KR100826589B1 - 토카막 진공용기 용접변형 제어방법 - Google Patents

토카막 진공용기 용접변형 제어방법 Download PDF

Info

Publication number
KR100826589B1
KR100826589B1 KR1020060122483A KR20060122483A KR100826589B1 KR 100826589 B1 KR100826589 B1 KR 100826589B1 KR 1020060122483 A KR1020060122483 A KR 1020060122483A KR 20060122483 A KR20060122483 A KR 20060122483A KR 100826589 B1 KR100826589 B1 KR 100826589B1
Authority
KR
South Korea
Prior art keywords
welding
deformation
vacuum vessel
sectors
sector
Prior art date
Application number
KR1020060122483A
Other languages
English (en)
Inventor
김학근
양형렬
홍권희
박주식
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to KR1020060122483A priority Critical patent/KR100826589B1/ko
Application granted granted Critical
Publication of KR100826589B1 publication Critical patent/KR100826589B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

본 발명은 토카막 진공용기 용접변형 제어방법에 관한 것으로, 용접 변형을 실시간으로 관측하여 구조물을 용접하는 동안 지속적으로 용접 조건을 변경하여 구조물 용접 시 필연적으로 발생하는 용접 변형을 제어함으로써 원하는 구조물 형상을 얻는데 목적이 있다. 이를 위해 토카막 진공용기 용접변형 제어방법은, 용전 전처리 및 준비 단계(S10);와 각 용접 패스 후 관측된 변형을 피드백하여 용접 조건을 변경하는 단계(S20);와 구조물 용접단계(S30);와 용접 변형 측정 및 용착량 산출 피드백단계(S40);와 용접 마무리단계(S50)를 포함하는 과정을 통해 조립되는 것을 특징으로 한다.

Description

토카막 진공용기 용접변형 제어방법 {WELDING DEFORMATION CONTROL METHOD OF TOKAMAK VACUUM VESSEL}
도 1a 및 도 1b는 토카막장치의 각 구조물을 나타내는 구성상태도.
도 2는 본 발명에 따른 토카막 진공용기 용접변형 제어방법에 대한 전체 공정도.
도 3은 본 발명에 따른 진공용기의 섹터1,2를 나타낸 개략적 구성상태도.
도 4a 및 도 4b는 본 발명에 따른 진공용기의 섹터1,2를 나타낸 평면 및 측단면상태도.
도 5는 본 발명에 따른 진공용기의 섹터1,2를 포스트에 의해 고정한 상태도.
도 6은 본 발명에 따른 진공용기의 섹터1,2에서 백플레이트의 용접부위 단면상태도.
도 7a 및 도 7b는 본 발명에 따른 진공용기의 섹터1,2에서 다이얼게이지가 설치된 도 4의 A,B의 확대상태도.
도 8은 본 발명에 따른 진공용기의 섹터1,2 접합부위에 스트롱백을 임시 용접한 상태도.
도 9는 본 발명에 따른 진공용기의 섹터1,2 접합부위에 용접순서를 도시한 도면.
도 10a 내지 도 10d는 본 발명에 따른 진공용기의 섹터1,2 접합부위의 용접 변형량(X,X(켈리퍼스 측정),Y,Z)을 나타낸 표.
도 11은 본 발명에 따른 진공용기의 섹터1,2 접합부위의 X방향의 용접 변형량에 대한 그래프.
도 12는 본 발명에 따른 진공용기의 섹터1,2,3이 조립된 진공용기의 완성상태도.
* 도면의 주요부분에 대한 부호의 설명 *
10. 섹터1 20. 섹터2
41. 중심포스트 50. 다이얼게이지
본 발명은 운송하기 곤란한 크기의 진공용기를 섹터1과 섹터2로 나누어 운송한 뒤 설치위치에 정해진 조립각도로 섹터1과 섹터2를 접합 조립하되, 용접 변형을 실시간으로 측정 확인하여 다음 용접시 용접조건을 반영함으로써 정해진 조립각도가 변경되는 것을 방지하는 토카막 진공용기 용접변형 제어방법에 관한 것이다.
핵융합 실험 장치인 토카막 장치는 플라즈마 상태의 중수소를 강한 자기장으로 가두기 위한 토로이달 코일과, 플라즈마를 발생시키고 그 위치와 모양을 제어하 기 위한 포로이달 코일들로 구성된다.
도 1a 및 도 1b는 국내에서 제작되는 초전도자석을 일예로 나타낸 도면이다. 도 1a에 도시된 바와 같이 초전도자석(100:SC Magnet)은 고온의 플라즈마를 진공용기 벽에 닿지 않고 가두어두기 위한 것으로, 그 주요장치인 토카막장치(101)를 보유하고 있다. 상기 토카막장치(101)는 TF(Toroidal Field) 및 PF(Poloidal Field) 코일을 사용하여 플라즈마의 생성, 구속, 제어를 담당한다. 도 1b는 도 1a의 토카막장치(101)를 나타내며, TF(Toroidal Field)코일로 구성된 TF 구조물(107)과, CS(Central Solenoid)코일로 구성된 CS 구조물(109)과, PF(Poroidal Field)코일로 구성된 PF 구조물(103) 및 각 구조물을 연결하는 연결구조물(105)로 이루어진다.
상기 TF 구조물(107)로 내설되는 코일은 약 35kA의 직류전류로 운전되며, 상기 CS 구조물(109)의 코일과 PF 구조물(103)의 코일은 펄스운전을 하여 상호 자장변화에 의한 기전력을 진공용기 내부에 발생시켜 플라즈마를 생성하고 플라즈마 전류 및 TF 자장과 함께 플라즈마를 구속시키는 역할을 수행한다.
상기와 같은 토카막장치에 사용되는 진공용기는 크기가 커서 차로로 운송하는 데 한계가 있다. 그래서 이를 운송 가능한 크기로 나누어 부분적으로 완성한 뒤 부분 완성품을 설치위치로 운송하여 설치현장에서 부분 완성품을 접합 조립하여 전체 완성품을 제작한다. 그러나 부분 완성품을 접합하는 데에는 용접과정 중 변형이 발생하는 단점이 있다.
일반적으로 대형구조물의 용접 시 용접 변형을 억제하고 최소화하기 위하여 강력한 용접 변형 방지 구조물(일반적으로 스트롱백(strong back)이라 불림)을 용접부 주위 또는 큰 용접 변형이 발생할 것으로 예상되는 곳에 본 용접 전에 설치하고 본 용접 후에 제거한다.
이러한 용접 변형 방지 구조물은 본 용접 시 발생되어진 많은 잔류 응력을 잠재하고 있기 때문에 본 용접 후 제거 시 예측 불가능한 구조물의 변형을 종종 야기시킨다. 따라서 일반 산업체에서는 대형구조물의 용접시 용접물의 크기에 충분한 여유(margin)를 부여한 후 본 용접을 시행하고 용접이 완료된 후 추가적으로 발생한 용접 변형을 제품 치수에 맞게 기계가공하게 된다.
그러나 변형 방지 구조물의 준비 및 용접 후 가공에 많은 비용과 시간뿐만 아니라 대형 가공기계 등을 요구하게 된다. 또한 용접 제품의 여유를 초과한 용접 변형이 발생 시 보수에 많은 어려움이 있다. 특히 대형 정밀 장치의 Site 설치 시 발생한 용접 변형은 기계 가공이 불가능함으로 보수하는데 더 어려운 문제점이 있다.
따라서 본 발명에서 이루고자하는 기술적 과제는, 용접 변형에 대한 문제점을 해결할 수 있는 방법으로 용접 변형 방지 구조물을 사용하지 않고 실시간 용접 변형을 측정하여 원하는 용접 구조물 형상을 얻을 수 있는 용접변형 제어방법을 제공하는데 있다.
상기의 기술적 과제를 해결하기 위한 본 발명의 토카막 진공용기 용접변형 제어방법은, 운송하기 곤란한 크기의 진공용기를 섹터1과 섹터2로 나누어 운송한 뒤 설치위치에 정해진 조립각도로 조립하는 토카막 진공용기 용접변형 제어방법에 있어서, 섹터1과 섹터2의 용접 결합 후 발생될 변형만큼 용접 전에 역변형을 주면서 섹터1과 섹터2를 고정하고, 용접 중 변형을 관측할 준비를 하는 용접 전처리 및 준비 단계(S10);와 각 용접부위의 용접 후 관측된 변형을 피드백하여 용접조건을 변경하는 용접조건 변경단계(S20);와 섹터1과 섹터2의 결합부위를 용접하는 구조물 용접단계(S30);와 일측 부위의 용접 후 발생한 용접 변형을 측정하여 다음 용접할 부위에서 발생 가능한 용접 변형을 예측하고, 용착량을 검토하여 최종 용접 시까지의 예상 용착량을 산출하여 피드백하는 용접 변형 측정 및 용착량 산출 피드백단계(S40);와 최종 치수 검사를 병행하며 진공용기의 용접을 마무리하는 용접 마무리단계(S50)를 포함하는 과정을 통해 진공용기의 섹터1,2를 조립하는 것을 특징으로 한다.
용접 전처리 및 준비단계의 역변형은 용접 시 예상되는 용접 변형 방향 및 용접 변형량을 예측하여 예측된 변형 방향과 변형량에 따라 섹터1의 아웃터링이 섹터2의 리브플레이트에 접촉되도록 벌려서 고정하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접 전처리 및 준비단계는 백비드가 발생되는 것을 방지하도록 용접 중 용접부위의 이면에 백플레이트를 부착하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접 전처리 및 준비단계는 용접 중 발생하는 용접 변형을 지속적으로 관측하기 위하여 섹터1과 섹터2의 일측에 X,Y,Z 방향으로 다이얼게이지를 설치하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접 전처리 및 준비단계는 용접되기 전 섹터1,2를 임의로 용접하기 위해 용접부위에 스트롱백을 부착하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접 전처리 및 준비단계와 용접조건 변경단계에서 모형실험의 결과를 통해 용접 변형방향과 변형량을 예측하고, 용접하기 전 초기 용접조건을 결정하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접단계의 용접조건은 용접전류 120 - 180 A, 용접전압 15 - 20 V, 가스유량 18 - 22 L/min 및 층간온도 20 - 180 ℃인 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접단계에서 구조물의 용접 중 퍼징가스를 진공용기 내에 주입과 동시에 배출시키는 백퍼징과정을 통해 용접부위의 산화를 방지하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접단계에서 용접심라인을 중심으로 용접을 시작하되 진공용기의 전체 균형을 맞추기 위해 크로스방향의 양측을 동시에 용접하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
용접단계에서는 용접 변형방향과 변형량을 확인하기 위해 용접심라인의 피접검사를 하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
용접단계에서 용접이 종료될 때까지 변형되지 않도록 용접심라인 상하내외의 스트롱백 4개를 용접이 종료된 후에 제거하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법을 제공한다.
이하, 본 발명의 바람직한 실시예를 예시도면을 참고하여 상세히 설명하고자 한다.
도 2는 본 발명에 따른 토카막 진공용기 용접변형 제어방법에 대한 전체 공정도이다.
도 2에서 보는 바와 같이, 본 발명에 따른 진공용기조립방법은, 운송하기 곤란한 크기의 진공용기를 섹터1과 섹터2로 나누어 운송한 뒤 설치위치에 정해진 조립각도로 조립하는 방법으로, 용접 전처리 및 준비단계(S10), 용접조건 변경단계(S20), 용접단계(S30), 용접 변형 측정 및 용착량 산출 피드백단계(S40) 및 용접 마무리단계(S50)로 이루어진다.
용접 전처리 및 준비 단계(S10)는 섹터1과 섹터2의 용접 결합 후 발생될 변형만큼 용접 전에 역변형을 주면서 섹터1과 섹터2를 고정하고, 용접 중 변형을 관측할 준비를 하는 단계이다.
공정에 대한 설명 전에 용어에 대해 간단히 설명한다.
도 3은 본 발명에 따른 진공용기의 섹터1,2를 나타낸 개략적 구성상태도이다. 도 4a 및 도 4b는 본 발명에 따른 진공용기의 섹터1,2를 나타낸 평면 및 측단면상태도이다.
도 3 내지 도 4b에서 보는 바와 같이 섹터1(10)은 진공용기를 반으로 나눈 부분 중 평면상 반원(180°)만큼의 부분이고, 섹터2(20)는 진공용기의 섹터1을 제외한 부분 중 평면상 157.5°만큼의 부분원이다. 진공용기에서 섹터1,2를 제외한 부분은 후에 조립하게 될 섹터3(30)이다. 섹터3은 진공용기 내에 토로이달구조물을 삽입하기 위해 미리 조립되지 않고 개방되는 부분이다. 섹터3은 평면상 22.5°의 부분원인데, 이는 토로이달구조물(107;도 1b)의 평면상 각도가 22.5°로 규격화되어 있어 진공용기를 완성조립한 후 토로이달구조물을 인입시키기 위해 정해진 구조의 각이다. 토로이달구조물 내에는 토로이달코일이 내장되어 토로이달자석을 이룬다.
섹터1,2는 조립 완성시 도넛모양을 이루며, 외측의 아웃터쉘(11)과 내측의 인너쉘(12)을 통해 단면상 D자 형상을 이룬다. 단면상 D자 형상에 있어 외측의 라운드가 아닌 수직부분 상하부에 수평으로 섹터1,2의 외주연 전체에 아웃터링(13)이 둘러져 형성된다.
D자형 단면의 외측에 수직으로 리브플레이트(14)가 둘러져 형성된다. 리브플레이트는 평면상 일정한 간격으로 형성된다. 리브플레이트는 아웃터쉘 및 인너쉘과 직교되면서 아웃터링과도 직교된다.
다시 공정에 대해 설명하면, 용접 전처리 및 준비단계의 역변형은 용접 시 예상되는 용접 변형 방향 및 용접 변형량을 예측하여, 예측된 변형 방향과 변형량에 따라 섹터1 일단의 아웃터링이 섹터2 일단의 리브플레이트에 접촉되도록 벌려서 고정한다. 섹터1과 섹터2의 접합부위를 보면, 섹터1의 일단에는 리브플레이트가 형 성되고, 섹터2의 일단에는 리브플레이트가 형성되지 않는다.
용접 변형방향과 변형량은 모형실험의 결과를 통해 예측한다. 모형실험은 실제 진공용기의 용접에 앞서 실물 1/3 크기의 모형을 실제와 같은 조건으로 용접함으로써, 용접변형의 경향 및 변형량을 측정하여 계획하고 있는 용접 역변형 및 용접방법의 신뢰성을 확보함과 동시에 그 결과를 본 용접에 피드백 시키는데 목적이 있다.
인보드(in-board)쪽은 4.39mm, 아웃보드(out-board)쪽에서는 14mm가 벌어지도록 셋팅하였다. 따라서 용접 심(seam)의 루트갭은 아웃보드(out-board)에서 그라인딩을 통해 설계값인 0mm에서 3mm 정도, 그리고 인보드(in-board)에서는 3.5mm에서 8mm로 증가되었다. 용접 후 변형량은 섹터 3의 아웃보드에서 9mm, 섹터1,2의 내경에서는 최대 5.5mm를 목표로 하였다.
인보드쪽은 섹터3이 조립될 사다리꼴부분의 내측(중심을 향한 쪽) 짧은 변쪽이고, 아웃보드쪽은 섹터3이 조립될 사다리꼴부분의 외측 긴 변쪽이다. 용접심은 섹터1,2가 접합되는 부위의 평면상 최외곽점 즉 D자 단면상의 최외곽수직선 부분으로, 섹터1,2가 접합되는 부위의 상측 아웃터링과 하측 아웃터링을 연결한 수직선이기도 하다. 용접심은 섹터1,2의 접합시 개방부위(진공용기 내에 토로이달구조물의 인입 후 섹터3이 조립될 부분)의 용접 변형방향과 변형량을 확인하는 기준이다.
아웃보드쪽의 14mm를 벌리는데 더미섹터(dummy sector)(30a)가 유용하게 사용되며, 벌린 후 더미섹터는 섹터1,2의 중심에서 멀어지도록 밖으로 빼내어 다이얼 게이지의 부착용 구조물로 사용된다. 더미섹터는 섹터3이 용접될 부위에 임시로 조립되는 구조물이다. 상기의 수치는 일실시예에 의한 수치로, 상대적인 가변 수치이다.
도 5는 본 발명에 따른 진공용기의 섹터1,2를 포스트에 의해 고정한 상태도이다.
섹터1,2의 고정은 고정용 포스트를 사용한다. 도 5에서 보는 바와 같이 섹터1,2의 도넛형상 중심에 중심포스트(41)가 설치되고, 중심포스트의 상부에 수평프레임(42)이 수평으로 다수 배열 연결된다. 수평프레임의 외측단부에 수직프레임(43)이 수직으로 각각 연결되어 지면에 고정된다. 섹터1,2(10,20)의 하부는 지면으로부터 일정높이만큼 지지포스트(44a)에 의해 이격 지지된다. 다른 지지포스트(44b)는 수평프레임의 하부 일측에 수직으로 설치되고, 또 다른 지지포스트(44c)는 수직프레임의 내부 일측에 수평으로 설치된다. 섹터1,2의 상부는 지지포스트(44b)에 의해 수직으로 지지되고, 섹터1,2의 측부는 지지포스트(44c)에 의해 수평으로 지지된다.
도 6은 본 발명에 따른 진공용기의 섹터1,2에서 백플레이트의 용접부위 단면상태도이다.
용접 전처리 및 준비단계는 도 6에서 보는 바와 같이 용접 중 용접부위의 이면에 백비드가 발생되는 것을 방지하도록 백플레이트(15)를 부착한다. 백플레이트의 부착은 본 용접부위와 본 용접부위의 이면에 태그용접(15a)을 통해 간소하게 용접한다. 백플레이트를 부착하기 전에 용접할 부위에 개선면을 그라인딩한다.
용접 전처리 및 준비단계는 도 4a 및 도 4b에서 보는 바와 같이 용접 중 발생하는 용접 변형을 지속적으로 관측하기 위하여 섹터1과 섹터2의 일측에 X,Y,Z 방향으로 다이얼게이지(50)를 설치한다.
도 7a 및 도 7b는 본 발명에 따른 진공용기의 섹터1,2에서 다이얼게이지가 설치된 도 4a 및 도 4b의 A,B의 확대상태도이다.
도 4a 및 도 4b, 도 7a 및 도 7b에서 보는 바와 같이 아웃보드쪽의 경우 섹터1과 더미섹터의 일측 사이에 X방향으로 다이얼게이지(50;1OHX)를 설치하고, 더미섹터의 타측과 섹터2의 사이에 X방향으로 다이얼게이지(2OHX)를 설치한다. X방향의 변형량은 섹터1과 더미섹터의 일측 사이의 변형량과, 더미섹터의 타측과 섹터2의 사이의 변형량의 합이다. 인보드쪽의 경우 켈리퍼스를 이용하여 X방향의 변형량 측정이 가능하다. 섹터1,2의 내측과 중심포스트의 양측 사이에도 각각 X방향으로 다이얼게이지(1DHX,2DHX)를 설치하여 X방향의 변형량을 측정한다. 이때 다이얼게이지는 아웃터링이 형성되는 상하측에 설치하여 섹터1,2의 내측에는 4개의 다이얼게이지(1DHX,2DHX,1DLX,2DLX)를 설치한다.
Y, Z방향의 다이얼게이지(50)는 더미섹터의 양측과 섹터1,2의 사이에 상하로 각각 설치(OHY,OHZ,OLY,OLZ)한다. 상기 X방향은 용접심의 접선방향이고, Y방향은 섹터1,2의 원중심을 향하는 방향이며, Z방향은 용접심의 상하 수직방향이다. 다이얼게이지의 설치 시 섹터1,2에 다이얼게이지의 일측을 설치할 때는 포트스터브(PORT STUB) 등의 구조물을 이용하여 설치한다.
도 8은 본 발명에 따른 진공용기의 섹터1,2 접합부위에 스트롱백을 임시 용접한 상태도이다.
용접 전처리 및 준비단계는 도 8에서 보는 바와 같이 용접되기 전 섹터1,2를 임의로 용접하기 위해 용접부위에 스트롱백을 부착한다. 스트롱백은 섹터1,2의 외 측을 먼저 부착한 후 섹터1,2의 내측을 부착한다.
모든 용접심에 대해 개선면을 측정하여 깊이가 깊은 곳은 용접강도에 유리하게 작용하나 깊이가 얕은 곳은 용접강도에 문제가 있을 것으로 판단되어 가능한 역변형량이 13mm정도가 되도록 조절한 후 스트롱백(strong back)을 부착한다. 섹터ector) 1의 용접부재(shell)를 밀어 넣는 것은 유압 자키(도시 생략)를 사용하여 실시했으며, 섹터 1의 용접부재를 당겨내는 것은 ㄱ자의 피스를 섹터 1에 가접한 후 쇄기(도시 생략)를 섹터 2쪽에 쳐내는 방법을 사용한다.
외관검사 결과, 단차는 최대 2mm 정도로 유지되었으며, 4분원호(quadrant) 1, 2 용접이음매에 비해 악화되지 않은 것으로 판단되었다.
스트롱백은 도 8과 같은 위치에 부착되었으며, 스트롱백의 일예로 폭은 400mm, 높이 250-300mm, 두께 40mm의 304L 스텐레스강이 사용되었으며, 부착면과 용접을 위한 개선면(Scallop)은 섹터 1,2의 반경(Radius)에 따라 3차원 가공되었다. 스트롱백의 크기는 한정되지 않는다.
스트롱백과 섹터 1,2의 용접에 의한 용접변형을 최소로 하기위해 섹터 3위치의 인보드를 두 개의 스텐레스강 플레이트를 사용하여 두 곳을 임시 구속한다. 또한 섹터 1의 아웃터링과 섹터 2의 리브플레이트를 50mm 정도 가접하여 구속한 후 스트롱백을 부착한다. 스트롱백의 부착은 본 용접과 동일한 용접재료인 316CS를 사용하여 2패스(층)를 시공한다.
용접조건 변경단계(S20)는 각 용접부위의 용접 후 관측된 변형을 피드백하여 용접조건을 변경하는 단계이다. 용접조건 변경단계에서 모형실험의 결과를 통해 용 접하기 전 초기 용접조건을 결정한다. 후에 용접단계(S30)에서 일부 구간을 용접한 후 용접 변형방향과 변형량을 수시로 확인(S40)하여 용접조건을 변경함으로써 용접 변형방향과 변형량이 계획대로 발생되도록 유도한다.
구조물 용접단계(S30)는 섹터1과 섹터2의 결합부위를 용접하는 단계이다. 용접은 표준 용접 절차서(WPS ; Welding Procedure Specification)에 따라 용접한다. 용접단계의 용접조건은 용접전류 120 - 180 A, 용접전압 15 - 20 V, 가스유량 18 - 22 L/min 및 층간온도 20 - 180 ℃이다.
용접단계에서 구조물의 용접 중 퍼징가스를 진공용기 내에 주입과 동시에 배출시키는 백퍼징과정을 통해 용접부위의 산화를 방지한다. 퍼징가스는 아르곤 가스를 사용하였으나, 그 외에 용접부위의 산화를 방지할 수 있는 가스라면 퍼징가스로 사용가능하다. 초층부터 3층까지 퍼징가스로 백퍼징(back purging)이 이루어지며, 용접 전 최소 1시간 전에 100L/min의 유속으로 퍼징가스를 공급한다. 퍼징가스는 도 12에서 보이는 하부포트(21)를 통해 공급되면서 동시에 상부포트(22)를 통해 배출된다. 상부포트에는 스폰지로 막아 퍼징가스가 서서히 배출되도록 한다.
도 9는 본 발명에 따른 진공용기의 섹터1,2 접합부위에 용접순서를 도시한 도면이다.
도 9에서 보는 바와 같이 용접단계에서 용접심(10a)라인을 중심으로 용접을 시작하되 진공용기의 전체 균형을 맞추기 위해 크로스방향의 양측을 동시에 용접한다. 일예를 들어 상세히 설명하면, 단면상 D자형상의 외부 하측 아웃터링에 용접한다. 이와 동시에 단면상 D자형상의 외부 하측 아웃터링 위치와 대각선방향 즉, 상 측 아웃터링이 위치하는 수평선상의 단면상 D자형상의 내부 상측에 용접한다. 도 9의 화살표와 함께 나타낸 번호는 용접순서이며, 번호가 동일하고 위치가 다르면 다른 위치가 동시에 용접됨을 나타낸다.
용접단계에서는 용접 변형방향과 변형량을 확인하기 위해 용접심라인의 피접검사를 한다. 용접심은 용접 후 변형방향과 변형량을 측정하는 기준이므로 피접검사를 통해 용접심의 루트갭에 차이가 발생하지 않는 지 용접심의 용접 후 수시로 측정 확인한다.
용접단계에서 스트롱백에 의해 지지되지 않을 정도로 용접이 이루어지면 스트롱백을 제거한다. 용접심은 용접이 종료될 때까지 변형되지 않도록 용접심라인 상하내외의 스트롱백 4개를 용접이 종료된 후에 제거한다.
용접 변형 측정 및 용착량 산출 피드백단계(S40)는 일측 부위의 용접 후 발생한 용접 변형을 측정하여 다음 용접할 부위에서 발생 가능한 용접 변형을 예측하고, 용착량을 검토하여 최종 용접 시까지의 예상 용착량을 산출하여 용접조건 변경단계(S20)로 피드백하는 단계이다.
상기와 같은 피드백을 반복함으로써, 각 용접부위에서 발생한 용접 변형이 예상된 값보다 적을 경우 용접 전압 및 전류를 상승시켜 다음 용접할 용접부위에서 많은 변형이 발생하게 한다. 반대로 각 용접부위에서 발생한 용접 변형이 예상된 값보다 많은 변형이 발생할 경우 용접 전압 및 전류를 감소시켜 다음 용접할 용접부위에서 적은 변형이 발생하도록 제어한다.
최종적으로 섹터1,2가 접합된 후 섹터3이 조립될 부분이 평면상 22.5°의 부분원을 이루어 토로이달구조물이 인입되는 데 지장이 없도록 제어한다.
도 10a 내지 도 10d는 본 발명에 따른 진공용기의 섹터1,2 접합부위의 용접 변형량(X,X(켈리퍼스 측정),Y,Z 방향)을 나타낸 표이다. 도 11은 본 발명에 따른 진공용기의 섹터1,2 접합부위의 X방향의 용접 변형량에 대한 그래프이다.
도 10a 내지 도 11에서 보는 바와 같이 용접 변형의 측정 결과를 살펴본다.
X방향의 변형(도 10a 및 도 10b)을 보면, 켈리퍼스로 측정한 결과도 6.7mm 정도로 측정되어 아웃보드쪽과 인보드쪽의 변형이 비슷하게 이루어졌으므로 아웃터링에서의 거리 비례로 볼 때 합리적인 값으로 판단된다. 1층과 2층 용접까지 OX(Out-board X-direction: 아웃보드의 X방향)와 DX(Diameter X-direction: X방향 지름)의 다이얼게이지 측정값이 비슷하게 나타났는데 이는 아웃터링을 중심으로 한 회전변형이 일어나기보다 각각의 섹터가 평행으로 이동한 결과로 판단된다.
Z방향의 변형(도 10d)은 거의 발생하지 않았으며, 특히 sector 1과 sector 2가 각기 다른 방향으로 움직이지 않아 수직축이 어긋나 뒤틀리지 않았다. 수직축이 뒤틀렸다면 sector 1과 sector 2가 반대의 부호를 가지면서 그 차이가 커지는 방향으로 나타났을 것이나, 본 용접의 결과 이런 현상은 나타나지 않았다.
Y방향의 변형(도 10c)은 섹터 1과 섹터 2에서 모두 (-)방향 즉 안쪽으로 들어가는 방향으로 발생했으며, 예상했던 방향이다. 그 값은 섹터 2에서 1.5mm로 섹터 1보다 다소 크게 나타난다. X방향의 변형 측정결과와 마찬가지로 섹터 2의 움직임이 더 컸던 바에 기인한다고 판단된다.
다음 표는 초기 용접조건으로부터 용접 후 용접 변형을 측정하여 변경된 각 층의 용접조건을 나타낸다.
용접전류 용접전압 가스유량 층간온도
1 130A 18V 20L/min R.T.
2 150A 18V 20L/min R.T.
3 160A 18V 20L/min R.T.
4 170-180A 18V 20L/min R.T.
5 170-180A 18V 20L/min R.T.
6 170-180A 18V 20L/min R.T.
7 160A 18V 20L/min R.T.
8 150A 18V 20L/min R.T.
여기서 R.T.는 20 - 150 ℃ 의 온도로써, 한 층의 용접이 끝나고 다음 층의 용접이 가능한 온도이다.
이상의 층은 용접부위를 용접순서에 따라 나눈 임의의 구간이다.
용접 마무리단계(S50)는 최종 치수 검사를 병행하며 진공용기의 용접을 마무리하는 단계이다. 도 12는 본 발명에 따른 진공용기의 섹터1,2,3가 조립된 진공용기의 완성상태도이다.
이상, 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.
이상 설명한 바와 같이 본 발명의 토카막 진공용기 용접변형 제어방법은 용접 변형을 실시간으로 관측하여 구조물을 용접하는 동안 지속적으로 용접 조건을 변경하여 구조물 용접 시 필연적으로 발생하는 용접 변형을 제어함으로써 원하는 구조물 형상을 얻을 수 있다.
또한 용접 변형 방지 구조물 제작, 설치, 제거에 필요한 비용을 절감할 수 있을 뿐만 아니라 변형 방지 구조물 제거 후 요구되는 기계 가공이 필요하지 않게 할 수 있는 효과를 제공할 수 있다.

Claims (11)

  1. 운송하기 곤란한 크기의 진공용기를 섹터1과 섹터2로 나누어 운송한 뒤 설치위치에 정해진 조립각도로 조립하는 토카막 진공용기 용접변형 제어방법에 있어서,
    섹터1과 섹터2의 용접 결합 후 발생될 변형만큼 용접 전에 역변형을 주면서 섹터1과 섹터2를 고정하고, 용접 중 변형을 관측할 준비를 하는 용접 전처리 및 준비 단계(S10);
    각 용접부위의 용접 후 관측된 변형을 피드백하여 용접조건을 변경하는 용접조건 변경단계(S20);
    섹터1과 섹터2의 결합부위를 용접하는 구조물 용접단계(S30);
    일측 부위의 용접 후 발생한 용접 변형을 측정하여 다음 용접할 부위에서 발생 가능한 용접 변형을 예측하고, 용착량을 검토하여 최종 용접 시까지의 예상 용착량을 산출하여 피드백하는 용접 변형 측정 및 용착량 산출 피드백단계(S40); 및
    최종 치수 검사를 병행하며 진공용기의 용접을 마무리하는 용접 마무리단계(S50)를 포함하는 과정을 통해 진공용기의 섹터1,2를 조립하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  2. 청구항 1에 있어서,
    상기 용접 전처리 및 준비단계의 역변형은 용접 시 예상되는 용접 변형 방향 및 용접 변형량을 예측하여 예측된 변형 방향과 변형량에 따라 섹터1의 아웃터링이 섹터2의 리브플레이트에 접촉되도록 벌려서 고정하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  3. 청구항 1에 있어서,
    상기 용접 전처리 및 준비단계는 백비드가 발생되는 것을 방지하도록 용접 중 용접부위의 이면에 백플레이트를 부착하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  4. 청구항 1에 있어서,
    상기 용접 전처리 및 준비단계는 용접 중 발생하는 용접 변형을 지속적으로 관측하기 위하여 섹터1과 섹터2의 일측에 X,Y,Z 방향으로 다이얼게이지를 설치하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  5. 청구항 1에 있어서,
    상기 용접 전처리 및 준비단계는 용접되기 전 섹터1,2를 임의로 용접하기 위해 용접부위에 스트롱백을 부착하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  6. 청구항 1에 있어서,
    상기 용접 전처리 및 준비단계와 용접조건 변경단계에서 모형실험의 결과를 통해 용접 변형방향과 변형량을 예측하고, 용접하기 전 초기 용접조건을 결정하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  7. 청구항 1에 있어서,
    상기 용접단계의 용접조건은 용접전류 120 - 180 A, 용접전압 15 - 20 V, 가스유량 18 - 22 L/min 및 층간온도 20 - 180 ℃인 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  8. 청구항 1에 있어서,
    상기 용접단계에서 구조물의 용접 중 퍼징가스를 진공용기 내에 주입과 동시에 배출시키는 백퍼징과정을 통해 용접부위의 산화를 방지하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  9. 청구항 1에 있어서,
    상기 용접단계에서 용접심라인을 중심으로 용접을 시작하되 진공용기의 전체 균형을 맞추기 위해 크로스방향의 양측을 동시에 용접하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  10. 청구항 1에 있어서,
    상기 용접단계에서는 용접 변형방향과 변형량을 확인하기 위해 용접심라인의 피접검사를 하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
  11. 청구항 1에 있어서,
    상기 용접단계에서 용접이 종료될 때까지 변형되지 않도록 용접심라인 상하내외의 스트롱백 4개를 용접이 종료된 후에 제거하는 것을 특징으로 하는 토카막 진공용기 용접변형 제어방법.
KR1020060122483A 2006-12-05 2006-12-05 토카막 진공용기 용접변형 제어방법 KR100826589B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060122483A KR100826589B1 (ko) 2006-12-05 2006-12-05 토카막 진공용기 용접변형 제어방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060122483A KR100826589B1 (ko) 2006-12-05 2006-12-05 토카막 진공용기 용접변형 제어방법

Publications (1)

Publication Number Publication Date
KR100826589B1 true KR100826589B1 (ko) 2008-04-30

Family

ID=39573004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060122483A KR100826589B1 (ko) 2006-12-05 2006-12-05 토카막 진공용기 용접변형 제어방법

Country Status (1)

Country Link
KR (1) KR100826589B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505766B1 (ko) 2011-04-08 2015-03-24 도요타지도샤가부시키가이샤 양측 용접 방법
CN113828964A (zh) * 2020-06-23 2021-12-24 西安核设备有限公司 一种双层薄壁d型截面上焊接方窗口防变形工艺及装置
CN114952168A (zh) * 2022-05-27 2022-08-30 沪东中华造船(集团)有限公司 一种液货舱围护系统复合穹ap5连接件装焊方法
CN116000568A (zh) * 2022-12-26 2023-04-25 核工业西南物理研究院 托卡马克装置弱场侧第一壁过渡支撑制造工装及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241674A (ja) * 1994-03-07 1995-09-19 Toshiba Corp 自動溶接方法および装置
JPH10300874A (ja) 1997-04-24 1998-11-13 Toshiba Corp 核融合炉用真空容器の製作装置およびその製作方法
JPH11133171A (ja) 1997-10-27 1999-05-21 Japan Atom Energy Res Inst 核融合炉用真空容器の製作方法
KR20060022863A (ko) * 2004-09-08 2006-03-13 주식회사 하이닉스반도체 전압 제어 발진기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241674A (ja) * 1994-03-07 1995-09-19 Toshiba Corp 自動溶接方法および装置
JPH10300874A (ja) 1997-04-24 1998-11-13 Toshiba Corp 核融合炉用真空容器の製作装置およびその製作方法
JPH11133171A (ja) 1997-10-27 1999-05-21 Japan Atom Energy Res Inst 核融合炉用真空容器の製作方法
KR20060022863A (ko) * 2004-09-08 2006-03-13 주식회사 하이닉스반도체 전압 제어 발진기

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505766B1 (ko) 2011-04-08 2015-03-24 도요타지도샤가부시키가이샤 양측 용접 방법
EP2695700A4 (en) * 2011-04-08 2015-12-09 Toyota Motor Co Ltd DOUBLE-SIDED WELDING PROCESS
US10213874B2 (en) 2011-04-08 2019-02-26 Aisin Seiki Kabushiki Kaisha Double sided welding method
EP2695700B1 (en) * 2011-04-08 2024-04-17 Toyota Jidosha Kabushiki Kaisha Double sided welding method
CN113828964A (zh) * 2020-06-23 2021-12-24 西安核设备有限公司 一种双层薄壁d型截面上焊接方窗口防变形工艺及装置
CN114952168A (zh) * 2022-05-27 2022-08-30 沪东中华造船(集团)有限公司 一种液货舱围护系统复合穹ap5连接件装焊方法
CN116000568A (zh) * 2022-12-26 2023-04-25 核工业西南物理研究院 托卡马克装置弱场侧第一壁过渡支撑制造工装及制造方法

Similar Documents

Publication Publication Date Title
CN103252620A (zh) 蒸汽发生器加热管的修整工具和修整方法
KR100826589B1 (ko) 토카막 진공용기 용접변형 제어방법
JPS6311679Y2 (ko)
CN112342922B (zh) 异形截面箱式钢结构流线型钢拱制造方法
CN108020083A (zh) 一种大型转底炉安装方法
CN102632370B (zh) 全氢罩式炉内罩制作工艺
JP7238122B2 (ja) レーザ金属粉末堆積を使用した補修プロセス
KR100849937B1 (ko) 초전도 토카막 진공용기 조립 구조물
CN109108507A (zh) 一种大型储罐底板换新的焊接方法
CN109340452A (zh) 56寸油气输送管道的安装施工方法
CN214815914U (zh) 一种大型法兰现场安装的工装
CN113814676A (zh) 一种大直径塔设备制造工法
Chida et al. Validation of welding technology for ITER TF coil structures
CN112360630B (zh) 一种气垫船燃气轮机液压排气管盖及其加工方法
CN112935609A (zh) 一种大型法兰现场安装的工装及方法
CN207904749U (zh) 一种钢管支架横向连接装置
CN115142702B (zh) 一种基于激光增材技术修复震损梁柱栓焊节点的方法
CN102019512B (zh) T形柱对接焊施工方法
Kim et al. Fabrication results of full scale mock-up for ITER VV port in Korea
CN111108051B (zh) 工厂用设备的衬体修补方法
CN115261587B (zh) 用于筒体进行热处理的支撑装置及其使用方法
JPS6192795A (ja) 薄肉管の製造方法
US11872663B2 (en) Repair welding method
CN115045439B (zh) 一种巨型钢柱的装配焊接方法
CN114669899A (zh) 一种压水堆核电核岛波动管安装工艺及波动管装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130423

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140424

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150424

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180423

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 12