데미쓰-고산의 디페닐비닐-비페닐 (DPVBi) 과 코닥의 디나프틸-안트라센 (DNA) 등이 있으나 효율이나 수명 및 색 순도 측면에서 많은 개선의 여지가 남아 있다. A number of host materials have been published in the past, representative examples of which are diphenylvinyl-biphenyl (DPVBi) and Kodak's Dnaphthyl-Anthracene (DNA) from Kodak, but many improvements in efficiency, lifetime and color purity. There is room for it.

Figure 112006035656814-pat00002
Figure 112006035656814-pat00002

상기 DPVBi는 유리전이온도가 100oC 이하로 낮아 열적 안정성에 문제가 있어 이를 개선하기 위해 DPVBi 의 비페닐 안쪽에 안트라센과 디안트라센을 도입한 DPVPAN과 DPVPBAN을 개발하여 유리전이온도를 105oC 이상으로 높여 열적 안정성을 강화시켰으나 색순도 및 발광효율은 만족할 만한 수준은 아니다. The DPVBi has a glass transition temperature of less than 100 o C, which is problematic in thermal stability. Thus, DPVPAN and DPVPBAN in which anthracene and dianthracene are introduced into the biphenyl of DPVBi have been developed to improve the glass transition temperature above 105 o C. The thermal stability is enhanced to increase the color purity and luminous efficiency.

Figure 112006035656814-pat00003
Figure 112006035656814-pat00003

또한 상기 DNA는 진공 증착을 통해 ITO 위에 형성된 박막을 원자현미경으로 관찰한 결과 박막 안정성이 떨어져 쉽게 결정화되는 현상이 발견되었다. 이런 현상은 소자의 수명에 나쁜 영향을 미치는 것으로 알려져 있는데 DNA의 이런 단점을 개 선하기 위해 DNA 의 2번 위치에 메틸기 또는 티-부틸기를 도입한 mDNA와 tBDNA을 개발하여 분자의 대칭성을 파괴하여 막 안정성을 향상시키려고 하였으나 역시 색순도 및 발광효율은 만족할 만한 수준은 아니다.In addition, as a result of observing the thin film formed on the ITO by atomic force microscopy through vacuum deposition, the DNA was found to be easily crystallized due to poor film stability. This phenomenon is known to adversely affect the lifetime of the device. In order to improve this shortcoming of the DNA, we developed mDNA and tBDNA which introduced methyl group or thi-butyl group in the DNA position 2 and destroyed the symmetry of the membrane While trying to improve stability, the color purity and luminous efficiency are not satisfactory.

Figure 112006035656814-pat00004
Figure 112006035656814-pat00004

본 발명의 목적은 기존의 호스트 재료보다 발광효율이 좋으며, 적절한 색좌표를 갖는 우수한 골격의 유기발광 화합물을 제공하는 것이며, 또한 결정화가 적어 박막 안정성이 좋은 유기발광 화합물을 제공하는 것이며, 또 다른 목적으로서 상기 유기 발광 화합물을 함유하는 표시소자를 제공하는 것이다.It is an object of the present invention to provide an organic light emitting compound having better luminous efficiency than a conventional host material and having an excellent color coordinate, and to provide an organic light emitting compound having low crystallization and good thin film stability. It is to provide a display device containing the organic light emitting compound.

본 발명은 하기의 화학식 1로 표시되는 융합고리를 함유하는 유기 발광화합물 및 이를 발광재료로서 채용하고 있는 유기발광소자(Organic Light Emitting Diode, OLED)에 관한 것이다.The present invention relates to an organic light emitting compound containing a fused ring represented by the following formula (1) and an organic light emitting diode (OLED) employing the same as a light emitting material.

[화학식 1][Formula 1]

Figure 112006035656814-pat00005
Figure 112006035656814-pat00005

[상기 화학식에서 A 고리는 2개 이상의 고리가 융합된 융합아릴기이며; Ar1 및 Ar2는 서로 독립적으로 C6-C30의 아릴기이고; R1 내지 R4는 서로 독립적으로 수소, C1-C20의 직쇄 또는 분지쇄의 알킬기 또는 알콕시기, C6-C30의 아릴 또는 헤테로아릴기, 할로겐기이며; 상기 융합아릴기, 아릴기, 헤테로아릴기, 알킬기, 알콕시기는 C1-C20의 직쇄 또는 분지쇄의 알킬기, 아릴기, 할로겐기로 더 치환될 수 있다.][A ring in the formula is a fused aryl group fused two or more rings; Ar 1 and Ar 2 are each independently an aryl group of C 6 -C 30 ; R 1 to R 4 are each independently hydrogen, a straight or branched chain alkyl group or alkoxy group of C 1 -C 20 , an aryl or heteroaryl group of C 6 -C 30 , or a halogen group; The fused aryl group, aryl group, heteroaryl group, alkyl group, alkoxy group may be further substituted with C 1 -C 20 linear or branched alkyl, aryl group, halogen group.]

본 발명에 따른 유기 발광화합물은 상기 화학식 1에 있어서 A 고리가 2 개이상의 융합고리를 형성하는 것을 특징으로 하며, 구체적으로는 하기 화학식 2 내지 화학식 7로 예시될 수 있다.The organic light emitting compound according to the present invention is characterized in that the A ring in Formula 1 forms two or more fused rings, and specifically, it may be exemplified by the following Chemical Formulas 2 to 7.

[화학식 2][Formula 2]

Figure 112006035656814-pat00006
Figure 112006035656814-pat00006

[화학식 3][Formula 3]

Figure 112006035656814-pat00007
Figure 112006035656814-pat00007

[화학식 4][Formula 4]

Figure 112006035656814-pat00008
Figure 112006035656814-pat00008

[화학식 5][Formula 5]

Figure 112006035656814-pat00009
Figure 112006035656814-pat00009

[화학식 6][Formula 6]

Figure 112006035656814-pat00010
Figure 112006035656814-pat00010

[화학식 7][Formula 7]

Figure 112006035656814-pat00011
Figure 112006035656814-pat00011

[상기 화학식 2 내지 화학식 7에서 Ar1, Ar2, R1, R2, R3 및 R4는 상기 화학식 1에서 정의한 바와 같으며, R11 내지 R13은 서로 독립적으로 수소, C1-C20의 직쇄 또는 분지쇄의 알킬기 또는 알콕시기, C6-C30의 아릴 또는 헤테로아릴기, 할로겐기이며; n은 1 내지 3이고; 알킬기, 알콕시기, 아릴기, 헤테로아릴기는 C1-C20의 직쇄 또는 분지쇄의 알킬기, 아릴기, 할로겐기로 더 치환될 수 있다.][Ar 1 , Ar 2 , R 1 , R 2 , R 3 and R 4 in Formulas 2 to 7 are the same as defined in Formula 1, and R 11 to R 13 are each independently hydrogen, C 1 -C A straight or branched chain alkyl or alkoxy group of 20 , an aryl or heteroaryl group of C 6 -C 30 , or a halogen group; n is 1 to 3; The alkyl group, alkoxy group, aryl group and heteroaryl group may be further substituted with a C 1 -C 20 straight or branched chain alkyl, aryl group or halogen group.]

상기 화학식 1 내지 화학식 7에서 Ar1 및 Ar2는 서로 독립적으로 페닐, 톨릴, 비페닐, 나프틸, 안트릴 및 플로레닐로 예시될 수 있으며, 상기 R1 내지 R4 및 R11 내지 R13은 서로 독립적으로 수소, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 펜틸, 헥실, 에틸헥실, 헵틸, 옥틸, 이소옥틸, 노닐, 데실, 도데실, 헥사데실, 시클로펜틸, 시클로헥실, 페닐, 톨릴, 비페닐, 벤질, 나프틸, 안트릴 및 플로레닐을 포함한다.Ar 1 and Ar 2 in Formulas 1 to 7 may be independently represented as phenyl, tolyl, biphenyl, naphthyl, anthryl and florenyl, wherein R 1 to R 4 and R 11 to R 13 are Independently of each other hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, ethylhexyl, heptyl, octyl, isooctyl, nonyl, decyl, dodecyl, hexadecyl, cyclopentyl, cyclohexyl, phenyl , Tolyl, biphenyl, benzyl, naphthyl, anthryl and florenyl.

본 발명에 다른 유기발광 화합물은 하기의 화합물로 예시될 수 있으나, 하기 의 화합물이 본 발명을 한정하는 것은 아니다.Other organic light emitting compounds in the present invention may be exemplified by the following compounds, but the following compounds are not intended to limit the present invention.

Figure 112006035656814-pat00012
Figure 112006035656814-pat00012

Figure 112006035656814-pat00013
Figure 112006035656814-pat00013

Figure 112006035656814-pat00014
Figure 112006035656814-pat00014

[제조예 1] CYHDNA의 제조Preparation Example 1 Preparation of CYHDNA

Figure 112006035656814-pat00015
Figure 112006035656814-pat00015

둥근바닥 플라스크에 디클로로메탄 70 mL와 알루미늄클로리드(Aluminum chloride) 15.8 g(118.8 mmol)을 넣고, 이소벤조퓨란-1,3-디온(isobenzofuran-1,3-dione) 8.0 g(54.0 mmol)과 1,2,3,4-테트라히드로나프탈렌(1,2,3,4-tetrahydronaphthalene) 8.8 ml(64.8 mol)을 디클로로메탄 800 mL에 녹여 알루미늄클로리드(aluminum chloride)가 들어있는 플라스크에 천천히 가하였다. 25℃에서 24시간동안 교반 후 35% 염산 30 ml 얼음물 150 ml에 반응 혼합물을 천천히 첨가 하고 20분 더 교반시켰다. 반응 혼합물을 에틸 아세테이트 200 ml를 이용하여 추출하고 재결정한 후 건조하여 화합물[1-1] 10.6 g(37.8 mmol)를 얻었다. In a round bottom flask, add 70 mL of dichloromethane and 15.8 g (118.8 mmol) of aluminum chloride, and 8.0 g (54.0 mmol) of isobenzofuran-1,3-dione. 8.8 ml (64.8 mol) of 1,2,3,4-tetrahydronaphthalene was dissolved in 800 mL of dichloromethane and slowly added to a flask containing aluminum chloride. . After stirring at 25 ° C. for 24 hours, the reaction mixture was slowly added to 30 ml of 35% hydrochloric acid 30 ml ice water and stirred for another 20 minutes. The reaction mixture was extracted with 200 ml of ethyl acetate, recrystallized and dried to give 10.6 g (37.8 mmol) of compound [1-1].

화합물[1-1] 10.6 g(37.8 mmol), 알루미늄 클로리드(Aluminum chloride) 50.4 g (378.1 mmol)와 소듐클로리드(sodium chloride) 11.1 g(189.0 mmol)을 넣고 130℃에서 4시간동안 환류교반 시켰다. 반응물의 온도를 25℃로 내리고 테트라 히드로퓨란 60 mL를 첨가하여 녹이고, 물 30 mL를 가하여 반응을 종료시켰다. 반응이 종료된 후 디클로로메탄 100 mL으로 추출하여 감압건조시켜 화합물[1-2] 3 g(11.4 mmol)을 얻었다. 10.6 g (37.8 mmol) of compound [1-1], 50.4 g (378.1 mmol) of aluminum chloride, and 11.1 g (189.0 mmol) of sodium chloride were added and refluxed at 130 ° C. for 4 hours. I was. The reaction was cooled to 25 ° C. and dissolved by adding 60 mL of tetrahydrofuran, and 30 mL of water was added to terminate the reaction. After the reaction was completed, the mixture was extracted with 100 mL of dichloromethane and dried under reduced pressure to obtain 3 g (11.4 mmol) of Compound [1-2].

2-브로모나프탈렌(2-bromo naphthalene) 8.5 g(40.9 mmol)을 테트라히드로퓨란 50 mL에 녹인 후 상기 2-브로모나프탈렌이 용해된 테트라히드로퓨란 50 mL에 n-부틸리튬(n-butyllithium, 2.5M solution in n-Hexane) 4.3 mL(45.7 mmol)을 -72℃에서 천천히 첨가하고 2시간동안 교반 후 화합물 [1-2] 3.0 g(11.4 mmol)을 가하고 실온에서 24시간동안 교반시켰다. 증류수 50 mL를 천천히 가하여 반응을 종료시킨 후 반응 혼합물을 테트라히드로퓨란 250 mL으로 추출, 감압 건조시켜 화합물[1-3]을 3.5 g(6.8 mmol)을 얻었다.8.5 g (40.9 mmol) of 2-bromo naphthalene was dissolved in 50 mL of tetrahydrofuran and then n-butyllithium (n-butyllithium, 50 mL of tetrahydrofuran in which 2-bromonaphthalene was dissolved) was dissolved. 4.3 mL (45.7 mmol) of 2.5M solution in n-Hexane) were slowly added at -72 ° C, stirred for 2 hours, and then 3.0 g (11.4 mmol) of Compound [1-2] was added and stirred at room temperature for 24 hours. 50 mL of distilled water was slowly added to terminate the reaction. Then, the reaction mixture was extracted with 250 mL of tetrahydrofuran and dried under reduced pressure to obtain 3.5 g (6.8 mmol) of Compound [1-3].

화합물 [1-3] 3.6 g(6.8 mmol)과 포타슘 아이오다이드(potassium iodide) 4.5 g(27.1 mmol),소듐히드로포스피네이드(sodium hydrophosphinate) 5.8 g(54.6 mmol)을 아세트산(acetic acid) 30 mL와 디클로로메탄 10 mL 혼합 용액에 녹여 24시간 동안 환류교반 시켰다. 25℃으로 냉각시키고 물 20 mL를 천천히 가하여 반응을 종결시킨 다음 디클로로메탄 200 mL으로 추출하여 재결정한 후 건조하여 화합물 CYHDNA 2.8 g(5.8 mmol, 전체수율 11%)을 수득하였다.3.6 g (6.8 mmol) of compound [1-3], 4.5 g (27.1 mmol) of potassium iodide, and 5.8 g (54.6 mmol) of sodium hydrophosphinate were extracted with acetic acid. Dissolved in 10 mL of dichloromethane and 10 mL mixed solution and refluxed for 24 hours. After cooling to 25 ° C., 20 mL of water was slowly added to terminate the reaction, followed by extraction with 200 mL of dichloromethane, recrystallization, and drying to give 2.8 g (5.8 mmol, 11% overall yield) of compound CYHDNA.

1H NMR(200 MHz, CDCl3) : δ = 1.60(m, 4H), 2.85(m, 4H), 7.32(m, 6H), 7.40(t, 2H), 7.54(d, 2H), 7.67-7.73(m, 8H), 7.89(d, 2H) 1 H NMR (200 MHz, CDCl 3 ): δ = 1.60 (m, 4H), 2.85 (m, 4H), 7.32 (m, 6H), 7.40 (t, 2H), 7.54 (d, 2H), 7.67- 7.73 (m, 8H), 7.89 (d, 2H)

MS/FAB: 484.22(found), 484.63(calculated) MS / FAB: 484.22 (found), 484.63 (calculated)

[제조예 2] PHDNN의 제조Production Example 2 Preparation of PHDNN

Figure 112006035656814-pat00016
Figure 112006035656814-pat00016

나프토(2,3-C)퓨란-1,3-다이온(naphtho(2,3-C)furan-1,3-dione) 10 g(50.5 mmol)과 1-브로모벤젠(1-bromobenzene) 9.5 g(60.5 mmol)을 사용하여 제조예 1과 유사한 방법으로 화합물 [2-1] 12.5 g(35.2 mmol)을 수득 하였다. Naphtho (2,3- C) furan-1,3-dione (naphtho (2,3- C) furan- 1,3-dione) 10 g (50.5 mmol) and 1-bromo-benzene (1-bromobenzene 12.5 g (35.2 mmol) of Compound [2-1] were obtained by the same method as Preparation Example 1, using 9.5 g (60.5 mmol).

화합물 [2-1] 12.5g (35.2 mmol)과 알루미늄 클로리드(Aluminum chloride) 46.9 g(351.9 mmol)와 소듐클로리드(sodium chloride) 10.3 g(175.9 mmol)을 사용하여 제조법[1-2]과 동일한 방법으로 화합물 [2-2] 3.6 g (10.6 mmol)을 수득하였다. Preparation [1-2] using 12.5 g (35.2 mmol) of compound [2-1], 46.9 g (351.9 mmol) of aluminum chloride, and 10.3 g (175.9 mmol) of sodium chloride; 3.6 g (10.6 mmol) of compound [2-2] were obtained in the same manner.

2-브로모나프탈렌(2-bromo naphthalene) 8.0 g(38.6 mmol), n-부틸리튬(n-butyllithium, 2.5M solution in n-Hexane) 3.9 mL(42.7 mmol)과 화합물 [2-2] 3.6 g(10.6 mmol)을 사용하여 제조예 1과 유사한 방법으로 화합물 [2-3] 3.8 g(6.4 mmol)을 얻었다. 8.0 g (38.6 mmol) of 2-bromo naphthalene, 3.9 mL (42.7 mmol) of n-butyllithium (2.5M solution in n-Hexane) and 3.6 g of compound [2-2] (10.6 mmol) was used to obtain 3.8 g (6.4 mmol) of the compound [2-3] in a similar manner to Preparation Example 1.

상기 화합물 [2-3] 3.8 g(6.4 mmol), 포타슘 아이오다이드(potassium iodide) 4.2 g(25.3 mmol)과 소듐하이드로포스피네이드(sodium hydrophosphinate) 5.4 g(50.9 mmol)을 사용하여 <제조예1>의 방법으로 화합물 [2-4] 2.9 g(5.2 mmol)을 수득하였다. 3.8 g (6.4 mmol) of the compound [2-3], 4.2 g (25.3 mmol) of potassium iodide and 5.4 g (50.9 mmol) of sodium hydrophosphinate were used. 1> gave 2.9 g (5.2 mmol) of compound [2-4].

화합물 [2-4] 2.9 g(5.2 mmol)과 페닐보론산(phenylbronic acid) 0.7 g(6.0 mmol) 톨루엔 30 mL와 에탄올 15 mL혼합용액에 녹이고 테트라키스팔라듐트리페닐포스핀(Pd(Ph3)4) 0.2 g(1.7 mmol)과 2M 탄산나트륨 수용액 2.3 mL를 첨가하여 5시간동안 환류 교반시켰다. 상온으로 냉각시키고 물 15mL를 천천히 가해 반응을 종료시킨 후, 반응 혼합물을 디클로로메탄 300 mL으로 추출, 감압 건조하여 화합물 PHDNN 2.6 g(4.7 mmol, 전체 수율 9%)을 얻었다.Compound [2-4] 2.9 g (5.2 mmol) and 0.7 g (6.0 mmol) of phenylbronic acid were dissolved in a mixture of 30 mL of toluene and 15 mL of ethanol and tetrakispalladiumtriphenylphosphine (Pd (Ph 3 )). 4 ) 0.2 g (1.7 mmol) and 2.3 mL of 2M aqueous sodium carbonate solution were added thereto, and the mixture was stirred under reflux for 5 hours. After cooling to room temperature and slowly adding 15 mL of water to terminate the reaction, the reaction mixture was extracted with 300 mL of dichloromethane and dried under reduced pressure to obtain 2.6 g (4.7 mmol, 9% of total yield) of the compound PHDNN.

1H NMR(200 MHz, CDCl3): δ = 7.22-7.32(m, 9H), 7.48(d, 2H), 7.54(d, 3H), 7.67-7.73(m, 11H), 7.89(d, 3H) 1 H NMR (200 MHz, CDCl 3 ): δ = 7.22-7.32 (m, 9H), 7.48 (d, 2H), 7.54 (d, 3H), 7.67-7.73 (m, 11H), 7.89 (d, 3H )

MS/FAB: 556.22(found), 556.69(calculated)MS / FAB: 556.22 (found), 556.69 (calculated)

[제조예 3] NDNN의 제조Production Example 3 Preparation of NDNN

화합물 [2-4] 2.9 g(5.2 mmol)과 나프탈렌보론산(phenylbronic acid) 1.1 g(6.4 mmol)을 사용한 것 이외에는 제조예 2와 동일한 방법으로 화합물 NDNN 3.0 g(4.9 mmol, 전체 수율 9%)을 수득하였다.Compound NDNN 3.0 g (4.9 mmol, total yield 9%) in the same manner as in Preparation Example 2, except that 2.9 g (5.2 mmol) of compound [2-4] and 1.1 g (6.4 mmol) of naphthaleneboronic acid were used. Obtained.

1H NMR(200 MHz, CDCl3): δ 7.32(m, 8H), 7.54(d, 4H), 7.67-7.73(m, 14H), 7.89(d, 4H) 1 H NMR (200 MHz, CDCl 3 ): δ 7.32 (m, 8H), 7.54 (d, 4H), 7.67-7.73 (m, 14H), 7.89 (d, 4H)

MS/FAB: 606.23(found), 606.75(calculated)MS / FAB: 606.23 (found), 606.75 (calculated)

[제조예 4] PDNBA의 제조Preparation Example 4 Preparation of PDNBA

Figure 112006035656814-pat00017
Figure 112006035656814-pat00017

100 mL 둥근바닥 플라스크에 마그네슘 터닝(Mg turning) 1.7 g(70.1 mmol)을 넣고 소량의 I2 조각과 테트라히드로퓨란 10 mL를 넣었다. 9-브로모펜안트렌(9-bromo -phenanthrene) 11 g(42.5 mmol)을 테트라히드로퓨란 10 mL에 녹여 0℃의 마그네슘이 들어있는 플라스크에 천천히 첨가한 후 25℃에서 30분동안 교반하였다. 여기에 5-브로모이소벤조퓨란-1,3-디온(5-bromoisobenzofurane-1,3-dione) 9.9 g(43.4 mmol)과 알루미늄클로리드(Aluminum chloride) 12.7 g(95.6 mmol)을 넣어 24시간동안 교반시켰다. 반응액을 1N 염산 수용액 150 mL에 천천히 가하여 30분간 교반한 후 디클로로메탄 200 mL으로 추출, 감압 건조하여 화합물[4-1] 11.4 g(28.2 mmol)을 얻었다. Into a 100 mL round bottom flask, add 1.7 g (70.1 mmol) of magnesium turning and a small amount of I 2 The pieces and 10 mL of tetrahydrofuran were added. 11 g (42.5 mmol) of 9-bromophenanthrene was dissolved in 10 mL of tetrahydrofuran, and slowly added to a flask containing magnesium at 0 ° C., followed by stirring at 25 ° C. for 30 minutes. 9.9 g (43.4 mmol) of 5-bromoisobenzofurane-1,3-dione and 12.7 g (95.6 mmol) of aluminum chloride were added thereto for 24 hours. Was stirred. The reaction solution was slowly added to 150 mL of 1N hydrochloric acid, stirred for 30 minutes, extracted with 200 mL of dichloromethane, and dried under reduced pressure to obtain 11.4 g (28.2 mmol) of Compound [4-1].

화합물[4-1] 11.4 g(28.2 mmol)과 알루미늄 클로리드(Aluminum chloride) 37.9 g(284.4 mmol)와 소듐클로리드(sodium chloride) 8.3 g(142.2 mmol)을 사용하여 제조예 2의 방법으로 화합물 [4-2] 2.6 g(6.8 mmol)을 수득하였다.Compound [4-1] Using 11.4 g (28.2 mmol) of aluminum chloride, 37.9 g (284.4 mmol) of aluminum chloride, and 8.3 g (142.2 mmol) of sodium chloride, were prepared in the same manner as in Preparation Example 2 [4-2] 2.6 g (6.8 mmol) were obtained.

2-브로모나프탈렌(2-bromo naphthalene) 5.1 g(24.6 mmol), n-부틸리튬(n-butyllithium, 2.5M in n-Hexane) 2.5 mL(27.3 mmol)과 화합물 [4-2] 2.6 g(6.8 mmol)을 사용하여 제조예 2의 방법으로 디히드록시 화합물 2.2 g(3.7 mmol)을 얻었다. 상기 디히드록시 화합물 2.2 g(3.7 mmol), 포타슘 아이오다이드(potassium iodide) 2.5 g(14.8 mmol)과 소듐히드로포스피네이드(sodium hydrophosphinate) 3.1 g(29.6 mmol)을 사용하여 제조예 3의 방법으로 화합물 [4-3] 1.95 g(3.2 mmol)을 수득하였다. 5.1 g (24.6 mmol) of 2-bromo naphthalene, 2.5 mL (27.3 mmol) of n-butyllithium (2.5 M in n-Hexane) and 2.6 g of compound [4-2] 6.8 mmol) was used to obtain 2.2 g (3.7 mmol) of the dihydroxy compound by the method of Preparation Example 2. Method of Preparation 3 using 2.2 g (3.7 mmol) of the dihydroxy compound, 2.5 g (14.8 mmol) of potassium iodide and 3.1 g (29.6 mmol) of sodium hydrophosphinate This gave 1.95 g (3.2 mmol) of the compound [4-3].

화합물 [4-3] 1.95 g(3.2 mmol)과 페닐보론산(phenylbronic acid) 470.7 mg(3.9 mmol) 테트라키스팔라듐트리페닐포스핀(Pd(Ph3)4) 0.2 g(1.7 mmol)과 2M 탄산나트륨 수용액 2.3 mL을 제조예 3과 동일한 방법으로 화합물 PDNBA 1.16 g(2.3 mmol 전체수율 5%)을 얻었다.1.95 g (3.2 mmol) of compound [4-3] and 470.7 mg (3.9 mmol) of tetraphenylpalladium triphenylphosphine (Pd (Ph 3 ) 4 ) 0.2 g (1.7 mmol) and 2M sodium carbonate 2.3 mL of an aqueous solution was obtained in the same manner as in Preparation Example 1. 1.16 g (2.3 mmol total yield 5%) of compound PDNBA was obtained.

1H NMR(200MHz, CDCl3): δ = 7.22-7.32(m, 9H), 7.48-7.54(m, 7H), 7.73(d, 1H), 7.82-7.89(m, 5H), 8.12(d, 2H), 8.93(d, 2H) 1 H NMR (200 MHz, CDCl 3 ): δ = 7.22-7.32 (m, 9H), 7.48-7.54 (m, 7H), 7.73 (d, 1H), 7.82-7.89 (m, 5H), 8.12 (d, 2H), 8.93 (d, 2H)

MS/FAB: 506.2(found), 506.63(calculated)MS / FAB: 506.2 (found), 506.63 (calculated)

[제조예 5] NDNDBA의 제조Production Example 5 Preparation of NDNDBA

제조예 4에서 제조된 화합물 [4-3] 1.95 g(3.2 mmol)과 나프탈렌보론산(naphthalene boronic acid) 664.0 mg(3.9 mmol), 테트라키스팔라듐트리페닐포스핀(Pd(Ph3)4) 0.2 g(1.7 mmol), 2M 탄산나트륨 수용액 2.3 mL, 톨루엔 30 mL와 에탄올 15 mL 혼합용액을 사용하여 제조예 5와 동일한 제조 방법을 이용하여 화합물 NDNDBA 1.2 g(2.2 mmol, 전체수율 5%)을 수득하였다.1.95 g (3.2 mmol) of compound [4-3] prepared in Preparation Example 4, 664.0 mg (3.9 mmol) of naphthalene boronic acid, and tetrakispalladiumtriphenylphosphine (Pd (Ph 3 ) 4 ) 0.2 g (1.7 mmol), 2.3 mL of 2M aqueous sodium carbonate solution, 30 mL of toluene and 15 mL of ethanol were used to obtain 1.2 g (2.2 mmol, 5% of total yield) of compound NDNDBA, using the same preparation method as in Preparation Example 5. .

1H NMR(200 MHz, CDCl3): δ = 7.22-7.32(m, 8H), 7.48-7.54(m, 6H), 7.67-7.89(m, 10H), 8.12(d, 2H), 8.93(d, 2H) 1 H NMR (200 MHz, CDCl 3 ): δ = 7.22-7.32 (m, 8H), 7.48-7.54 (m, 6H), 7.67-7.89 (m, 10H), 8.12 (d, 2H), 8.93 (d , 2H)

MS/FAB: 556.22(found), 556.69(calculated)MS / FAB: 556.22 (found), 556.69 (calculated)

[실시예 1] 본 발명에 따른 화합물을 이용한 OLED 소자의 제조Example 1 Fabrication of OLED Device Using Compound According to the Present Invention

본 발명의 발광 재료를 이용한 구조의 OLED 소자를 제작하였다.An OLED device having a structure using the light emitting material of the present invention was produced.

우선, OLED용 글래스로부터 얻어진 투명전극 ITO 박막(15 Ω/□)을, 트리클로로에틸렌, 아세톤, 에탄올, 증류수를 순차적으로 사용하여 초음파 세척을 실시한 후, 이소프로판올에 넣어 보관한 후 사용하였다.First, the transparent electrode ITO thin film (15 Ω / □) obtained from the glass for OLED was subjected to ultrasonic cleaning using trichloroethylene, acetone, ethanol, and distilled water in sequence, and then stored in isopropanol and used.

다음으로, 진공 증착 장비의 기판 폴더에 ITO 기판을 설치하고, 진공 증착 장비 내의 셀에 하기 구조의 4,4',4"-tris(N,N-(2-naphthyl)-phenylamino) triphenylamine (2-TNATA)을 넣고, 챔버 내의 진공도가 10-6 torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 2-TNATA를 증발시켜 ITO 기판 상에 60 nm 두께의 정공주입층을 증착하였다. Next, an ITO substrate was placed in the substrate folder of the vacuum deposition apparatus, and 4,4 ', 4 "-tris (N, N- (2-naphthyl) -phenylamino) triphenylamine (2) having the structure -TNATA), evacuated until the vacuum in the chamber reached 10-6 torr, and then applied a current to the cell to evaporate 2-TNATA to deposit a 60 nm thick hole injection layer on the ITO substrate.

Figure 112006035656814-pat00018
Figure 112006035656814-pat00018

이어서, 진공 증착 장비 내의 다른 셀에 하기구조 N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine (NPB)을 넣고, 셀에 전류를 인가하여 NPB를 증발시켜 정공주입층 위에 20 nm 두께의 정공전달층을 증착하였다.Subsequently, the following structure N, N'-bis (α-naphthyl) -N, N'-diphenyl-4,4'-diamine (NPB) was added to another cell in the vacuum deposition apparatus, and NPB was applied by applying a current to the cell. A 20 nm thick hole transport layer was deposited on the hole injection layer by evaporation.

Figure 112006035656814-pat00019
Figure 112006035656814-pat00019

정공주입층, 정공전달층을 형성시킨 후, 그 위에 발광층을 다음과 같이 증착시켰다. 진공 증착 장비 내의 한쪽 셀에 본 발명에 따른 화합물(예 : 화합물 CYHDNA)을 넣고, 또 다른 셀에는 하기구조의 도판트 발광 재료를 각각 넣은 후, 증착 속도를 100:1 로 하여 상기 정공 전달층 위에 35 nm 두께의 발광층을 증착하였다.After the hole injection layer and the hole transport layer were formed, the light emitting layer was deposited thereon as follows. The compound according to the present invention (e.g., compound CYHDNA) is placed in one cell of the vacuum deposition apparatus, and the dopant light emitting material having the following structure is put in another cell, and the deposition rate is 100: 1 on the hole transport layer. A 35 nm thick light emitting layer was deposited.

Figure 112006035656814-pat00020
Figure 112006035656814-pat00021
Figure 112006035656814-pat00020
Figure 112006035656814-pat00021

이어서 전자전달층으로써 하기 구조의 tris(8-hydroxyquinoline)- aluminum(III)(Alq)를 20 nm 두께로 증착한 다음, 전자주입층으로 하기 구조의 화합물 lithium quinolate (Liq)를 1 내지 2 nm 두께로 증착한 후, 다른 진공 증착 장비를 이용하여 Al 음극을 150 nm의 두께로 증착하여 OLED를 제작하였다. Subsequently, tris (8-hydroxyquinoline)-aluminum (III) (Alq) having a structure of 20 nm thick was deposited as an electron transport layer, and then a compound lithium quinolate (Liq) having a structure of 1 to 2 nm thick was formed as an electron injection layer. After deposition, the Al cathode was deposited to a thickness of 150 nm using another vacuum deposition equipment to produce an OLED.

Figure 112006035656814-pat00022
Figure 112006035656814-pat00022

OLED 소자에 사용된 각 재료들은, 각각 10-6 torr 하에서 진공 승화 정제하여 OLED 발광재료로 사용하였다. Each material used in the OLED device was vacuum sublimated and purified under 10 -6 torr, respectively, to be used as an OLED light emitting material.

[비교예 1] 종래의 발광 재료를 이용한 OLED 소자를 제조Comparative Example 1 An OLED device was manufactured using a conventional light emitting material.

실시예 1과 동일한 방법으로 정공주입층, 정공전달층을 형성시킨 후, 상기 진공 증착 장비의 한쪽 셀에는 청색 발광 재료인 dinaphthylanthracene(DNA)을 넣 고, 다른 셀에 다른 청색 발광 재료인 하기 구조의 perylene을 각각 넣은 후, 증착 속도를 100:1 로 하여 상기 정공 전달층 위에 35 nm 두께의 발광층을 증착하였다.After the hole injection layer and the hole transport layer were formed in the same manner as in Example 1, dinaphthylanthracene (DNA), which is a blue light emitting material, was placed in one cell of the vacuum deposition equipment, and another blue light emitting material was formed in the other cell. After the perylene was added, a 35 nm thick light emitting layer was deposited on the hole transport layer at a deposition rate of 100: 1.

Figure 112006035656814-pat00023
Figure 112006035656814-pat00023

이어서 실시예 1과 동일한 방법으로 전자전달층과 전자주입층을 증착한 후, 다른 진공 증착 장비를 이용하여 Al 음극을 150 nm의 두께로 증착하여 OLED를 제작하였다.Subsequently, an electron transport layer and an electron injection layer were deposited in the same manner as in Example 1, and then another OLED was manufactured by depositing an Al cathode to a thickness of 150 nm using another vacuum deposition equipment.

[실시예 2] 제조된 OLED 소자의 발광 특성Example 2 Luminescence Characteristics of the Fabricated OLED Device

실시예 1과 비교예 1에서 제조된 본 발명에 따른 유기 발광 화합물과 종래의 발광 화합물을 함유하는 OLED 소자의 발광 효율을 각각 500 cd/㎡ 및 2,000 cd/㎡ 에서 측정하여 하기 표 1에 나타내었다. 특히 청색 발광 재료의 경우, 저휘도 영역과 패널에서 적용되는 휘도에서의 발광 특성이 매우 중요하므로 이를 반영하기 위하여 2,000 cd/㎡ 정도 되는 휘도 데이터를 기준으로 하였다.The luminous efficiency of the organic light emitting compound according to the present invention prepared in Example 1 and Comparative Example 1 and the conventional light emitting compound containing the light emitting compound was measured in 500 cd / ㎡ and 2,000 cd / ㎡ are shown in Table 1 below . Particularly, in the case of the blue light emitting material, the light emission characteristics in the low luminance region and the luminance applied to the panel are very important, and thus the luminance data is about 2,000 cd / m 2 to reflect this.

[표 1] TABLE 1

Figure 112006035656814-pat00024
Figure 112006035656814-pat00024

상기 표 1에 나타난 바와 같이, 양자 효율과 유사한 경향을 나타내는 “발광효율/Y”값을 기준으로, 널리 알려져 있는 종래의 발광재료인 DNA:perylene를 함유하는 OLED 소자인 비교예와 본 발명에 따른 유기 발광 화합물들을 발광재료로 사용한 OLED 소자를 비교하였을 때 본 발명에 따른 유기 발광 화합물을 발광재료로 사용한 OLED 소자가 더 높은 “발광효율/Y”값을 나타내었다.As shown in Table 1, based on the "luminescence efficiency / Y" value showing a tendency similar to the quantum efficiency, a comparative example of the OLED device containing DNA: perylene which is a well-known conventional light emitting material according to the present invention and Comparing OLED devices using organic light emitting compounds as light emitting materials, OLED devices using organic light emitting compounds according to the present invention as light emitting materials showed higher "luminescence efficiency / Y" values.

본 발명에 따른 유기 발광 화합물은 발광효율이 좋고 재료의 수명특성이 뛰어나 소자의 구동수명이 매우 양호한 OLED 소자를 제조할 수 있는 장점이 있다.The organic light emitting compound according to the present invention has an advantage of producing an OLED device having a good luminous efficiency and excellent life characteristics of the material and a very good driving life of the device.

Claims (6)

하기 화학식 1로 표시되는 유기 발광 화합물.An organic light emitting compound represented by Formula 1 below. [화학식 1][Formula 1]
Figure 112007094001476-pat00025
Figure 112007094001476-pat00025
상기 화학식에서 A 고리는 2개 이상의 고리가 융합된 융합아릴기이며;Ring A in the above formula is a fused aryl group in which two or more rings are fused; Ar1 및 Ar2는 서로 독립적으로 C6-C30의 아릴기이고;Ar 1 and Ar 2 are each independently an aryl group of C 6 -C 30 ; R1 내지 R4는 서로 독립적으로 수소, C1-C20의 직쇄 또는 분지쇄의 알킬기 또는 알콕시기, C6-C30의 아릴 또는 헤테로아릴기, 할로겐기이며;R 1 to R 4 are each independently hydrogen, a straight or branched chain alkyl group or alkoxy group of C 1 -C 20 , an aryl or heteroaryl group of C 6 -C 30 , or a halogen group; 상기 융합아릴기, 아릴기, 헤테로아릴기, 알킬기, 알콕시기는 C1-C20의 직쇄 또는 분지쇄의 알킬기, 아릴기, 할로겐기로 더 치환될 수 있고;The fused aryl group, aryl group, heteroaryl group, alkyl group, alkoxy group may be further substituted with a C 1 -C 20 linear or branched alkyl group, aryl group, halogen group; 단,
Figure 112007094001476-pat00035
는 나프타센 골격을 갖지 않는다.
only,
Figure 112007094001476-pat00035
Does not have a naphthacene skeleton.
제 1 항에 있어서,The method of claim 1, 하기 화학식 3 내지 화학식 7로부터 선택되는 유기 발광 화합물.An organic light emitting compound selected from Chemical Formulas 3 to 7. [화학식 3][Formula 3]
Figure 112007094001476-pat00027
Figure 112007094001476-pat00027
[화학식 4][Formula 4]
Figure 112007094001476-pat00028
Figure 112007094001476-pat00028
[화학식 5][Formula 5]
Figure 112007094001476-pat00029
Figure 112007094001476-pat00029
[화학식 6][Formula 6]
Figure 112007094001476-pat00030
Figure 112007094001476-pat00030
[화학식 7][Formula 7]
Figure 112007094001476-pat00031
Figure 112007094001476-pat00031
[상기 화학식 3 내지 화학식 7에서 Ar1, Ar2, R1, R2, R3 및 R4는 상기 청구항 제1항의 화학식 1에서 정의한 바와 같으며, R11 내지 R13은 서로 독립적으로 수소, C1-C20의 직쇄 또는 분지쇄의 알킬기 또는 알콕시기, C6-C30의 아릴 또는 헤테로아릴기, 할로겐기이며; n은 1 내지 3이고; 알킬기, 알콕시기, 아릴기, 헤테로아릴기는 C1-C20의 직쇄 또는 분지쇄의 알킬기, 아릴기, 할로겐기로 더 치환될 수 있다.][Ar 1 , Ar 2 , R 1 , R 2 , R 3 and R 4 in Formulas 3 to 7 are the same as defined in Formula 1 of claim 1, and R 11 to R 13 are each independently hydrogen, C 1 -C 20 linear or branched alkyl or alkoxy group, C 6 -C 30 aryl or heteroaryl group, halogen group; n is 1 to 3; The alkyl group, alkoxy group, aryl group and heteroaryl group may be further substituted with a C 1 -C 20 straight or branched chain alkyl, aryl group or halogen group.]
제 1 항에 있어서,The method of claim 1, Ar1 및 Ar2는 서로 독립적으로 페닐, 톨릴, 비페닐, 나프틸, 안트릴 및 플로레닐에서 선택되는 것을 특징으로 하는 유기 발광 화합물.Ar 1 and Ar 2 are each independently selected from phenyl, tolyl, biphenyl, naphthyl, anthryl and florenyl. 제 2 항에 있어서,The method of claim 2, 상기 R1 내지 R4 및 R11 내지 R13은 서로 독립적으로 수소, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 펜틸, 헥실, 에틸헥실, 헵틸, 옥틸, 이소옥틸, 노닐, 데실, 도데실, 헥사데실, 페닐, 톨릴, 비페닐, 벤질, 나프틸, 안트릴 및 플로레닐에서 선택되는 것을 특징으로 하는 유기 발광 화합물.R 1 to R 4 and R 11 to R 13 are each independently hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, ethylhexyl, heptyl, octyl, isooctyl, nonyl, decyl, An organic light emitting compound, characterized in that selected from dodecyl, hexadecyl, phenyl, tolyl, biphenyl, benzyl, naphthyl, anthryl and florenyl. 제 1 항에 있어서,The method of claim 1, 하기 화합물로부터 선택되는 것을 특징으로 하는 유기 발광 화합물.An organic light emitting compound, which is selected from the following compounds.
Figure 112007094001476-pat00036
Figure 112007094001476-pat00036
제 1 항 내지 제 5 항 중 어느 한 항에 따른 유기 발광 화합물을 포함하는 유기 발광 소자.An organic light emitting device comprising the organic light emitting compound according to any one of claims 1 to 5.
KR1020060045851A 2006-05-22 2006-05-22 Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same KR100835986B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060045851A KR100835986B1 (en) 2006-05-22 2006-05-22 Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same
TW096117959A TWI354012B (en) 2006-05-22 2007-05-21 Aromatic electroluminescent compounds with high ef

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060045851A KR100835986B1 (en) 2006-05-22 2006-05-22 Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070139052A Division KR20080003304A (en) 2007-12-27 2007-12-27 Aromatic electroluminescent compounds with high efficiency and display device using the same

Publications (2)

Publication Number Publication Date
KR20070112665A KR20070112665A (en) 2007-11-27
KR100835986B1 true KR100835986B1 (en) 2008-06-09

Family

ID=39090917

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060045851A KR100835986B1 (en) 2006-05-22 2006-05-22 Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same

Country Status (2)

Country Link
KR (1) KR100835986B1 (en)
TW (1) TWI354012B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066808A1 (en) * 2007-11-22 2009-05-28 Gracel Display Inc. Aromatic electroluminescent compounds with high efficiency and electroluminescent device using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099713A (en) * 2000-04-21 2001-11-09 사토 히로시 Organic Electroluminescent Device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099713A (en) * 2000-04-21 2001-11-09 사토 히로시 Organic Electroluminescent Device

Also Published As

Publication number Publication date
TWI354012B (en) 2011-12-11
KR20070112665A (en) 2007-11-27
TW200745311A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP5774267B2 (en) Organic electroluminescent compound and light emitting diode using the same
KR100828173B1 (en) Organic Electroluminescent Compounds and Display Device using The Same
TW201404862A (en) Organic electronic material and organic electroluminescent device
KR101429961B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
CN110330472B (en) Blue light material and preparation method and application thereof
JPH11323323A (en) Luminescent material
JP5378397B2 (en) Highly efficient blue electroluminescent compound and display device using the same
JP2010533167A (en) Organic light emitting material and organic light emitting device using the same
KR101375542B1 (en) Hole transporting material comprising thiophen derivative and organic electroluminescent device using the same
US20110042655A1 (en) Aromatic electroluminescent compounds with high efficiency and electroluminescent device using the same
WO2021103728A1 (en) Organic compound and organic electroluminescent device using same
KR100857024B1 (en) Electroluminescent compounds with high efficiency and organic light-emitting diode using the same
KR100857025B1 (en) Blue Electroluminescent Compounds with High Efficiency and Display Device using The Same
KR100835986B1 (en) Aromatic Electroluminescent Compounds with High Efficiency and Display Device using The Same
KR20140127702A (en) 2-(phenylsulfonyl)pyridine derivatives and Organic electroluminescent device comprising same
KR20130133518A (en) Organic light emitting material and organic light emitting diode having the same
KR101502811B1 (en) Novel anthracene derivatives and organic electroluminescent device using the same
KR102118875B1 (en) Compound for organic light emitting diode, organic light emitting diode having the same, and display apparatus having organic light emitting diode
CN109293562B (en) Thermal activity delayed fluorescence organic compound with malononitrile as acceptor and preparation and application thereof
KR20130124775A (en) Anthracene derivative and organic electroluminescence device using the same
KR20080003304A (en) Aromatic electroluminescent compounds with high efficiency and display device using the same
KR101145685B1 (en) Novel anthracene derivatives and organic electroluminescent device using the same
KR100828169B1 (en) Organic Electroluminescent Compounds with Hgh Efficiency and Display Device using The Same
TW201323379A (en) 1,1&#39;-binaphthyl-4,4&#39;-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them
CN115594599B (en) Bis-naphthalene compound and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee