KR100805930B1 - A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof - Google Patents

A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof Download PDF

Info

Publication number
KR100805930B1
KR100805930B1 KR1020060094363A KR20060094363A KR100805930B1 KR 100805930 B1 KR100805930 B1 KR 100805930B1 KR 1020060094363 A KR1020060094363 A KR 1020060094363A KR 20060094363 A KR20060094363 A KR 20060094363A KR 100805930 B1 KR100805930 B1 KR 100805930B1
Authority
KR
South Korea
Prior art keywords
sample
precursor
pressure measuring
valve
pressure
Prior art date
Application number
KR1020060094363A
Other languages
Korean (ko)
Inventor
윤주영
강상우
성대진
신용현
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020060094363A priority Critical patent/KR100805930B1/en
Application granted granted Critical
Publication of KR100805930B1 publication Critical patent/KR100805930B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An apparatus and method of measuring vapor pressure of a precursor in a semiconductor manufacturing process is provided to measure the vapor pressure accurately by reducing pressure variation due to precursor deposition and degasification. A precursor sample is contained in a sample container(100), and a pressure detector(300) is connected to the sample container via a tube. A main pumping unit has a valve and a constant pressure maintaining chamber(200) in which the vaporized sample flows in the pressure detector. A sensor(110) is attached to the sample container to monitor a decomposing state of the sample during a measuring process. A purge gas and sensor controller(820) checks the decomposing state of the precursor based on the signal of the sensor. The sample container and the pressure detector are disposed in an adiabatic partition(600) in a sealing manner.

Description

반도체 제조 공정을 위한 전구체 증기압 측정장치 및 방법{A Precursor Vapor Pressure Measuring Device For Semiconductor Manufacturing Process and Method Thereof}Precursor Vapor Pressure Measuring Device For Semiconductor Manufacturing Process and Method Thereof}

도 1은 본 발명에 따른 반도체 제조공정을 위한 전구체 증기압 측정장치의 구성도,1 is a block diagram of a precursor vapor pressure measuring apparatus for a semiconductor manufacturing process according to the present invention,

도 2는 도 1에 도시된 측정장치를 사용하여 전구체의 증기압을 측정하는 방법에 관한 순서도이다.FIG. 2 is a flowchart of a method of measuring vapor pressure of a precursor using the measuring device shown in FIG. 1.

* 도면의 주요부분에 관한 부호의 설명 *Explanation of symbols on main parts of drawing

100: 시료용기, 110: 센서, 200: 등압유지 챔버,100: sample container, 110: sensor, 200: isostatic chamber,

300: 압력 측정부, 400: 보조 펌핑부, 410: 보조 펌프,300: pressure measuring unit, 400: auxiliary pumping unit, 410: auxiliary pump,

420: 보조 밸브, 500: 메인 제어부, 600: 단열 격벽체,420: auxiliary valve, 500: main control unit, 600: adiabatic bulkhead,

710: 제 1밸브, 720: 제 2밸브, 800: 오염원 제거부,710: first valve, 720: second valve, 800: pollutant removal unit,

810: 메인 펌프, 820: 퍼지기체 및 센서 제어부,810: main pump, 820: purge gas and sensor control,

830: 부설밸브, 830: installation valve,

본 발명은 화학 증착법에 이용되는 전구체의 증기압을 측정하기 위한 장치 및 방법에 관한 것으로, 보다 상세하게는 전구체 시료의 석출 및 탈기를 제어하도록 단열 격벽체로 격리된 내실에 등압유지 챔버 및 압력 측정부를 설치한 구조를 포함하는 반도체 제조공정을 위한 전구체 증기압 측정장치 및 방법에 관한 것이다.The present invention relates to an apparatus and a method for measuring the vapor pressure of the precursor used in the chemical vapor deposition method, and more particularly, an isostatic pressure holding chamber and a pressure measuring unit are installed in an inner chamber separated by an insulating partition wall to control the deposition and degassing of the precursor sample. A precursor vapor pressure measuring apparatus and method for a semiconductor manufacturing process comprising a structure.

일반적으로 전구체는 반도체 제조공정을 위한 화학 증착법에서 이용되고 있다. 이러한 전구체는 동일한 물질이더라도 조건에 따라 증착 공정상 서로 다른 거동이 나타나기 마련이다. In general, precursors are used in chemical vapor deposition for semiconductor manufacturing processes. Even if these precursors are the same material, different behaviors appear in the deposition process depending on the conditions.

특히 동일한 전구체 화합물이더라도 조건에 따라 증기압이 서로 다르게 나타나는데, 이럴 경우 일정한 원료가 투입되더라도 증착되는 박막에 질적 차이가 발생할 수 있다.In particular, even if the same precursor compound, the vapor pressure is different depending on the conditions, in this case, even if a certain raw material is introduced, the quality difference may occur in the deposited thin film.

그런데 이와 같은 반도체 제조 공정에서, 소자의 집적화가 높아질 경우 3차원 배선구조를 이루게 되는 등 그 구조가 매우 복잡하게 되므로, 보다 우수한 박막의 질적 특성을 요구하게 된다.However, in such a semiconductor manufacturing process, when the integration of the device is increased, such a structure becomes very complicated, such as forming a three-dimensional wiring structure, and thus requires a better quality of the thin film.

또한 박막의 질적 특성은, 이후의 노광 및 배선 공정에 영향을 주게 되는바, 박막의 질적 특성이 저하될 경우 반도체 정밀도 저하는 물론 생산수율의 감소와 생산비용의 증가 원인이 될 수 있다.In addition, the quality of the thin film affects subsequent exposure and wiring processes. When the quality of the thin film is degraded, the quality of the thin film may be reduced, as well as a decrease in production yield and an increase in production cost.

따라서 박막의 질적 특성을 높이기 위한 기술이 필요한바, 이를 위해 서로 다른 증기압 차이를 나타내는 당해 전구체의 증기압을 화학 증착법의 시행 전에 정확히 측정해야 한다.Therefore, there is a need for a technique for improving the qualitative properties of the thin film. For this purpose, the vapor pressure of the precursors having different vapor pressure differences must be accurately measured before the chemical vapor deposition.

하지만 전구체의 대부분은 공기 중에 노출될 경우 인화되는 특성이 있어 다 루기가 어렵고, 반응 부산물 등에 의해 장비가 오염되는 경우가 빈번하다. 따라서 전구체를 이용한 화학 증착법 이전에 손쉽게 전구체의 증기압을 측정하기 위한 장치 및 방법이 부재한 문제점이 있다.However, most of the precursors are flammable when exposed to air, and are difficult to handle, and equipment is often contaminated by reaction by-products. Therefore, there is a problem that the apparatus and method for measuring the vapor pressure of the precursor easily before the chemical vapor deposition using the precursor.

이에 따라 반도체 및 디스플레이 제조 공정과 같이 진공 기술과 박막 증착공정이 사용되는 산업에서 전구체의 열역학적 기초 데이터의 구축이 부재한 실정이고, 특히 증기압에 관한 측정 데이터는 전무한 문제점이 있다.Accordingly, in the industry in which vacuum technology and thin film deposition process are used, such as semiconductor and display manufacturing process, there is no construction of thermodynamic basic data of the precursor, and in particular, there is no problem in measurement data regarding vapor pressure.

본 발명은 상기와 같은 종래 문제점을 감안하여 안출된 것으로, 본 발명의 제 1 목적은, 항온 유지 및 등압 유지로 온도 변화에 따른 석출 및 유동과정에서의 탈기를 제어/방지할 수 있도록 등압유지 챔버를 시료용기와 압력 측정부 사이에 설치하고 항온 격벽체의 내실에 밀봉/배치한 구조를 포함하는 반도체 제조 공정을 위한 전구체 증기압 측정장치를 제공하는 것이다.The present invention has been made in view of the conventional problems as described above, the first object of the present invention, isothermal pressure holding chamber to control / prevent degassing during the precipitation and flow process according to the temperature change by maintaining constant temperature and isostatic pressure It is to provide a precursor vapor pressure measuring device for a semiconductor manufacturing process comprising a structure installed between the sample vessel and the pressure measuring unit and sealed / placed in the inner chamber of the constant-temperature partition wall.

그리고 본 발명의 제 2 목적은, 오염원의 제거를 위해 당해 측정이 이루어지는 부위로 별도의 펌프 및 퍼지제어 구조를 연결시켜 측정 이후 전구체 배기를 조절하는 구조를 포함하는 반도체 제 조공정을 위한 전구체 증기압 측정장치를 제공하는 것이다.The second object of the present invention is to measure the precursor vapor pressure for a semiconductor manufacturing process including a structure for controlling a precursor exhaust after the measurement by connecting a separate pump and a purge control structure to the site where the measurement is made to remove the pollutant. To provide a device.

상기 목적을 달성하기 위한 수단으로,As a means for achieving the above object,

본 발명은 전구체 시료가 담긴 시료용기; 상기 시료용기에 관연결되는 압력 측정부; 상기 시료가 증발되어 압력 측정부로 유입될 수 있도록 밸브 및 등압유지챔버로 구성되고, 기본 진공유지 및 오염원 제거를 위한 등압유지챔버에 연결된 메 인 펌핑부를 포함하고; 상기 측정과정중 시료의 분해상태를 모니터링하기 위해 상기 시료용기에 부착되는 센서를 더 포함하며; 상기 센서의 센싱신호를 기초로 전구체의 분해상태를 체크하여 일정기준치 이상의 분해상태에 도달할 경우 메인 펌프의 작동을 중지시키도록 지령을 내리는 퍼지기체 및 센서 제어부를 포함하여 이루어지며; 상기 시료 용기 및 압력 측정부는, 유동 위치에 관계없이 상기 시료의 항온이 유지되도록 단열 격벽체의 내실에 밀봉/배치되는 것이 특징이다.The present invention is a sample container containing a precursor sample; A pressure measuring unit connected to the sample container; A main pumping part configured to include a valve and an isostatic pressure holding chamber so that the sample can be evaporated and introduced into the pressure measuring part, and connected to an isostatic pressure holding chamber for basic vacuum holding and removal of contaminants; And a sensor attached to the sample container for monitoring the decomposition state of the sample during the measurement process; A purge gas and a sensor controller for checking the decomposition state of the precursor based on the sensing signal of the sensor and instructing to stop the operation of the main pump when the decomposition state reaches a predetermined threshold value or more; The sample container and the pressure measuring unit are sealed / arranged in an inner chamber of the heat insulating partition wall so that the constant temperature of the sample is maintained regardless of the flow position.

또한, 상기 시료의 측정 이후 잔류하는 오염원의 제거를 위해, 상기 등압유지 챔버에 관연결되어 상기 오염원을 펌핑하도록 상기 등압유지 챔버에 관연결되며, 퍼지기체 및 센서 제어부의 제어명령에 따라 작동되는 부설펌프가 더 포함되는 것이 특징이다.In addition, in order to remove the contaminant remaining after the measurement of the sample, the pipe is connected to the isostatic pressure holding chamber to be connected to the isostatic pressure holding chamber to pump the pollutant, and is operated in accordance with the control command of the purge gas and the sensor controller. The pump is further included.

또한, 상기 압력 측정부와 등압유지 챔버 사이에는 보조 펌프와 보조 밸브로 이루어지는 보조 펌핑부를 더 포함하여 이루어짐이 특징이다.In addition, the pressure measuring unit and the isostatic pressure holding chamber is characterized in that it further comprises an auxiliary pump consisting of an auxiliary pump and an auxiliary valve.

또한, 상기 센서는, 초음파 센싱구조, 자외선 센싱구조, 적외선 센싱구조중 선택된 어느하나인 것을 특징으로 하는 반도체 제조공정을 위한 전구체 증기압 측정장치.In addition, the sensor, precursor vapor pressure measuring apparatus for a semiconductor manufacturing process, characterized in that any one selected from the ultrasonic sensing structure, ultraviolet sensing structure, infrared sensing structure.

또한, 본 발명을 실현하기 위한 방법으로서, 등압유지챔버와 연결된 제 1 밸브 및 제 2 밸브를 모두 열고, 메인 펌프를 작동시켜 최대 기본압력이 발생하도록 하는 단계(S1000)와; 제 1 밸브를 닫도록 지령하여 압력의 변화가 없는 등압상태가 되도록 소정시간동안 기다리는 단계(S2000)와; 이후 전구체의 증기압력이 평행이 될때까지 기다린뒤 이때의 포화증기압력을 압력측정부에서 측정하는 단 계(S3000)와; 측정이 끝나면, 부설밸브를 구동하여 관연결부위내 오염원을 제거하고, 필요시 보조펌프 및 보조밸브를 열어 압력 측정부 주위의 오염원을 제거하는 단계(S4000)으로 이루어짐이 특징이다.In addition, a method for realizing the present invention includes the steps of opening both the first valve and the second valve connected to the isostatic holding chamber, and operating the main pump to generate a maximum basic pressure (S1000); Commanding to close the first valve and waiting for a predetermined time such that the pressure is unchanged (S2000); After waiting until the vapor pressure of the precursor becomes parallel and the step of measuring the saturated steam pressure at this time in the pressure measuring unit (S3000); After the measurement, it is characterized in that the step of removing the contamination source around the pressure measuring unit by removing the contamination source in the pipe connection by driving the installation valve, and if necessary, the auxiliary pump and the auxiliary valve (S4000).

본 발명의 그 밖의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings.

이하에서는 본 발명에 따른 반도체 제조공정을 위한 전구체 증기압 측정장치에 관하여 첨부되어진 도면과 더불어 설명하기로 한다.Hereinafter, a precursor vapor pressure measuring apparatus for a semiconductor manufacturing process according to the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에 따른 반도체 제조공정을 위한 전구체 증기압 측정장치의 구성도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 증기압 측정장치는 항온유지 및 등압 유지로 온도변화에 따른 시료 석출 및 탈기를 제어하도록 시료용기(100)와 압력 측정부(300)가 단열 격벽체(600)의 내실에 밀봉되고, 시료용기(100)와 압력 측정부(300)의 사이에 등압유지 챔버(200)가 연결되어 있는 구조를 포함한다.1 is a block diagram of a precursor vapor pressure measuring apparatus for a semiconductor manufacturing process according to the present invention. As shown in Figure 1, the vapor pressure measuring apparatus according to the present invention, the sample vessel 100 and the pressure measuring unit 300 to control the deposition and degassing according to the temperature change by maintaining a constant temperature and isostatic pressure insulation barrier rib ( It is sealed in the inner chamber of 600, and includes a structure in which the isostatic holding chamber 200 is connected between the sample container 100 and the pressure measuring unit 300.

이러한 증기압 측정장치에서, 중간에 둥근 형상으로 배치된 것이 등압유지 챔버(200)이다. 그리고 이러한 등압유지 챔버(200)의 우측에 관연결되어 있는 것이 압력 측정부(300)이고, 제 2밸브(720)를 사이에 두고 관연결되어 있는 것이 시료용기(100)이다. 그리고 이러한 시료용기(100)의 측부에 설치된 것이 센서(110)이다.In the vapor pressure measuring device, the isostatic pressure holding chamber 200 is disposed in a round shape in the middle. The pressure measuring part 300 is connected to the right side of the isostatic pressure holding chamber 200, and the sample container 100 is connected to the pipe through the second valve 720. The sensor 110 is installed at the side of the sample container 100.

여기서 시료용기(100)는 압력 측정의 대상인 전구체가 담긴 것으로, 관연결 을 통해 등압유지 챔버(200) 및 압력 측정부(300)에 연결되어 있다. Here, the sample container 100 contains a precursor which is a target of pressure measurement, and is connected to the isostatic pressure holding chamber 200 and the pressure measuring unit 300 through a pipe connection.

그리고 등압유지 챔버(200)는, 제 1밸브(710) 및 제 2밸브(720)가 열려 시료가 관연결 부위를 통해 배출될 경우 발생되는 전구체의 미소한 탈기로 인하여 시간에 따라 압력의 변화가 발생하는 것을 방지하기 위한 것으로, 일정한 직경의 관연결 부위에 비해 상대적으로 큰 용적을 갖고 있는 구조이다. In the isostatic pressure holding chamber 200, the pressure changes with time due to the minute degassing of the precursor generated when the first valve 710 and the second valve 720 are opened and the sample is discharged through the pipe connection part. It is to prevent the occurrence of the structure having a relatively large volume compared to the pipe of a constant diameter.

따라서 전구체의 미소한 탈기로 압력 저하 등 변화가 발생할 경우 등압유지 챔버(200)의 용적 즉 전구체가 담긴 용적이 상대적으로 크므로 미소한 탈기에 따른 부족분이 보충되어 전반적인 압력 변화가 발생하는 것이 방지될 수 있는 구조가 마련된다.Therefore, when a change such as a pressure drop occurs due to the slight degassing of the precursor, the volume of the isostatic holding chamber 200, that is, the volume containing the precursor is relatively large, so that the shortage due to the minute degassing is compensated for, thereby preventing the overall pressure change from occurring. A structure can be provided.

이와 같이 제 1밸브(710) 및 제 2밸브(720)가 모두 열릴 경우, 시료는 시료용기(100)로부터 나오게 된다.As such, when both the first valve 710 and the second valve 720 are opened, the sample comes out from the sample container 100.

이러한 보조 펌핑부(400)는, 시료용기(100)로부터 시료가 펌핑되어 보다 원활하게 배출될 수 있도록 보조 펌프(410)와 보조 밸브(420)로 구성되어 있다. 이에 따라 보조 펌프(410)의 펌핑력이 장치내의 오염원의 원할한 배출을 강제하게 되고, 보조 밸브(420)의 개방으로 실험후 관내벽 등의 잔존 오염입자가 원할하게 배출될 수 있는 구조가 마련될 수 있다. 즉, 오염원 제거부(800)만 갖고 제거하기 힘든 등압유지챔버(200)나 압력 측정부(300) 내부의 오염입자 제거를 보조한다.The auxiliary pumping unit 400 is composed of an auxiliary pump 410 and an auxiliary valve 420 so that the sample is pumped from the sample container 100 and discharged more smoothly. Accordingly, the pumping force of the auxiliary pump 410 forcibly facilitates the discharge of the pollutant in the device, and the opening of the auxiliary valve 420 provides a structure in which residual pollutants such as the inner wall of the pipe can be discharged smoothly after the experiment. Can be. That is, only the pollutant removing unit 800 assists in removing the contaminating particles in the isostatic holding chamber 200 or the pressure measuring unit 300 that are difficult to remove.

여기서 시료용기(100), 제 1밸브(710), 제 2밸브(720), 등압유지 챔버(200), 압력 측정부(300) 등과 같은 주요 구성요소들은, 단열 격벽체(600)의 내실에 밀폐/설치되는바, 이에 따라 관연결 부위를 통해 유동하는 시료의 항온이 견지되어 시료 의 석출이 제어/방지될 수 있는 구조가 마련된다.Here, the main components such as the sample container 100, the first valve 710, the second valve 720, the isostatic pressure holding chamber 200, the pressure measuring unit 300, and the like, are located in the inner chamber of the adiabatic bulkhead 600. As a result of the sealing / installation, a constant temperature of the sample flowing through the pipe connection portion is maintained, thereby providing a structure in which precipitation of the sample can be controlled / prevented.

아울러 시료용기(100)의 측부에 부착된 것은 초음파 센싱구조, 적외선 센싱구조, 자외선 센싱구조 중 하나를 취하는 센서(110)로서, 제어부에 전기적으로 연결되어 시료용기(100)에 담긴 전구체의 분해정도를 센싱하게 되는바, 이러한 전구체의 분해는 측정오차를 유발하므로 센서(110)의 부착 구조는 전구체의 분해정도를 센싱하고 이를 모니터링할 수 있는 구조를 마련하게 된다. Also attached to the side of the sample container 100 is a sensor 110 that takes one of an ultrasonic sensing structure, an infrared sensing structure, and an ultraviolet sensing structure, and is electrically connected to a control unit to decompose the precursor contained in the sample container 100. Since the decomposition of the precursor causes a measurement error, the attachment structure of the sensor 110 provides a structure for sensing and monitoring the decomposition degree of the precursor.

이와 같이 센서(110)가 센싱하는 신호는 곧바로 퍼지기체 및 센서 제어부(820)로 전송되어 퍼지기체 및 센서 제어부(820)에서는 센싱신호를 기초로 전구체의 분해상태를 체크하여 일정기준치 이상의 분해상태에 도달할 경우 측정을 중단시키는 지령을 내릴수도 있다.As such, the signal sensed by the sensor 110 is immediately transmitted to the purge gas and the sensor control unit 820 so that the purge gas and the sensor control unit 820 check the decomposition state of the precursor on the basis of the sensing signal to determine the decomposition state over a predetermined reference value. You can also give a command to stop the measurement when it is reached.

한편, 등압유지 챔버(200)의 좌측으로, 제 1밸브(710) 측에 관연결되어 있는 것이 오염원 제거부(800)이다. 이러한 오염원 제거부(800)는, 측정 이후 관연결 부위 및 압력 측정부(300)에 잔류하는 전구체가 오염원으로 작용하는 것을 방지하도록 구비된 것이다.On the other hand, to the left side of the isostatic pressure holding chamber 200, the contaminant removing unit 800 is connected to the first valve 710 side. The pollutant removing unit 800 is provided to prevent the precursor remaining in the pipe connection part and the pressure measuring unit 300 after the measurement acts as a pollutant.

여기서 오염원 제거부(800)는, 단열 격벽체(600)를 통과하여 등압유지 챔버(200)에 관연결되는 메인 펌프(810)와, 메인 펌프(810)의 근방에 관연결된 부설밸브(830)와, 퍼지기체 및 센서 제어부(820)로 구성된다.The pollutant removing unit 800 is a main pump 810 connected to the isostatic holding chamber 200 by passing through the adiabatic bulkhead 600, and an auxiliary valve 830 connected to the vicinity of the main pump 810. And a purge gas and a sensor controller 820.

상기 퍼지기체 및 센서 제어부(820)는 측정의 종료에 따른 신호를 인가받아 부설 밸브(830)의 작동을 지시하며, 이러한 오염원 제거부(800)의 역할에 따라서 측정 이후 관연결 부위에 잔류하는 전구체가 오염원으로 기능하는 것을 방지할 수 있게 된다.The purge gas and sensor control unit 820 receives the signal according to the end of the measurement to instruct the operation of the installation valve 830, the precursor remaining in the pipe connection after the measurement in accordance with the role of the pollutant removal unit 800 Can be prevented from functioning as a pollution source.

참고로, 퍼지란 배관이나 플랜트 설비 등을 이상사태나 유지 보수 등의 이유로 인하여 운전을 정지하고 내부에 함유하고 있는 가연성 또는 독성가스를 다른 설비에 이송, 방출하고 남은 잔류 함유물이 산화 또는 반응폭주를 일으키지 않도록 안정된 기체로 중화처리를 해야하며, 이때 설비나 용기 내부의 함유물을 화학적 또는 물리적 반응을 일으키지 않는 기체로 중화처리하는 것을 불활성화 또는 퍼지(Purge)라 하며 이때 사용되는 가스를 퍼지가스(Purge Gas)라 한다.For reference, purge pipes and plant facilities are stopped for reasons such as abnormal situations or maintenance, and the remaining residues are transported and released to other facilities by oxidizing or reacting. Neutralization should be performed with a stable gas so as not to cause toxic gas.In this case, neutralizing the contents of equipment or vessels with a gas that does not cause chemical or physical reactions is called inactivation or purge. It is called (Purge Gas).

본 발명에서는 반도체용 전구체들이 시스템내의 내벽에 존재하는 오염원을 오염원 제거부(800)인 퍼지장치를 이용하여 제거토록 하는바, 퍼지기체 및 센서 제어부(820)의 제어하에 부설밸브(830)를 구동하여 불활성 기체를 시스템내로 흐르게 한 후 불황성 기체의 제공 시간과 횟수등을 조절하여 측정시스템 내부의 오염원을 제거토록 한다.In the present invention, the precursors for semiconductors are removed using a purge apparatus, which is a source removal unit 800, to remove the pollutant existing on the inner wall of the system. The installation valve 830 is driven under the control of the purge gas and the sensor controller 820. After the inert gas flows into the system, the supply time and frequency of the inert gas are adjusted to remove the contaminant in the measuring system.

도 2는 도 1에 도시된 측정장치를 사용하여 전구체의 증기압을 측정하는 방법에 관한 순서도이다. 도 2에 도시된 바와 같이, 본 발명에 따른 증기압 측정장치를 사용하여, 다음과 같은 방법으로 전구체 시료의 증기압을 측정할 수 있다.FIG. 2 is a flowchart of a method of measuring vapor pressure of a precursor using the measuring device shown in FIG. 1. As shown in Figure 2, using the vapor pressure measuring apparatus according to the present invention, it is possible to measure the vapor pressure of the precursor sample in the following manner.

우선 메인 제어부(500)의 지령을 통해 등압유지 챔버(200)에 관연결된 제 1밸브(710) 및 제 2밸브(720)를 모두 열고, 메인 펌프(810)를 작동시켜 최대 기본 압력이 발생하도록 하는 단계.(S1000)First, open the first valve 710 and the second valve 720 connected to the isostatic pressure holding chamber 200 through the command of the main control unit 500, and operate the main pump 810 to generate the maximum basic pressure. Step. (S1000)

그리고 제 1밸브(710)를 닫도록 지령하여 압력의 변화가 없는 등압 상태가 될 수 있도록 소정시간 동안 기다리는 단계.(S2000)And commanding to close the first valve 710 to wait for a predetermined time to be in an isostatic state without a change in pressure. (S2000)

이후, 전구체의 증기압력이 평형이 될때까지 기다린 뒤 제 2밸브(720)를 열어 샘플의 증기가 출력되도록 하여 이때의 포화증기압력을 압력 측정부(300)에서 측정하는 단계.(S3000)Thereafter, after the vapor pressure of the precursor is in equilibrium, the second valve 720 is opened to output the vapor of the sample, and the saturated steam pressure at this time is measured by the pressure measuring unit 300. (S3000)

측정이 끝나면 부설밸브(830)를 구동하여 관연결부위 내 오염원을 제거하도록 하고, 필요시 보조밸브(420)를 열고 보조펌프(410)를 가동하여 압력 측정부 주위의 오염원을 제거하는 단계.(S4000)After the measurement, drive the laying valve 830 to remove contaminants in the pipe connection part, and if necessary, open the auxiliary valve 420 and operate the auxiliary pump 410 to remove the contaminant around the pressure measuring part. S4000)

이 같은 본 발명에 따른 측정장치의 작동방법에 따라 전구체 시료의 증기압이 측정될 수 있으며, 더불어 측정 이후 오염원의 제거가 이루어질 수 있다. According to the operation method of the measuring device according to the present invention, the vapor pressure of the precursor sample may be measured, and in addition, the contamination source may be removed after the measurement.

이상에서 설명한 본 발명에 따른 반도체 제조공정을 위한 전구체 증기압 측정장치에서, 센서(110)로부터 송출되는 송출신호에 근거하여 경고 알람을 음향 또는 램프 불빛 등으로 송출하여 작업자가 인지하도록 하는 구조도 본 발명에 포함될 수 있다.In the precursor vapor pressure measuring apparatus for a semiconductor manufacturing process according to the present invention described above, a structure that allows the operator to recognize by sending a warning alarm to the sound or lamp lights, etc. based on the transmission signal sent from the sensor 110 Can be included.

이상과 같은 본 발명에 따른 반도체 제조공정을 위한 전구체 증기압 측정장치에 의하면, 온도변화에 따른 전구체 석출 및 전구체의 미소 탈기에 따른 압력 변화의 가능성을 현저하여 줄여 보다 정확한 증기압을 측정할 수 있는 특징이 있다. 이에 따라 획득/구축되는 증기압 관련 열역학적 데이터는 화학 증착법을 사용하는 반도체 제조공정 등에서 유용하게 활용할 수 있도록 하는데 역할할 수 있는 장점이 있다.According to the precursor vapor pressure measuring apparatus for a semiconductor manufacturing process according to the present invention as described above, by reducing the possibility of the pressure change due to the precursor precipitation and the micro-degassing of the precursor according to the temperature change, it is possible to measure the more accurate vapor pressure have. Accordingly, the thermodynamic data related to the vapor pressure obtained / constructed may play a role in being usefully used in a semiconductor manufacturing process using chemical vapor deposition.

그리고 오염원의 제거로 반복적으로 측정하여도 오차 범위를 줄일 수 있는 효과가 있고, 또한 전구체의 분해상태의 모니터링이 가능한 효과가 있다.In addition, it is possible to reduce the error range even by repeatedly measuring by removing the source of contamination, and also has the effect of monitoring the decomposition state of the precursor.

비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위 내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, various other modifications and variations may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the appended claims cover such modifications and variations as fall within the true scope of the invention.

Claims (5)

전구체 시료가 담긴 시료용기;A sample container containing a precursor sample; 상기 시료용기에 관연결되는 압력 측정부;A pressure measuring unit connected to the sample container; 상기 시료가 증발되어 압력 측정부로 유입될 수 있도록 밸브 및 등압유지챔버로 구성되고, 기본 진공유지 및 오염원 제거를 위한 등압유지챔버에 연결된 메인 펌핑부를 포함하고;A main pumping part configured of a valve and an isostatic holding chamber so that the sample can be evaporated and introduced into the pressure measuring unit, and connected to an isostatic holding chamber for basic vacuum holding and removal of contaminants; 상기 측정과정중 시료의 분해상태를 모니터링하기 위해 상기 시료용기에 부착되는 센서를 더 포함하며;And a sensor attached to the sample container for monitoring the decomposition state of the sample during the measurement process; 상기 센서의 센싱신호를 기초로 전구체의 분해상태를 체크하여 일정기준치 이상의 분해상태에 도달할 경우 메인 펌프의 작동을 중지시키도록 지령을 내리는 퍼지기체 및 센서 제어부를 포함하여 이루어지며;A purge gas and a sensor controller for checking the decomposition state of the precursor based on the sensing signal of the sensor and instructing to stop the operation of the main pump when the decomposition state reaches a predetermined threshold value or more; 상기 시료 용기 및 압력 측정부는, 유동 위치에 관계없이 상기 시료의 항온이 유지되도록 단열 격벽체의 내실에 밀봉/배치되는 것을 특징으로 하는 반도체 제조공정을 위한 전구체 증기압 측정장치.The sample vessel and the pressure measuring unit, the precursor vapor pressure measuring device for a semiconductor manufacturing process, characterized in that the sealing / arranged in the inner chamber of the insulating partition wall so that the constant temperature of the sample is maintained regardless of the flow position. 제 1항에 있어서,The method of claim 1, 상기 시료의 측정 이후 잔류하는 오염원의 제거를 위해For removal of contaminants remaining after measurement of the sample 상기 등압유지 챔버에 관연결되어 상기 오염원을 펌핑하도록 상기 등압유지 챔버에 관연결되며, 퍼지기체 및 센서 제어부의 제어명령에 따라 작동되는 부설펌 프가 더 포함되는 것을 특징으로 하는 반도체 제조공정을 위한 전구체 증기압 측정장치.And a laying pump connected to the isostatic pressure holding chamber and connected to the isostatic pressure holding chamber to pump the pollutant and operated according to a control command of a purge gas and a sensor controller. Precursor vapor pressure measuring device. 제 1항에 있어서,The method of claim 1, 상기 압력 측정부와 등압유지 챔버 사이에는 보조 펌프와 보조 밸브로 이루어지는 보조 펌핑부를 더 포함하여 이루어짐을 특징으로 하는 반도체 제조공정을 위한 전구체 증기압 측정장치.Precursor vapor pressure measuring device for a semiconductor manufacturing process, characterized in that further comprising an auxiliary pumping portion consisting of an auxiliary pump and an auxiliary valve between the pressure measuring unit and the isostatic holding chamber. 제 1항에 있어서,The method of claim 1, 상기 센서는, 초음파 센싱구조, 자외선 센싱구조, 적외선 센싱구조중 선택된 어느하나인 것을 특징으로 하는 반도체 제조공정을 위한 전구체 증기압 측정장치.The sensor is a precursor vapor pressure measuring device for a semiconductor manufacturing process, characterized in that any one selected from ultrasonic sensing structure, ultraviolet sensing structure, infrared sensing structure. 등압유지챔버와 연결된 제 1 밸브 및 제 2 밸브를 모두 열고, 메인 펌프를 작동시켜 최대 기본압력이 발생하도록 하는 단계(S1000)와;Opening both the first valve and the second valve connected to the isostatic holding chamber, and operating the main pump to generate a maximum basic pressure (S1000); 제 1 밸브를 닫도록 지령하여 압력의 변화가 없는 등압상태가 되도록 소정시간동안 기다리는 단계(S2000)와;Commanding to close the first valve and waiting for a predetermined time such that the pressure is unchanged (S2000); 이후, 전구체의 증기압력이 평형이 될때까지 기다린 뒤 제 2밸브를 열어 샘플의 증기가 출력되도록 하여 이때의 포화증기압력을 압력 측정부(300)에서 측정하는 단계.(S3000)Thereafter, after the vapor pressure of the precursor is in equilibrium, the second valve is opened to output steam of the sample, and the saturated steam pressure at this time is measured by the pressure measuring unit 300. (S3000) 측정이 끝나면, 부설밸브를 구동하여 관연결부위내 오염원을 제거하고, 필요시 보조펌프 및 보조밸브를 열어 압력 측정부 주위의 오염원을 제거하는 단계(S4000)으로 이루어짐을 특징으로 하는 반도체 제조공정을 위한 전구체 증기압 측정방법.After the measurement, the semiconductor manufacturing process comprising the step of removing the pollutant in the pipe connection by driving the auxiliary valve, and if necessary open the auxiliary pump and the auxiliary valve to remove the pollutant around the pressure measuring unit (S4000) Precursor vapor pressure measurement method.
KR1020060094363A 2006-09-27 2006-09-27 A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof KR100805930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060094363A KR100805930B1 (en) 2006-09-27 2006-09-27 A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060094363A KR100805930B1 (en) 2006-09-27 2006-09-27 A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof

Publications (1)

Publication Number Publication Date
KR100805930B1 true KR100805930B1 (en) 2008-02-21

Family

ID=39382861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060094363A KR100805930B1 (en) 2006-09-27 2006-09-27 A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof

Country Status (1)

Country Link
KR (1) KR100805930B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101061421B1 (en) * 2009-03-24 2011-09-01 한국표준과학연구원 Precursor purity measurement method for semiconductor manufacturing process
KR101107639B1 (en) 2010-06-08 2012-01-25 한국표준과학연구원 A Real Time Precursor Vapor Pressure Measuring System for Semiconductor Manufacturing Process and Method Using the Same
WO2020112997A1 (en) * 2018-11-29 2020-06-04 Tsi Incorporated Reducing or eliminating liquid de-gassing
KR20200083869A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Capsule Type Viscometer, Liquid Phase Precursor Degasser and Liquid Phase Precursor Management System Including Thereof
KR20200083828A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Phase Precursor Including Dispersion Means
KR20200083870A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Phase Precursor Life Time Management System
KR20200083829A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Precursor Degasser Using Centrifugal Force
KR20200083827A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Phase Precursor Degasser Including Exposed Surface Area Increasing Means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403089A (en) 1989-09-27 1995-04-04 Union Carbide Chemicals & Plastics Technology Corporation Method and apparatus for metering and mixing non-compressible and compressible fluids
KR970059323A (en) * 1996-01-30 1997-08-12 김광호 Thin film deposition apparatus and thin film deposition method using the same
KR20010034781A (en) * 1998-04-14 2001-04-25 잭 피. 샐러노 Film deposition system
US7050708B2 (en) 2001-10-11 2006-05-23 Micron Technology, Inc. Delivery of solid chemical precursors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403089A (en) 1989-09-27 1995-04-04 Union Carbide Chemicals & Plastics Technology Corporation Method and apparatus for metering and mixing non-compressible and compressible fluids
KR970059323A (en) * 1996-01-30 1997-08-12 김광호 Thin film deposition apparatus and thin film deposition method using the same
KR20010034781A (en) * 1998-04-14 2001-04-25 잭 피. 샐러노 Film deposition system
US7050708B2 (en) 2001-10-11 2006-05-23 Micron Technology, Inc. Delivery of solid chemical precursors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101061421B1 (en) * 2009-03-24 2011-09-01 한국표준과학연구원 Precursor purity measurement method for semiconductor manufacturing process
KR101107639B1 (en) 2010-06-08 2012-01-25 한국표준과학연구원 A Real Time Precursor Vapor Pressure Measuring System for Semiconductor Manufacturing Process and Method Using the Same
WO2020112997A1 (en) * 2018-11-29 2020-06-04 Tsi Incorporated Reducing or eliminating liquid de-gassing
US11413556B2 (en) 2018-11-29 2022-08-16 Tsi Incorporated Reducing or eliminating liquid de-gassing
KR20200083869A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Capsule Type Viscometer, Liquid Phase Precursor Degasser and Liquid Phase Precursor Management System Including Thereof
KR20200083828A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Phase Precursor Including Dispersion Means
KR20200083870A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Phase Precursor Life Time Management System
KR20200083829A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Precursor Degasser Using Centrifugal Force
KR20200083827A (en) 2018-12-31 2020-07-09 한국표준과학연구원 Liquid Phase Precursor Degasser Including Exposed Surface Area Increasing Means
KR102147363B1 (en) 2018-12-31 2020-08-25 한국표준과학연구원 Liquid Phase Precursor Life Time Management System

Similar Documents

Publication Publication Date Title
KR100805930B1 (en) A precursor vapor pressure measuring device for semiconductor manufacturing process and method thereof
JP4199011B2 (en) Low vapor pressure process chemical storage and delivery apparatus and method
US7751921B2 (en) Semiconductor manufacturing apparatus, method of detecting abnormality, identifying cause of abnormality, or predicting abnormality in the semiconductor manufacturing apparatus, and storage medium storing computer program for performing the method
JP2001196361A (en) Device and method for monitoring process exhaust gas, semiconductor producing device, system and method for managing semiconductor producing device
KR101443488B1 (en) Processing apparatus and valve operation checking method
KR101443493B1 (en) Processing apparatus and process status checking method
KR20060092966A (en) Leak detector and process gas monitor
JP6910443B2 (en) Use of Quartz Crystal Microbalance Microbalance for Foreline Solid Formation Quantification
KR101976059B1 (en) Reticle cleaner using plasma
US6341615B1 (en) Self-cleaning vacuum purge system
US5519638A (en) Automatic system for monitoring and replenishing hazardous liquids in tanks
CN113169102A (en) Real-time health status monitoring of semiconductor manufacturing equipment
US7165443B2 (en) Vacuum leakage detecting device for use in semiconductor manufacturing system
US7304716B2 (en) Method for purging an optical lens
WO1999014396A1 (en) Method and apparatus for monitoring a vaporizer
JP2013199669A (en) Film-forming apparatus
JP2007214406A (en) Semiconductor manufacturing apparatus mounted with mass-flow-rate controller having flow-rate testing function
JP2010197386A (en) In-line high pressure particle sensing system
KR20070093696A (en) Vacuum system for manufacturing semiconductor device equipment
KR101061421B1 (en) Precursor purity measurement method for semiconductor manufacturing process
JP2005216982A (en) Vacuum processing system and purging method therefor
KR20030021302A (en) Ventilation structure for semiconductor manufacturing equipment
JP2002025918A (en) Semiconductor manufacturing device
KR20070033114A (en) Semiconductor fabricating apparatus and method thereof
KR20080068964A (en) Apparatus for detecting leak of semiconductor vacuum equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 12