KR100769138B1 - 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법 - Google Patents

고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법 Download PDF

Info

Publication number
KR100769138B1
KR100769138B1 KR1020050096001A KR20050096001A KR100769138B1 KR 100769138 B1 KR100769138 B1 KR 100769138B1 KR 1020050096001 A KR1020050096001 A KR 1020050096001A KR 20050096001 A KR20050096001 A KR 20050096001A KR 100769138 B1 KR100769138 B1 KR 100769138B1
Authority
KR
South Korea
Prior art keywords
oxide film
plasma
vapor deposition
chemical vapor
plasma oxide
Prior art date
Application number
KR1020050096001A
Other languages
English (en)
Other versions
KR20070040527A (ko
Inventor
심천만
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050096001A priority Critical patent/KR100769138B1/ko
Priority to US11/545,991 priority patent/US20070082466A1/en
Publication of KR20070040527A publication Critical patent/KR20070040527A/ko
Application granted granted Critical
Publication of KR100769138B1 publication Critical patent/KR100769138B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Abstract

본 발명은 반도체 소자의 갭-필의 능력을 향상시킬 수 있도록 한 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법에 관한 것이다.
본 발명에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치는 바이어스(Bias) 주파수에 의해 플라즈마화되는 반응가스를 이용하여 소정 깊이의 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 장치에 있어서, 챔버 내부에 설치되어 상기 반도체 기판을 흡착하는 정전척과, 상기 챔버 내부에 전기장을 유도하는 상부 및 측부 유도코일과, 상기 챔버의 내부에 상기 반응가스를 공급하는 복수의 가스 노즐과, 상기 반응가스가 플라즈마화되도록 상기 정전척에 0.1 ~ 100㎑의 바이어스 주파수를 공급하는 바이어스 주파수 발생부를 구비하는 것을 특징으로 한다.
이러한 구성에 의하여 본 발명은 플라즈마 산화막의 갭-필시 보이드 발생을 억제하여 높은 종횡비를 가지도록 갭-필 특성을 향상시킬 수 있으며, 플라즈마 또는 금속 및 실리콘의 손상을 방지할 수 있다.
플라즈마 산화막, 갭-필, 보이드, 트렌치, KHz

Description

고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법{APPARATUS AND METHOD FOR MANUFACTURING OF PLASMA OXIDE LAYER USING THE HIGH DENSITY PLASMA CHEMICAL VAPOR DEPOSITION}
도 1은 종래의 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막을 나타낸 도면.
도 2는 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치를 나타낸 도면.
도 3은 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법에 의해 형성된 플라즈마 산화막을 나타낸 도면.
〈도면의 주요 부분에 대한 부호의 설명〉
1, 120 : 반도체 기판 2, 122 : 플라즈마 산화막
4 : 보이드 102 : 챔버
110 : 정전척 130 : 상부 유도코일
132 : 제 1 고주파 발생부 140 : 측부 유도코일
142 : 제 2 고주파 발생부 152 : 바이어스 주파수 발생부
160 : 노즐 170 : 펌프
본 발명은 반도체 소자에 관한 것으로, 특히 반도체 소자의 갭-필의 능력을 향상시킬 수 있도록 한 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법에 관한 것이다.
반도체 소자의 제조 기술이 점차 고집적화 되고 있으며, 또한 빠른 처리속도가 요구됨에 따라 다층 금속배선 구조가 필수적으로 사용되고 있다. 이와 같은 다층 금속배선 구조에서 각 층간의 층간절연막을 형성하기 위하여 화학기상증착(Chemical Vapor Deposition) 방식이 주로 사용되고 있다. 상기 화학기상증착 방식은 화학소스(Chemical source)를 가스 상태로 장치 내에 공급하여 웨이퍼 표면상에서 확산을 일으킴으로써 층간절연막 등을 웨이퍼 표면에 증착시키는 기술이다.
또한, 반도체 소자의 고집적화에 따라 트랜치 소자분리 공정 및 층간절연막(ILD: Inter layer Dielectric) 구조에서 점점 더 정교한 임계치수(Critical Domension) 및 높은 종횡비(Aspect ratio)가 요구됨에 따라 금속 배선들간의 간격이 점차 미세화됨에 따라 상술한 플라즈마 화학기상증착 방법으로 금속 배선들 사이의 갭(Gap)을 완전히 채우는데 한계에 도달하였다.
이에 따라 금속 배선들 사이의 갭을 채우는 능력을 극대화시킬 수 있는 고밀도 플라즈마 화학기상증착(High Density Plasma Chemical Vapor Deposition) 방법이 개발되었다.
고밀도 플라즈마 화학기상증착 방식은 종래의 플라즈마 화학기상증착 방식보다 이온화 효율을 향상시키기 위하여 훨씬 낮은 압력, 예컨대 수 mtorr에서 공정이 진행되고, 플라즈마 챔버 내에 전기장과 함께 자기장이 인가된다. 따라서 고밀도 플라즈마 화학기상증착 방식의 경우, 종래의 플라즈마 화학기상증착 방식보다 많은 가속 에너지를 얻을 수 있으며, 높은 이온화 밀도에 기인하여 더 많은 반응 라디칼이 생성된다. 이러한 고밀도 플라즈마 화학기상증착 방식은 침적과 불활성 가스를 이용한 에치백(etch back)을 동시에 실시하여, 높은 종횡비(aspect ratio)를 갖는 공간을 보다 효과적으로 채울 수 있도록 고안된 방식이다.
이러한, 고밀도 플라즈마 화학기상증착 장치는 플라즈마를 발생시키는 고주파 전원(Ratio Frequency Power) 및 활성화된 종(Species)을 금속 배선들 사이의 갭으로 끌어들이는 바이어스(Bias) 주파수를 이용한다. 이때, 바이어스 주파수는 MHz대의 영역을 이용한다.
이러한 종래의 고밀도 플라즈마 화학기상증착 장치를 이용한 반도체 소자의 갭필 방법은 도 1에 도시된 바와 같이 반도체 기판(1)에 소정 깊이로 형성된 트렌치(Trench)에 USG(Undoped Silicate Glass)(2)를 갭-필할 경우, 반도체 기판(1)에 증착된 입자들이 다시 스퍼터링 식각되며, 특히 모서리 부분(3)은 전기장이 집중되므로 반도체 기판(1)의 상부면 및 벽면보다 상대적으로 많은 식각이 일어나게 된다. 이와 같이, 식각된 산화 실리콘(또는 USG)입자는 바이어스 주파수가 MHz대이기 때문에 높은 운동 에너지를 가지고 빠른 속도로 운동하는 증착입자와 충돌하여 운동에너지를 잃어버림으로써, 충분히 이동할만한 시간을 확보하지 못한 상태에서 반도체 기판에 증착된다.
따라서, 식각된 입자, 특히 트렌치 내부에서 식각된 입자는 충분히 이동하여 반도체 기판에 증착되지 못하고, 전기장이 집중되는 소자 분리막(Shallow Trench Isolation)의 모서리 또는 금속배선 상부에 많은 양이 증착되어져서 보이드(Void)(4)를 유발하여 갭-필(Gap-Fill) 능력이 감소하게 된다.
따라서, 본 발명의 목적은 이와 같은 종래 기술의 문제점을 해결하기 위해 안출한 것으로서, 반도체 소자의 갭-필의 능력을 향상시킬 수 있도록 한 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법을 제공하는데 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치는 바이어스(Bias) 주파수에 의해 플라즈마화되는 반응가스를 이용하여 소정 깊이의 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 장치에 있어서, 챔버 내부에 설치되어 상기 반도체 기판을 흡착하는 정전척과, 상기 챔버 내부에 전기장을 유도하 는 상부 및 측부 유도코일과, 상기 챔버의 내부에 상기 반응가스를 공급하는 복수의 가스 노즐과, 상기 반응가스가 플라즈마화되도록 상기 정전척에 0.1 ~ 100㎑의 바이어스 주파수를 공급하는 바이어스 주파수 발생부를 구비하는 것을 특징으로 한다.
상기 바이어스 주파수에서 펄스의 듀티 비가 1:100~99:100인 것을 특징으로 한다.
상기 바이어스 주파수 발생부는 500 ~ 4000W의 바이어스 전원을 사용하는 것을 특징으로 한다.
상기 상부 및 측부 유도코일 각각에는 500 ~ 4000W의 바이어스 전원을 사용하는 주파수 발생부로부터 동일하거나 다른 MHz대의 고주파가 인가되는 것을 특징으로 한다.
상기 플라즈마 산화막은 산화 실리콘 또는 USG(Undoped Silicate Glass)인 것을 특징으로 한다.
본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성방법은 바이어스(Bias) 주파수에 의해 플라즈마화되는 반응가스를 이용하여 소정 깊이의 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 방법에 있어서, 챔버 내부에 설치된 정전척에 상기 반도체 기판을 흡착하는 단계와, 상부 및 측부 유도코일에 고주파를 인가하여 상기 챔버 내부에 전기장을 유도하는 단계와, 상기 챔버의 내부에 상기 반응가스를 공급하는 단계와, 상기 반응가스가 플라즈마화되도록 상기 정전척에 0.1 ~ 100㎑의 바이어스 주파수 를 공급하여 상기 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.
이하 발명의 바람직한 실시 예에 따른 구성 및 작용을 첨부한 도면을 참조하여 설명한다.
도 2는 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착장치를 개략적으로 나타낸 도면이다.
도 2를 참조하면, 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치는 소정 깊이를 갖는 트렌치(Trench)가 형성된 반도체 기판(120)과, 챔버(102) 내부에 설치되어 반도체 기판(120)을 흡착하는 정전척(110)과, 챔버(102)의 상부에 설치된 상부 유도코일(130)과, 챔버(102)의 측면에 설치된 측부 유도코일(140)과, 챔버(102)의 내부에 설치되어 챔버(102) 내부로 반응가스들을 주입하기 위한 복수의 가스 노즐(60)과, 상부 유도코일(130)에 MHz대의 제 1 고주파를 공급하는 제 1 고주파 발생부(132)와, 측부 유도코일(140)에 MHz대의 제 2 고주파를 공급하는 제 2 고주파 발생부(142)와, 정전척(110)에 0.1 ~ 100㎑의 바이어스(Bias) 주파수를 공급하는 바이어스 주파수 발생부(152)와, 챔버(102)의 하부에 설치되어 챔버(102)의 내부를 진공 또는 배기시키는 펌프(170)를 구비한다.
상부 유도코일(130)은 1000 ~ 5000W의 고주파 전원을 사용하는 제 1 고주파 발생부(132)로부터 MHz대의 제 1 고주파를 공급받는다.
측부 유도코일(140)은 1000 ~ 5000W의 고주파 전원을 사용하는 제 2 고주파 발생부(142)로부터 MHz대의 제 2 고주파를 공급받는다. 이때, 제 2 고주파는 제 1 고주파와 동일하거나 다를 수 있다.
바이어스 주파수 발생부(152)는 0.1 ~ 100㎑의 바이어스(Bias) 주파수를 발생하여 정전척(110)에 공급한다. 이때, 바이어스 주파수에서 펄스의 듀비 비가 1:100~99:100로 설정된다. 그리고, 바이어스 주파수 발생부(152)는 500 ~ 4000W의 고주파 전원을 사용한다.
정전척(110)은 바이어스 주파수 발생부(152)로부터 공급되는 0.1 ~ 100㎑의 바이어스(Bias) 주파수에 따라 반도체 기판(120)을 흡착한다.
복수의 가스 노즐(160)은 도시하지 않은 탱크로부터 반도체 기판(120)에 형성된 트렌치에 고밀도 플라즈마 산화막(122)을 형성하기 위한 반응가스들인 실레인(SiH4), 산소(O2) 및 아르곤(Ar)과 같은 불활성 가스가 공급되게 된다. 이때, 고밀도 플라즈마 산화막(122)은 산화 실리콘(SiO2) 또는 USG(Undoped Silicate Glass)이 될 수 있다.
이와 같은, 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법은 정전척(110)에 0.1 ~ 100㎑의 바이어스(Bias) 주파수를 인가하여 챔버(102)로 공급된 반도체 기판(120)을 흡착한 상태에서 상부 유도코일(130) 및 측부 유도코일(140) 각각에 1000 ~ 5000W의 고주파 전원을 인가하여 챔버(102) 내부에 전기장을 유도한다. 이와 동시에 복수의 노즐(160)을 통해 플라즈마 산화막(122)을 반도체 기판(120)에 증착하기 위한 반응가 스를 챔버(102)의 내부로 공급한다.
이에 따라, 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법은 챔버(102) 내부로 공급된 반응가스들은 챔버(102) 내부에 유도되는 전기장에 의해 플라즈마화되고, 플라즈마화된 반응가스들은 반도체 기판(120)의 표면에서 반응하여 증착됨으로써 트렌치를 포함하는 반도체 기판(120)의 전면에 플라즈마 산화막(122)을 형성한다.
여기서, 트렌치를 포함하는 반도체 기판(120)의 전면에 플라즈마 산화막(122)을 형성시 도 3에 도시된 바와 같이 플라즈마에 의해 식각된 산화 실리콘(또는 USG) 입자가 다시 표면으로 흡착되었을때 트렌치의 홈 방향으로 이동함으로써 보이드(Void) 없이 트렌치에 플라즈마 산화막(122)을 갭-필할 수 있다. 이는 바이어스 주파수가 KHz 또는 펄스이기 때문에 플라즈마에 의해 식각된 입자가 다른 입자와 충돌하는데 걸리는 시간이 1,000 ~ 10,000ms 정도 길기 때문에 훨씬 많은 거리를 이동할 수 있어 캡-필시 보이드의 발생을 억제할 수 있다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 실시 예에 기재된 내용으로 한정하는 것이 아니라 특허 청구 범위에 의해서 정해져야 한다.
이상의 설명에서와 같이 본 발명의 실시 예에 따른 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치 및 형성방법은 반응가스를 플라 즈마화시키기 위한 바이어스 주파수를 KHz의 낮은 주파수 또는 펄스 형태로 공급함으로써 플라즈마 산화막의 갭-필시 보이드 발생을 억제하여 높은 종횡비를 가지도록 갭-필 특성을 향상시킬 수 있으며, 플라즈마 또는 금속 및 실리콘의 손상을 방지할 수 있다.

Claims (10)

  1. 바이어스(Bias) 주파수에 의해 플라즈마화되는 반응가스를 이용하여 소정 깊이의 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 장치에 있어서,
    챔버 내부에 설치되어 상기 반도체 기판을 흡착하는 정전척과,
    상기 챔버 내부에 전기장을 유도하는 상부 및 측부 유도코일과,
    상기 챔버의 내부에 상기 반응가스를 공급하는 복수의 가스 노즐과,
    상기 반응가스가 플라즈마화되도록 상기 정전척에 0.1 ~ 100㎑의 바이어스 주파수를 공급하는 바이어스 주파수 발생부를 구비하는 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치.
  2. 제 1 항에 있어서,
    상기 바이어스 주파수에서 펄스의 듀티 비가 1:100~99:100인 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치.
  3. 제 1 항에 있어서,
    상기 바이어스 주파수 발생부는 500 ~ 4000W의 바이어스 전원을 사용하는 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치.
  4. 제 1 항에 있어서,
    상기 상부 및 측부 유도코일 각각에는 500 ~ 4000W의 바이어스 전원을 사용하는 주파수 발생부로부터 동일하거나 다른 MHz대의 고주파가 인가되는 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치.
  5. 제 1 항에 있어서,
    상기 플라즈마 산화막은 산화 실리콘 또는 USG(Undoped Silicate Glass)인 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성장치.
  6. 바이어스(Bias) 주파수에 의해 플라즈마화되는 반응가스를 이용하여 소정 깊이의 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 방법에 있어서,
    챔버 내부에 설치된 정전척에 상기 반도체 기판을 흡착하는 단계와,
    상부 및 측부 유도코일에 고주파를 인가하여 상기 챔버 내부에 전기장을 유도하는 단계와,
    상기 챔버의 내부에 상기 반응가스를 공급하는 단계와,
    상기 반응가스가 플라즈마화되도록 상기 정전척에 0.1 ~ 100㎑의 바이어스 주파수를 공급하여 상기 트렌치를 포함한 반도체 기판의 전면에 플라즈마 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성방법.
  7. 제 6 항에 있어서,
    상기 바이어스 주파수에서 펄스의 듀티 비가 1:100~99:100인 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성방법.
  8. 제 6 항에 있어서,
    상기 정전척에는 500 ~ 4000W의 바이어스 전원을 사용하는 바이어스 주파수 발생부로부터 상기 0.1 ~ 100㎑의 바이어스 주파수가 공급되는 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성방법.
  9. 제 6 항에 있어서,
    상기 상부 및 측부 유도코일 각각에는 500 ~ 4000W의 바이어스 전원을 사용하는 주파수 발생부로부터 동일하거나 다른 MHz대의 고주파가 인가되는 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성방법.
  10. 제 6 항에 있어서,
    상기 플라즈마 산화막은 산화 실리콘 또는 USG(Undoped Silicate Glass)인 것을 특징으로 하는 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마 산화막 형성방법.
KR1020050096001A 2005-10-12 2005-10-12 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법 KR100769138B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050096001A KR100769138B1 (ko) 2005-10-12 2005-10-12 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법
US11/545,991 US20070082466A1 (en) 2005-10-12 2006-10-10 High density plasma chemical vapor deposition apparatus, operating method thereof, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050096001A KR100769138B1 (ko) 2005-10-12 2005-10-12 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법

Publications (2)

Publication Number Publication Date
KR20070040527A KR20070040527A (ko) 2007-04-17
KR100769138B1 true KR100769138B1 (ko) 2007-10-22

Family

ID=37911481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050096001A KR100769138B1 (ko) 2005-10-12 2005-10-12 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법

Country Status (2)

Country Link
US (1) US20070082466A1 (ko)
KR (1) KR100769138B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060772B (zh) * 2011-10-19 2014-11-05 中芯国际集成电路制造(上海)有限公司 化学气相沉积装置、化学气相沉积方法
KR20210013762A (ko) * 2018-06-22 2021-02-05 어플라이드 머티어리얼스, 인코포레이티드 반도체 웨이퍼 프로세싱에서 웨이퍼 후면 손상을 최소화하는 방법들

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010034810A (ko) * 1998-04-21 2001-04-25 조셉 제이. 스위니 가변 플라즈마 전력을 사용하여 고종횡비를 갖는 갭의프로파일을 변형시키는 방법 및 장치
US6375744B2 (en) 1997-04-02 2002-04-23 Applied Materials, Inc. Sequential in-situ heating and deposition of halogen-doped silicon oxide
US20050079715A1 (en) 2002-04-30 2005-04-14 Applied Materials, Inc. Method for high aspect ratio HDP CVD gapfill

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614055A (en) * 1993-08-27 1997-03-25 Applied Materials, Inc. High density plasma CVD and etching reactor
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5753044A (en) * 1995-02-15 1998-05-19 Applied Materials, Inc. RF plasma reactor with hybrid conductor and multi-radius dome ceiling
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6030881A (en) * 1998-05-05 2000-02-29 Novellus Systems, Inc. High throughput chemical vapor deposition process capable of filling high aspect ratio structures
US6596653B2 (en) * 2001-05-11 2003-07-22 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375744B2 (en) 1997-04-02 2002-04-23 Applied Materials, Inc. Sequential in-situ heating and deposition of halogen-doped silicon oxide
KR20010034810A (ko) * 1998-04-21 2001-04-25 조셉 제이. 스위니 가변 플라즈마 전력을 사용하여 고종횡비를 갖는 갭의프로파일을 변형시키는 방법 및 장치
US20050079715A1 (en) 2002-04-30 2005-04-14 Applied Materials, Inc. Method for high aspect ratio HDP CVD gapfill

Also Published As

Publication number Publication date
US20070082466A1 (en) 2007-04-12
KR20070040527A (ko) 2007-04-17

Similar Documents

Publication Publication Date Title
US6617259B2 (en) Method for fabricating semiconductor device and forming interlayer dielectric film using high-density plasma
US7482247B1 (en) Conformal nanolaminate dielectric deposition and etch bag gap fill process
TWI389251B (zh) 處理薄膜之方法
US7514375B1 (en) Pulsed bias having high pulse frequency for filling gaps with dielectric material
US6884318B2 (en) Plasma processing system and surface processing method
KR101422982B1 (ko) 성막 방법 및 성막 장치
KR102514465B1 (ko) 유전체 재료를 증착하기 위한 방법들
WO2015126590A1 (en) Hermetic cvd-cap with improved step coverage in high aspect ratio structures
WO2018110150A1 (ja) 成膜装置及び成膜方法
CN101969020B (zh) 沉积设备和使用沉积设备制造半导体装置的方法
CN100468687C (zh) 隔离沟槽的填充方法
KR100769138B1 (ko) 고밀도 플라즈마 화학기상 증착 방법을 이용한 플라즈마산화막 형성장치 및 형성방법
JP7374308B2 (ja) 誘電体材料を堆積する方法及び装置
CN101192559A (zh) 隔离沟槽的填充方法
TWI780185B (zh) 處理被處理體之方法
TW202117802A (zh) 固化介電質材料的方法與設備
KR101879789B1 (ko) 실리콘 절연막 형성방법
KR20170011710A (ko) 반도체 소자와 그의 실리콘 절연막 형성방법
KR20090022792A (ko) 절연막 형성 방법
KR20030003907A (ko) 고밀도 플라즈마 화학기상증착 장비의 사용방법
KR100403638B1 (ko) 반도체 장치의 제조방법
JP2005026654A (ja) 半導体素子及びその製造方法
KR20110004258A (ko) 반도체 소자의 갭필 방법
JP2013219146A (ja) 半導体装置の製造方法
KR20080013269A (ko) 반도체 소자 제조를 위한 박막형성방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110920

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee